# **Person Re-Identification by Manifold Ranking**

**Chen Change Loy** 

**Dept. of Information Engineering** The Chinese University of Hong Kong ccloy@ie.cuhk.edu.hk

## Chunxiao Liu

**Dept. of Electronic Engineering** Tsinghua University Icx08@mails.tsinghua.edu.cn

### Shaogang Gong

School of EECS Queen Mary University of London sgg@eecs.qmul.ac.uk



More similar

Less similar

### **Problem:**

Re-identify a person at different locations and time.

### **Existing learning-to-rank methods are not scalable:**

- The learning process requires exhaustive supervision on pairwise individual correspondence between camera pair.
- The value of unlabelled gallery instances is generally overlooked.

### **Contributions:**

- Investigate the importance of using unlabelled gallery data for rank diffusion.
- Systematically formulate and validate manifold ranking models [3, 4].
- Performance significantly boosted by manifold ranking (14%)  $\bullet$ performance gain at rank-1 matching rate

# $A_{ij} = \exp\left(-\operatorname{dist}^2(\mathbf{x}_i, \mathbf{x}_j) / \sigma^2\right)$

**Step 3.** Estimate graph Laplacian Normalised:  $L_n = I - D^{-1/2} A D^{-1/2}$ Unnormalised:  $L_u = D - A$ where  $D_{ii} = \sum_{i} A_{ij}$ 

#### Manifold ranking based on vector c:

True Match Rank 1 Rank 4 Rank 8 Rank 11 Rank 265 Rank 312



# MRank vs. Conventional Methods without Manifold Ranking

#### **Datasets:**

### **Highlights**:

Performance is measured using matching rate at rank-*r* = the expectation of finding the correct match in the top *r* matches





- MRank can be initialised with supervised distance metrics, denoted as MRank- $L_{\mu}$  (*dist*) and MRank- $L_{n}$  (*dist*) for unnormalised and normalised Laplacians
- A relative improvement of **14%** at rank-1 recognition rate over the state-of- $\bullet$ the-art learning to rank methods (RankSVM [1] and PRDC [2]).

| Method                         | i-LIDS ( $p = 50$ ) |       |        |        |        | VIPeR $(p = 316)$ |       |        |        |        | GRID(p=900) |       |        |        |        |
|--------------------------------|---------------------|-------|--------|--------|--------|-------------------|-------|--------|--------|--------|-------------|-------|--------|--------|--------|
|                                | r = 1               | r = 5 | r = 10 | r = 15 | r = 20 | r = 1             | r = 5 | r = 10 | r = 15 | r = 20 | r = 1       | r = 5 | r = 10 | r = 15 | r = 20 |
| $\ell_1$ -norm                 | 29.60               | 54.80 | 67.60  | 74.60  | 81.00  | 9.43              | 20.03 | 27.06  | 30.95  | 34.68  | 4.40        | 11.68 | 16.24  | 19.12  | 24.80  |
| MRank- $L_n$ ( $\ell_1$ -norm) | 31.40               | 54.40 | 68.40  | 75.60  | 83.60  | 8.48              | 18.70 | 24.40  | 28.83  | 32.66  | 7.12        | 12.32 | 17.68  | 20.64  | 25.36  |
| MRank- $L_u$ ( $\ell_1$ -norm) | 30.60               | 53.40 | 68.20  | 76.00  | 82.80  | 8.35              | 17.06 | 22.47  | 26.33  | 30.76  | 6.00        | 13.28 | 17.92  | 21.12  | 24.00  |
| $\ell_2$ -norm                 | 28.20               | 54.00 | 66.20  | 72.40  | 79.40  | 10.95             | 23.92 | 31.39  | 38.86  | 44.11  | 4.88        | 14.24 | 20.32  | 22.40  | 26.24  |
| MRank- $L_n$ ( $\ell_2$ -norm) | 31.40               | 55.60 | 67.60  | 77.40  | 82.20  | 11.42             | 24.27 | 33.73  | 38.92  | 44.11  | 5.76        | 14.96 | 21.76  | 25.12  | 30.96  |
| MRank- $L_u$ ( $\ell_2$ -norm) | 31.00               | 56.00 | 67.40  | 77.00  | 81.20  | 10.57             | 24.24 | 33.42  | 38.83  | 43.42  | 5.76        | 15.44 | 21.28  | 24.96  | 28.40  |
| RankSVM [1]                    | 42.60               | 67.60 | 78.80  | 86.00  | 92.00  | 14.87             | 37.12 | 50.19  | 58.48  | 65.66  | 10.24       | 24.56 | 33.28  | 39.44  | 43.68  |
| MRank- $L_n$ (RankSVM)         | 42.80               | 70.40 | 81.80  | 86.40  | 92.40  | 19.27             | 42.41 | 55.00  | 63.86  | 70.06  | 12.24       | 27.84 | 36.32  | 42.24  | 46.56  |
| $MRank-L_u \;(RankSVM)$        | 41.80               | 69.60 | 81.40  | 87.00  | 91.40  | 19.34             | 42.47 | 55.51  | 64.11  | 70.44  | 11.44       | 27.60 | 36.40  | 42.24  | 46.24  |
| PRDC [2]                       | 44.80               | 68.00 | 77.60  | 84.20  | 88.20  | 16.01             | 37.09 | 51.27  | 59.43  | 65.95  | 9.68        | 22.00 | 32.96  | 38.96  | 44.32  |
| MRank- $L_n$ (PRDC)            | 47.80               | 71.60 | 80.60  | 85.00  | 90.60  | 19.37             | 42.78 | 54.78  | 63.77  | 69.62  | 10.88       | 24.96 | 35.84  | 41.44  | 46.40  |
| MRank- $L_u$ (PRDC)            | 49.00               | 70.60 | 80.60  | 85.60  | 90.60  | 18.45             | 41.74 | 53.67  | 62.72  | 69.27  | 11.12       | 26.08 | 35.76  | 41.76  | 46.56  |

 $L_{u}$  = Unnormalised Laplacian;  $L_{n}$  = normalised Laplacian; r = rank; p = number of person in a test set

β is an important parameter that controls the convergence of manifold ranking.

- Fig. (a) Matching rate curves with  $\beta = 10^{-2}$
- Fig. (b) Area under the curve with  $\beta$  varied from 10<sup>-5</sup> to 10.

\* Unnormalised Laplacian,  $L_{\mu}$ , is less sensitive to  $\beta$  in comparison to normalised Laplacian, L<sub>n</sub>.





[1] B. Prosser, W. Zheng, S. Gong, and T. Xiang, "Person re-identification by support vector ranking," in BMVC, 2010 [2] W. Zheng, S. Gong, and T. Xiang, "Re-identification by relative distance comparison," TPAMI, 2012 [3] D. Zhou, J. Weston, A. Gretton, O. Bousquet, and B. Scholkopf, "Ranking on data manifolds," in NIPS, 2004 [4] X. Zhou, M. Belkin, and N. Srebro, "An iterated graph Laplacian approach for ranking on manifolds," in SIGKDD, 2011

**Dataset and Source Code:** http://personal.ie.cuhk.edu.hk/~ccloy/

