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Abstract

We study how to schedule data sources in a wireless time-sensitive information system with multiple

heterogeneous and unreliable channels to minimize the total expected Age-of-Information (AoI). Although

one could formulate this problem as a discrete-time Markov Decision Process (MDP), such an approach

suffers from the curse of dimensionality and lack of insights. For single-channel systems, prior studies

have developed lower-complexity solutions based on the Whittle index. However, Whittle index has not

been studied for systems with multiple heterogeneous channels, mainly because indexability is not well

defined when there are multiple dual cost values, one for each channel. To overcome this difficulty,

we introduce new notions of partial indexability and partial index, which are defined with respect to

one channel’s cost, given all other channels’ costs. We then combine the ideas of partial indices and

max-weight matching to develop a Sum Weighted Index Matching (SWIM) policy, which iteratively

updates the dual costs and partial indices. The proposed policy is shown to be asymptotically optimal

in minimizing the total expected AoI, under a technical condition on a global attractor property. We

also propose an interpolation-based algorithm to quickly compute (approximate) partial indices in real

time. Extensive performance simulations demonstrate that the proposed policy offers significant gains

over conventional approaches by achieving a near-optimal AoI. Further, the notion of partial index is of

independent interest and could be useful for other problems with multiple heterogeneous resources.

Index Terms

Age-of-Information, Whittle Index, restless bandits, Markov decision processes, heterogeneous chan-

nels.

1. INTRODUCTION

Many emerging wireless applications (e.g., real-time control in robotics systems, and data collection for

IoT applications) rely on timely status updates from information sources [2], [3]. In these applications,

A preliminary conference version of this paper was presented in ACM Mobihoc 2021 [1].
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oftentimes only the information with the latest timestamp is valuable to the receiver, while out-dated

packets have little value. These applications have motivated a growing body of literature in optimizing

the Age-of-Information (AoI), which is defined as the elapsed time of the last-received information packet

since it was generated (at the source). Intuitively, AoI captures the freshness of information from the data

source’s perspective, and is considered a more useful metric for time-sensitive information systems than

packet-level delays [4].

In this paper, we are interested in minimizing AoI for a wireless system with multiple heterogeneous

sources and channels. This is a difficult setting that still lacks effective solutions in the literature. Many

existing work on minimum-AoI scheduling policies study only a single-source system [4], [5]. For multiple

sources, most of the existing work assumes that data sources are transmitting in a single shared channel

[6], [7], [8], [9], [10], [11]. Further, most of these studies assume the channel to be reliable, with only a

few extension to the case of a single unreliable channel [7], [10], [11]. For studies that do involve multiple

channels, a recent article [12] assumes a homogeneous channel model, where each user-channel pair has

equal ON/OFF probability. Thus, the solutions in these studies cannot be used in wireless systems that

exhibit heterogeneous channel condition (e.g., transmission success probability) for each source-channel

pair, which is common due to antenna beamforming, frequency selectivity and location-dependent fading

[13], [14], [15]. [16] and [17] are the closest work to ours, as they also study heterogeneous multi-

channel systems. [16] proposes a scheduling policy for ON/OFF multi-channel systems based on max-age

matching. Under a similar setting, [17] proposes a policy that is asymptotically 8-optimal in minimizing

the total weighted age. However, [16] and [17] assume that the ON/OFF states of all channels are known

before the scheduling decisions are made. This assumption, combined with the setting that the number of

channels are large, ensures that with high probability each source sees at least one ON channel. In this

way, the impact of unreliable channels can be absorbed by an event with negligible probability in their

analysis. In contrast, we are interested in a model where the channel states are unknown when scheduling

decisions are made. Therefore, the question remains open on how to design a provably optimal scheduling

policy to minimize AoI in time-sensitive information systems with multiple heterogeneous and unreliable

channels.

One of the key obstacles in deriving the optimal scheduling policy under multiple heterogeneous

sources and channels is the complexity of the associated Markov decision problem. Note that such AoI

optimization problems (regardless of the channel conditions) are often formulated as Markov Decision

Processes (MDP) or Restless Multi-armed Bandits (RMAB), which in theory can be optimally solved

by value iteration [18], [19]. However, this approach suffers from the curse of dimensionality and lack

of insights. Therefore, it is highly desirable to develop low-complexity and near-optimal solutions. For



3

single-channel systems, policies based on Whittle index [20], whose complexity does not grow with

the number of sources, have been found to exhibit good performance. Further, they are known to be

asymptotically optimal when the number of sources and the channel capacity both grow to infinity [21],

[9], [8], [7], [10]. However, to the best of our knowledge, there have been no such Whittle index policies

for systems with multiple heterogeneous channels/resources. Part of the difficulty is that Whittle’s notion

of “indexability” [20] is not well-defined when there are multiple heterogeneous channels. Specifically,

in [20], a project is indexable if there is a single threshold for the channel cost, above which the optimal

action of the project will be passive (i.e., not to consume the channel resource). Thus, Whittle indexability

critically relies on the assumption that there is only one dual cost for either a single channel or a single

group of homogeneous channels. For heterogeneous multi-channel systems, each channel naturally has a

different dual cost. The optimal action of the project will also depend on all channel costs. As a result,

one cannot even define such a threshold or index.

In this paper, we propose a new Whittle-like scheduling policy for heterogeneous and unreliable multi-

channel systems. Similar to [20], we first formulate the MDP for the system, and decompose the problem

into per-source sub-problems using Lagrange relaxation [19] (Section 2). However, to overcome the

difficulty of Whittle indexability as mentioned above, we introduce the new notions of partial indexability

and partial index, which are defined with respect to the cost of one channel, given the costs of all

other channels (see Section 3 for detailed definitions). Then, we propose a low-complexity Whittle-like

scheduling policy, which we call the Sum Weighted Index Matching (SWIM) policy, by computing a

maximum-weighted matching (MWM) between the sources and channels, where the weight between each

source-channel pair is the above-defined partial index. Our key contribution in Section 3 is to identify

a precise division condition, under which the SWIM policy is asymptotically optimal, under a technical

assumption on a global attractor property (which has also been used in the literature [22], [23]). To

the best of our knowledge, our work is the first in the literature to extend the concept of indexability

to heterogeneous multi-channel settings. We note that both the notion of partial indexability and the

SWIM policy are very general, and can be applied to various large-scale MDP problems with multiple

heterogeneous channels. We then verify in Section 4 that our AoI problem indeed satisfies the partial

indexability and precise division property. Our simulation results in Section 6 shows that applying the

SWIM policy to our AoI problem produces significant performance gains over conventional approaches,

and achieves a near-optimal average AoI.

We note that in the RMAB literature there is also a line of work on multi-action bandits [22], [23].

However, we emphasize that “actions” and “channels” are very different, because the multiple actions in

[22], [23] are still applied to a single resource. This is the reason why [22] can still define a Whittle index
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based on the (single) dual cost associated with the resource. In contrast, multiple heterogeneous channels

correspond to multiple resources and multiple dual costs. Therefore, the techniques in [22] cannot be

directly applied to our setting with heterogeneous channels.

An earlier version of our paper has appeared in ACM MobiHoc 2021 [1]. Compared to the conference

version [1], this journal paper provides two further enhancements. First, note that the computation of

the partial index still incurs significant complexity. Thus, we propose in Section 5 a pre-computation

and interpolation procedure, which allows quick computation (approximation) of the partial indices in

real-time. Simulation results in Section 6 demonstrate that the interpolation method incurs negligible

performance loss with a significant reduction in computation time. Second, we extend our results on the

AoI minimization problem to any strictly-increasing cost function of the AoI (instead of minimizing the

AoI itself). We verified that partial indexability still holds for this more general setting, and thus the

partial index policy can still be applied.

We summarize the contribution of this paper.

• We propose the new concept of partial index, which generalizes the Whittle index to the setting with

multiple heterogeneous resources. Further, we introduce the partial indexability and precise division

conditions, which are important for the partial index approach to be asymptotically optimal.

• We verify the partial indexability and the precise division conditions for the heterogeneous and

unreliable multi-channel AoI minimization problem. Our result hold for minimizing any strictly-

increasing cost function of the AoI.

• We propose a pre-computation and interpolation method to efficiently approximate the partial indices,

which achieves significant acceleration in real-time computation with negligible performance loss.

2. MODEL AND PROBLEM FORMULATION

We consider a wireless system where a base station (BS) is scheduling N data sources or sensors on

multiple channels for timely status updates in the uplink (Fig. 1). Each source corresponds to one sender

node on the left in Fig. 1. Note that each source may experience different channel conditions due to their

locations. As a result, sources may have different preferences on the set of communication channels. To

model such heterogeneity, we assume that the sources are divided into G groups. Let Ng be the set of

sources in group g. Then, the set of all sources is N =
⋃G

g=1Ng. The sources n ∈ Ng in the same

group g experience the same condition on each channel. We consider a discrete-time system where time

is indexed by t ∈ T . We assume that the transmission from the source to the BS takes one time slot.

Heterogeneous and Unreliable Channels: As shown in Fig. 1, the BS is capable of communicating

in multiple channels at each time. Depending on the frequency, modulation, and beam-forming schemes
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Fig. 1. Uplink of a heterogeneous, unreliable multi-channel system with a base station and N data sources.

used, the channels may have similar or different qualities. To model such heterogeneity, we divide the

channels also into M > 1 types. We assume that each type m ∈ M = {1, . . . ,M} of channels has C

identical instances (which we refer to in the future as “channels”). As we explain below, all sources in a

given group g sees the same channel quality in the C channel instances of a given type m. We adopt the

standard collision channel model [10] as follows. At each time, the BS can schedule at most one source to

transmit update packets on each channel. The channel is potentially unreliable, due to wireless channel

fading. In contrast to most existing work in the literature, we consider heterogeneous source-channel

conditions. Specifically, we assume that each transmission from source n ∈ Ng on a channel of type

m ∈ M succeeds with probability pgm ∈ (0, 1], independently from all other transmissions. We denote

the channel quality vector for group g as p⃗g = [pg1, . . . , pgM ]T . With slight abuse of notation, we denote

pnm = pg(n),m where g(n) is the group containing n.

Packet Generation: To focus our discussion on the effect of multiple heterogeneous channels, we adopt

the generate-at-will model as [6], [7]. Specifically, whenever a source is scheduled for transmission, it

can generate a fresh update. In this work, we use age-of-information (or simply age) to measure the

information freshness, which is defined as the elapsed time of the last-received information packet since

it was generated (at the source). Denote hn(t) as the age of source n at time t. If the transmission is

successful, the age of this source reduces to 1. If the source is not scheduled for transmission, or if the

transmission fails, the age increases by 1. Then, the AoI evolution of source n can be written as

hn(t+ 1) =

1, successful update from n;

hn(t) + 1, otherwise.
(1)

Intuitively, to avoid wasting channel resources, the BS should only schedule each source on at most

one channel instance. Let un(t) be the decision variable at time t such that un(t) = m if source

n is scheduled to transmit on channel of type m, and un(t) = 0 if the source is not scheduled for
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transmission. In summary, we have the constraints that
∑N

n=1 1{un(t) = m} ≤ C for all channel type

m, and
∑M

m=1 1{un(t) = m} ≤ 1 for all source n.

A. MDP-based Formulation

Now, we can formulate the average AoI minimization problem for the above heterogeneous and

unreliable multi-channel system as an MDP. Let S(t)∆={h1(t), h2(t), . . . , hN (t)} ∈ NN
+ be the system

state at time t. Denote the action space of the entire system as U∆
={0, 1, . . . ,M}N . (Recall that action

0 denotes no scheduled transmission and action m ∈ M denotes the scheduled channel type). A policy

π maps from the system state S(t) to the action in U . The state transition probability of source n when

it is passive is

P{hn(t+ 1) = d+ 1|hn(t) = d, un(t) = 0} = 1. (2)

The state transition probabilities when source n is scheduled on a channel of type m are

P{hn(t+ 1) = d+ 1|hn(t) = d, un(t) = m} = 1− pnm,

P{hn(t+ 1) = 1|hn(t) = d, un(t) = m} = pnm. (3)

We can define the T -horizon average AoI cost and the long-term average AoI cost of the system under

policy π as

H
(T )
π =

1

TN

∑T

t=1

∑N

n=1
E
[
c
(
hπn (t)

)]
,

Hπ
∆
= lim sup

T→∞
H

(T )
π ,

(4)

respectively, where T is the length of time horizon, c(·) : N→ R is a strictly-increasing function of AoI,

and hπn (t) is the AoI of source n at time t under policy π. The objective of the MDP is to minimize the

long-term average system AoI cost in (4), i.e.,

min
π∈UT

lim sup
T→∞

1

TN

∑T

t=1

∑N

n=1
E
[
c
(
hπn (t)

)]
. (5)

In theory, the above MDP can be solved optimally as an infinite-horizon average cost per stage problem

using relative value iteration [18]. However, this approach suffers from the curse of dimensionality and

lack of insights for the solution structure. Hence, many efforts have been focusing on developing low-

complexity solutions.

B. Decomposition Using Lagrange Relaxation

For lower-complexity solutions, two representative approaches in the literature are based on the relaxed

problem and index policies. In this section, we will discuss how they are related to a Lagrange relaxation
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of the MDP, and the challenges of applying these existing approaches to our setting with multiple

heterogeneous channels.

We first introduce the relaxed problem. Denote uπnm(t)
∆
=1{un(t) = m}, i.e., the indicator variable that

source n is scheduled on channel type m at time t under policy π. The MDP formulated in Section 2-A

can be equivalently written in the following optimization form:

minimize
π

lim sup
T→∞

1

TN

∑T

t=1

∑N

n=1
E
[
c
(
hπn (t)

)]
subject to

∑N

n=1
uπnm(t) ≤ C, ∀m ∈M, t ∈ T , (6a)∑M

m=1
uπnm(t) ≤ 1, ∀n ∈ N , t ∈ T , (6b)

uπnm(t) ∈ {0, 1}, ∀t ∈ T . (6c)

Following Whittle’s approach [20], we relax the instantaneous constraint (6a) to an average constraint,

and obtain the relaxed problem

minimize
π

lim sup
T→∞

1

TN

∑T

t=1

∑N

n=1
E
[
c
(
hπn (t)

)]
subject to

lim sup
T→∞

1

T
E[
∑T

t=1

∑N

n=1
uπnm(t)] ≤ C,∀m ∈M, (7a)

(6b), (6c) (7b)

Next, we use Lagrange relaxation in [19, Chapter 6]. Specifically, we introduce a dual cost λm to each

of (7a), and decouple the relaxed problem of (7) into N sub-problems, i.e., ∀n ∈ N ,

minimize
π

lim sup
T→∞

1

T

T∑
t=1

E
[
c
(
hπn (t)

)
+

∑
m∈M

λmuπnm(t)
]

(8a)

subject to
∑M

m=1
uπnm(t) ≤ 1, ∀t ∈ T , (8b)

uπnm(t) ∈ {0, 1}, ∀t ∈ T , ∀m ∈M. (8c)

It is easy to see that, given channel costs λ⃗ = [λm,∀m ∈ M], each sub-problem (8) is an average cost

per stage problem [18] for optimizing the long-term average AoI of source n plus the costs of its channel

use, which by itself is a decoupled MDP with state space S = N+, action space U = {0, 1, . . . ,M},

and transition probabilities in (2) and (3).

With this dual decomposition, the relaxed problem can be solved by iteratively solving all independent

sub-problems (8) given the current λ⃗(k) (denote the resulting decisions by u
π(k)
nm (t)) and updating the

dual costs λ⃗(k) by dual gradient ascent in the k-th iteration [24], i.e., for all m ∈M

λ(k+1)
m =

[
λ(k)
m + γ ·

(
E
[∑

n∈N
uπ(k)
nm (t)

]
− C

)]+
(9)
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where γ > 0 is the step size, and [x]+ = max{x, 0}. When λ⃗(k) converges, the corresponding solution of

the relaxed problem is known to provide us with a lower bound for the objective of the original MDP (6)

[21]. However, this solution does not always provide a feasible scheduling decision, because, in the real

system, resource constraints (6a) must be met at all time, instead of just in the average sense as in (7a).

Moreover, before the primal-dual iteration converges, the average constraint may be violated severely,

resulting in poor policy performance.

For single-channel systems (M = 1), Whittle’s index policy in the literature overcomes these drawbacks

by producing a scheduling decision that is always feasible, and is near-optimal [20], [21], [19], [10].

However, Whittle index or indexability have not been defined for multiple heterogeneous channels. Note

that in the RMAB literature, the indexability is defined based on the following: for each state of a project,

there exists a scalar price threshold such that, when the price is above (or below) that threshold, the

resource is not used (or used). However, as we have shown above, the sub-problem (8) in our model is

parameterized by multiple channel costs with distinct values. Obviously, the decision to use each channel

type m depends on not only the cost λm of this type, but also the costs of other channel types. As a

result, there is no longer a single threshold that can divide the spaces of cost vectors into one where the

resource is used, and the opposite one where the resource is not used. Next, we overcome this difficulty

by introducing the new notions of partial indexability and partial index.

3. PARTIAL INDEXABILITY AND ASYMPTOTICALLY OPTIMAL POLICIES

In this section, we will propose a powerful framework to design asymptotically optimal scheduling

policies, which generalizes the notion of indexability to heterogeneous multi-channel settings. Specifically,

we introduce a new notion of partial indexability, which are defined with respect to the cost of one

channel, given the costs of the others. Partial indexability and the corresponding partial index then allow

us to develop a near-optimal policy for heterogeneous multi-channel systems, which is a key contribution

of our work.

Our proposed solution framework in this section is based on only the relaxed-problem formulation in

Section 2-B. Note that the formulation of the relaxed problem in Section 2-B can be applied to any MDP

with the cost function given by h(·). Thus, our methodology not only applies to the AoI minimization

problem in this paper, but also other large MDP problems with multiple heterogeneous channels (or

resources). In that sense, the applicability of our proposed framework in this section is beyond the

current problem. Thus, although we still use the notions of “sources/channels” in this section, they could

be easily applied to more general notions of “projects/resources” as in the typical Whittle-index literature

[21].
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A. Partial Indexability

We first focus on the sub-problem (8) with a given vector λ⃗ = [λ1, . . . , λM ]T of costs for all channels.

As we mentioned in Sec. 2-B, the MDP of each sub-problem is an infinite-horizon average cost per stage

problem with countably infinite state space [18]. Since the sub-problems of all sources n in the same

group g are identical and independent, next we can write the Bellman Equation of the sub-problem (8)

for each group g as

fg(s) + J∗ = min
u∈{0,...,M}

[
ggu(s, λ⃗) +

∑
d∈S

pgsd(u)f
g(d)

]
, (10)

where fg(·) is the optimal relative value function, J∗ is the optimal average cost. Here, to keep our

notations general, we have used gu(s, λ⃗) = Cu
gs + λu to denote the stage cost in (8a) at state s ∈ S

under action u ∈ U = {0}
⋃
M, and pgsd(u) to denote the transition probability from state s to state d by

taking action u. For the AoI minimization problem, Cu
gs = h(s) and pgsd(u) specializes to the transition

probabilities in (2) and (3).

Next, we define the partial indexability and partial index that generalize Whittle’s index [20]. Given

the cost vector λ⃗, let

µg
u(s, λ⃗)

∆
=ggu(s, λ⃗) +

∑
d∈S

pgsd(u)f
g(d) (11)

denote the expected cost-to-go from state s under action u, assuming that the optimal policy is used in

the future. We first define the following concepts that are analogous to Whittle’s notations [20].

Definition 3.1 (Passive Set). Given the cost vector λ⃗, the set of passive states for channel-type m is

Pg
m(λ⃗)

∆
={s ∈ S|µg

m(s, λ⃗) > min
u̸=m,u≥0

µg
u(s, λ⃗)}. (12)

In other words, if the current state of a source n ∈ Ng is s ∈ Pg
m(λ⃗), the solution to the relaxed

problem under λ⃗ will not schedule source n on channel-type m. Let λ⃗−m denote the cost vector of all

channels except for channel type m. We now fix all channel costs λ⃗−m except that of type m, but vary

the channel cost of type m to λ′
m. Let the new cost vector be λ⃗′ = [λ′

m, λ⃗−m]. We define the partial

indexability as follows.

Definition 3.2 (Partial Indexability). Given the cost vector λ⃗, the sub-problem (8) is partially indexable

(or indexable as abbr.) if, for all m ∈ M, the size of the passive set |Pg
m(λ⃗′)| increases monotonically

to the entire state space as λ′
m increases from 0 to ∞ (while fixing other channels’ costs λ⃗−m).

If the sub-problem (8) is partially indexable, then for each state s, there is a largest value of λ′
m such

that the passive set Pg
m(λ⃗′) no longer includes the state s. We refer to this value of λ′

m as the partial

index, as defined below.
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Definition 3.3 (Partial Index). Given channel vector p⃗ and cost vector λ⃗, the partial index (or index, as

abbr.) Igm(s, λ⃗−m) of state s ∈ S for channel type m ∈M is defined as the supremum of cost λ′
m such

that the expected cost-to-go from state s for using channel type m is no larger than that under any other

actions, i.e.,

Igm(s, λ⃗−m)
∆
=
[
sup{λ′

m

∣∣µg
m(s, λ⃗′) ≤ µg

k(s, λ⃗
′),∀k≥0}

]+
. (13)

In addition, we define the index for passive action (m = 0) as

Ig0 (s, λ⃗)
∆
=
[
sup{λ′∣∣µg

0(s, λ⃗) + λ′ ≤ µg
k(s, λ⃗), ∀k ∈M}

]−
, (14)

where [x]−
∆
=min{x, 0}.

Similar to Whittle policy, partial indexability allows us to characterize the urgency of each state by

its indices, based on which an efficient solution for the original problem can be derived. However, in

contrast to standard Whittle indexability, partial indexability is defined given all the channel costs other

than channel type m. Like Whittle indexability, verifying such partial indexability is non-trivial, and

often requires significant work. We will show how to verify partial indexability for the AoI minimization

problem in Section 4.

Next, we are interested in designing a Whittle-like policy that can utilize partial indices. For single-

channel system, the Whittle index policy simply picks the project with the highest index. However, such

a simple decision will not work for multi-channel systems anymore, because each source is also restricted

to transmit on one channel at a time. Intuitively, to respect the capacity constraints (6a) and (6b) for each

channel and each source, the decision should involve some matching between sources and channels. The

goal of the next section is to establish this matching formally.

B. Max-Weight Matching of Partial Indices

Motivated by Whittle’s index policy, we aim to schedule a group of users with higher partial indices,

while satisfying the resource constraints on each channels. The problem can be naturally formulated

as a Maximum Weighted Matching problem based on partial indices (MWM-PI). Define the graph

R∆
=(N

⋃
M, E), where E is the set of all source-channel-type pairs. We define the problem of MWM-PI

as follows,

maximize
ynm ∈ {0, 1}

∑
n∈N

∑M

m=0
wnmynm (15a)

subject to
∑

n∈N
ynm ≤ C, ∀m ∈M, (15b)∑

m∈M
ynm ≤ 1, ∀n ∈ N (15c)
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where ynm is the binary decision to schedule source n on channel type m, wnm
∆
=I

g(n)
m (sn, λ⃗−m) is the

edge weight given by the partial index in (13) and (14), and g(n) is the group index for user n. We then

schedule the sources according to unm(t) = ynm.

Note that MWM-PI is based on the current set of prices λ⃗. As we present next, the outcome of the

MWM-PI will also guide us in updating the prices λ⃗. This idea leads to the proposed Sum Weighted Index

Matching (SWIM) policy in Algorithm 1. Specifically, Line 1 initializes the system parameters. Lines

3-5 compute the scheduling decision for time t by solving the MWM-PI problem. Lines 6-7 correspond

to the transmission phase of the update packets. Line 8 updates each channel type’s cost for the next

time t+1 as a weighted average (by the parameter β) of the previous channel cost and the optimal dual

cost associated with (15b) at time t.

Algorithm 1: Sum Weighted Index Matching (SWIM)

1 At t = 0: Initialize parameters N,M,C, β, and λ⃗(1);

2 At time t ≥ 1:

3 Compute partial indices I⃗g(n)(t) = [I
g(n)
m (sn(t), λ⃗−m(t))] for every source n ∈ N , given current

cost λ⃗(t);

4 Solve MWM-PI in (15) with wnm ← I
g(n)
m (sn(t), λ⃗−m(t)), and obtains the scheduling decision

y⃗(t);

5 Schedule sources according to u⃗(t)
∆
=[unm(t)] = y⃗(t);

6 Wait for updates from scheduled sources on all channels;

7 Broadcast an ACK message to indicate all successful updates;

8 Update channel cost as λm(t+1)← (1− β)λm(t) + βνm(t), where νm(t) is the optimal dual

variable associated with (15b) for channel type m in the MWM-PI problem at time t.

Remark. Clearly, Algorithm 1 is a generalization of Whittle’s index policy. In fact, in the single-channel

case, the MWM-PI reduces to Whittle’s policy. The critical difference is that, in heterogeneous multi-

channel systems, source n’s index for channel type m depends on other channels’ costs λ⃗−m, whose

optimal value also needs to be found. To address this difficulty, Algorithm 1 uses adaptive updates to

approach the optimal channel costs in Line 8.

C. Fluid Analysis and Asymptotic Optimality

In the literature, the optimality of Whittle index policies is often shown using a fluid limit argument,

by considering the regime of a large-scale system. Specifically, [21] shows that the difference between
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the state distribution under the Whittle index policy and the steady-state distribution under the optimal

policy for the relaxed problem (7) diminishes to zero, when N,C →∞ and α = C/N is kept constant.

Similarly, in this section, we will focus on such a fluid limit. We will show that the fixed point of the

MWM-PI problem is equivalent to that of the relaxed problem (i.e., when dual gradient descent on λ⃗

converges and when the steady-state distribution is reached). Since the optimal solution for the relaxed

problem at the fixed point is a lower bound for the original MDP (6), the above-mentioned equivalence

relationship is essential for establishing the asymptotic optimality of our proposed SWIM policy later.

We first define the fluid limit model of the relaxed problem and its fixed point as follows. For any

group g, let zgs be the fraction of sources of group g that is in state s, with
∑

s∈S zgs = 1. Thus,

z⃗g
∆
=[zgs, s ∈ S] denotes the state distribution vector of group g. Given the current cost vector λ⃗, we

assume that the distribution under the relaxed policy has reached the steady state. Let xugs ∈ [0, 1] be the

fraction of sources of state s in group g that is assigned to channel u by the relaxed policy πrel. We

use (x⃗, z⃗∗, λ⃗∗) to denote a fluid fixed point of the relaxed problem at steady state (i.e., when the dual

gradient ascent on λ⃗ converges). Similar to the fluid analysis in [23], we can verify that, at the fixed-point

channel cost λ⃗∗, (x⃗, z⃗∗) also solves the following fluid problem (which is a linear program (LP))

minimize
x⃗, z⃗

∑
g∈G

∑
s∈S

∑M

u=0
zgsC

u
gsx

u
gs (16a)

subject to
∑

g∈G

∑
s∈S

zgsx
u
gs ≤ Cu, ∀u ∈M, (16b)∑

u∈M
xugs ≤ 1. ∀g ∈ G,∀s ∈ S, (16c)∑

u≥0

∑
d∈S

zgsx
u
gsp

g
sd(u) =

∑
u′≥0

∑
d∈S

zgdx
u′

gdp
g
ds(u

′),∀s ∈ S, ∀g ∈ G, (16d)

where Cu
gs and pgsd(u) are defined in (10) (recall that u = 0 corresponds to passive). Thus, the primal

and dual variables (x⃗, z⃗∗, λ⃗∗) will satisfy the KKT conditions of (16). Similar to [23, Lemma 4.3], it can

be shown that the optimal solution of the fluid problem (16), denoted as V ∗(x⃗, z⃗∗, λ⃗∗), is a lower bound

for the original MDP.

For Algorithm 1, we can similarly define its fluid limit and fixed point as follows. Suppose that the

steady state is reached. Denote the corresponding state distribution, channel cost vector and decision

vector as z⃗′, λ⃗′ and y⃗, respectively. Recall that MWM-PI is based on a set of dual costs λ⃗, and the edge

weight is computed by wm
gs = Igm(s, λ⃗−m) for m ∈ M, and w0

gs = Ig0 (s, λ⃗). At steady state, (y⃗, z⃗′, λ⃗′)

must solve the following fluid problem

maximize
y⃗

∑
g∈G

∑
s∈S

∑M

u=0
zgsw

u
gsy

u
gs (17a)

subject to
∑

g∈G

∑
s∈S

zgsy
u
gs ≤ Cu, ∀u ∈M, (17b)
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∑M

u=0
yugs = 1, ∀g ∈ G, ∀s ∈ S , (17c)

replace x⃗ by y⃗ in (16d). (17d)

Denote the Lagrange multiplier associated with (17b) as νu (define ν0 = 0). At the fixed point, λ⃗′ = ν⃗

must hold. Thus, we denote such (y⃗, z⃗′, λ⃗′) as the fixed point of Algorithm 1, which should also satisfy

the KKT conditions of (17).

Ideally, our goal is to show that the fixed point of the relaxed problem is identical to that of Algorithm 1,

and thus they produce the same near-optimal objective value. However, we need a slightly stronger

condition than partial indexability, as follow.

Definition 3.4 (Precise Division). Given state space S and channel costs λ⃗, suppose that the sub-problem

(10) is partially indexable with index Igm(s, λ⃗−m) for s ∈ S. We say that the preference for channel-type

m is precisely divisible by its partial-index Igm(s, λ⃗−m), if the following holds: for all s ∈ S and m ≥ 1,

(i) If Igm(s, λ⃗−m) = λm, then µg
m(s, λ⃗) ≤ µg

u(s, λ⃗), ∀u ̸= m,u ≥ 0.

(ii) If Igm(s, λ⃗−m) > λm, then µg
m(s, λ⃗) < µg

u(s, λ⃗),∀u ̸= m,u ≥ 0.

(iii) Otherwise, there exists u ̸= m,u ≥ 0 s.t. µg
m(s, λ⃗) > µg

u(s, λ⃗).

Note that Definition 3.4 implies partial indexability in Definition 3.2. To see this, note that given

λ⃗−m, for any state s ∈ S, its partial index Igm(s, λ⃗−m) is independent of λm. Thus, as λm increases, we

transition from Igm(s, λ⃗−m) > λm (i.e., using channel type m per Definition 3.4-(ii)) to Igm(s, λ⃗−m) < λm

(i.e., not using channel type m per Definition 3.4-(iii)). In other words, as λm increases, Pg
m(λ⃗) increases

monotonically to the entire state space S. On the other hand, Definition 3.4 is stronger than partial

indexability because it states that this transition occurs precisely at Igm(s, λ⃗−m) = λm.

Condition 3.5. The sub-problem (10) is partially indexable (Definition 3.2) and satisfies the precise

division property in Definition 3.4

The next theorem, which is one of our main contributions in this work, establishes the connection

between the fixed point of the relaxed problem (7) and the fixed point of Algorithm 1.

Theorem 3.6. Suppose that Condition 3.5 holds. Then, any fixed-point solutions {x⃗, z⃗∗, λ⃗∗} of the relaxed

problem are equivalent to the fixed-point solutions {y⃗, z⃗′, λ⃗′} of Algorithm 1 at the fluid limit.

Proof. Here, we provide the complete proof for Theorem 3.6 (including the missing details in our

conference paper). To prove the equivalence in the theorem, we need to show the statement in both

direction. We first consider the fixed point of the relaxed problem. For any group g, let zgs be the
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fraction of users of group g that is in state s, i.e.,
∑

s∈S zgs = 1. Thus, z⃗g
∆
=[zgs]s∈S denotes the state

distribution vector of group g. We consider the case where the distribution of the relaxed problem has

reached the steady state. Let xmgs ∈ [0, 1] be the fraction of users of state s in group g that is assigned

to channel m by the relaxed policy πrel. Therefore, the corresponding decisions of the relaxed problem

at the fixed point (x⃗, z⃗∗, λ⃗∗) of the relaxed policy have to satisfy the following KKT conditions of the

relaxed problem (16).

i) (Dual feasible) The dual cost vector satisfies λ⃗∗ ≥ 0⃗.

ii) The steady state user distribution [z⃗∗1 , . . . , z⃗
∗
G] satisfies (16d) i.e., ∀s ∈ S, ∀g ∈ G,∑

m≥0

∑
d∈S

z∗gsx
m
gsp

g
sd(m) =

∑
m≥0

∑
d∈S

z∗gdx
m
gdp

g
ds(m),

where pgsd(m) is the transition probability of group-g user from state s to d using channel m (m = 0

means passive) according to the Markov model. In other words, for each g and s, the amount of

fluid going into each state (g, s) must equal to the amount of fluid going out of that state.

iii) For each state s ∈ S in group g ∈ G, [xmgs] must satisfy∑
(g,s)

z∗gsx
m
gs ≤ Cm, ∀m ∈M, (Primal feasible)∑

(g,s)
z∗gsx

m
gs = Cm, ∀m ∈M, if λ∗

m > 0. (Complementary slackness)∑
m∈M

xmgs ≤ 1, ∀g ∈ G, s ∈ S. (Primal feasible)

iv) (Optimizing the Lagrangian) For each g and s, [xmgs] denotes the optimal decisions for the sub-problem

(8), given λ⃗∗, i.e., if xmgs > 0 for some m, it must be true that

µg
m(s, λ⃗∗) ≤ µg

u′(s, λ⃗∗), ∀u′ ̸= m, 0 ≤ j′ ≤M, (18)

where µg
m(s, λ⃗∗) is the payoff of channel m in the Bellman equation (10) under λ⃗∗.

On the other hand, suppose that the SWIM policy (Algorithm 1) has also reached its steady state

solution. Denote the steady state distribution of Algorithm 1 as [z⃗′1, . . . , z⃗
′
G]. Recall that the Algorithm 1 is

based on a set of dual costs λ⃗, and the edge weight is computed by wu
gs = Igu(s, λ⃗−u) and w0

gs = Ig0 (s, λ⃗).

Let [yugs] be the optimal solution for MWM at the fixed point. At the fixed point, the optimal policy for

MWM-PI solves (17). When Algorithm 1 reaches the fixed point (y⃗, z⃗′, λ⃗′), the variables must satisfy the

following conditions, where most (except (A)) comes from the KKT conditions of of (17) as follows:

A) At the fixed point, λ′
u = νu must hold for all u ∈M.

B) (Dual feasibility) The Lagrange multipliers satisfy νu ≥ 0 for all u ∈M.
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C) The steady state user distribution [z′gs] have been reached, i.e., ∀s ∈ S, ∀g ∈ G,∑
u≥0

∑
d∈S

z′gsy
u
gsp

g
sd(u) =

∑
u≥0

∑
d∈S

z′gdy
u
gdp

g
ds(u).

D) For each state s ∈ S in group g ∈ G, [yugs]’s must satisfy∑
(g,s)

z′gs · yugs ≤ Cu, ∀j ∈M, (Primal feasibility)∑
(g,s)

z′gs · yugs = Cu, if νu > 0. (Complementary slackness)∑M

u=0
yugs = 1. (Primal feasibility)

E) (Optimizing the Lagrangian) For each (g, s), the solution [yugs] should be optimal for the following

maximize
yugs

∑M

u=0
yugs(w

u
gs − νu) (19a)

subject to
∑M

u=0
yugs = 1. (19b)

Denote Jmax∆={u|wu
gs − νu ≥ wu′

gs − νu′ ,∀u′ ̸= u, u′ ≥ 0}. Then,
∑

u∈Jmax yugs = 1, and yu
′

gs = 0 for

u′ /∈ Jmax.

Before we proceed, we first state a corollary and a lemma as follows.

Corollary 3.7. Suppose that Condition 3.5 holds. For any state d ∈ S, suppose that there exists one

channel-type m such that Igm(d, λ⃗−m) > λm. Then, the other channels u ̸= m must have Igu(d, λ⃗−u) < λu.

Proof. By Definition 3.4-(ii), since Igm(d, λ⃗−m) > λm, we must have µg
u(d, λ⃗) > µg

m(d, λ⃗) for all channels

u̸=m. Suppose in contrary that Igu(d, λ⃗−u) ≥ λu for u̸=m. Then, we would have µg
m(d, λ⃗) ≥ µg

u(d, λ⃗)

by Definition 3.4-(i),(ii), which is a contradiction. ■

Lemma 3.8. In Condition (E), at least one action u ≥ 0 should satisfy wu
gs ≥ νu at the fixed point.

Proof. For the purpose of contradiction, we assume wu
gs < νu,∀u ≥ 0. Recall that λ⃗′ = ν⃗. Thus, we have

Igu(s, ⃗ν−u) < νu,∀u ≥ 1. By the definition (3) of the partial index for u ≥ 1, at cost ν⃗, the following

must be true for all u ≥ 1: there must exist some u′ ̸= u, u′ ≥ 0 such that µg
u(s, ν⃗) > µg

u′(s, ν⃗). Since

this is true for all j ≥ 1, the only possibility is that µg
0(s, ν⃗) < µg

u(s, ν⃗), ∀u ≥ 1. This implies that

Ig0 (s, ν⃗) = ν∗0
∆
=0 by the definition of index for channel-0 in (14). However, this contradicts with the

assumption of Ig0 (s, ν⃗) < 0. Hence, at least one u ≥ 0 should satisfy wu
gs ≥ νu at the fixed point. ■

Now, we proceed to show that the fixed point for the relaxed problem is equivalent to the fixed

point for the MWM-PI. We first show the “=⇒” direction. Suppose that we are given the fixed point

[xugs]’s, [z⃗∗1 , . . . , z⃗
∗
G] and λ⃗∗ of the relaxed problem, which satisfy conditions (i)-(iv). Our goal is to
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show that conditions (A)-(E) are satisfied by letting λ⃗′ = λ⃗∗, [z⃗′g] = [z⃗∗g ], ymgs = xmgs, ∀m ≥ 1 and

y0gs = 1 −
∑

m≥1 y
m
gs. Clearly, (A) holds by our construction. (B) νm = λ′

m = λ∗
m ≥ 0 is true since

λ⃗∗ ≥ 0 at the fixed point. (C) follows from (ii) and our construction of [z⃗′g] = [z⃗∗g ] and y⃗ = x⃗. (D) follows

directly from (iii) and the definition of y0gs = 1 −
∑

m≥1 y
m
gs. It remains to show (E). To show (E), we

divide into three cases.

a) (When there exists m ≥ 1 s.t. Igm(s, λ⃗−m) > λ′
m) From Corollary 3.7, there exists only one channel

m∗ such that Igm∗(s, λ⃗−m∗) > λ′
m∗ . By Definition 3.4-(i), this implies that µg

m∗(s, λ⃗) < µg
u(s, λ⃗),∀u ̸=

m∗, u ≥ 0. From Condition (iv), the optimal decision for the relaxed problem is then xm
∗

gs = 1 and

xugs = 0,∀u ̸= m∗. By definition (14), we must have Ig0 (s, λ⃗) ≤ 0, i.e., w0
gs ≤ 0. Clearly, the decision

of ym
∗

gs = xm
∗

gs = 1 and yugs = yugs = 0,∀u ̸= m∗ satisfies Condition (E).

b) (When there exists no m ≥ 1 s.t. Igm(s, λ⃗−m) > λm, but there exists some m ≥ 1 s.t. Igm(s, λ⃗−m) =

λm) Define Jeq
∆
={m ≥ 1|Igm(s, λ⃗−m) = λm}. Then, for all other channels m′ ≥ 1,m′ /∈ Jeq, we have

Im′(gs, λ⃗−m′) < λm′ . For any m′ such that Igm′(s, λ⃗−m′) < λ′
m′ , by Definition 3.4-(iii), we must have

µg
m′(s, λ⃗′) > µg

u(s, λ⃗′) for some u ̸= m′. Thus, the optimal decision under πrel for such channels is

xm
′

gs = 0. Therefore, the optimal decision for relaxed problem can only use m ∈ Jeq and possibly

channel-0 (passive), i.e., we must have∑
u≥1:Ig

u(s,λ⃗−u)=λu

xugs = 1 if x0gs = 0,∑
u≥0:Ig

u(s,λ⃗−u)=λu

xugs = 1 if x0gs > 0.

Thus, regardless of the value of x0gs, setting yugs = xugs,∀u ≥ 0 also attains the maximum objective

for (19). Thus, Condition (E) is satisfied.

c) (When Igm(s, λ⃗−m) < λ′
m for all m ≥ 1) From Definition 3.4-(iii), for all m ≥ 1, there exist some

u ≥ 0 such that µg
m(s, λ⃗) > µg

u(s, λ⃗). Clearly, the only possibility is that µg
0(s, λ⃗) < µg

m(s, λ⃗),∀m ≥ 1.

As a result, the optimal solution satisfying Condition (iv) is x0gs = 1 and xmgs = 0,∀m ≥ 1. In this

case, w0
gs = ν0 = 0 and wm

gs < νm, ∀m ≥ 1 for the MWM. Thus, the solution [yugs] = [xugs], u ≥ 0

(i.e., y0gs = 1 and ymgs = 0,∀m ≥ 1) also attains the maximum of (19). Thus, Condition (E) holds.

Combining the above three cases, we show that Condition (E) holds, which completes the proof for

“=⇒” direction.

Next, we show “⇐=” direction. Similar to the above proof for the “=⇒” direction, we assume that

the optimal solutions at the steady state of the MWM problem are given, i.e., variables ν⃗, [z⃗′1, . . . , z⃗
′
G]

and [yugs]’s satisfy (17) and conditions (A)-(E). Our goal is to show that conditions (i)-(iv) are satisfied

by letting λ⃗∗ = ν⃗ = λ⃗, [z⃗∗g ] = [z⃗′g] and [xugs] = [yugs]. Clearly, condition (i) must hold due to condition

(B). Condition (ii) follows from condition (C) directly, by our construction of z⃗∗ and x⃗. Since yugs ∈
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[0, 1], ∀u ≥ 0, Condition (iii) is satisfied by condition (D). To show that condition (iv), we divide into

two cases (note that Lemma 3.8 implies maxu≥0{wu
gs−νu} ≥ 0).

a) (When maxu≥0{wu
gs−νu} > 0) From condition (E), we have

∑
u∈Jmax yugs = 1, where Jmax contains

all actions u ≥ 0 that attain the maximum of {wu
gs− νu}. By the definition in (14), channel-0’s index

is always non-positive. Hence, we must have 0 /∈ Jmax. Thus, y0gs = 0. From Corollary 3.7, there

can exist only one u ≥ 1 such that wu
gs = Igu(s, ν⃗−u) > νu, in which case wu′

gs = Igu′(s, ν⃗−u′) <

νu′ ,∀u′ ̸= u. Define u∗ as the unique index such that u∗ = argmaxu{wu
gs − νu}. Thus, yu

∗

gs = 1. By

Definition 3.4-(ii), we then have µg
u∗(s, ν⃗) < µg

u′(s, ν⃗), ∀u′ ̸= u∗, 0 ≤ u′ ≤ M. According to (10),

xu
∗

gs = yu
∗

gs = 1 and xu
′

gs = 0,∀u′ ̸= u∗, u′ ≥ 0 correspond to the optimal solutions for (8). Hence,

condition (iv) holds for the relaxed problem.

b) (When maxu≥0{wu
gs − νu} = 0) Again, from condition (E), we have

∑
u∈Jmax yugs = 1. Thus,∑

u∈Jmax xugs = 1 by our construction. The definition of Jmax implies that for all u ∈ Jmax, u > 0,

we have wu
gs = Igu(s, ν⃗−u) = νu. Further, for all u′ /∈ Jmax, we have wu′

gs = Igu′(s, ν⃗−u′) < νu′ .

Thus, from Definition 3.4, every u ∈ Jmax is an optimal action for the sub-problem (8), and every

u′ /∈ Jmax is not. The only question is whether the optimal action for (iv) should use action-0 or not.

Next, we divide into two sub-cases. If 0 /∈ Jmax, then Ig0 (s, ν⃗) < 0. By the definition in (14), x0gs = 0

must hold for the sub-problem (8). Thus, the decisions
∑

u∈Jmax xugs = 1 is optimal for (8). On the

other hand, if 0 ∈ Jmax, then Ig0 (k, ν⃗) = 0. By definition of index (14), for any ϵ0u > 0, we must

have µg
0(s, ν⃗)− ϵ0u ≤ µg

u(s, ν⃗), ∀u ≥ 1. Letting ϵ0u → 0, we then have µg
0(s, ν⃗) ≤ µg

u(s, ν⃗),∀u ≥ 1.

Thus, x0gs > 0 is also optimal for the sub-problem (8). Combining the two sub-cases, the decision∑
u∈Jmax xugs = 1 is always optimal for the sub-problem (8). Thus, condition (iv) follows.

Combing the above cases, condition (iv) must hold for the fixed point of MWM. Hence, we have

shown the “⇐=” direction. To conclude, we have shown that the fixed point for the relaxed problem is

equivalent to the fixed point for the Algorithm 1. □

Remark. Theorem 3.6 establishes an important connection between the fixed point of the relaxed problem

and the fixed point of Algorithm 1. In contrast to the relaxed problem, the solution for MWM-PI

naturally respects the instantaneous resource constraint (6a). Since its fixed point still achieves the optimal

performance at the fluid limit, it provides useful guidance for proving the asymptotic optimality of our

proposed SWIM policy.

Next, we evaluate the performance of Algorithm 1. We first state the following technical condition

called “global attractor” [23].
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Definition 3.9 (Global attractor). An equilibrum point X⃗∗ is a global attractor for a process X(t) if, for

any initial point X⃗(0), the process X(t) converges to X⃗∗.

Next, we assume that a fixed point of Algorithm 1 satisfies the global attractor property. Notice that

similar assumption has been made in [21], [22], [23]. As mentioned in [23], in general, it may be difficult

to establish analytically that a fixed point is a global attractor for the process; thus, such property is only

verified numerically. Our simulation results in Section 6-A indeed show that such convergence indeed

happens for our proposed policy.

Based on this condition, we then show the asymptotic optimality of the SWIM policy. Specifically,

we will consider the original MDP (6) in the following r-scaled system: we scale by r both the number

of sources in each group, and the number of channels of each type, i.e., N r = rN and C
r
= rC,

while keeping α = C
r
/N r a constant. The transition probabilities for each source remain unchanged.

For such a r-scaled system, we define V r
SWIM as the average cost per stage in the objective of (6) under

our proposed SWIM policy. (Note that V r
SWIM in (6) is already averaged by the number of sources N r.)

Theorem 3.10 (Asymptotic Optimality). Suppose that Condition 3.5 holds for the sub-problem (10).

Suppose that a fixed point (y⃗, z⃗′, λ⃗′) of the policy πSWIM in Algorithm 1 is a global attractor according

to Definition 3.9. Then, πSWIM is asymptotically optimal in minimizing the average cost per stage.

Specifically, we have limr→∞ V r
SWIM = V ∗, where V ∗ is the optimal objective for the fluid relaxed

problem (16).

Proof. The proof of Theorem 3.10 follows from the global attractor property and Theorem 3.6. See

Appendix A.

4. AOI MINIMIZATION IN HETEROGENEOUS MULTI-CHANNEL SYSTEMS

In this section, we return to the setting of AoI minimization problem described in Section 2-A. Since

the results in Section 3 is very general, we only need to verify that Definition 3.2 and Definition 3.4

indeed hold for the AoI setting. Then, the result of Theorem 3.10 and Algorithm 1 can be directly

applied. As we will show soon, the verification of the indexability and the precise division property is

highly non-trivial for sub-problem (8). Note that for single-channel systems, Whittle indexability has

been verified for AoI minimization under the generate-at-will model [7]. However, the approach there

is based on directly solving the value function, which appears to be infeasible for our heterogeneous

multi-channel setting. Instead, we will develop new structural properties of the value function, based on

which we will establish both partial indexability and the precise division property.
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Fig. 2. An illustration for multi-threshold-type policy. Suppose a 3-channel system with p1 < p2 < p3 and λ1
p1

< λ3
p3

< λ2
p2

(note that channel 2 is dominated by Channel 3).

With this goal in mind, we assume that the dual costs λ⃗ = [λ1, . . . , λM ]T for all channels are given.

Since all sub-problems (8) are independent, in the rest of the section, we omit the superscript g of the

variables for the sub-problem (10) whenever no ambiguity occurs. As we mentioned in Sec. 2-B, the

MDP of each sub-problem is an average cost per stage problem with infinite time horizon and countably

infinite state space. For ease of notation, we define λ0 = 0 and p0 = 0. We also use cd as a short-hand to

denote the AoI cost c(d). The corresponding Bellman Equation (10) for the AoI minimization problem

described in Section 2-A can then be written as, for any state (i.e., current AoI) d ∈ N+,

f(d) + J∗∆= min
m∈{0}∪M

{λm + (1−pm)[cd+f(d+1)] + pmf(1)} . (20)

Since d = 1 is a recurrent state, we can set f(1) = 0. Note that Bellman equation (20) cannot be solved

in closed form due to multiple heterogeneous channels. Specifically, the optimal action for the current

state depends on the value functions of future states, which possibly have different optimal actions. This

complex dependency is in sharp contrast to [7], [10], which only consider a single channel.

Even though the exact solution is unavailable, we can still derive useful structure properties from (20).

Next, we slightly abuse notation, use µm(d)
∆
=µm(d, λ⃗) to denote each term in the minimization on the

RHS of (20) when the parameter λ⃗ is given above. Recall that µm(d, λ⃗) is the expected cost-to-go under

channel costs λ⃗ if channel m is selected. We then define a property called “multi-threshold-type” (MTT),

and prove that the optimal policy for the sub-problem (8) is indeed MTT.

Definition 4.1 (Multi-threshold-type). A channel selection policy for the sub-problem (8) is MTT if the

followings hold:

(1) (Threshold-based) For any channels h, l ∈ {0, 1, . . . ,M} with ph>pl, there exists Hh,l ≥ 0 such that

µh(d) ≤ µl(d), for all d ≥ Hh,l, and µh(d) > µl(d), for all d < Hh,l.

(2) (Ordering of Channels) Suppose two states d1<d2. Denote the optimal channels for d1 and d2 be

m∗(d1) and m∗(d2), respectively. Then, pm∗(d1)≤pm∗(d2) must hold.

(3) (Channel Dominance) For any two channel types h and l with ph>pl, if λh

ph
< λl

pl
, then l is never the

optimal channel for any state, i.e., µh(d) ≤ µl(d) for all state d whenever µl(d) ≤ µ0(d).
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In other words, Condition 1 states that a threshold exists for any pair of channels, such that a better-

quality channel is always preferred to the worse one when d is above the threshold. Condition 2 specifies

that, as d increases, the optimal decision increasingly prefer more reliable channels. Condition 3 means

that if a channel type l is less reliable and also “more expensive” than the other channel type h, it should

never be the optimal action. In that case, we say that channel l is dominated by channel h. The next

lemma shows that the optimal policy for the sub-problem (8) is MTT.

Lemma 4.2. Given the cost vector λ⃗ and assuming that the AoI cost function c(·) is strictly-increasing,

the optimal policy π∗ for the sub-problem (8) is MTT.

Proof. Lemma 4.2 is intuitive because, when the state (i.e., age) is higher, it is more urgent for the source

to use a more reliable channel. See the detailed proof in Appendix B.

Fig. 2 illustrates a MTT policy in the state space d ∈ N+ of the sub-problem (8) with three channels.

Define Φm ⊂ N+ as the optimal decision region of m, i.e., m is the optimal channel type for all d ∈ Φm.

Thanks to Definition 4.1-(1), Φm must be contiguous for all m. We denote Hm = mind∈Φm
d as the

threshold for channel type m. Note that the optimal decision regions for some channels (Φ2 is absent in

Fig. 2) may be empty due to channel dominance. Before we proceed to the proof of partial indexability,

we first prove the following lemma. Without loss of generality, we assume that all channels have distinct

successful probabilities, and their qualities are arranged in an ascending order, i.e., p1 < . . . < pM .

We note that the following presentation is different from our submitted conference version. Note that

in our submitted version, Lemma 4.3, 4.4 and 4.6 are combined into one lemma. Instead, here we first

state the upper bound in Lemma 4.3, and a special case of the lower bound (i.e., d ≥ H ′
m) in Lemma 4.4,

based on which we can prove Prop. 4.5. Then, we state the full case of the lower bound in Lemma 4.6,

which utilizes the result in Prop. 4.5. Lemma 4.3 and Lemma 4.6 here combined correspond to Lemma

4.3 in the conference version.

Lemma 4.3. Given λ⃗, suppose λ⃗′ = [λ1, . . . , λm+∆, . . . , λM ],∆ > 0. Denote the optimal value functions

in (20) under λ⃗ (with the optimal policy π) and under λ⃗′ (with the optimal policy π′) as f(·) and f ′(·),

respectively. Then, the difference between two value functions can be upper-bounded by

f ′(d)− f(d) <
∆

pm
, ∀1 ≤ m ≤M.

Proof. To prove Lemma 4.3, we use the equivalence relationship between the average cost per stage

problem and the stochastic shortest path problem [18]. See detailed proof in Appendix C.
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Next, we proceed to show the lower bound for f ′(d) − f(d) if the channel cost increases only on

channel m ̸= M . Notice that, to prove indexability in Proposition 4.5, we only need the lower bound for

d ≥ H ′
m. Thus, we first show the case for d ≥ H ′

m in Lemma 4.4. The proof for the case of d < H ′
m

will utilize the partial indexability result in Proposition 4.5, which we will show in Lemma 4.6.

Lemma 4.4. Denote pM+1
∆
=1. Under the same condition in Lemma 4.3, the difference of the two value

functions can be lower-bounded by

f ′(d)− f(d) > − ∆

pm+1
, for d ≥ H ′

m, 1 ≤ m ≤M,

where H ′
m is the threshold for channel m under the optimal policy π′ given λ⃗′.

Proof. See the proof in Appendix D.

Proposition 4.5. Given the cost vector λ⃗, the sub-problem (8) of heterogeneous multi-channel AoI

minimization is partially indexable.

Proof. See the proof in Appendix E.

Now, we prove a stronger version of Lemma 4.4 that extends the lower bound in Lemma 4.4 to the

entire state space S = N+. The combined results of Lemma 4.3 and Lemma 4.6 correspond to Lemma 4.3

in the conference version.

Lemma 4.6. Denote pM+1
∆
=1. Under the same condition in Lemma 4.3, the difference of the two value

functions can be lower-bounded by

f ′(d)− f(d) > − ∆

pm+1
. for all 1 ≤ m ≤M , (21)

Proof. See the proof in Appendix F.

Proposition 4.7. Given state space S and channel costs λ⃗, the sub-problem (20) satisfies the precise

division property in Definition 3.4.

Proof. The proof of Proposition 4.7 is similar to that of Proposition 4.5, and is available in Appendix G.

To summarize this section, we briefly comment on the complexity of the SWIM policy. Note that

the partial index incurs a higher computational complexity than Whittle’s index [20], as it needs to be

recomputed for every λ⃗. Nonetheless, given the number of states for each source (note that in practice

one usually has to truncate the state space), the complexity is still linear in the number of sources and
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channels. Further, it is well-known that MWM incurs polynomial complexity [25]. In contrast, solving

the original MDP using value iteration will incur exponential complexity. We leave for future work how

to further reduce the complexity of the partial index computation.

5. PARTIAL INDEX COMPUTATION

A key step of the SWIM policy is to compute the partial index for each source and each channel.

Next, we discuss how to compute the partial index efficiently.

A. Binary Search

Thanks to the partial indexability in Definition 3.2, there exists an important monotonic relationship

between the size of the passive set |Pm(λ⃗)| and the corresponding cost λm of channel type m. We can

exploit such monotonicity to design a binary search algorithm to find the supremum of the channel cost

λm such that the passive set |Pm(λ⃗)| does not contain state s, which then corresponds to the partial index

for channel m. Recall M = {1, ...,M} and U =M∪ {0}.

Algorithm 2: Partial Index Binary Search (PIBS)

1 Input: m ∈M, λmin, λmax, ϵPIBS

2 Initialization: k = 1, λ̂m
l [0] = λmin, λ̂m

u [0] = λmax

3 while λ̂m
u [k]− λ̂m

l [k] > ϵPIBS do

4 λ̂m
mid[k] = (λ̂m

u [k]− λ̂m
l [k])/2;

5 Compute µg
u[k]← µg

u(s, [λ̂m
mid[k], λ⃗−m]),∀u ∈M in (11)

6 if m = argminu∈M {µ
g
u[k]} then

7 λ̂m
l [k + 1]← λ̂m

mid[k];

8 else

9 λ̂m
u [k + 1]← λ̂m

mid[k];

10 end

11 k ← k + 1;

12 end

13 Output: λ̂m
u [k], λ̂m

l [k]

Given state s and the current channel-cost vector λ⃗, source n’s partial index for channel m can be

calculated using Algorithm 2. In Line 1, the input includes the channel type m, the searching range

(λmin, λmax) and the resolution ϵPIBS . In Line 2, we initialize the parameters. Starting from Line 3, a
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binary search is used to find the partial index. Specifically, Line 5 computes the expected cost-to-go at

the new mid-point λ̂m
mid for all channel types m ∈ M. Such cost-to-go functions can be computed by

either value iteration, policy iteration or linear programming (LP) methods. Then, Line 6-10 adjust the

search range, depending on whether the current state s is in the passive set or not. Note that Line 5 can

be quite computationally expensive. Suppose that we use LP to numerically solve the MDP in Line 5.

Specifically, by [26], we can describe the optimal solution of an MDP as a primal LP. Using duality theory,

such a primal LP can be transformed into a dual LP with |S||M| variables and |S||M|+ 1 constrains.

A state-of-the-art algorithm [27] solves such a dual LP with time complexity O∗(k2.38 log(kδ )), where

k = |S||M| + 1, δ ∈ (0, 1) is the solution accuracy and O∗(·) hides all ko(1) and logO(1)(1/δ) terms.

Then, if we denote Λ = (λmax − λmin)/ϵPIBS , the computation complexity of running Algorithm 2 for

all sources at each time slot is O∗(|N | · log(Λ) · k2.38 log(kδ )).

B. Pre-computation and Interpolation

The complexity of Algorithm 2 is still quite high. As a result, it is impractical to use Algorithm 2

in real-time partial index computations. In order to minimize the computation overhead in real-time

scheduling, we propose to pre-compute partial indices at quantized levels of channel costs.

Define the lower bound λmin, the upper bound λmax and the quantization step-size ϵλ. For the sake

of simplicity, we assume that (λmax − λmin) is a integer multiple of ϵλ. We define L to be the number

of quantization steps per λ, i.e., L = (λmax − λmin)/ϵλ + 1. We define the set E as follows:

E =
{
λ⃗ ∈ RM

∣∣λm = λmin + lϵλ, l = 0, 1, ..., L− 1,

for all m ∈M
}
,

where |E| = L|M|. The main idea of our quantized pre-compute algorithm is to compute the partial indices

for each λ⃗ ∈ E and each action u ∈ U beforehand. Then, in real time, we use interpolation to approximate

the partial indices for any given λ⃗ /∈ E . Specifically, we first run Algorithm 2 to numerically compute the

partial indices I(λ⃗, u) for every u ∈ U and every λ⃗ ∈ E . This gives us a mapping Ipre(·) : E × U → R.

Then, for any given λ⃗ and u, a multi-linear interpolation is applied to approximate the corresponding

partial index.

We present the interpolation steps in Algorithm 3. Given λ⃗ = [λ1, ..., λM ], we define Enei(λ⃗) ⊂ E

to be the neighborhood of λ⃗ for interpolation, which is defined as following: for each action m ∈ M,

we find λlower ≤ λm < λupper, where λlower, λupper ∈ E are two adjacent quantization steps below and

above λ. This gives us a M -dimension rectangle. Then, the neighborhood set Enei(λ⃗) is the set of all
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(a) System scale r = 1 (b) System scale r = 3 (c) System scale r = 10

Fig. 3. Dual costs update of the proposed index-based policy πSWIM for different system scales.

vertices of the M -dimension rectangle. Note that the size of Enei is 2|M|. Line 4 and 6 of Algorithm 3

then computes a weighted combination indices at these vertices.

Algorithm 3: Fast Partial-Index Computation through Interpolation

1 Input: u ∈ U , λ⃗ = [λ1, λ2, ..., λM ], λmax, λmin, ϵλ and pre-computed mapping Ipre
2 Find Enei(λ⃗) using λmax, λmin and ϵλ.

3 foreach λ⃗′ = [λ′
1, ..., λ

′
M ]∈ Enei(λ⃗) do

4 Compute weight w(λ⃗′) =
∏

l∈U

(
1− |λl−λ′

l|
ϵλ

)
5 end

6 Î(λ⃗, u) =
∑

λ⃗′∈Enei(λ⃗)
w(λ⃗′)Ipre(λ⃗′, u)

7 Output: Î(λ⃗, u)

Even though the pre-computation of Ipre may be high, it is done before-hand. The time complexity

of interpolation for a single λ⃗ in real time will be O(|M| · 2|M|), which is low when the number of

the channels is not large. Once Ipre is computed, there is no need to recompute it unless the channel

condition changes, e.g., when the success probability or the number of available channels change. Thus,

Algorithm 3 is much more practical than Algorithm 2.

6. NUMERICAL RESULTS

In this section, we present MATLAB simulation results to demonstrate the performance of our proposed

SWIM policy in Algorithm 1. Specifically, we focus on the AoI minimization problem in Section 4 for

heterogeneous multi-channel systems. We simulate an information update system with N=50 data sources,

which are divided into G=5 groups, with 15, 5, 10, 15 and 5 sources in each group 1 to 5, respectively.
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Fig. 4. Dual costs update of πrel for the relaxed problem.

(a) Total system AoI evolution for scale

r = 7.

(b) Average total system AoI v.s. system

scales.

(c) Normalized AoI v.s. system scales.

Fig. 5. Performance comparison among different scheduling policies.

For the channels, we assume that there are M=5 types of channels, each of which is equipped with

C=2 identical instances. To model the heterogeneity and preferences between sources and channels,

the channel success probabilities of source-channel pairs are different across groups. For simplicity, we

assume that Group-g sources has the highest channel success probability on Type-g channels, where

g = 1, . . . , 5. In particular, the channel quality vector for group-1 users is p⃗1 = [0.9, 0.7, 0.5, 0.3, 0.1].

The channel quality vector p⃗g for group g > 1 is obtained by circularly shifting p⃗1 by g−1 positions

to the right. (Note that the entire system is not symmetric due to the uneven population of sources in

each group.) For cost function c(h), different from our conference version [1] that sets c(h) = h, in this

version we use c(h) = h2, an AoI cost function that grows much faster in h. To compare the scaling

performance, we simulate on r-scaled systems that multiplies the number of the sources and channels

by r, i.e., N r = rN and C
r
= rC. The simulation time is divided into epochs, each of which consists

of 50 discrete time-slots. To achieve a smoother update, we re-calculate the channel costs at the end of

every epoch according to Line 8 of Algorithm 1 using the averaged νm(t) over the current epoch.
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A. Convergence of the Channel-Cost Update

First, we compare the dynamics of the cost updates of the SWIM policy with that of the relaxed policy

πrel, and verify that their fixed points indeed match. Fig. 4 illustrates the cost dynamics of all channels

for the relaxed problem, with respect to the number of epochs. At each time, all sources independently

compute their optimal actions (8) based on their states and current cost λ⃗(t). At the end of each epoch,

the BS performs a dual gradient update according to (9). We simulate for Trel = 1000 epochs for πrel

to reach the fixed-point channel costs. In Fig. 4, all channels’ costs converge to a small neighborhood of

the optimal costs λ⃗∗ of the relaxed problem after Trel = 1000 epochs.

Next, we verify that the channel-cost dynamics under πSWIM approach that of the relaxed problem

when the system scale is large. Specifically, we let β = 0.2 in Algorithm 1. Denote the fixed-point channel

cost vector under SWIM policy for system scale r as λ⃗SWIM
r . We simulate πSWIM for TSWIM = 300

epochs under different system scales. Fig. 3(a)-(c) show the channel-cost dynamics for the system at scale

r = 1, r = 3 and r = 10, respectively. Clearly, we can observe that, as the system scale r increases,

λ⃗SWIM
r approaches very close to the values of λ⃗∗ in Fig. 4. The convergence is more obvious for r = 10

(Fig. 3(c)), which confirms the result of Theorem 3.6, i.e., the fixed point solution λ⃗′ of πSWIM is

equivalent to the optimal cost λ⃗∗ of the relaxed problem in the fluid limit.

B. Average System AoI

Next, we evaluate the average AoI performance of our proposed policy. We will use the solution for

the relaxed problem as a performance lower bound for comparison. In addition, we will compare SWIM

policy with the following scheduling policies that satisfy the instantaneous constraints in (6).

Rounded Relaxed Policy (RRP). As we discussed in Section 2-B, although the optimal solution for

the relaxed problem under λ⃗∗ provides a lower bound for the original AoI minimization problem, πrel

may violate the instantaneous hard constraints (6a). To satisfy feasibility, RRP is deduced from πrel with

the following modification. (Note that we did not use the priority policy in [23], since it only works for

single-channel systems and cannot be applied here.)

1. (Over-subscription) For any channel, if the number of transmitting sources exceeds (or equals to) the

number of channel instance C
r, RRP schedules C

r sources uniformly at random;

2. (Under-subscription) Otherwise, RRP schedules additional sources with largest AoI cost to reach C
r

total sources for the channel.

Max-Age Matching (MAM) [16]. This policy was originally proposed for systems with multiple

ON/OFF channels in [16]. As the name suggests, MAM attempts to serve sources with high AoI cost
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values at each time. The MAM scheduler in [16] requires knowledge of whether a channel is ON/OFF.

For a fair comparison with our policy that does not require such knowledge, we take all channels with

non-zero success probability as being ON. Then, we form a bipartite graph between all pairs of sources

and the channel types, with the weights given by the current AoI cost of the sources. The scheduling

problem is then mapped to a bipartite graph matching problem. Note that this policy ignores the exact

channel success probability, and thus is expected to have poorer performance.

Fig. 5a shows the per-user AoI-cost dynamics under different policies for the system at scale r = 7.

First, we can see that the average per-user AoI cost (about 15) under our proposed SWIM policy is very

close to the performance lower bound obtained from the relaxed problem (the lowest two curves). This

observation verifies our result in Theorem 3.10 on the asymptotic optimality of our proposed policy. In

contrast, the average AoI-cost of the rounded relaxed policy (RRP) is over 18, which is about 20% worse

than that of SWIM policy. This performance degradation suggests that it may not be efficient to use

the solution from the relaxed problem even for medium-scaled systems. Finally, the average AoI cost

under the MAM policy is about 30, which is about 100% worse than our SWIM policy. The result is

not surprising, as the MAM policy simply ignores the channel heterogeneity.

Next, Fig. 5b shows the average total system AoI cost at different system scales. For all policies, the

average total system AoI scales almost linearly with the system scale r. Again, we observe that our

proposed SWIM policy achieves close-to-optimal AoI performance under all simulated system scales and

both implementation methods.

Finally, Fig. 5c shows the normalized average AoI, i.e., the total average system AoI-cost divided by

the scale parameter r, under our proposed SWIM policy. The curve labeled SWIM-exact corresponds the

SWIM policy using the exact partial indices computed by Algorithm 2. We observe that, as r increases,

the average per-user AoI cost of our SWIM-exact policy approaches closer to the lower bound obtained

from the relaxed problem. This observation is again consistent with our result in Section 3-C on the

asymptotic optimality of the SWIM policy.

C. Fast Index Computation

Computing the exact partial indices at each time slot for every user incurs high complexity. Next,

we evaluate the pre-computation and interpolation method in Algorithm 3, which is labeled as SWIM

interpolation in Fig. 5c. Specifically, our implementation uses λmin = 0, λmax = 120 and ϵλ = 30.

The simulation is conducted on a Windows PC with AMD Ryzen 7 8845HS Processor and 32G RAM.

Interestingly, we observe almost no difference in the average per-user AoI cost between SWIM inter-

polation and SWIM exact, which indicates that the performance loss is negligible. We further compare
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the execution time between SWIM interpolation and SWIM exact. In Table I, we truncate the state-space

to difference sizes [10, 20, 30, 40, 50] (which will directly affect the complexity of value iterations), and

report the average execution time of SWIM exact and SWIM interpolation for computing the partial index

values for a user at a time slot. In addition, we provide the pre-computation time for SWIM interpolation

in the right-most column in Table I.

TABLE I

EXECUTION TIME OF TWO DIFFERENT WAYS TO COMPUTE PARTIAL INDEX

State SWIM exact SWIM interpolation

truncation exec time (sec) exec time(sec) pre-comp time (hr)

10 1.0519 0.0017 0.3647

20 2.0448 0.0018 0.7260

30 3.1477 0.0018 1.0906

40 4.2384 0.0018 1.4707

50 5.3327 0.0020 1.8338

From Table I, we observe that the SWIM exact method is orders-of-magnitude slower than SWIM

interpolation. In addition, the execution time of SWIM exact grows linearly with the size of the state

space, while the SWIM interpolation method remains almost constant. Thus, the SWIM interpolation

method is more suitable for real-time execution. Of course, the cost for the SWIM interpolation method

is that it requires a long time to complete the pre-computation, where the completion time grows linearly

with the size of the state space.

7. CONCLUSION

In this work, we study the problem of minimizing AoI in heterogeneous multi-channel systems. We

formulate the problem as an infinite-horizon constrained MDP. Existing results on Whilttle index cannot be

applied to such a system with heterogeneous channels. Instead, we introduce a new notion of partial index

and a new SWIM policy, which, under suitable conditions, can be shown to be asymptotically optimal. To

the best of our knowledge, we are the first in the literature to develop low-complexity and asymptotically

optimal policies for weakly-coupled MDP with multiple heterogeneous resources. We further propose an

efficient pre-computation and interpolation method for quickly and approximately computing the partial

index in real-time, which incurs negligible performance loss while significantly reducing the computation

time in real-time. For future work, we will study more AoI problem settings, e.g., with stochastic arrivals.

Another possible direction is to combine partial index with online reinforcement learning (see, e.g.,
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[28]). It would be interesting to study whether partial-index based decomposition can lower the sample

complexity and help to learn near-optimal control decisions more quickly.
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APPENDIX A

PROOF OF THEOREM 3.10

The proof of Theorem 3.10 consists of the following steps. Given the policy πSWIM in Algorithm 1,

since (y⃗, z⃗′, λ⃗′) is a global attractor according to Definition 3.9, we have that the fixed point of fluid

source-state process and channel costs converge to the fixed point of Algorithm 1, i.e., z⃗(t) → z⃗′ and

λ⃗(t)→ λ⃗′. From Theorem 3.6, since {y⃗, z⃗′, λ⃗′} is equivalent to the fixed point {x⃗, z⃗∗, λ⃗∗} of the relaxed

problem, we also have z⃗(t) → z⃗∗, λ⃗(t) → λ⃗∗. As a result, the scheduling decision x⃗SWIM(t) → x⃗ as

well. Since {x⃗, z⃗∗, λ⃗∗} are the optimal solutions for the fluid version of the relaxed problem (16) and

incur cost value V ∗, it implies that the fluid-scaled cost value under πSWIM converges to V ∗. By utilizing

the result from [21, Prop.], the actual fractions of source-state vector z⃗rN (t) → z⃗(t) and V r
SWIM → V ∗

in the steady state as r → ∞. As we mentioned in Section 3-C, V ∗ of the relaxed problem is a lower

bound on the average cost per stage. Hence, we can conclude that the proposed policy is asymptotically

optimal.

APPENDIX B

PROOF OF LEMMA 4.2

Suppose the policy π∗ satisfies (20), i.e., π∗ is the optimal policy under λ⃗∗. To show that π∗ is MTT,

we just need to verify (1)-(3) in Definition 4.1. Before that, we first show a lemma on the monotonicity
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of the optimal value function under π∗.

Lemma B.1. The optimal value function f(d) in (20) under π∗ is a non-decreasing function in d,∀d ≥ 1,

i.e.,

d ≤ d′ =⇒ f(d) ≤ f(d′) (22)

Proof. The proof utilizes the result of [29, Prop. 3.1], which considers a finite T -stage total cost MDP

problem. Recall that the sub-problem is described by state space S, action space U and the transition

probabilities (2) and (3). At each time t, let ξt ∈ Ξ be a discrete time stochastic process that represents the

perturbation due to random channel events. Similar to [29], we assume that there exists a state transition

function Ω : S ×U ×Ξ→ S that describes the system evolution, i.e., st+1
∆
=Ω(st, ut, ξt). First, note that

the sub-problem satisfies the following conditions. For 1 ≤ d ≤ d′ , u ∈ {0, 1, . . . ,M} and ξ ∈ Ξ, we

have

1) Ω(d, u, ξ) ≤ Ω(d′, u, ξ). In other words, the order of the next states preserves because, at state d

(and d′), the next states either increase to d+ 1 (and d′ + 1), or become exactly 1.

2) Let gu(d) = λu + (1− pu)cd be the per stage cost in (20). Then, we must have gu(d) ≤ gu(d
′).

3) ξt+1 ∈ Ξ is independent of the state d ∈ S.

Let FT (d) denote the value function for the T -stage total cost minimization problem. By [29, Prop. 3.1]

and the above conditions, for any finite T , we have

d ≤ d′ =⇒ FT (d) ≤ FT (d
′).

Note that the value iteration (VI) algorithm for the infinite-stage average cost problem is guaranteed to

converge [18]. Recall that increasing the number of iteration is equivalent to increasing the number of

stages T . Thus, for any ϵ > 0, there exists a Tconv such that, for all T > Tconv, we have sp(FT (·) −

FT−1(·)) < ϵ, where sp(·) is the span of a function. Thus, we have |f(d) − (FT (d) − FT (1))| < δ(ϵ).

Clearly, FT (d)−FT (1) is non-decreasing in d, since FT (·) is non-decreasing in d for any finite T . Hence,

the lemma follows by taking ϵ→ 0. ■

Now we proceed to verify the conditions in Definition 4.1. Since the following discussion are for a

fixed λ⃗, we slightly abuse the notion by defining µm(d)
∆
=µm(d, λ⃗) (recall that we remove all superscript

g in (20) and µm(d, λ⃗) = λm + (1 − pm)[cd + f(d + 1)]). For Condition (1) of Definition 4.1 (i.e.,
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“threshold-based”), for d ≥ 1 and h, l ∈ {0, 1, . . . ,M} such that ph > pl, from (20) we have

µh(d)− µl(d)

= λh + (1−ph)[cd + f(d+1)]− [λl + (1−pl)[cd + f(d+1)]

= λh − λl + (pl − ph)[cd + f(d+ 1)]. (23)

By Lemma B.1, we have that cd+ f(d+1) is strictly increasing in d. Noting pl− ph < 0, µh(d)−µl(d)

must be a strictly decreasing function of d. As a result, there must exist a threshold Hh,l such that

µh(d) > µl(d) for d < Hh,l, and µh(d) ≤ µl(d) otherwise. Thus, Condition (1) of Definition 4.1

follows.

For Condition (2) of Definition 4.1 (i.e., “ordering of channels”), we prove by contradiction. Suppose

d1 < d2, and m∗(d1) = h,m∗(d2) = l as in the statement of this condition. Suppose in contrary that ph >

hl. For d1, from (23) and m∗(d1) = h, we have µh(d1)−µl(d1) = λh−λl+(pl−ph)[cd1
+f(d1+1)] ≤ 0.

Now, for d2, we have

µh(d2)− µl(d2) = λh − λl + (pl − ph)[cd2
+ f(d2 + 1)]

< λh − λl + (pl − ph)[cd1
+ f(d1 + 1)]

≤ 0,

where the strict inequality is from pl − ph < 0 and the fact that cd + f(d+ 1) is strictly increasing in d.

Thus, µh(d2) < µl(d2) contradicts with m∗(d2) = l. Hence, Condition (2) of Definition 4.1 is true.

For Condition (3) of Definition 4.1 (i.e., “channel dominance”), suppose λh

ph
< λl

pl
with 0 < pl < ph.

This implies that λhpl < λlph and

λh

ph
=

λh(ph − pl)

ph(ph − pl)
>

λhph − λlph
ph(ph − pl)

=
λh − λl

ph − pl
.

To show the condition, it suffices to show that, whenever µl(d) ≤ µ0(d),∀d ≥ 1, we have µh(d) < µl(d).

Notice that the expression for µm(d) also holds with λ0
∆
=0 and p0

∆
=0. From (23), we have µl(d)−µ0(d) =

λl − pl[cd + f(d+ 1)] ≤ 0. Thus, we have

cd + f(d+ 1) ≥ λl

pl
>

λh

ph
>

λh − λl

ph − pl
.

Combining the above equation with (23), we have µh(d) < µl(d). Thus, channel l is never the optimal

choice for any state d ≥ 1. Hence, Condition (3) of Definition 4.1 also holds, and the result of Lemma 4.2

follows.
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APPENDIX C

PROOF OF LEMMA 4.3

Recall that the Bellman equation (20) takes the equivalent form (10)

f(d) + J∗
λ⃗
= min

u∈{0,...,M}

[
gu(d, λ⃗) +

∞∑
s=1

pds(u)f(s)

]
, (24)

where gu(d, λ⃗) = λu+d(1−pu) is the stage cost for state d on channel u in the sub-problem. Denote the

optimal policy for the sub-problem under original costs λ⃗ and increased costs λ⃗′ as π and π′, respectively.

According to the equivalence between average cost per stage problem and stochastic shortest path (SSP)

problem [18, p.176], f(d) can be related to the cost of a SSP problem to a recurrent state ζ. In our case,

we can choose this special state as ζ = 1. Let qπsζ be the transition probability from state s to state ζ

under policy π, i.e., qπsζ = pπ(s). Then, it is known that f(d) can be written as [18]

f(d) = min
π̂

[
Eπ̂{cost to reach ζ from d for the first time}

− Eπ̂{cost incurred from d to ζ if the stage cost were J∗
λ⃗
}
]
. (25)

Notice that such a trajectory from state d to state ζ = 1 must first experience a number of time-slots

with no successful transmission, in which case the state goes to d+ 1, d+ 2, . . . , until it reaches a state

s′ and experiences a successful transmission, in which case the state goes back to 1. For any state s ≥ d,

the probability that the trajectory will go through s (regardless of the future events after state s) is

Pr{the trajectory from d to 1 goes through s} =
s−1∏
j=d

(1− qπjζ).

When this event occurs, the cost at state s, i.e., gπ(s)(s, λ⃗), will be added to the first term of (25). Now,

let Costπdζ(λ⃗) and Nπ
dζ be the expected cost and expected time, respectively, to reach ζ from d for the

first time under π. Then, given policy π, we have

Costπdζ(λ⃗) =

∞∑
s=d

gπ(s)(s, λ⃗)

s−1∏
j=d

(1− qπjζ), (26)

Nπ
dζ =

∞∑
s=d

s−1∏
j=d

(1− qπjζ). (27)

Here in the above equations, when s = d, we use the convention that
∏d−1

j=d(1 − qπjζ) = 1. Then, since

π is the optimal policy that produces the minimum average cost of J∗
λ⃗

, (25) is equivalent to

f(d) = Costπdζ(λ⃗)−Nπ
dζ · J∗

λ⃗
. (28)
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Similarly, we can write f ′(d) as

f ′(d) = Costπ
′

dζ(λ⃗
′)−Nπ′

dζ · J∗
λ⃗′

≤ Costπdζ(λ⃗
′)−Nπ

dζ · J∗
λ⃗′ (29)

≤ Costπdζ(λ⃗
′)−Nπ

dζ · J∗
λ⃗
. (30)

The first inequality (29) is from (25), as we replace the optimal policy π′ under costs λ⃗′ by policy π. The

second inequality (30) comes from the fact that J∗
λ⃗′ ≥ J∗

λ⃗
. Note that if channel m is the preferred choice

under π for any state, then J∗
λ⃗′ > J∗

λ⃗
and the inequality (30) becomes a strict inequality. Therefore, we

have

f ′(d)− f(d)

≤ [Costπdζ(λ⃗
′)−Nπ

dζ · J∗
λ⃗
]− [Costπdζ(λ⃗)−Nπ

dζ · J∗
λ⃗
]

= Costπdζ(λ⃗
′)− Costπdζ(λ⃗)

=

∞∑
s=d

gπ(s)(s, λ⃗
′)

s−1∏
j=d

(1− qπjζ)−
∞∑
s=d

gπ(s)(s, λ⃗)

s−1∏
j=d

(1− qπjζ)

=

∞∑
s=d

[gπ(s)(s, λ⃗
′)− gπ(s)(s, λ⃗)]

s−1∏
j=d

(1− qπjζ)

(The term in [·] equals to ∆ if policy π uses channel m in state s, and 0 otherwise.)

=
∑

s:π(s)=m

∆ ·
s−1∏
j=d

(1− qπjζ) (31)

Then, we divide into two cases. (1) If m = M , recall from the MTT property of π in Definition 4.1-(1)

that channel M is always the preferred choice for some state no less than HM . Thus, we must have

J∗
λ⃗′ > J∗

λ⃗
, and strict inequality is taken for ((30)). Further, the summation in (31) has an infinite number

of terms, i.e., we have

f ′(d)− f(d) <
∑

s:π(s)=M

∆ ·
s−1∏
j=d

(1− qπjζ)

≤ ∆ ·
∞∑

s=HM

(1− pM )s−d+1

≤ ∆ ·
∞∑

s=HM

(1− pM )s−HM =
∆

pM
.

(Here HM is the threshold for channel M . Note that
∏HM−1

j=d (1− qπjζ) ≤ 1.)
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(2) If m ̸= M , the sum in (31) has a finite number of terms, since π will eventually switch to channel

M for some states no less than HM . Thus, we have

f ′(d)− f(d) ≤
∑

s:π(s)=m
∆ ·

s−1∏
j=d

(1− qπjζ)

≤ ∆ ·
∑Hm+1−1

s=Hm

(1− pm)s−Hm

< ∆ ·
∑∞

s=Hm

(1− pm)s−Hm =
∆

pm
.

Combining (1) and (2), we have the result of the lemma.

APPENDIX D

PROOF OF LEMMA 4.4

According to (28), we have

f ′(d)− f(d)

= Costπ
′

dζ(λ⃗
′)−Nπ′

dζ · J∗
λ⃗′ − [Costπdζ(λ⃗)−Nπ

dζ · J∗
λ⃗
].

According to Lemma 4.2, the optimal policy for sub-problem given any cost vector is of multi-threshold

type (MTT). Suppose d ≥ H ′
m, where H ′

m is the threshold for channel m under policy π′. By definition

(25), we have

f(d) = Costπdζ(λ⃗)−Nπ
dζ · J∗

λ⃗

≤ Costπ
′

dζ(λ⃗)−Nπ′

dζ · J∗
λ⃗
. (32)

Thus, we have

f ′(d)− f(d)

≥ Costπ
′

dζ(λ⃗
′)−Nπ′

dζ · J∗
λ⃗′ − [Costπ

′

dζ(λ⃗)−Nπ′

dζ · J∗
λ⃗
]

=

∞∑
s=d

[
gπ′(s)(s, λ⃗

′)− J∗
λ⃗′ − (gπ′(s)(s, λ⃗)− J∗

λ⃗
)
] s−1∏
j=d

(1− qπ
′

jζ ) (33)

We now divide into two sub-cases. If m = M , since d ≥ H ′
M , we have π′(s) = M for all s ≥ d.

Therefore, the term in [·] of (33) equals to ∆− (J∗
λ⃗′ − J∗

λ⃗
) > 0, and we immediately have

f ′(d)− f(d) > 0, for d ≥ H ′
M . (34)

Thus, we only need to show the other sub-case when m ̸= M . In this case, note that π′(s) = m

for H ′
m ≤ s < H ′

m+1. For those s such that H ′
m ≤ s < H ′

m+1, the term in [·] of (33) also equals to

∆−(J∗
λ⃗′−J∗

λ⃗
) > 0. Further, when s ≥ H ′

m+1, we have π′(s) ≥ m+1 and thus gπ′(s)(s, λ⃗
′) = gπ′(s)(s, λ⃗),
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and the term in [·] of (33) equals to J∗
λ⃗
− J∗

λ⃗′ < 0. Now, we further divide into two sub-sub-cases based

on the value of d.

• (d ≥ H ′
m+1) For all s ≥ d, since π′(s) ≥ m+1, the summation term for each s in (33) is negative.

Also, since π′ is MTT, from Definition 4.1-(2), we have qπ
′

jζ ≥ pm+1 for j ≥ d. Thus, we can obtain

a lower bound for (33) as

(33) =
∞∑
s=d

(−J∗
λ⃗′ + J∗

λ⃗
)

s−1∏
j=d

(1− qπ
′

jζ ) = (−J∗
λ⃗′ + J∗

λ⃗
)

∞∑
s=d

s−1∏
j=d

(1− qπ
′

jζ )

≥ (−J∗
λ⃗′ + J∗

λ⃗
)

∞∑
s=d

s−1∏
j=d

(1− pm+1)

= (−J∗
λ⃗′ + J∗

λ⃗
)

∞∑
s=d

(1− pm+1)
s−d

= (−J∗
λ⃗′ + J∗

λ⃗
)

1

pm+1
. (35)

• (H ′
m ≤ d < H ′

m+1) In this case, the summation in (33) contains some positive terms for d ≤ s ≤

H ′
m+1 − 1, and the negative terms for s ≥ H ′

m+1. Since π′ is MTT, from Definition 4.1-(2), we

have qπ
′

jζ ≥ pm+1 for j ≥ H ′
m+1. Thus, we can obtain a lower bound for (33) by omitting all the

positive terms from s = d to s = H ′
m+1 − 1, i.e.,

(33) ≥
∞∑

s=H′
m+1

(−J∗
λ⃗′ + J∗

λ⃗
)

s−1∏
j=d

(1− qπ
′

jζ )

≥
∞∑

s=H′
m+1

(−J∗
λ⃗′ + J∗

λ⃗
)

s−1∏
j=H′

m+1

(1− qπ
′

jζ )

≥
∞∑

s=H′
m+1

(−J∗
λ⃗′ + J∗

λ⃗
)(1− pm+1)

s−H′
m+1 (36)

=
1

pm+1
(−J∗

λ⃗′ + J∗
λ⃗
). (37)

Thus, in both sub-sub-cases, we have f ′(d) − f(d) >
−J∗

λ⃗′+J∗
λ⃗

pm+1
Finally, when m ̸= M , since there

always exist some state d′ > H ′
M whose stage cost does not increase, we must have J∗

λ⃗′−J∗
λ⃗
< ∆. Thus,

f ′(d)− f(d) >
−J∗

λ⃗′ + J∗
λ⃗

pm+1
> − ∆

pm+1
. (38)

Hence, combining (34) and (38), the result of the lemma holds for d ≥ H ′
m and for all 1 ≤ m ≤M .



37

APPENDIX E

PROOF OF PROPOSITION 4.5

To prove that the sub-problem (8) is partially indexable, it suffices to show the following two statements,

i.e.,

(i) If d ∈ Pm(λ⃗), then d ∈ Pm(λ⃗′) must hold for λ⃗′ = [λ1, . . . , λm +∆, . . . , λM ], where ∆ > 0.

(ii) If λm =∞, then Pm(λ⃗) = S.

Since the optimal policy for any sub-problem is MTT from Lemma 4.2, the passive sets under λ⃗ can be

expressed as

Pm(λ⃗) = {1, . . . ,Hm−1} ∪ {Hm+1, . . .} if m < M , (39)

and

PM (λ⃗) = {1, . . . ,HM−1}. (40)

To show statement (i), it suffices to show Pm(λ⃗) ⊆ Pm(λ⃗′), which is equivalent to show

• Hm ≤ H ′
m, ∀m ≤M ;

• Hm+1 ≥ H ′
m+1,∀m < M .

We first show Hm ≤ H ′
m, ∀m ≤ M . For the purpose of contradiction, suppose Hm > H ′

m. Then, at

state H ′
m, policy π prefers action 0 ≤ l < m over channel m, i.e., µl(H

′
m, λ⃗) ≤ µm(H ′

m, λ⃗). From (23),

this implies that

(pm − pl)[cH′
m
+ f(H ′

m + 1)] ≤ λm − λl. (41)

Similarly, given λ⃗′, policy π′ must prefer m over other channels at H ′
m, i.e., µm(H ′

m, λ⃗′) ≤ µl(H
′
m, λ⃗′).

This implies that

(pm − pl)[cH′
m
+ f ′(H ′

m + 1)] ≥ λ′
m − λl. (42)

Recall that λ′
m = λm +∆. From (41) and (42), we have

f ′(H ′
m + 1)− f(H ′

m + 1) ≥ ∆

pm − pr
≥ ∆

pm
.

However, this clearly contradicts with Lemma 4.3 that f ′(d)−f(d) < ∆
pm

. Thus, Hm ≤ H ′
m,∀1 ≤ m ≤M

must hold.

Next, we show Hm+1 ≥ H ′
m+1, if m < M . For the purpose of contradiction, suppose Hm+1 < H ′

m+1.

Since π is MTT, at state d′ = H ′
m+1 − 1 ≥ Hm+1, policy π must prefer some channel h > m over

channel m, which implies that d′ ≥ Hh ≥ Hm+1. From Lemma 4.2 and Definition 4.1-(1), we have

µm(d′, λ⃗) ≥ µm+1(d
′, λ⃗), i.e.,

(pm+1 − pm)[cd′ + f(d′ + 1)] ≥ λm+1 − λm. (43)
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On the other hand, policy π′ must prefer channel m at d′ = H ′
m+1 − 1, i.e., µm(d′, λ⃗′) ≤ µm+1(d

′, λ⃗′).

This implies that

(pm+1 − pm)[cd′ + f ′(d′ + 1)] ≤ λ′
m+1 − λ′

m. (44)

Noting that λ′
m+1 = λm+1 and λ′

m = λm +∆, subtracting (43) from (44), we have

(pm+1 − pm)[f ′(d′ + 1)− f(d′ + 1)] ≤ λm − λ′
m = −∆.

Since pm+1 − pm > 0, we have

f ′(d′ + 1)− f(d′ + 1) ≤ − ∆

pm+1 − pm
< − ∆

pm+1
.

However, since d′ + 1 = H ′
m+1 ≥ H ′

m, this contradicts with the result of Lemma 4.4 that f ′(d′ + 1) −

f(d′ + 1) > − ∆
pm+1

.

So far, we have shown that Hm ≤ H ′
m,∀m ≤ M and Hm+1 ≥ H ′

m+1, ∀m < M . Thus, Pm(λ⃗) ⊆

Pm(λ⃗′), and statement (i) must hold. For Statement (ii), it is clear that µm(d, λ⃗) > µ0(d, λ⃗) holds for

any finite d when λm =∞. Hence, we conclude that the sub-problem (8) is partially indexable.

APPENDIX F

PROOF OF LEMMA 4.6

According to (28), we have

f ′(d)− f(d)

= Costπ
′

dζ(λ⃗
′)− Costπdζ(λ⃗)− [Nπ′

dζ · J∗
λ⃗′ −Nπ

dζ · J∗
λ⃗
].

According to Lemma 4.2, the optimal policy for sub-problem given any cost vector is of multi-threshold

type (MTT). Next, we divide into three cases.

Case 1: d ≥ H ′
m

This case is shown in Lemma 4.4.

Case 2: 1 ≤ d ≤ Hm

Recall that we have Hm ≤ H ′
m from the proof of Prop. 4.5, where Hm and H ′

m are the threshold

for channel m under policy π for λ⃗ and that under π′ for λ⃗′, respectively. Define the policy π̂ as the

following: π̂ follows the decisions of policy π for 1 ≤ s < d, and follows policy π′ otherwise. Then,

by (25), we have

f ′(1) ≤ Costπ̂ζζ(λ⃗
′)−N π̂

ζζ · J∗
λ⃗′
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=

d−1∑
s=1

[
gu(π̂)(s, λ⃗

′)− J∗
λ⃗′

] s−1∏
j=1

(1− qπ̂jζ) + f ′(d)

d−1∏
j=1

(1− qπ̂jζ)

=

d−1∑
s=1

[
gu(π)(s, λ⃗

′)− J∗
λ⃗′

] s−1∏
j=1

(1− qπjζ) + f ′(d)

d−1∏
j=1

(1− qπjζ) (45)

By definition, f ′(1) = 0. Thus, we have

f ′(d) ≥ 1∏d−1
j=1(1− qπjζ)

d−1∑
s=1

[
J∗
λ⃗′ − gu(π)(s, λ⃗

′)
] s−1∏
j=1

(1− qπjζ) (46)

Similarly, by expressing f(1) in terms of f(d), we have

f(d) =
1∏d−1

j=1(1− qπjζ)

d−1∑
s=1

[
J∗
λ⃗
− gu(π)(s, λ⃗)

] s−1∏
j=1

(1− qπjζ) (47)

From (46) and (47), we have

f ′(d)− f(d)

≥

∑d−1
s=1

[
J∗
λ⃗′−gu(π)(s, λ⃗

′)−J∗
λ⃗
+ gu(π)(s, λ⃗)

]∏s−1
j=1(1−qπjζ)∏d−1

j=1(1−qπjζ)

=

∑d−1
s=1

[
J∗
λ⃗′ − J∗

λ⃗

]∏s−1
j=1(1−qπjζ)∏d−1

j=1(1−qπjζ)
≥ 0. (48)

The first equality above is from gu(π)(s, λ⃗
′) = gu(π)(s, λ⃗), since π does not use channel m for state

s ≤ d− 1, where 1 ≤ d ≤ Hm. Hence, the lemma holds for 1 ≤ d ≤ Hm.

Case 3: Hm < d < H ′
m

For Case 3 to be non-empty, we must have H ′
m > Hm + 1. In other words, policy π′ uses some

lower-rate channel π′(d) < m, while policy π uses higher-rate channel π(d) ≥ m for Hm < d < H ′
m.

In fact, from Prop. 4.5, π(d) = m must hold for Hm < d < H ′
m because H ′

m ≤ H ′
m+1 ≤ Hm+1.

Now we focus on the range Hm < d < H ′
m, where π uses channel m and π′ uses channel π′(d) for

state d. From Bellman equation (20), we have (recall that f(1) = f ′(1) = 0 by definition)

f ′(d) = gπ′(d)(d, λ⃗
′) + (1− pπ′(d))f

′(d+ 1)− J∗
λ⃗′ ,

and

f(d) = gm(d, λ⃗) + (1− pm)f(d+ 1)− J∗
λ⃗
,

where gπ′(d)(d, λ⃗
′) = λ′

π′(d) + (1− pπ′(d))cd is the per stage cost under π′ for state d. Denote ∆f(d) as

∆f(d)
∆
=f ′(d)− f(d)
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= gπ′(d)(d, λ⃗
′) + (1− pπ′(d))f

′(d+ 1)− J∗
λ⃗′ −

[
gm(d, λ⃗) + (1− pm)f(d+ 1)− J∗

λ⃗

]
= gπ′(d)(d, λ⃗

′) + (1− pπ′(d))f
′(d+ 1)−

[
gm(d, λ⃗) + ∆ + (1− pm)f ′(d+ 1)

]
+∆+ (1− pm)[f ′(d+ 1)− f(d+ 1)]− J∗

λ⃗′ + J∗
λ⃗

(By adding and subtracting ∆+ (1− pm)f ′(d+ 1) on RHS.)

=
[
µπ′(d)(d, λ⃗

′)− µm(d, λ⃗′)
]
+∆− J∗

λ⃗′ + J∗
λ⃗
+ (1− pm)∆f(d+ 1). (49)

Denote ∆µπ′(d),m(d, λ⃗′)
∆
=µπ′(d)(d, λ⃗

′) − µm(d, λ⃗′) ≤ 0 for Hm ≤ d < H ′
m. We next show that

∆µπ′(d),m(d, λ⃗′) is strictly increasing in d for Hm ≤ d < H ′
m. To see this, note that ∆µπ′(d),m(d, λ⃗′) =

λπ′(d) − λm + (pm − pπ′(d))(cd + f ′(d+ 1)). Since pm > pπ′(d), f ′(d+ 1) is monotonically increasing

in d by Lemma B.1 and cd is strictly increasing in d, we have that ∆µπ′(d),m(d, λ⃗′) is strictly increasing

in d for Hm ≤ d < H ′
m. Denote the first few terms in (49) as

θ(π′, d, λ⃗′)
∆
=
[
µπ′(d)(d, λ⃗

′)− µm(d, λ⃗′)
]
+∆− J∗

λ⃗′ + J∗
λ⃗
. (50)

Then, θ(π′, d, λ⃗′) is also strictly increasing in d for Hm ≤ d < H ′
m. Re-arranging (49) with (50), we

have

∆f(d+ 1) =
1

1− pm

[
∆f(d)− θ(π′, d, λ⃗′)

]
. (51)

We next show that the result of the lemma follows from (51) and the monotonicity of θ(π′, d, λ⃗′) in

d. At a high level, since θ(π′, d, λ⃗′) is increasing in d, we can show that ∆f(d) may first increase

in d from d = Hm, and then decrease in d until d = H ′
m. However, since we have also shown that

∆f(Hm) ≥ 0 (i.e., Case 2) and ∆f(H ′
m) ≥ − ∆

pm+1
(i.e., Case 1), we must have ∆f(d) ≥ − ∆

pm+1
for

all Hm ≤ d ≤ H ′
m. Specifically, we divide into three cases depending on the signs of θ(π′, d, λ⃗′) and

∆f(d)− θ(π′, d, λ⃗′).

a. If θ(π′, d, λ⃗′) ≤ 0, since θ(π′, d, λ⃗′) is increasing in d for Hm ≤ d < H ′
m, we must have θ(π′, d, λ⃗′) ≤

0 for Hm ≤ d ≤ d. Also, from the result of Case 2, we have ∆f(Hm) ≥ 0. Using induc-

tion in d, we can then show that, for all Hm ≤ d ≤ d, it must be true that ∆f(d + 1) =

1
1−pm

[
∆f(d)− θ(π′, d, λ⃗′)

]
≥ ∆f(d) − θ(π′, d, λ⃗′) ≥ ∆f(d) ≥ 0. Thus, ∆f(d) must be non-

decreasing from Hm to d+ 1. We must then have ∆f(d) ≥ 0.

b. If θ(π′, d, λ⃗′) > 0 and ∆f(d) ≥ θ(π′, d, λ⃗′), it holds trivially that ∆f(d) ≥ 0.

c. If θ(π′, d, λ⃗′) > 0 and ∆f(d) < θ(π′, d, λ⃗′), since θ(π′, d, λ⃗′) is increasing in d, we must have

θ(π′, d, λ⃗′) > 0 for all d ≤ d < H ′
m. We now show by induction that ∆f(d + 1) < ∆f(d) for all

d ≤ d < H ′
m.

• Base case: When d = d, we have ∆f(d + 1) = 1
1−pm

[
∆f(d)− θ(π′, d, λ⃗′)

]
< ∆f(d) −

θ(π′, d, λ⃗′) < ∆f(d).
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• Induction step: Suppose that ∆f(d′ + 1) < ∆f(d′) for all d ≤ d′ ≤ d. We wish to show that

∆f(d+2) < ∆f(d+1). Towards that end, from the hypothesis, we have ∆f(d+1) < ∆f(d). Since

θ(π′, d, λ⃗′) is increasing in d, we have ∆f(d+ 1)− θ(π′, d+ 1, λ⃗′) < ∆f(d)− θ(π′, d, λ⃗′) < 0.

Thus, from (51), we must have ∆f(d+2) = 1
1−pm

[∆f(d+1)− θ(π′, d+1, λ⃗′)] < ∆f(d+1)−

θ(π′, d+ 1, λ⃗′) < ∆f(d+ 1).

Therefore, we have shown ∆f(d) is decreasing in d for all d ≤ d < H ′
m Since we have already

shown in Case 1 that ∆f(H ′
m) > − ∆

pm+1
(recall that pM+1

∆
=1), it must then be true that ∆f(d) >

∆f(H ′
m) > − ∆

pm+1
for d ≤ d < H ′

m.

From (a)-(c), we have shown that ∆f(d) > − ∆
pm+1

for Hm < d < H ′
m.

Combining above 3 cases, the result of the lemma follows.

APPENDIX G

PROOF OF PROPOSITION 4.7

Now, we proceed to show the three statements in Definition 3.4. Consider 1 ≤ m ≤M . First, to show

(i), it suffices to show that for any ϵ > 0, µm(d, λ⃗) ≤ µk(d, λ⃗)+ ϵ,∀k ̸= m, k ≥ 0. From the definition in

(13), for any δ > 0, at the cost λ⃗δ
∆
=[λ1, . . . , λm−δ, . . . , λM ], we must have µm(d, λ⃗δ) ≤ µk(d, λ⃗δ), ∀k ̸=

m, k ≥ 0. Now consider the situation at cost λ⃗. We have

µm(d, λ⃗)− µk(d, λ⃗)

= λm − λk + (pk − pm)[cd + f(d+ 1, λ⃗)]

=
(
λm − δ − λk + (pk − pm)[cd + f(d+ 1, λ⃗δ)]

)
+ δ + (pk − pm)[f(d+ 1, λ⃗)− f(d+ 1, λ⃗δ)]

≤ δ + (pk − pm)[f(d+ 1, λ⃗)− f(d+ 1, λ⃗δ)], (52)

where the last inequality follows from µm(d, λ⃗δ) ≤ µk(d, λ⃗δ). Since f(d+1, λ⃗)−f(d+1, λ⃗δ) is uniformly

bounded by Lemma 4.3 and Lemma 4.6, we can choose δ(ϵ) > 0 such that δ(ϵ) + (pk − pm)[f(d +

1, λ⃗) − f(d + 1, λ⃗δ(ϵ))] ≤ ϵ. Thus, for any ϵ > 0, µm(d, λ⃗) ≤ µk(d, λ⃗) + ϵ,∀k ̸= m, k ≥ 0 must hold.

The result of (i) then follows.

To show (ii), consider the cost λ⃗Im(δ)
∆
=[Im(d, λ⃗−m)−δ, λ⃗−m], where the m-th element of λ⃗ is replaced

by Im(d, λ⃗−m)− δ. By definition of partial index (13), for any δ > 0, we have

µm(d, λ⃗Im(δ)) ≤ µk(d, λ⃗Im(δ)), ∀k ̸= m, k ≥ 0. (53)

Choose ∆ = δ = Im(d,λ⃗−m)−λm

2 > 0. Then, noting that λIm(δ),m = λm +∆, at cost λ⃗ we have

µm(d, λ⃗)− µk(d, λ⃗)
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= λm − λk + (pk − pm)[cd + f(d+ 1, λ⃗)]

=
(
λm +∆− λk + (pk − pm)[cd + f(d+ 1, λ⃗Im(δ))]

)
−∆+ (pk − pm)[f(d+ 1, λ⃗)− f(d+ 1, λ⃗Im(δ))]

≤ −
(
∆+ (pk − pm)[f(d+ 1, λ⃗Im(δ))− f(d+ 1, λ⃗)]

)
, (54)

where the last inequality follows from (53). If pk < pm, from Lemma 4.3, we have µm(d, λ⃗)−µk(d, λ⃗) <

−(∆+(pk−pm) ∆
pm

) ≤ 0, which is exactly the conclusion in part (ii) of Definition 3.4. Note that if m = M ,

then pk < pM for all k, and hence this is the only case that we need to consider. Thus, it only remains

to show that µm(d, λ⃗) < µk(d, λ⃗) even if m < M and pk > pm. Towards this end, suppose m < M and

pk > pm. Note that (53) must hold for k = m+1. From Lemma 4.6, we have µm(d, λ⃗)−µm+1(d, λ⃗) <

−(∆− (pm+1−pm) ∆
pm+1

) < 0. It then only remains to show that µm(d, λ⃗) < µk(d, λ⃗) for all k > m+1.

Recall that π is MTT (Definition 4.1-(1)): since µm(d, λ⃗) < µm+1(d, λ⃗), then d < Hm+1 ≤ Hk must

hold. For the purpose of contradiction, suppose µk(d, λ⃗) ≤ µm(d, λ⃗) for some k > m + 1. Then,

since µm(d, λ⃗) < µm+1(d, λ⃗), we must have µk(d, λ⃗) < µm+1(d, λ⃗). We now show that this also implies

µk(d
′, λ⃗) < µm+1(d

′, λ⃗) for all d′ ≥ d. To see this, note that since pm+1 < pk and f(d′) is non-decreasing

in d′ from Lemma B.1, we must have that ∆µk,m+1(d
′, λ⃗) = µk(d

′, λ⃗) − µm+1(d
′, λ⃗) = λk − λm+1 +

(pm+1−pk)[d
′+f(d′+1)] is decreasing in d′. It must then be true that µk(d

′, λ⃗) < µm+1(d
′, λ⃗),∀d′ > d.

In particular, when d′ = Hm+1 (recall that d < Hm+1), we must have µk(Hm+1, λ⃗) < µm+1(Hm+1, λ⃗).

However, by definition of Hm+1, we must have µm+1(Hm+1, λ⃗) ≤ µk(Hm+1, λ⃗), ∀k ̸= m + 1, k ≥ 0,

which is a contradiction. Thus, µm(d, λ⃗) < µk(d, λ⃗) for k > m+ 1. Hence, (ii) holds.

Finally, if Im(d, λ⃗−m) < λm, by definition of the index, at cost λ⃗ there exist some channel k such that

µm(d, λ⃗) > µk(d, λ⃗). (Otherwise, λm would have been the index for channel m by definition.) Thus,

(iii) is true.

Hence, the result of the lemma follows.
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