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Abstract—In this paper, we consider an aggregator that man-
ages a large number of Electrical Vehicle (EV) charging jobs,
each of which requests a certain amount of energy that needs
to be charged before a deadline. The goal of the aggregator is
to minimize the peak consumption at any time by planning the
charging schedules. A key challenge that the aggregator faces in
the planning is that there exists significant uncertainty in future
arrivals of EV charging jobs. In contrast to existing approaches
that either require precise knowledge of future arrivals or do
not make use of any future information at all, we consider
a more practical scenario where the aggregator can obtain a
limited amount of partial future information. Based on the
framework of competitive online algorithms, we propose to use
the optimal competitive ratio as a metric for quantifying the value
of partial future information. We develop a powerful computation
framework for computing the optimal competitive ratio given
various types of partial future information and for finding the
corresponding optimal online algorithm. Our numerical results
indicate that even limited future knowledge can significantly
improve the competitive ratios and reduce the peak consumption.

I. INTRODUCTION

Electrification of transportation is a major national priority
due to its environmental and societal benefits. Converting
fossil-fueled vehicles to EVs can increase the penetration of
cleaner energy sources, improve energy efficiency, decrease
the reliance on fossil fuels, and thus be more sustainable [2].
However, large-scale transportation electrification comes with
both challenges and opportunities. In the US, transportation
consumes 24% of total energy, while electricity consumes
36% in January 2016 [3]. Thus, once a significant portion
of transportation is electrified, if left uncontrolled they will
significantly stress the capacity of the electrical grid. On the
other hand, EV charging is a typical example of a deferrable
load, and there is often considerable flexibility in the charging
schedule, which may be exploited for the purpose of demand
response to improve the overall system stability and efficiency
[4].

We study intelligent EV charging under the scenario of an
EV aggregator serving potentially a large number of EVs.
Such an EV aggregator can represent a parking lot for an
apartment complex and/or an office building that manages
the EV charging of their customers. The EVs arrive with
charging requests, each of which has a deadline for the

An earlier version of this work has been presented in 51st Annual Allerton
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charging request to be completed. This scenario was studied
in [5][6] with the goal of minimizing the total energy cost
of the aggregator subject to time-of-day pricing. In contrast,
in this paper we focus on a different optimization objective,
where the EV aggregator attempts to minimize the peak energy
consumption at any given time during a billing period. Such
a peak-minimizing objective is relevant due to the following
reasons. First, meeting a higher peak demand requires a larger
generation capacity, which is usually more expensive and
“dirtier”. Further, a large peak demand closer to the system
capacity can potentially be a source of grid instability. Hence,
from the utility provider’s point of view, it is beneficial if
the peak energy consumption can be reduced. In this regard,
having the aggregator to reduce the peak consumption of a
set of EVs can be taken as a first step towards reducing
the overall peak consumption of the grid. Second, in light
of the importance of controlling the peak consumption, some
utility providers have introduced some forms of peak-based
pricing. In this type of pricing schemes, the customers are
charged based on both the total usage in a billing period
and the maximum (peak) usage at any time in the billing
period. Specifically, if a customer’s energy consumption is
given as a sequence (E1, E2, ..., En), then the total bill is
of the form c1

∑
iEi + c2 maxi{Ei} [7]. In typical schemes

(e.g., the National Grid [7]), the average charge for peak usage
c2 (8.32$/kW-month) is over 100 times more than the unit
charge for total usage c1 (0.07$/kWh). Under this type of
pricing schemes, when the aggregator defers EV charging
jobs, the total energy consumption does not change. It is
the peak demand that is changed. Hence, minimizing the EV
aggregator’s operating cost is also equivalent to minimizing
the peak consumption.

A main challenge for peak-minimizing EV charging is the
uncertainty of future arrivals and departures of EV charg-
ing requests. Clearly, if all future EV charging jobs are
known in advance, one can then readily compute the optimal
charging schedule that perfectly minimizes the peak [8][9].
Unfortunately, knowing the entire future demand is usually
unrealistic. The other extreme is where no information about
future EV charging requests is available to the aggregator.
Here, because the aggregator cannot go back in time (i.e., the
aggregator cannot adjust a “sub-optimal” charging decision
that was made in the past), the performance of any online
scheduling algorithm would likely be quite poor (see examples
in Section III-B). Between these two extremes, we enter the



highly practical regime where the aggregator may have some
partial information of the future, but not all. Intuitively, the
more future information is made available to the aggregator,
the “easier” it will be to minimize the peak. Thus, it is to
the aggregator’s benefit to acquire and utilize various types of
partial future information. For example, the aggregator may
ask EV owners to make reservations for their EV charging jobs
L slots in advance, and may even offer monetary incentives
to encourage more customers to make reservations ahead
of time. However, the difficulty in managing and exploiting
these types of partial future information is that they are often
quite “coarse.” For example, with a given level of monetary
incentive, the aggregator may be able to know that at least
a certain fraction p of the customers are willing to make
reservations in advance. Still, it may not know exactly how
many reserved or “walk-in”1 EV-charging jobs will arrive
at each time-interval. Thus, the open question that we wish
to answer is then: how can such coarse and partial future
information be utilized in aggregator’s decision making, and
how to quantify the value of such partial information in
advance, even before the actual EV charging jobs arrive?

In the literature, there are two main approaches to model the
uncertainty that is associated with partial future knowledge. If
the future demand is uncertain but its distribution is known,
one can potentially formulate a stochastic control problem,
e.g., as a Markov Decision Program (MDP) [10]. However,
as we illustrated earlier, the partial future information that we
wish to deal with may be so “coarse” that even this distribution
is difficult to specify. If the distribution is incorrect, the
performance guarantee from the MDP solution will likely be
unreliable. If the distribution is uncertain but is known to vary
within a certain range, one can adopt the approach of Robust
MDP [11]. However, both MDP and Robust MDP also suffer
prohibitively high computational complexity (i.e., the “curse
of dimensionality”) when the problem size is large.

Another approach to account for uncertainty, which we
adopt in this paper, is based on competitive online algorithms
[12], which also relate closely to robust optimization [13][14].
Here, we model the uncertainty associated with partial future
information by set-based constraints. The goal is then to
optimize the worst-case performance for any future realization
that lies in the uncertainty set. Not only are such set constraints
easier to describe, the corresponding decision problems are
usually also of lower complexity compared to MDP. In the lit-
erature, while robust optimization typically does not deal with
multi-stage sequential decisions, competitive online algorithms
are designed specifically with sequential decisions in mind,
and therefore are quite relevant for the EV-charging problems
studied in this paper. For example, in a peak-minimizing
problem closely related to ours [15], it was shown that, even
without any future information, one can design a competi-
tive online algorithm whose peak consumption is at most a
constant factor e = 2.718 above the offline optimal (where
the latter assumes that the future information is known in
advance). This constant factor is referred to as the competitive

1We use the term “walk-in” since it is analogous to patients visiting a
doctor’s office without appointments.

ratio of the online algorithm, which can be viewed as the
performance loss due to the lack of future information.

Along this direction, we propose to build upon the frame-
work of competitive online algorithms to develop a systematic
approach for utilizing and evaluating partial future informa-
tion. Intuitively, as more partial future information is available,
we would expect that the achievable competitive ratio of online
algorithms will become closer to 1. If we assume that future
realization of EV charging jobs will be the same regardless of
what type of partial information is provided to the aggregator
ahead of time, then the offline minimum peak (assuming that
the entire future is known) is thus fixed. Hence, a smaller
competitive ratio is directly related to a lower worst-case
peak faced by the online algorithm. Thus, in this paper we
propose to quantify the value of a particular piece of partial
future information by the optimal competitive ratio that can
be achieved by online algorithms operating with that partial
information. Note that existing competitive online algorithms
(such as [15]) usually assume no future information. Thus,
our first contribution is to develop a powerful computational
framework both to compute the optimal competitive ratio and
to find the corresponding optimal online algorithms under var-
ious types of partial future information. In other words, instead
of providing just one online algorithm and one competitive
ratio, we provide a computational framework that maps a given
set of partial future information to the corresponding optimal
competitive ratio as well as the optimal online algorithm. We
demonstrate that this computational framework can be applied
to several types of partial information, including reservation,
minimum job-duration, and maximum job-duration (detailed
models will be provided in Section II and Section V). In
each case, the optimal competitive ratio can be computed
as a function of the various parameters of the partial future
information.

Based on this computational framework, we then conduct
numerical studies to evaluate the relative value of the different
types of partial future information. Our findings indicate that
the partial future information revealed by job reservation is of
the highest value. Even a moderate level of job reservation can
reduce the optimal competitive ratio significantly. For example,
when 60% of the jobs are reserved 1/4 of the total time
horizon ahead of time, the optimal competitive ratio is reduced
to 1.39 (corresponding to 40% reduction from the competitive
ratio of e = 2.718 for the case of no reservation [15]). The
minimum job-duration constraint is comparatively less useful,
but still can further reduce the optimal competitive ratio by as
much as 10%. In contrast, we find the maximum job-duration
constraint less effective in reducing the competitive ratio. We
believe that these quantitative knowledge on the value of
the different types of partial information can be extremely
valuable for aggregators to design their prospective incentive
mechanisms for managing peak-minimizing EV charging.

II. SYSTEM MODEL

We consider an aggregator managing the EV-charging jobs2

of its customers. We assume that time is slotted. Let T be the
2In this paper, we will use the terms “EVs”, “EV charging jobs”, or “jobs”

interchangeably.



total number of time-slots in a billing period, which can be
one day or one month depending on the billing policy. We use
t ∈ T to represent a typical time-slot, where T = {1, 2, ..., T}.
The goal of the aggregator is to reduce the peak consumption
across all time-slots in the billing period. Consider a sequence
J of EV-charging jobs. Each job k ∈ J can be represented by
a 4-tuple (sk, dk, ek, vk), which indicates that this EV arrives
at the beginning of time slot sk ∈ T, departs at the end of
time slot dk ∈ T, and requires ek amount of energy to finish
its request (we also refer to ek as the demand). The 4-th term
vk is new and is used to model the first type of partial future
information, i.e., reservation. Specifically, we expect that some
customers may be able to reserve their EV-charging jobs in
advance, in which case vk < sk. Otherwise, if vk = sk, we
refer to the job as a “walk-in” job. In practice, we expect
that the aggregator will offer price incentives to encourage its
customers to make reservations in advance. We assume that
each reserved job k must be reserved L time slots in advance,
i.e., vk ≤ sk − L. In other words, only jobs reserved “truly”
in advance can qualify for price incentives. Later on, we will
study the benefit of reservation as the parameter L varies.
Here, we allow vk to be non-positive, i.e., vk ≤ 0, in which
case this EV-charging job is known at the beginning of the
billing period. (Other types of partial future information, i.e.,
through job-duration constraints, will be introduced in Section
V.)

With suitable price incentives, we would expect that at least
a certain fraction of the users will reserve their EV-charging
jobs in advance. This assumption is modeled as follows. Given
a sequence of EV arrivals J , let rJi,j be the total reserved
demand with arrival time i and departure time j, and let
RJi,j =

∑j
j′=i r

J
i,j′ be the total reserved demand with arrival

time i and departure time no greater than j. Similarly, let aJi,j
be the total walk-in demand with arrival time i and departure
time j, and let AJi,j =

∑j
j′=i a

J
i,j′ be the total walk-in demand

with arrival time i and departure time no greater than j.
According to our reservation model, all rJi,j’s are known at
least L time-slots ahead of time i, while aJi,j’s can only be
known at time i. In order to model the relationship between
the reserved demand and the walk-in demand, we assume that
the following inequality holds for all i, j,

pl(R
J
i,j +AJi,j) ≤ RJi,j ≤ pu(RJi,j +AJi,j), (1)

where pl and pu are two positive constants that bound the
fraction of reserved demand over the total demand. Note that
in practice, even if a customer makes reservations, he may not
be able to honor the reservation 100% of the time. He may
predict his arrival time, deadline, or even demand imprecisely,
or he may cancel the reservation altogether. Our model in
(1) is sufficiently general to incorporate the case where the
reservations are not 100% certain. Specifically, we can view
RJi,j as the mean of the reserved demand, and use AJi,j to
represent both the walk-in demand and the uncertainty from
the reservation demand itself.

Note that the above model captures limited future informa-
tion in two ways. First, each reservation naturally “reveals”
to the aggregator about future demand patterns, without the

need for expensive forecasting. This revelation property can
be particularly useful when the demand patterns exhibit daily
changes. Second, the parameters pl and pu can be extracted
from historical data on consumer behavior, which also repre-
sent limited knowledge of the future. Our goal in this paper
is thus to study how the aggregator can exploit such limited
future information to improve its decisions.

In the literature, a related way to model limited future infor-
mation is through a look-ahead window, i.e., at time t, future
arrivals for the time interval [t, t + L] are known precisely
[16]. Note that this precise look-ahead model can be taken as
a special case of our model by setting pl = pu = 1. However,
in practice look-ahead information may not be precise either.
Our model allows such uncertainty to be captured. Further, in
practice, some EV charging jobs may be reserved more than
L time-slots ahead, in which case we will obtain some future
information beyond L time slots. Thus, our model with limited
future information is more general and practical.

Given a sequence J of EV charging jobs, the aggregator
needs to determine the amount of energy EJt drawn from
the power grid at each time slot t ∈ T. We use EJ =
{EJ1 , EJ2 , ..., EJT } to denote the service profile of the aggrega-
tor. We are interested in minimizing the peak consumption, i.e.,
max
t
{EJt }, subject to the constraint that all jobs are completed

before their deadlines.
If all the charging jobs are known in advance, the problem

can be written as follows and solved by an offline algorithm
like the one in [8].

min
All jobs are completed before their deadlines

max
t
{EJt }. (2)

Let E∗J,off be the optimal offline solution to (2). However, in
practice, such perfect future knowledge is hard to obtain. An
algorithm π is called an online algorithm if this algorithm
computes EJt (π) based only on the EV jobs arrived or reserved
before or at time t. This online algorithm π is called feasible
if all jobs are completed before their deadlines. Let E∗J(π) =
max{EJt (π)} be the peak energy drawn from the grid using a
feasible online algorithm π. We can quantify the performance
of the online algorithm π using its competitive ratio (CR) η(π),
which is defined as the maximum ratio between E∗J(π) and
E∗J,off under all possible job sequences J , i.e.,

η(π) = max
J

{
E∗J(π)/E

∗
J,off

}
.

An feasible online algorithm π is called optimal, if it at-
tains the smallest competitive ratio. Assume that the future
realization of EV charging jobs are the same regardless of
the different levels of partial future information revealed to
the aggregator (e.g., different values of L and p in our
reservation model). Then, the offline minimum peak does not
change with L and p either. Thus, a smaller value of the
optimal competitive ratio under a particular piece of partial
information also translates to a lower peak achievable by the
online algorithm. Hence, in this paper we propose to quantify
the value of different types of partial future information
by the corresponding optimal competitive ratios that online
algorithms can achieve. Towards this end, we will develop
a general computational framework that takes a particular



piece of partial future information as input, and produces the
optimal competitive ratio and the corresponding optimal online
algorithm as output.

III. DIFFICULTY IN MAKING ONLINE DECISIONS

Unfortunately, making competitive online decisions is not an
easy task, either with or without reservation. In this section,
we will show that a myopic online algorithm (possibly a
very natural one) could perform very poorly. Therefore, it is
important to find better algorithms for online EV-charging.

A. Review of the Offline-Optimal Solution

To start with, we briefly review how to compute the offline-
optimal solution (2). Let J be a sequence of EV-charging jobs.
Define the intensity on an interval I = [i, j] with respect to
the job sequence J as

gJ(I) =

∑j
i′=i(R

J
i′,j +AJi′,j)

j − i+ 1
. (3)

Then, the optimal offline value E∗J,off of the peak is given by
the maximum intensity over all possible intervals, i.e.,

E∗J,off = max
I
{gJ(I)}. (4)

The above offline optimal peak E∗J,off can be achieved by
the YDS algorithm [8]. The details are available in Appendix
A.

B. A Myopic Online Algorithm

Offline optimal algorithms (e.g., the YDS algorithm) cannot
be used online when future EV-charging jobs are not known in
advance. The following myopic algorithm represents a natural
online algorithm. At each time slot t, the myopic online
algorithm uses the expression (4) to compute the optimal
serving rate based only on the remaining workload and the
future reserved workload known at time t. It then uses this rate
to serve its known workload by the earliest deadline policy.
A similar idea has been proposed in [9]. However, we will
show that this myopic algorithm could have an arbitrarily poor
competitive ratio (CR).

Lemma 1. If there is no reservation, the competitive ratio η∗

of the myopic algorithm can be arbitrarily large as T →∞,
i.e., for any constant M > 0, there exists T > 0 and an arrival
pattern, such that the peak rate under the myopic algorithm
is at least M times the optimal peak rate under the optimal
offline algorithm.

Proof. See Section B.

One would expect that reservation may improve the perfor-
mance of the myopic algorithm. Unfortunately, the following
lemma states that no matter how large is the fraction of the
reserved demand, the myopic online algorithm still has an
arbitrarily large CR.

Lemma 2. Under our reservation model (see Section II), for
any L and pl < pu = 1, the competitive ratio η∗ of the myopic
algorithm can be arbitrarily large as T →∞.

Proof. See Section C.

From the above two lemmas, we can see that it is a
highly non-trivial task to make online decisions, either with
or without partial future information.

In fact, if there is no reservation, an online algorithm called
BKP [15] was shown to achieve a CR of e. Further, this CR
e is optimal, which can be viewed as a baseline that captures
the performance loss when there is no future information at
all. Since e is still a large number, we are interested in how
limited future knowledge may help us to significantly improve
the competitive ratio. Unfortunately, the techniques for proving
the competitive ratio and its optimality in [15] are very specific
and seems difficult to account for the partial future information
revealed by our reservation model. In the next section, we will
develop a very general framework that can both compute the
optimal competitive ratio and find the optimal online algorithm
under an arbitrary set of reservation parameters.

IV. OPTIMAL PEAK-MINIMIZING ONLINE EV CHARING

In this section, we propose a general framework for com-
puting the optimal competitive ratio with reservations. For
ease of exposition, we will focus on the case where pu is
1 in constraint (1). In other words, the reserved demand
and the walk-in demand now satisfy the following simplified
constraint:

p(RJi,j +AJi,j) ≤ RJi,j ≤ RJi,j +AJi,j . (5)

We note that there is no loss of generality in this sim-
plification. If pu 6= 1, we know that there will be at least
( 1
pu
− 1)RJi,j future walk-in demand. Thus, we can view this

part of walk-in demand as some pseudo “reserved demand”.
Specifically, let R̃Ji,j = RJi,j + ( 1

pu
− 1)RJi,j =

RJ
i,j

pu
, and

ÃJi,j = AJi,j − ( 1
pu
− 1)RJi,j , then constraint (1) can be

equivalently expressed as
pl
pu

(R̃Ji,j + ÃJi,j) ≤ R̃Ji,j ≤ R̃Ji,j + ÃJi,j .

Let p = pl
pu

. The constraint (1) is then converted to the form
in (5).

In addition, if we let C = 1−p
p , constraint (1)can be further

simplified as
0 ≤ AJi,j ≤ CRJi,j . (6)

The following analysis will be based on constraint (6).

A. Lower Bound on the Competitive Ratio

We first present a lower bound on the competitive ratio (CR)
of an arbitrary online algorithm. As readers will see, the lower
bound can be obtained by considering the following sequence
of job arrivals.

Fix n ∈ T. Consider a job sequence Jn with the following
form. The arrival time of each job k ∈ Jn satisfies 1 ≤ sk ≤ n.
All jobs have the same deadline n. Further, for all reserved
jobs with arrival time i, they are reserved exactly L time-slots
ahead, i.e., at time i−L. The reserved demand and the walk-in
demand satisfy constraint (6). Let Jn be the set of all Jn’s
with such form.



Consider an arbitrary feasible online algorithm πn with CR
ηn. We apply this algorithm to an EV-arrival sequence Jn ∈
Jn. Then, we have the following lemma.

Lemma 3. Given an online algorithm πn with CR ηn, its
service profile EJn(πn) = {E

Jn
1 (πn), E

Jn
2 (πn), ..., E

Jn
n (πn)}

under an EV-arrival sequence Jn ∈ Jn must satisfy

EJnt (πn) ≤ ηnEJnpe (t), t = 1, 2, ..., n

where

EJnpe (t) = max
j=1,...,hn(t+L)

{∑t
i=j A

Jn
i,n +

∑hn(t+L)
i=j RJni,n

n− j + 1

}
,

(7)
and hn(t

′) = min{t′, n}. (In (7), the subscript “pe” stands
for “peak estimation”.)

Proof. See Section D.

The intuition of Lemma 3 is as follows. At time t, the
aggregator knows all the walk-in demand with arrival time no
greater than t and all the reserved demand with arrival time
no greater than hn(t) = min{t+L, n} (since all the reserved
jobs are reserved exactly L time-slots ahead). Based on such
known demand, we can take EJnpe (t) as the estimate of the peak
consumption at time t. In fact, if there were no more new jobs
after time t, EJnpe (t) would have been the offline-optimal peak
service rate. If EJnt (πn) > ηnE

Jn
pe (t), then in the case where

there is no demand after time t, πn will violate the assumption
that its CR is ηn.

With Lemma 3 in mind, we study another constraint on
πn. The feasibility of πn implies that all jobs can be finished
before the end of the time slot n (recall that all jobs have the
same deadline n). Therefore, we must have

n∑
t=1

EJnt (πn) ≥
n∑
t=1

(
AJnt,n +RJnt,n

)
. (8)

Combining Eqn. (8) with Lemma 3, we then obtain

ηn ≥
∑n
t=1

(
AJnt,n +RJnt,n

)∑n
t=1E

Jn
pe (t)

.

Define the following optimization problem:

sup
Jn

∑n
t=1

(
AJnt,n +RJnt,n

)∑n
t=1E

Jn
pe (t)

subject to (6), (7) (9)

Let η∗n be the optimal solution to the optimization problem (9).
Let η∗ = maxn∈T{η∗n}. Then, the following theorem shows
that η∗ gives a lower bound on the optimal CR, i.e.,

Theorem 4. For any feasible online algorithm π, its CR must
be greater than or equal to η∗.

In general, the optimization problem (9) can be easily
converted into a linear programming problem and solved using
standard solvers. See Appendix E for more details.

Remark 1. Our formulation of the lower bound in (9) shares
some similarity to the results in [17]. However, [17] does
not consider reservation, and there is substantial difficulty in

extending the techniques in [17] to the case with reservation.
Specifically, a key step in [17] is to show that the problem
with variable deadlines has the same CR as the problem with
a single deadline (see Theorem 4.26 in [17]). However, for
our reservation model, there is another degree of freedom,
i.e., the time when the job is reserved. The formulation in (9)
suggests that we may focus on the case when the jobs are
reserved least in advance (i.e., exactly L time-slots ahead).
However, it is unclear how to generalize the techniques of
[17] to show that the problem when reservation can be made
at least L time-slots ahead of arrival time also has the same
CR as the problem when all reservations are made exactly
L time-slots ahead of arrival time. In this paper, we use a
different strategy: in Theorem 4, we only show that (9) provides
a lower bound on the CR. In the following, we then provide an
online algorithm that attains this lower bound, thus avoiding
the above difficulty. This technique may also be of independent
interest for other problem settings.

Remark 2. In a later paper [18], we generalize the methodol-
ogy of this paper to the case when partial future information is
revealed by forecasts (instead of reservations). A key difference
between (9) and the lower bound in [18], however, is that the
lower bound in (9) only needs to consider job sequences with
a common deadline. In contrast, the lower bound in [18] must
consider job sequences with varying deadlines. Thus, the lower
bound in (9) incurs much lower complexity. On the other hand,
it is less obvious why the lower bound in (9) is tight, which
will be the key contribution of the next subsection.

B. Optimal Online Algorithms

Interestingly, the optimization problem (9) not only gives
a lower bound on the competitive ratio, but also leads to
an online algorithm that can attain the lower bound as we
will demonstrate below. Next, we propose the Estimated Peak
Scaling (EPS) algorithm, and show that the competitive ratio
of this online algorithm achieves the lower bound η∗.

Given a sequence J of EV-charging jobs (jobs in J could
have different deadlines), let J(t) ⊆ J be the set of jobs known
before or at time t, which includes all the walk-in jobs with
arrival time no greater than t, and all the reserved jobs with
reservation time no greater than t. Then, the EPS algorithm is
formally stated as follows.

The following theorem states that the EPS algorithm is a
feasible online algorithm with competitive ratio η∗. Thus, the
EPS algorithm is an optimal online algorithm.

Theorem 5. Given any job sequence J , the EPS algorithm
satisfies the following two requirements:

1) (η∗ optimality) at each time slot t, the service rate EJt
satisfies EJt ≤ η∗E∗J,off;

2) (feasibility) all jobs can be completed before their dead-
lines.

The first part of Theorem 5 is easy. Note that since J(t) ⊆
J , we must have E∗J(t),off ≤ E

∗
J,off. Then,

EJt = η∗EJpe(t) = η∗E∗J(t),off ≤ η
∗E∗J,off.



Input: Job sequence J , time slot t
1 Assume that there is no new jobs after time t, use the

YDS algorithm on the known jobs J(t) to compute the
optimal peak, i.e., E∗J(t),off as if it is an offline problem.
Let EJpe(t) = E∗J(t),off.

2 Set EJt = η∗EJpe(t).
3 Serve jobs by the earliest deadline policy. Specifically,

we sort all unfinished EV jobs with arrival time no
greater than t according to their deadlines in an
ascending order, i.e., dk1 ≤ dk2 ≤ ... Then, we use EJt
amount of energy to charge the EV k1, and then
k2, k3, ... until all these EV jobs are completed or the
amount of energy EJt is exhausted.

Algorithm 1: EPS algorithm

Now, we focus on the second part. The proof of the feasibility
of the EPS algorithm is based on the following lemma.

Lemma 6. A sufficient and necessary condition for a service
profile EJ = {EJ1 , EJ2 , ..., EJT } to be feasible, i.e., all jobs
can be completed before their deadlines, is that for all t1 ≤
t2, t1, t2 ∈ T, the following inequality holds,

t2∑
t=t1

(AJt,t2 +RJt,t2) ≤
t2∑
t=t1

EJt . (10)

Proof. See Section F.

Now, we are ready to explain the intuition behind the second
part of Theorem 5. According Lemma 6, we only need to
show that (10) always holds if EJt = η∗EJpe(t). First, if all the
jobs contained in AJt,t2 or RJt,t2 have the common deadline
of t2, then (10) must hold based on the definition (9) of η∗.
Second, if some jobs in AJt,t2 or RJt,t2 have deadlines smaller
than t2, we can consider an alternate system where these
jobs’ deadlines are all extended to t2. It is easy to show that
extending the deadlines will only reduce the service rates EJt
of the EPS algorithm. If (10) was violated for the original
system, it would have been also violated in the alternate
system with a common deadline. However, according to (9),
the condition (10) must hold for the alternate system with
a common deadline, which leads to a contradiction. Thus,
(10) must hold for the original system. The detailed proof
of Theorem 5 is available in Appendix G.

Remark 3. The above results can be viewed as a superset
of the results in [15][17]. Specifically, when there is no
reservation (C =∞), the above algorithm reduces to one that
is similar to the BKP algorithm [15]. The competitive ratio is
also close to e. (It is not exactly e because the time horizon is
finite [17].) However, with reservation, the competitive ratio
will improve as can be seen soon in Section VI-A.

Finally, we note that the EPS algorithm is just one of
the online algorithms that achieve the optimal competitive
ratio. Since the focus of this paper is on using the optimal
competitive ratio to quantify the value of partial future infor-
mation, it suffices to use the EPS algorithm to show that the
optimal competitive ratio can be attained. Readers may refer

to our companion paper [18] for other ideas to design online
algorithms with not only the optimal competitive ratio, but
also better average-case performance.

V. INTEGRATING JOB-DURATION INFORMATION

In addition to reservation, in this paper we are also interested
in using the computational framework to study the value of
other types of partial future information, i.e., their capability
in further reducing the competitive ratio. In particular, in
this section, we study the value of additional job-duration
constraints. If we dive into the details of the counter example
for Lemma 1 and Lemma 2 (see Appendix B & C), we
can see that one difficulty for online decisions is from the
possible future jobs that arrive at the end of the time horizon,
but with very short duration. These jobs leave very little
flexibility for the online algorithm. Thus, if the aggregrator
can impose a lower bound on the job duration, it may be at
a better position to reduce the competitive ratio. Similarly, an
upper bound on the job duration may also help with reducing
the competitive ratio. Below, we will demonstrate how the
computational framework in Section IV can be easily extended
to this scenario.

In the following discussion, we assume that there exist a
lower bound αl and an upper bound αu such that, for each
job k ∈ J , its duration must be within [αl, αu], i.e.,

αl ≤ dk − ak + 1 ≤ αu. (11)

Note that the cases with no lower bound or no upper bound
can also be captured by setting αl = 0 or αu = T in (11).

Recall from Section IV-A that, without the job-duration
constraints, the optimal competitive ratio was computed based
on a set of job sequences Jn. In this section, we need to modify
Jn to incorporate the job-duration constraints. Specifically, for
any fixed n = αl, αl + 1, ..., T , we consider the following
job sequence Ĵn. The arrival time of each job k ∈ Ĵn
satisfies 1 ≤ sk ≤ n − αl + 1, and the deadline of each
job k ∈ Ĵn is dk = min{sk + αu − 1, n}. Note that all jobs
in Ĵn expire at or before time slot n. Further, the condition
dk = min{sk+αu−1, n} ensures that the duration of job k is
no larger than αu, and the condition sk ≤ n−αl +1 ensures
that the duration of job k is no smaller than αl. Finally, for all
reserved jobs with arrival time i, they are reserved exactly L
time-slots ahead, i.e., at time i−L. The reserved demand and
the walk-in demand satisfy constraint (6). Let Ĵn be the set
of all job sequences Ĵn’s with such a form. Compared to the
job sequence Jn in Section IV-A, jobs in Ĵn have additional
constraints on their arrival times and deadlines due to the
constraints on αl and αu. However, both Jn and Ĵn share
one common feature, i.e., the deadlines of all jobs are as large
as possible.

It turns out that, with the job-duration constraints, the
optimal competitive ratio can be computed based on Ĵn,
n = αl, αl + 1, ..., T . Specifically, we consider an arbitrary
online algorithm π̂n with competitive ratio η̂n, and apply this
algorithm to an EV-arrival sequence Ĵn ∈ Ĵn. Similar to
Lemma 3, we have the following lemma.



Lemma 7. Given an online algorithm π̂n with CR η̂n, its
service profile EĴn(π̂n) = {E

Ĵn
1 (π̂n), E

Ĵn
2 (π̂n), ..., E

Ĵn
n (π̂n)}

under an EV-arrival sequence Ĵn ∈ Ĵn must satisfy

EĴnt (π̂n) ≤ η̂nEĴnpe (t), t = 1, 2, ..., n,

where

EĴnpe (t) = max
j1=1,...,h

(0)
n (t+L)

j2=h
(1)
n (j1),...,h

(1)
n (t+L)


∑h(0)

n (t)
i=j1

AĴni,j2 +
∑h(0)

n (t+L)
i=j1

RĴni,j2
j2 − j1 + 1

 ,

(12)
h
(0)
n (t′) = min{t′, n− αl + 1} and h(1)n (t′) = min{t′ + αu −

1, n}. (Note that AĴni,j2 = RĴni,j2 = 0 if i > j2.)

Note that the algorithm π̂n must also finish all jobs before
their corresponding deadlines. With Lemma 7 in mind, we can
easily write down the following inequality:

η̂n

n∑
t=1

EĴnpe (t) ≥
n∑
t=1

EĴnt (πn) ≥
n∑
t=1

(
AĴnt,n +RĴnt,n

)
. (13)

Define the following optimization problem:

sup
Ĵn

∑n
t=1

(
AĴnt,n +RĴnt,n

)∑n
t=1E

Ĵn
pe (t)

subject to (6), (12) (14)

Let η̂∗n be the optimal solution to the optimization problem
(14), and let

η̂∗ =
T

max
n=αl

{η∗n}.

We can then show that η̂∗ is the optimal competitive ratio
using the same technique in Section IV-A.

Specifically, this η̂∗ is achievable by the EPS algorithm
proposed in Section IV-B (we only need to replace η∗ by η̂∗ in
the second step of Algorithm 1). The optimality is guaranteed
by the following theorem:

Theorem 8. Given any job sequence J satisfying the job-
duration constraint (11), the EPS algorithm (with scaling
factor of η̂∗) satisfies the following two requirements:

1) (η̂∗ optimality) at each time slot t, the service rate EJt
satisfies EJt ≤ η̂∗E∗J,off;

2) (feasibility) all jobs can be completed before their dead-
lines.

The intuition behind Theorem 8 is essentially the same as
Theorem 5. According Lemma 6, we only need to show that
(10) always holds if EJt = η̂∗EJpe(t). First, if all the jobs
contained in AJt,t2 or RJt,t2 have the largest possible deadlines
(i.e., this job sequence is of the form Ĵn), then (10) must
hold based on the definition (14) of η̂∗. Second, if some jobs
in AJt,t2 or RJt,t2 have deadlines smaller than their largest
possible deadlines, we can consider an alternate system where
these jobs’ deadlines are all extended to their largest possible
deadlines. It is easy to show that extending the deadlines will
only reduce the service rates EJt of the EPS algorithm. If
(10) was violated for the original system, it would have been
also violated in the alternate system with a common deadline.
However, according to (14), the condition (10) must hold for

the alternate system, which leads to a contradiction. Thus, (10)
must hold for the original system.

VI. SIMULATION

We have proposed a general methodology to compute the
optimal competitive ratio under different types of partial future
knowledge. Such optimal competitive ratio can then be used to
assess the value of partial future knowledge. In this section, we
will conduct numerical simulations to study how the optimal
competitive ratio varies under different parameter settings of
the partial future knowledge. Throughout this section, we
assume that the billing period is a day, and the duration of
each time slot is 10 minutes. Therefore, the entire time horizon
T = 144.

A. Impact of Job Reservation
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Fig. 1. Impact of Reservation on the optimal CR η∗.

We first study how valuable is the partial future knowledge
revealed by job-reservation. Specifically, for different reserva-
tion advance L = 0, 36, 72, 108, 144, we compute the optimal
competitive ratio η∗ for different p’s. From Fig. 1, we can see
that when L = 0, η∗ remains at the highest value3 of 2.39
regardless of the value of p. The reason is that in the case of
L = 0, the reserved jobs are allowed to reserve upon its arrival,
and thus the worst case CR would be the same as if there is
no reservation. As this L increases, we know more advance
information about the future. Therefore, as L increases, η∗ will
decrease. As for p, it is the fraction of reserved demand over
the total demand. As p increases, the total demand uncertainty
will decrease, and thus the CR η∗ will decrease. For example,
when L = 72 and p = 0.6 (i.e., 60% of the total demand is
from the jobs that are reserved 1

2 of the time horizon ahead of
their arrivals times), the optimal competitive ratio is reduced
to 1.39. In the extreme case where L = 144 and p = 1, i.e.,
all the future knowledge are known exactly at the beginning,
the CR becomes η∗ = 1.
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(a) L = 36.
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(b) L = 72.

Fig. 2. Impact of the minimum job-duration constraint on the optimal CR
η̂∗.

B. Impact of Minimum Job-Duration Constraint

We then study how the minimum job-duration constraint
may further improve the optimal competitive ratio. Specifical-
ly, for different reservation settings (different p’s and L’s), we
compute the optimal competitive ratio η̂∗ for different αl’s
(here, we simply set αu = 144). From Fig. 2 (a) and (b), we
can see that, as the minimum job duration αl increases, the
optimal competitive ratio decreases. For example, when p = 0
(no reservation), the optimal competitive ratio reduces from
2.39 with αl = 0 to 2.11 with αl = 18 (i.e., 3 hours), which
corresponds to approximately 10% improvement. However,
at higher values of p (with reservation), the gain due to
αl becomes smaller. In other words, the future knowledge
revealed by the minimum job-duration constraint seems to
have some overlap with the future information revealed by
reservation (i.e., p and L). To understand this behavior, note
that the minimum job-duration constraint implies that there
will be no EV charging jobs arriving after time T − αl + 1,
which then implies that there is no reserved job with arrival
time larger than T − αl + 1. This observation suggests that
the reservation-based model shares some information with
the minimum job-duration constraint. Thus, the larger are the
values of p and L, the more future knowledge is revealed
by reservation, then the additional knowledge revealed by the
minimum job-duration constraint becomes less critical.

3Note that here we have η∗ < e because the time horizon T = 144 is
finite. If T → ∞, we will have η∗ → e [17].

C. Impact of Maximum Job-Duration Constraint
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Fig. 3. Impact of maximum job-duration Constraint on the optimal CR η̂∗.

We next study the impact of the maximum job-duration
constraint on the optimal competitive ratio. In the simulation,
we fix the reservation advance L = 36, and pick two different
values of αl, i.e., 6 and 18. We vary the maximum job length
αu from 36 to 144, and compute the optimal competitive ratio
η̂∗, with respect to different values of p. From Fig. 3 (a) and
(b), we can see that as the maximum job length αu decreases,
i.e., the job-duration constraint becomes more stringent, the
optimal competitive ratio will decrease. However, such im-
provement is minimal for αn ≥ 72. Even when αu = 72, i.e.,
the duration of an EV charging job must be no longer than 12
hours, the improvement is less than 2%. Readers may notice
that the improvement can be as large as 10% when αu = 36,
i.e., the duration of an EV charging job must be no longer than
6 hours. However, a maximum limit of 6 hours may be too
short in practice (e.g., a car may have to be left in the garage
for more than 8 hours at work). Based on these observations,
we conclude that setting maximum job-duration constraints is
not very effective in reducing the competitive ratio.

D. Summary of Numerical Results

From Fig. 1, Fig. 2 and Fig. 3, we conclude that the future
information revealed by job reservation is of the highest value,
because the optimal competitive ratio reduces significantly as
more EV jobs are reserved in advance. The minimum job-
duration constraint can further reduce the optimal competitive
ratio by as much as 10%. Even though the improvement is
not as significant as that of job-reservation, such improvement



can be still valuable because even a 1%-reduction could save
0.01× 20MW× 9$/kW× 12 = 21600$ per year for campus-
level aggregators [19] with peak energy on the order of 20MW.
We also note that the minimum job-duration constraint has
less and less impact on the optimal competitive ratio as more
jobs reserve in advance. Compared to job reservation and the
minimum job-duration constraint, the maximum job-duration
constraint is less effective.

We believe that these results provide useful guidance to
aggregators for assessing the value of various types of partial
future information, which will also help them design suitable
price incentives for acquiring partial future knowledge.

VII. CONCLUSION

We study online peak-minimizing EV charging for an ag-
gregator that manages a large fleet of EVs. Existing algorithms
either require precise future knowledge or do not make use of
any future knowledge at all. In contrast, we focus on a more
practical scenario where limited and partial future knowledge
can be obtained, and take the initiative to quantify the value
of such partial future information. Specifically, we consider
scenarios where such limited future knowledge is revealed by
job reservation and/or the job-duration constraints. We propose
a general and systematic approach to design competitive online
algorithms with the optimal competitive ratios. Such optimal
competitive ratios can then be used to evaluate the inherent
benefit of the corresponding type of partial future information.
Compared to the optimal competitive ratio e (achieved by
the BKP algorithm [15]) for the scenario where no future
information is available, our numerical results demonstrate that
limited future information (especially those from reservation)
is indeed very effective in reducing the optimal competitive
ratio.
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APPENDIX

A. YDS Algorithm

The YDS algorithm [8] is re-stated in Algorithm 2.

1 Repeat steps 2-4 until the set J is empty.
2 Let I∗ = [i, j] be the time interval with the maximum

intensity, i.e., gJ(I∗) = maxI{gJ(I)}.
3 Let the service profile during interval I be
EJt = gJ(I

∗), t ∈ I , and serve all the jobs within the
interval I∗, i.e., all jobs satisfying i ≤ sk ≤ dk ≤ j, by
the earliest deadline policy.

4 Modify the job sequence J as if the time interval I∗ does
not exist. More precisely, first delete from J all the jobs
within the interval I∗. Second, all deadlines dk ≥ i are
reduced to max{i− 1, dk − (j − i+ 1)}, and all arrival
times sk ≥ i are reduced to max{i, sk − (j − i+ 1)}.

Algorithm 2: Offline-optimal YDS algorithm

Note that we do not update the reservation times in step
4 of the YDS algorithm. This is because that the reservation
times do not matter in the offline optimal algorithm, when all
future jobs are known in advance. Furthermore, it is easy to see
that the intensity of the maximum-intensity interval decreases
as the YDS algorithm proceeds. Therefore, the optimal offline
value E∗J,off of the peak consumption is given by the maximum
intensity at the first run of step 2, i.e.,

E∗J,off = max
I
{gJ(I)}.

B. Proof of Lemma 1

Proof. Consider the job arrival pattern depicted in Fig. 4. All
jobs have the same deadline T . Without of loss of generality,
assume that T = 2n. The first batch of jobs arrives at time 0,
and has a total demand of T . The second batch of jobs arrives
at time T

2 , and has a total demand of T
2 . The n-th batch of

jobs arrives at time T − T
2n−1 , and has a total demand of T

2n−1 .
It is easy to see that the peak rate in the optimal offline YDS

Fig. 4. EV-demand arrival pattern.

(a) The offline optimal algorithm. (b) The myopic online algorithm.

Fig. 5. The service profiles of two algorithms.

solution is 2 (Fig. 5.(a)). With a serving rate of 2, every batch
of jobs can be finished right before the arrival of the next batch
of jobs. However, the myopic online algorithm will behave
quite differently (Fig. 5.(b)). In the time period [0, T2 ], the
myopic algorithm only knows the first batch of jobs. Hence,
the serving rate is 1. At time T

2 , only half of the demand of
batch 1 is served. Then, the second batch of jobs arrives, which
adds to the remaining half from the first batch of demand. The
total outstanding demand is T , and it needs to be served in the
interval [T2 , T ]. Hence, the service rate of the myopic algorithm
increases to 2 in the interval [T2 ,

3T
4 ]. In a similar manner, we

can see that in the interval [T − T
2n−1 , T − T

2n ], the service
rate of the myopic algorithm will be n (Fig. 5.(b)). As n goes
to infinity, the peak-serving rate of the myopic algorithm is
unbounded. Thus, the CR of the myopic online algorithm can
be arbitrarily large as T →∞.

C. Proof of Lemma 2

Proof. Consider the same job arrival pattern shown in Fig. 4.
We assume that for each batch of EV demand, exact pl fraction
of the demand is reserved at or before time 0 (the constraint
rk ≤ sk − L is thus met for any L), and the rest is walk-in
demand. We use xk to denote the serving rate during the time
interval [T− T

2k−1 , T− T
2k
] under the myopic online algorithm.

In the time period [0, T2 ], the myopic algorithm knows the total
reserved demand, which is 2plT , and the demand of the first
batch of walk-in jobs, which is (1−pl)T . Then, based on (4),
it is easy to check that

x1 =
2plT + (1− pl)T

T
= 1 + pl. (15)

Further, we can derive an induction formula for the sequence
{xk}. In the time interval [T − T

2n−1 , T − T
2n ]. The myopic

algorithm knows the total reserved demand, which is 2plT , and
the demand of the first n batches of walk-in jobs, which is (1−
pl)T

∑k−1
s=0 2

−s. Among these known demand, T
∑k−1
s=1 2

−sxs
amount of it has been served. Then, we can show that

xk =
2plT + (1− pl)T (

∑k−1
s=0 2

−s)− T
∑k−1
s=1 2

−sxs
2−(k−1)T

.

(16)
Solving the above recursive formula gives xn = 2pl + n(1−
pl). Therefore, as long as pl < 1, the peak-serving rate is
unbounded as n → ∞. Thus, the CR of the myopic online
algorithm can be arbitrarily large as T →∞.

D. Proof of Lemma 3

Proof. We prove by contradiction. Suppose that there exist t0,
such that EJnt0 (πn) > ηnE

Jn
pe (t0).

Consider the job sequence J ′n. J ′n only contains the same
set of walk-in jobs in Jn arriving before or at time t0, and
the same set of reserved jobs reserved before or at time t0.
Thus, if we apply the same online algorithm πn to J ′n, it must
produce the same decisions at time t ≤ t0, i.e.,

E
J′n
t (πn) = EJnt (πn), t = 1, 2, ..., t0.

On the other hand, if the job sequence is indeed J ′n, we
actually know all the job arrivals at time t0. Therefore, we



can compute the offline optimal peak of J ′n using the YDS
algorithm. Note that all jobs in J ′n have the same deadline n.
Therefore, when computing the offline optimal peak E∗J′n,off,
we only need to focus on the intervals with right end-point
being n, i.e., I = [j, n], j = 1, 2, ..., n. Furthermore, J ′n does
not have any demand after time h(t) = min{t+L, n}. Hence,
we can further restrict j to be from 1 to h(t). Based on the
above discussion, we have

E∗J′n,off = max
j=1,...,h(t)

{gJ′n([j, n])}.

Note that in J ′n, the total demand of jobs with arriving time
s ≥ j and departure time d ≤ n is equal to

∑t
i=j A

Jn
i,n +∑h(t)

i=j R
Jn
i,n. Therefore,

E∗J′n,off = max
j=1,...,h(t)

{∑t
i=j A

Jn
i,n +

∑h(t)
i=j R

Jn
i,n

n− j + 1

}
= EJnpe (t).

Then,

E
J′n
t0 (πn) = EJnt0 (πn) > ηnE

Jn
pe (t0) = ηnE

∗
J′n,off,

which contradicts to the fact that πn has CR ηn.

E. Computation of η∗

Recall that η∗ = maxn∈T{η∗n}. Therefore, to obtain η∗, we
need to find an effective way of computing η∗n, which involves
solving the optimization problem (9).

1) Variable Reduction: We first show that when solving
(9), we can simply focus on the case where AJni,n = CRJni,n for
all i = 1, 2, ..., n.

Consider an arbitrary Jn satisfying (6). We pick any t0 =
1, 2, ..., n, and construct J ′n that satisfies the following two
constraints:

1) for i 6= t0, AJ
′
n
i,n = AJni,n, RJ

′
n
i,n = RJni,n;

2) for i = t0, AJ
′
n
i,n and RJ

′
n
i,n satisfy

A
J′n
i,n = CR

J′n
i,n, A

J′n
i,n +R

J′n
i,n = AJni,n +RJni,n. (17)

Based on (6) and (17), it is easy to verify that RJ
′
n
i,n ≤ R

Jn
i,n

for all i = 1, 2, ..., n. Therefore, from Eqn. (7), we then have,
for all t and j = 1, 2, ..., h(t),∑t

i=j A
Jn
i,n +

∑h(t)
i=j R

Jn
i,n

n− j + 1
=

∑h(t)
i=j (1{i≤t}A

Jn
i,n +RJni,n)

n− j + 1

≥
∑h(t)
i=j (1{i≤t}A

J′n
i,n +R

J′n
i,n)

n− j + 1
=

∑t
i=j A

J′n
i,n +

∑h(t)
i=j R

J′n
i,n

n− j + 1
,

where 1{·} is an indicator function. Thus, we have EJnpe ≥
E
J′n
pe . Then,∑n

t=1

(
AJnt,n +RJnt,n

)∑n
t=1E

Jn
pe (t)

≤
∑n
t=1

(
A
J′n
t,n +R

J′n
t,n

)∑n
t=1E

J′n
pe (t)

.

We can apply the above procedure for t0 = 1, 2, ..., n

sequentially. Let J (n)
n be the EV-demand sequence obtained

after n iterations. Then, we have AJ
(n)
n
i,n = CR

J(n)
n
i,n , and∑n

t=1

(
AJnt,n +RJnt,n

)∑n
t=1E

Jn
pe (t)

≤
∑n
t=1

(
A
J(n)
n
t,n +R

J(n)
n
t,n

)
∑n
t=1E

J
(n)
n

pe (t)
.

Thus, only considering those Jn’s satisfying AJni,n = CRJni,n is
sufficient for obtaining the optimal solution of (9).

Based on the above discussion, we can simplify the expres-
sion of EJnpe (t) as

EJnpe (t) = max
j=1,...,h(t)

{∑h(t)
i=j (1 + C1{i≤t})R

Jn
i,n

n− j + 1

}
, (18)

and simplify (9) as

sup
Jn

(1 + C)
∑n
t=1R

Jn
t,n∑n

t=1E
Jn
pe (t)

subject to (18). (19)

2) Converting (19) to a Linear Programming (LP) Problem:
Eqn. (18) can be converted to a set of linear constraints, i.e.,

EJnpe (t) ≥
∑h(t)
i=j (1 + C1{i≤t})R

Jn
i,n

n− j + 1
, j = 1, ..., h(t). (20)

Define the following fractional LP problem, i.e.,

sup
Jn

(1 + C)
∑n
t=1R

Jn
t,n∑n

t=1E
Jn
pe (t)

subject to (20). (21)

Note that in the optimal solution of (21), Eqn. (18) must hold
for all t. Otherwise, we can decrease EJnpe (t) to get a better
solution of (21). Hence, problem (21) has the same optimal
solution as (19).

Finally, note that if all RJnt,n’s and EJnpe (t)’s are scaled by
a constant, both the objective function and the constraint (20)
remain the same. Let

n∑
t=1

EJnpe (t) = 1. (22)

Then, the fractional LP problem (21) can be converted to the
following equivalent LP problem, i.e.,

sup
Jn

(1 + C)

n∑
t=1

RJnt,n

subject to (20), (22). (23)

Next, we will solve η∗n based on (23).
3) An Example: In this section, we use an example to

illustrate the shape of the demand in the optimal solution of
(23), and how η∗n varies with respect to n. In this example,
we assume that the billing period is a day, and the duration
of each time slot is 10 minutes. Therefore, T = 144, and
η∗ = max144n=1{η∗n}. We assume that the reserved EV charging
jobs must be reserved at least 4 hours ahead. Thus, L = 24.
Further, we assume that C = 1, which indicates that at least
half of the total demand is reserved demand.

First, we compute η∗n for a specific value of n = 120. We
use the MATLAB CVX package [20] to numerically solve



(23). The result is η∗120 = 1.7614, and the corresponding
RJ120t,120’s and EJ120pe (t)’s are plotted in Fig. 6.(a) (AJ120t,120 is not
shown in this figure because we know AJ120t,120 = CRJ120t,120).
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(a) Optimal solution of (23) in the
case C = 1, L = 24, n = 120.
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(b) η∗n vs. n.

Fig. 6. Example.

Fig. 6.(a) suggests that RJ120t,120 is increasing in t. This
observation is consistent with the intuition that, the more
uncertainty future demands have, the more difficult it is for
online algorithms to make decisions.

Next, we compute η∗n for different n’s ranging from 1 to
144. Fig. 6.(b) shows how η∗n varies with respect to n. Based
on the values of η∗n’s, we finally obtain η∗ = 1.8185.

F. Proof of Lemma 6

Proof. The necessity is obvious. We focus on the sufficiency
in the following proof.

Suppose that
∑t2
t=t1

(AJt,t2 + RJt,t2) ≤
∑t2
t=t1

EJt for any
1 ≤ t1 ≤ t2 ≤ T . We will show that EJ is feasible based on
the earliest-deadline-first policy.

We prove by contradiction. If EJ is not feasible, then there
must exist at least one job request k that misses its deadline.
Without loss of generality, we assume that this job’s deadline
is at time slot d. We say a time slot t < d is good, if and
only if all the energy Et is used to serve job requests with
deadline no later than d. It is easy to see that time slot d is
always good.

If all the time slots t = 1, 2, ..., d − 1 are good, then there
is no energy wasted during the first d time slots, and all of
the energy is used to serve jobs with deadlines no later than
d. Note that

∑d
t=1(A

J
t,d + RJt,d) ≤

∑d
t=1E

J
t . Then, job k

must be completed before time d, which contradicts to our
assumption.

If there exists some time slots t < d that is not good, let tb =
max{t < d|t is not good}. Then, in time slots t = tb+1, ..., d,
no energy is wasted, and only job requests with deadline
smaller or equal to d are served. Furthermore, all jobs with
arrival time no later than tb and deadline no later than d must
have been completed before or at time slot tb. (Otherwise, tb
would have been good because the energy EJt could have been
used to serve these jobs according to the earliest-deadline-
first policy.) It also implies that job k cannot arrive before
tb (otherwise it would have been completed). Further, in time
slots t = tb+1, ..., d, all the energy must be used to first serve
requests with arrival time later than tb and deadline smaller or
equal to d. Note that

∑d
t=tb+1(A

J
t,d + RJt,d) ≤

∑d
t=tb+1E

J
t .

Then, job k must be finished before time d, which contradicts
to our assumption.

G. Proof of Theorem 5

Proof. We only focus on the second part of Lemma 6.
According to Lemma 6, we only need to show that for all
t1 ≤ t2, t1, t2 ∈ T,

t2∑
t=t1

(AJt,t2 +RJt,t2) ≤
t2∑
t=t1

η∗E∗J(t),off.

Equivalently, we need to show that

η∗ ≥
∑t2
t=t1

(AJt,t2 +RJt,t2)∑t2
t=t1

E∗J(t),off

. (24)

To show inequality (24), we need to draw a connection be-
tween the right hand side (R.H.S.) of (24) and the optimization
problem (9). We first simplify (9) by substituting AJnt,n by at,
RJnt,n by rt, and EJnpe (t) by bt. Then, (9) can be transformed
to the following equivalent optimization problem:

max
at,rt≥0

∑n
t=1(at + rt)∑n

t=1 bt

subject to bt = max
j=1,...,hn(t)

{∑t
i=j at +

∑hn(t)
i=j rt

n− j + 1

}
0 ≤ at ≤ Crt (25)

For n = t2 − t1 + 1, the optimal solution of the optimization
problem (25) is then η∗t2−t1+1.

We now consider (24). Since the job sequence J satisfies
(6), we must have 0 ≤ AJt,t2 ≤ CRJt,t2 for all t = t1, ..., t2.
Suppose that the following inequality holds,

E∗J(t),off ≥ max
j=t1,...,h′(t)

{∑t
i=j A

J
i,t2

+
∑h′(t)
i=j RJi,t2

t2 − j + 1

}
, (26)

where h′(t) = min{t + L, t2}. Then, if we substitute AJt,t2
by a′t−t1+1, RJt,t2 by r′t−t1+1, and E∗J(t),off by b′t−t1+1 for
all t = t1, ..., t2, we must have that the R.H.S. of (24) is no
greater than the optimal value of the following optimization
problem.

max
a′t,r

′
t≥0

∑t2−t1+1
t=1 (a′t + r′t)∑t2−t1+1

t=1 b′t
(27)

subject to 0 ≤ a′t ≤ Cr′t

b′t ≥ max
j=1,...,ht2−t1+1(t)


∑t
i=j a

′
t +
∑ht2−t1+1(t)
i=j r′t

t2 − t1 + 1− j + 1


It is easy to see that the optimal value of (27) is smaller than or
equal to the optimal value of (25) with n replaced by t2−t1+1.
Therefore,

R.H.S. of (24) ≤ η∗t2−t1+1 ≤ η∗,

where the second inequality comes from the fact that η∗ =
maxn∈T{η∗n}.

Based on the above discussion, it only remains to prove Eqn.
(26). Recall that E∗J(t),off is equal to the maximum intensity
over all possible intervals (see Section III-A). Consider only



a subset of intervals as follows.

I = {[t1, t2], [t1 + 1, t2], ..., [h
′(t), t2]}.

We must have

E∗J(t),off = max
I
{gJ(t)(I)} ≥ max

I∈I
{gJ(t)(I)}. (28)

For each interval I = [j, t2] ∈ I, the intensity with respect
to J(t) is given by (3), i.e.,

gJ(t)(I) =

∑t2
i=j(A

J(t)
i,t2

+R
J(t)
i,t2

)

t2 − j + 1
. (29)

Note that at time t = t1, ..., t2, for any walk-in job k that
contributes to the term

∑t
i=j A

J
i,t2

(i.e., it arrives no later than
t), it must belong to the set of walk-in jobs in J(t). Thus, it
must also contribute to the term

∑t2
i=j A

J(t)
i,t2

. Similarly, for

any reserved job k that contributes to the term
∑h′(t)
i=j RJi,t2

(i.e., it arrives no later than h′(t) = min{t + L, t2}), it must
be reserved no later than h′(t) − L ≤ t. Hence, this job k
must belong to the set of reserved jobs in J(t), and thus also
contributes to the term

∑t2
i=j R

J(t)
i,t2

. Therefore, we must have

t2∑
i=j

(A
J(t)
i,t2

+R
J(t)
i,t2

) ≥
t∑
i=j

AJi,t2 +

h′(t)∑
i=j

RJi,t2 . (30)

Combining Eqn. (29), (28) and (30), we immediately obtain

E∗J(t),off ≥ max
j=t1,...,h′(t)

{∑t
i=j A

J
i,t2

+
∑h′(t)
i=j RJi,t2

t2 − j + 1

}
.

Therefore, Eqn. (26) holds, and thus Eqn. (24) follows.
We then conclude that the EPS algorithm is a feasible online
algorithm with CR η∗.


