Download
Download
Including raw images, features, and train/test partitions.
Details
The QMUL underGround Re-IDentification (GRID) dataset contains 250 pedestrian image pairs. Each pair contains two images of the same individual seen from different camera views. All images are captured from 8 disjoint camera views installed in a busy underground station. The figures beside show a snapshot of each of the camera views of the station and sample images in the dataset. The dataset is challenging due to variations of pose, colours, lighting changes; as well as poor image quality caused by low spatial resolution.
There are two folders:
Folder 'probe' contains 250 probe images captured in one view.
Folder 'gallery' contains 250 true match images of the probes captured in other views. Besides, there are a total of 775 additional images that do not belong to any of the probes. These extra images should be treated as a fixed portion in the testing set during cross validation.
The dataset is intended for research purposes only and as such cannot be used commercially. Please cite the following publication(s) when this dataset is used in any academic and research reports.
References
-
On-the-fly Feature Importance Mining for Person Re-Identification
C. Liu, S. Gong, and C. C. Loy
Pattern Recognition, vol. 47, no. 4, pp. 1602-1615, 2014 (PR)
DOI
PDF
Project Page
-
Person Re-Identification
S. Gong, M. Cristani, S. Yan, C. C. Loy (Eds.)
Springer, January 2014
DOI
Preface
Introduction
-
Evaluating Feature Importance for Re-Identification
C. Liu, S. Gong, C. C. Loy, and X. Lin
In Gong, Cristani, Yan, Loy (Eds.), Person Re-Identification, Springer, January 2014
PDF
-
Person Re-Identification by Manifold Ranking
C. C. Loy, C. Liu, and S. Gong
IEEE International Conference on Image Processing, pp. 3567-3571, 2013 (ICIP)
PDF
Poster
Project Page | Codes
- Time-Delayed Correlation Analysis for Multi-Camera Activity Understanding
C. C. Loy, T. Xiang, and S. Gong
International Journal of Computer Vision, vol. 90(1), pp. 106-129, October 2010 (IJCV)
DOI
PDF
Project Page | Codes
- Multi-Camera Activity Correlation Analysis
C. C. Loy, T. Xiang, and S. Gong
IEEE Conference on Computer Vision and Pattern Recognition, pp. 1988-1995, 2009 (CVPR)
* Oral presentation
PDF
Project Page | Codes
Benchmarking Results
The matching performance given in the table below was measured using the averaged cumulative match characteristic (CMC) curve over 10 trials. For feature extraction please refer to this paper for more details. The number of train/test images were set to (125 paired images)/(125 paired images + 775 non-paired images).
Below are the methods that perform benchmarking on GRID:
| r=1 | r=5 | r=10 | r=15 | r=20 |
L1-norm | 4.40 | 11.68 | 16.24 | 19.12 | 24.80 |
PRDC | 9.68 | 22.00 | 32.96 | 38.96 | 44.32 |
RankSVM | 10.24 | 24.56 | 33.28 | 39.44 | 43.68 |
XQDA | 10.48 | 28.08 | 38.64 | 46.32 | 52.56 |
LCRML | 10.68 | 25.76 | 35.04 | 42.08 | 46.48 |
MRank-PRDC | 11.12 | 26.08 | 35.76 | 41.76 | 46.56 |
MRank-RankSVM | 12.24 | 27.84 | 36.32 | 42.24 | 46.56 |
MtMCML | 14.08 | 34.64 | 45.84 | 52.88 | 59.84 |
PolyMap | 16.30 | 35.80 | 46.00 | 52.80 | 57.60 |
XQDA + LOMO | 16.56 | 33.84 | 41.84 | 47.68 | 52.40 |
KEPLER | 18.40 | 39.12 | 50.24 | 57.04 | 61.44 |
MLAPG | 16.64 | -- | 41.20 | -- | 52.96 |
NLML | 24.54 | 35.86 | 43.53 | -- | 55.25 |
SSDAL + XQDA | 22.40 | 39.20 | 48.00 | -- | 58.40 |
DR-KISS | 20.60 | 39.30 | 51.40 | -- | 62.60 |
LSSCDL | 20.40 | -- | 51.28 | -- | 61.20 |
SCSP | 24.24 | 44.56 | 54.08 | 59.68 | 65.20 |
GOG + XQDA | 24.80 | -- | 58.40 | -- | 68.88 |
SSM | 27.20 | -- | 61.12 | -- | 70.56 |
HIPHOP+CRAFT | 22.40 | 49.90 | 61.80 | -- | 71.70 |
HIPHOP+LOMO+CRAFT | 26.00 | 50.60 | 62.50 | -- | 73.30 |
JLML | 37.50 | 61.40 | 69.40 | -- | 77.40 |
- RankSVM - B. Prosser, W. Zheng, S. Gong and T. Xiang. Person Re-Identification by Support Vector Ranking. In Proc. British Machine Vision Conference (BMVC), 2010.
- PRDC - W. Zheng, S. Gong and T. Xiang. Re-identification by Relative Distance Comparison. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2012.
- MRank-RankSVM - C. C. Loy, C. Liu, and S. Gong. Person Re-identification by Manifold Ranking. IEEE International Conference on Image Processing (ICIP), 2013.
- MRank-PRDC - C. C. Loy, C. Liu, and S. Gong. Person Re-identification by Manifold Ranking. IEEE International Conference on Image Processing (ICIP), 2013.
- MtMCML - L. Ma, X. Yang, D. Tao. Person Re-Identification Over Camera Networks Using Multi-Task Distance Metric Learning. IEEE Transaction on Image Processing, vol. 23, no. 8, pp. 3656-3670, 2014.
- LCRML - J. Chen, Z. Zhang and Y. Wang. Relevance Metric Learning for Person Re-identification by Exploiting Global Similarities. IEEE International Conference on Pattern Recognition (ICPR), 2014.
- XQDA - S. Liao, Y. Hu, X. Zhu, S. Z. Li. Person Re-identification by Local Maximal Occurrence Representation and Metric Learning. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
- PolyMap - D. Chen, Z. Yuan, G. Hua, N. Zheng, J. Wang. Similarity Learning on an Explicit Polynomial Kernel Feature Map for Person Re-Identification. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
- KEPLER - N. Martinel, C. Micheloni, G. L. Foresti. Kernelized Saliency-Based Person Re-Identification Through Multiple Metric Learning. IEEE Transactions on Image Processing, vol. 24, no. 12, pp. 5645-5658, 2015.
- MLAPG - S. Liao and S. Z. Li. Efficient PSD Constrained Asymmetric Metric Learning for Person Re-Identification. International Conference on Computer Vision (ICCV), 2015.
- NLML - S. Huang, J. Lu, J. Zhou, A. K. Jain. Nonlinear Local Metric Learning for Person Re-identification. arXiv:1511.05169v1, 2015.
- SSDAL + XQDA - Chi Su, Shiliang Zhang, Junliang Xing, Wen Gao, and Q, Tian. Deep Attributes Driven Multi-Camera Person Re-identification. European Conference on Computer Vision (ECCV), 2016.
- DR-KISS - D. Tao, Y. Guo, M. Song, Y. Li, Z. Yu, and Y. Y. Tang. Person Re-Identification by Dual-Regularized KISS Metric Learning. IEEE Transactions on Image Processing, vol. 25, no. 6, pp. 2726-2738, 2016.
- LSSCDL - Y. Zhang, B. Li, H. Lu, A. Irie, and X. Ruan. Sample-specific SVM Learning for Person Re-Identification. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
- SCSP - D. Chen, Z. Yuan, B. Chen, N. Zheng. Similarity Learning with Spatial Constraints for Person Re-identification. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
- GOG + XQDA - T. Matsukawa, T. Okabe, E. Suzuki, and Y. Sato. Hierarchical Gaussian Descriptor for Person Re-Identification. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
- SSM - S. Bai, X. Bai, Q. Tian. Scalable Person Re-identification on Supervised Smoothed Manifold. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
- HIPHOP+CRAFT - Y. Chen, W. Zheng, X. Zhu, J. Lai, Person Re-Identification by Camera Correlation Aware Feature Augmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017.
- HIPHOP+LOMO+CRAFT - Y. Chen, W. Zheng, X. Zhu, J. Lai, Person Re-Identification by Camera Correlation Aware Feature Augmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017.
- JLML - W. Li, X. Zhu, S. Gong, Person Re-Identification by Deep Joint Learning of Multi-Loss Classification. International Joint Conference on Artificial Intelligence, 2017.
Example results from PRDC |
Success cases |
|
|
|
|
|
Failure cases |
|
|
|
|
|
Acknowledgements
We would like to thank the UK MOD who have made the video footage available to the Queen Mary University of London. Additionally we thank David Russell for processing the video data.
Other Re-Identification Datasets