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Abstract—CSMA algorithms have recently received significant
interests in the literature for designing wireless control algo-
rithms. CSMA algorithms incur low complexity and can achieve
the optimal capacity under certain assumptions. However, CSMA
algorithms suffer the starvation problem and incur large delay
that may grow exponentially with the network size. In this paper,
our goal is to develop a new algorithm that can provably achieve
high throughput utility and low delay with low complexity.
Towards this end, we propose a new CSMA-like algorithm, called
Virtual-Multi-Channel (VMC-) CSMA, that can dramatically
reduce delay. The key idea of VMC-CSMA to avoid the starvation
problem is to use multiple virtual channels (which emulate a
multi-channel system) and compute a good set of feasible sched-
ules simultaneously (without constantly switching/re-computing
schedules). Under the protocol interference model and a single-
hop utility-maximization setting, VMC-CSMA can approach
arbitrarily close-to-optimal system utility with both the number
of virtual channels and the computation complexity increasing
logarithmically with the network size. Further, once VMC-CSMA
converges to the steady-state, we can show that under certain
assumptions on the utility functions and the topology, both the
expected packet delay and the tail distribution of the HOL (head-
of-line) waiting time at each link can be bounded independently
of the network size. Our simulation results confirm that VMC-
CSMA algorithms indeed achieve both high throughput utility
and low delay with low-complexity operations.

Index Terms—Carrier sence multiple access (CSMA), utility
maximization, distributed scheduling, Markov chain, starvation,
virtual multiple channels.

I. INTRODUCTION

A central problem to the design of wireless control al-
gorithms is how to schedule the link transmissions in the
presence of interference. Among the many design goals for
wireless scheduling, three of them are perhaps the most
important. First, in order to support the increasing amount of
the traffic placed on wireless networks, the control algorithm
should achieve high capacity. Second, the packet delay should
be small to meet the applications’ service requirements. Third,
for large networks, the control algorithms should have low
computational complexity and low communication overhead,
and preferably can be implemented in a distributed manner.

Existing algorithms in the literature achieve different trade-
offs among capacity, delay, and complexity. It is well known
that max-weight algorithms [2] can attain the largest capacity
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region of the network, based on which many wireless cross-
layer control algorithms have been developed to optimize
various performance objectives such as the system throughput,
utility/fairness, and power efficiency [3,4]. However, for many
problem settings, the max-weight algorithm incurs exponen-
tially high computational complexity as the network size
increases. Hence, they are infeasible even for networks with
medium size. Further, it is a centralized algorithm that requires
global information. There are a number of low-complexity
algorithms that can be viewed as approximations to the max-
weight algorithm (see [3] and the reference within). However,
these algorithms can only guarantee a fraction of the optimal
system capacity. Recently, a class of CSMA (Carrier Sense
Multiple Access) algorithms were studied in [5,6]. CSMA
algorithms are very attractive in the sense that they incur
low complexity and are fully distributed. Further, CSMA
algorithms can be shown to achieve the optimal capacity under
certain assumptions. However, CSMA algorithms have been
observed to have large delay that may grow exponentially
with the network size [7,8], which makes the usefulness of the
capacity gain questionable because most applications (even as
simple as web-browsing) require some level of low delay.

In summary, these existing algorithms have been unable to
achieve all three goals, i.e., high throughput, low delay and low
complexity at the same time. This unsatisfactory state-of-art
has led to the conjecture that perhaps there is a fundamental
tradeoff among these three dimensions. For example, in an
elegant result in [9], the authors show that there exist worst-
case topologies such that even to achieve a diminishingly
small fraction of the optimal throughput capacity, either the
complexity or the delay must grow exponentially with the
network size. Based on this impossibility result, it may seem
an unattainable endeavor to dramatically reduce the delay of
CSMA algorithms without sacrificing their high throughput
or low complexity. However, while this impossibility result
is theoretically intriguing, it does not explain why for “eas-
ier” topologies, one cannot dramatically reduce the delay of
CSMA-like algorithms. In fact, for topologies with bounded
degree, [10,11] have shown that nearly-optimal throughput can
indeed be achieved with complexity and delay that do not grow
with the network size. The algorithms in [10,11] are still quite
complex. Nonetheless, they do suggest the possibility that for
a certain class of network topologies, there may be potential
to address the delay problem of CSMA-like algorithms, which
may then lead to a low-complexity and distributed algorithm
with both provably high throughput and provably low delay.
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Fig. 1. A torus interference graph with the odd and even schedules.

Unfortunately, improving the delay performance of CSMA
remains a challenging problem in spite of a number of recent
works [6,8,9,11]–[17]. The main difficulty of reducing the
delay of CSMA may be explained by the following example.
Consider a n-by-n torus interference graph as shown in Fig.
1, where each circle represents a unit-capacity link, and the
edge between two circles means that these two links can not
transmit simultaneously. Suppose that the target rates of all
links are 0.5. In a typical discrete-time version of the standard
CSMA algorithms [6], it is possible to adjust the parameters
so that the CSMA algorithms will stay at either the even or
the odd schedule with probability close to 0.5 to attain the
target rates. However, once CSMA finds either the even or the
odd schedule, it will be “locked” to this schedule for a long
time before it can switch to the other schedule [8], and the
corresponding inactive links will be starved of service in this
period. This problem is known as the “starvation” problem for
CSMA. Hence, it is difficult for CSMA to attain low delay.

In this paper, we propose a new algorithm, called Virtual-
Multi-Channel (VMC-) CSMA, that can achieve both provably
high throughput utility and provably low delay with low
complexity. The main novelty of our proposed algorithm
to significantly reduce delay is to take advantage of multi-
ple (physical- or virtual-) channels. This main idea can be
explained as follows. Suppose that there are two separate
channels for the same topology in Fig. 1, and each has half the
bandwidth of the original system. If one channel uses the odd
schedule, and the other channel uses the even schedule, then
each link can achieve both the target rate of 0.5 as well as low
delay (because each link is served at a constant rate at all time-
slots). Note that the key idea here is to compute a set of good
schedules for multiple channels at once rather than computing
one schedule at a time and constantly switching/recomputing
schedules. Thus, the starvation problem is avoided. Although
this idea seems to be quite natural, there are three main
difficulties to generalize it to arbitrary networks. First, in many
systems, we may only have one physical channel. How can
we still reduce delay by using multiple channels? Second,
even if we have more than one channel, how can we design a
low-complexity and distributed algorithm to compute the right
multi-channel schedules? Third, the number of channels in the
above example is two, but it may not be sufficient for general
topologies. Will the number of channels required to approach
near-optimal performance be exceedingly large such that the
complexity increases to a prohibitive level?

Our proposed VMC-CSMA algorithms precisely address
these difficulties. First, for systems with only one physical

channel, we introduce the notion of “virtual channels.” Specif-
ically, there are C virtual channels, and each virtual channel
can have a different schedule. By randomly choosing a virtual
channel and using the corresponding schedule at each time
slot, we can then emulate the behavior of multiple physical
channels. (See Section III-B for the corresponding distributed
implementation.) Second, assuming that each link ℓ has a
utility function Uℓ(Rℓ) of its rate Rℓ, our proposed VMC-
CSMA algorithms iteratively update the schedules across
all virtual channels to optimize the total system utility. In
each iteration, VMC-CSMA only requires local information
exchange and incurs a low complexity that increases linearly
with the number of virtual-channels C. Third, we rigorously
quantify the throughput and delay performance of the VMC-
CSMA algorithms with respect to C. Specifically, for an arbi-
trary network topology, let L denote the total number of links.
We show that when ϵ ≤ 0.1 and C ≥ 2 logL

3ϵ2 , VMC-CSMA al-
gorithms can allocate an expected rate vector R⃗ = [Rℓ] to each
link such that

∑L
ℓ=1 Uℓ(Rℓ) ≥ (1 − ϵ)

∑L
ℓ=1 Uℓ([R

∗
ℓ − ϵ]+),

where R⃗∗ = [R∗
ℓ ] is the rate vector with maximum system

utility. Thus, VMC-CSMA algorithms can achieve close-to-
optimal system utility with the number of channels (and
hence the corresponding complexity) increasing very slowly
(O(logL)) with the network size. For delay, we show that,
once VMC-CSMA algorithms converge to the steady-state,
the expected packet delay of link ℓ equals to 1/Rℓ, and the
tail distribution of its head-of-line (HOL) waiting time can
be asymptotically bounded (see Lemma 5 for details). More
importantly, we show that under the assumption of logarithmic
utility functions, as long as some sufficient conditions for
the network topology and utility functions are satisfied, the
delay of each link will not grow with the network size. Our
simulation results confirm that the proposed VMC-CSMA
algorithms indeed achieve both high throughput and low delay.
Further, it can quickly adapt to network traffic changes. In
summary, the proposed VMC-CSMA algorithm achieves both
provable close-to-optimal throughput utility and provable low
delay (that does not grow with the network size under suitable
conditions) with low-complexity operations.

The standard CSMA algorithm has been extended to multi-
channel networks in [18]. However, the delay issue was
not discussed. There have been a number of recent studies
that try to quantify and improve the delay performance of
CSMA algorithms [8,11]–[17]. However, none of them can
attain the same level of throughput/delay performance and low
complexity as we reported here. The work in [15] compares
the delay performance as one tunes the parameter of a class
of CSMA algorithms. Similarly, the work in [17] introduces
a threshold for each link. A link will immediately relinquish
transmission opportunity if the queue length drops below the
threshold. However, it is unclear whether such modifications
will fundamentally and provably alter the exponential order of
the starvation time. In [14], CSMA algorithms with deadline
constraints are studied under the setting of a complete graph
(where each link interferes with every other link). In another
work [8], the authors propose to periodically reset or “unlock”
the schedule to an initial empty schedule. They show that for
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a torus interference graph like Fig. 1, the delay can be made
independent of the network size. However, it seems difficulty
to generalize the results from [8,14] to more general network
topologies. [12,13] show that if the offered load is sufficiently
small (as a function of the maximum degree of the interference
graph), both the starvation time and the delay of CSMA can be
reduced to O(logL) [12] or even O(1) [13]. However, for such
results to hold, the offered load must be reduced significantly
from the optimal capacity. Similarly, [16] considers using
multiple physical channels for CSMA, but under the constraint
that each link can occupy at most one channel. Thus, the
resulting capacity could also be far from optimal. Our idea
of using multiple channels is also inspired by [19]. However,
it is difficult to modify the algorithm in [19] to optimize
global system utility. To the best of our knowledge, only
the algorithms in [10,11] can achieve similar goals as ours,
i.e., both provably high throughput and provably low delay
with low complexity. Both [10] and [11] partition the network
into non-interfering pieces with finite size. In [10], a max-
weight algorithm is used in each partition. However, in order to
approach the optimal capacity, the size of each partition must
be large. Hence, the max-weight algorithm in each partition
requires coordination among nodes that are increasingly far
apart. In [11], CSMA is run in each partition. However, if
the partition size is large, the actual delay in each partition
may still be large. Finally, our results do not contradict with
the impossibility result of [9] (discussed earlier) because our
sufficient conditions on network topology may exclude the
worst-case topology of [9]. Further, both our notion of delay
(steady-state delay vs. transient delay) and our system setting
(with vs. without congestion control) are different (see the end
of Section III-D for detailed discussions).

The rest of the paper is organized as follows. The system
model is presented in Section II. In Section III, we present the
VMC-CSMA algorithm along with the performance analysis.
We discuss the implementation issues in Section IV and the
simulation results in Section V. Then we conclude.

II. SYSTEM MODEL

Consider a wireless network with N nodes and L links,
where each node represents a communication device, and each
link corresponds to a pair of transmitting node and receiving
node. We assume the so-called protocol interference model,
i.e., two links interfere with each other if they can not transmit
data at the same time.1 Let Eℓ be the set of links that interfere
with link ℓ. We assume that the link interference relationship
is bilateral, i.e., if ℓ1 ∈ Eℓ2 , then ℓ2 ∈ Eℓ1 . Two links ℓ1
and ℓ2 are called neighbors if ℓ1 and ℓ2 interfere with each
other. We consider a time-slotted system, where each slot has
unit length. Assume that the wireless network has only one
physical channel. The capacity of each link is assumed to be
1, i.e., each link can transmit at most one unit-sized packet

1The basic idea of CSMA has been extended to more general interference
models, e.g., those based on SINR [20,21], although the algorithms there are
likely to suffer similar starvation problem and large delay as in [7,8]. Thus,
we expect that the key insights of our work can also be extended to reduce
delay under these more general interference models.

in one time slot. To represent a schedule, we will use a L-
dimension vector such that the ℓth element is 1 if link ℓ is
included in the schedule and 0 otherwise.

Associated with each link is a one-hop flow, i.e., packets of
the flow will immediately leave the network after it traverses
the link. We assume that each flow is infinitely backlogged,
i.e., at the transport layer it always has packets to send. Further,
each flow at link ℓ has a utility function Uℓ(·) associated
with it. If the long-term average rate of link ℓ is Rℓ, then
Uℓ(Rℓ) represents the satisfactory level of the corresponding
flow [3]. We assume that each utility function is positive, non-
decreasing, strictly concave, and twice differentiable [22]. Fur-
ther, we assume that it is bounded on the domain D = [0, 1].
Let U(R⃗) =

∑L
ℓ=1 Uℓ(Rℓ). Let Ω denote the capacity region

of the wireless network, which is given by the set of all rate
vectors R⃗ = [Rℓ] such that there exists a control policy that
can support the long-term average rate Rℓ at each link ℓ.

As we have discussed in Section I, we are interested in both
high throughput utility and low delay. For high throughput
utility, we aim to solve the following optimization problem:

max
Rℓ≥0

L∑
ℓ=1

Uℓ(Rℓ), R⃗ = [Rℓ] ∈ Ω. (1)

Let R⃗∗ = [R∗
ℓ ] be the optimal solution of problem (1). Note

that problem (1) is a cross-layer control problem [3] because it
involves two control mechanisms. First, the transport layer of
the flow at each link ℓ does congestion control and determines
how packets can be injected at the long-term average rate
R∗

ℓ . Second, at the MAC layer, the system determines how
to schedule the link transmissions to support the long-term
average rate R∗

ℓ at all links.
Under infinite-backlog setting, the delay of a packet is

defined as the difference between the time when the transport
layer injects the packet into the buffer and the time when this
packet is served by the link. Although this definition seems
to be a natural definition of delay, it unfortunately does not
fully capture the effect of the possible starvation problem [8].
For example, consider a queue with a single buffer. A new
packet is added to the buffer immediately after the old packet
is served. Suppose that for every 1000 packets, it takes only
one time-slot to serve each of the first 999 packets. However,
the 1000th packet suffers starvation for 1000 time-slots. In this
case, the expected packet delay (average over all packets) is
1.99. Thus, the effect of the starvation problem is not obvious.
Due to this reason, we introduce another notion of delay.
Specifically, at each time slot, we study the time that the
head-of-line (HOL) packet has waited in the system. In the
above example, the expected HOL waiting time across time-
slots would be around 250. Hence, the negative impact of the
starvation problem is more obvious. In this paper, by “low
delay”, we mean that both the packet delay and the HOL
waiting time should be small. Thus, the goal is to develop
low-complexity and distributed algorithms that can provably
achieve both high throughput utility and low delay.

Remark: Note that in this paper, we have defined throughput
and delay directly based on a utility-maximization setting. This
definition may seem somewhat different from many existing
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works [5,6,8,11]. There, throughput optimality is often defined
for a system where packets arrive according to some stochastic
process, and the delay is defined as the time from packet
arrival to the time when the packet is served at the MAC layer.
However, we believe that the infinite-backlog model and the
delay definition in this paper are important to study. First, the
goal of throughput optimality is to support the largest possible
capacity region. In practice, the offered load may fall outside
the capacity region, in which case some form of congestion
control is required to avoid overloading the system. Further,
whenever overload occurs, it is important to maintain some
notion of fairness across users. The infinite-backlog utility-
maximization formulation is often used to model congestion
control and fairness [3,4], and hence is important to study.
Second, under such an infinite-backlog model, the delay at
the transport layer would have been infinite. Thus, we focus
instead on the delay after the packet is injected by the transport
layer, which can be interpreted as the service delay at the
link’s MAC layer. We note that under the traditional CSMA
algorithm, this delay remains very large due to the starvation
problem (see Fig. 4(a) in Section V). Hence, it is important
to study how to reduce such delay. Finally, under certain
assumptions, it may be possible to extend the key insights of
our work to the setting with packet arrivals. We briefly discuss
the main idea and potential challenge in Section III-F.

III. VMC-CSMA ALGORITHM DESIGN AND ANALYSIS

In this section, we propose a new low-complexity Virtual-
Multi-Channel (VMC-) CSMA algorithm with provable high
throughput utility and provable low delay. Since our algorithm
is motivated by the standard CSMA algorithm, we will first
briefly describe a discrete time version of the standard CSMA
algorithm [3,6] for solving problem (1) and discuss its weak-
ness. We will then introduce the new VMC-CSMA algorithm.

A. The Standard CSMA algorithm
Let Qℓ(t) be the number of packets of link ℓ at the beginning

of time slot t. Let S⃗(t) = [Sℓ(t)] be the schedule chosen by
the scheduling algorithm at time t. Define a set S of decision
schedules such that every element in S is a feasible schedule.
Further, each link must be scheduled by at least one schedule
in S. Let wℓ(t) be an suitable increasing function of Qℓ(t)
as in [6]. For example, wℓ(t) = log(αQℓ(t)), where α is a
positive constant. The following CSMA algorithm is known
to solve problem (1) under certain assumptions.
CSMA Algorithm: At each time t,

• Decision Phase: Choose a decision schedule S⃗D(t) =
[SD

ℓ (t)] randomly in S.
• Scheduling Phase: For each link ℓ, if SD

ℓ (t) = 1 and
Sℓ′(t) = 0 for every link ℓ′ ∈ Eℓ, we have: P ({Sℓ(t) =

x}) = exp(xwℓ(t))
1+exp(wℓ(t))

, where x = 0 or 1. Otherwise,
Sℓ(t) = Sℓ(t− 1).

• Congestion Control: Each link ℓ injects a random number
of packets according to a Poisson distribution with mean
rℓ = argmax

r≥0
{Uℓ(r)− βQℓ(t)r}, where β > 0.

It can be shown that under a time-scale separation assump-
tion [6], if β is sufficiently small, r⃗ = [rℓ] will converge to

values close to the optimal solution of (1) [3]. In practice, the
above time-scale separation assumption must be approximated
by a small value of α. However, when α and β are small,
Qℓ(t) and wℓ(t) tend to be large. In that case, the algorithm
will likely to be stuck in one schedule for a long time before
it switches to another schedule [8] (as we discussed in Section
I). In the worst case, the starvation time and the delay may
grow exponentially with the network size [7].

B. Virtual-Multi-Channel CSMA Algorithm

We now introduce our proposed VMC-CSMA algorithm
that overcomes the difficulties of starvation problem and large
delay. As we have mentioned in Section I, the key to achieve
both high throughput utility and low delay is to take advantage
of C multiple channels and simultaneously compute C feasible
schedules over all channels. Once a good set of C feasible
schedules is found, we can then avoid constantly switching
schedules (and hence the starvation problem). To make this
idea feasible in wireless systems with only one physical
channel, we introduce the concept of “virtual channels.”
Specifically, for each link ℓ, there are C virtual channels, and
we use V⃗ℓ = [Vℓ1, · · · , VℓC ] to denote its schedule in all virtual
channels, where Vℓk = 1 if link ℓ is scheduled in the kth virtual
channel, and Vℓk = 0 otherwise. We use V⃗ = [V⃗ℓ] to denote
the global schedules of all virtual channels and all links. When
we focus on a specific virtual-channel k, there is a feasible
schedule S⃗(V⃗ )k = [V1k, · · · , VLk] for the network. Note
that given the global schedule V⃗ , the total number of virtual
channels used by link ℓ is given by xℓ(V⃗ ) =

∑C
k=1 Vℓk. To

use these schedules, at each time slot t, the network randomly
chooses a virtual-channel k(t) uniformly from 1 to C, i.i.d.
across time-slots. All links in the network then use the feasible
schedule S⃗(V⃗ )k(t) in this time-slot, i.e., each link ℓ transmits
a packet if Vℓ,k(t) = 1.2 Note that each link only needs to
know its own schedules V⃗ℓ. Further, the randomization of the
virtual-channel k(t) can be achieved in a distributed manner
if all links are synchronized, and they have the same random-
number generator with a common-seed, which only needs to
be agreed upon at the beginning of the system operation. With
this implementation, each link ℓ will be scheduled for actual
transmission with probability equal to rℓ(V⃗ ) = xℓ(V⃗ )/C, i.i.d.
across time-slots. Thus, the long-term average rate of link ℓ is
rℓ(V⃗ ), and the average inter-service time is 1/rℓ(V⃗ ). Hence,
the delay will likely be small as we will show below.

It remains to develop a low-complexity and distributed
algorithm for computing the global schedule V⃗ that leads to
high total system utility. Specifically, we seek solution to the
following optimization problem, which can be viewed as an
approximation to the original optimization problem (1):

max
V⃗

L∑
ℓ=1

Uℓ(rℓ(V⃗ )),

S⃗(V⃗ )k is a feasible schedule, k = 1, 2, · · · , C.

(2)

2We note that the idea of using a random schedule has some similarity to the
stationary randomized policy [4] that has been used to analyze the throughput
optimality of other algorithms. However, there are no low-complexity methods
of computing the right stationary randomized policy.



5

Our hope is that when C is sufficient large, the optimal
solution of (2) will be close to that of (1).

We next describe our proposed low-complexity VMC-
CSMA algorithm for solving (2). Later in Section III-C and
III-D, we will study its throughput and delay as the number
of virtual-channels C varies. Because VMC-CSMA algorithm
updates the global schedule V⃗ iteratively over time, we will
use the notation V⃗ (t), V⃗ℓ(t), and Vℓk(t) to denote their
corresponding values at time slot t. Similar to the standard
CSMA algorithm, we define a set S of decision schedules
such that it satisfies the following three conditions: (C1) each
decision schedule is a feasible schedule. (C2) each link ℓ must
be scheduled by at least one decision schedule in S. Note that
these two conditions are the same as those in the standard
CSMA algorithm [6]. (C3) each link scheduled by a decision
schedule can broadcast C bits to its neighbors in a time slot.
We will discuss in Section IV how to implement the decision
schedules at each time slot. Now, we describe our algorithm.
Virtual-Multi-Channel CSMA Algorithm: At each time t,

• Decision Phase: Choose a decision schedule S⃗D(t) =
[SD

ℓ (t)] randomly in S.
• Update Phase: For each link ℓ, if SD

ℓ (t) = 0, let V⃗ℓ(t) =

V⃗ℓ(t− 1). Otherwise, perform Algorithm 1.

Algorithm 1 Update phase for link ℓ if SD
ℓ (t) = 1:

Choose a permutation (nℓ
1, n

ℓ
2, · · · , nℓ

C) of the set
{1, 2, · · · , C} uniformly at random. Let fℓ(x) =
exp(αUℓ(

x
C )) and x1

ℓ =
∑C

k=1 Vℓk(t− 1).
for i = 1 to C do

if Vℓ′,nℓ
i
(t− 1) = 1 for any link ℓ′ ∈ Eℓ then

Vℓ,nℓ
i
(t) = Vℓ,nℓ

i
(t− 1).

else
Vℓ,nℓ

i
(t) is determined with the random distribution:

P ({Vℓ,nℓ
i
(t) = y})

=
fℓ(x

i
ℓ+y−V

ℓ,nℓ
i
(t−1))

fℓ(xi
ℓ−V

ℓ,nℓ
i
(t−1))+fℓ(xi

ℓ+1−V
ℓ,nℓ

i
(t−1))

,
(3)

where y = 0 or 1.
end if
xi+1
ℓ = xi

ℓ + Vℓ,nℓ
i
(t)− Vℓ,nℓ

i
(t− 1).

end for
Link ℓ broadcasts V⃗ℓ(t) to all of its neighbors.

• Scheduling Phase: A common virtual-channel k(t) is
chosen by all links in the network uniformly at random,
and each link ℓ transmits a packet if Vℓ,k(t)(t) = 1.

• Congestion Control: All links ℓ use the window-based
flow-control algorithm with window-size 1, i.e., a new
packet is injected to link ℓ only if a packet is served.

We note a key difference between the VMC-CSMA and
the standard CSMA. Under the VMC-CSMA (correspondingly
standard CSMA) algorithm, the random distribution for up-
dating the schedule of link ℓ is a function of its own utility
Uℓ(xℓ/C) (correspondingly its own queue length Qℓ(t)). The
significance of this key difference is as follows. Consider (3)

and Vℓ,nℓ
i
(t− 1) = 0 for an example, we have

P ({Vℓ,nℓ
i
(t) = 1}) = fℓ(x

i
ℓ+1)/fℓ(x

i
ℓ)

1+fℓ(xi
ℓ+1)/fℓ(xi

ℓ)
≈ exp( α

C U ′
ℓ(

xi
ℓ

C ))

1+exp( α
C U ′

ℓ(
xi
ℓ

C ))

(4)
Recall that Uℓ(·) is a strictly concave function, which implies
that U ′

ℓ(·) is a strictly decreasing function. Hence, if a link
has larger xi

ℓ value, it is less likely to activate itself in a new
virtual channel, and vice versa. Thus, the schedules across
virtual channels are in fact coordinated to reach a state V⃗ with
total system utility close to the optimal value. Hence, VMC-
CSMA does not constantly change the schedule and avoid
the starvation problem. An additional benefit is that we can
use the window-based flow-control as the congestion control
component, which further controls the packets in the system
and reduces the delay.

C. Utility Optimality

In this subsection, we study the capacity/utility performance
when our VMC-CSMA algorithm reaches steady state. Note
that under the VMC-CSMA algorithm, the global schedule
V⃗ (t) behaves as a Markov chain. Hence, we will also refer to
V⃗ (t) as the state. Let V be the state space of the Markov chain.
We first introduce a proposition that describes the stationary
distribution of the Markov chain.

Proposition 1: The stationary distribution of the Markov
chain V⃗ (t) is given by P (V⃗ ) = 1

Z exp(α
∑L

ℓ=1 Uℓ(rℓ(V⃗ ))),

where Z is a normalization constant for all V⃗ ∈ V .
Proof: The proof is given in Appendix A

Proposition 1 implies that the state V⃗ with larger value of
total system utility has a higher chance to be visited. Further,
since α appears in the exponent in the stationary distribution,
as α increases, the probability of reaching the state with
the largest utility, which is the solution to problem (2), will
approach 1. However, due to the quantization effect with a
finite C, the optimal utility in (2) may be smaller than the
optimal utility of the original problem (1). Hence, the key
question is how many virtual-channels C we need such that the
two optimal-utility values are close. We note that this question
is important because the complexity of our algorithm also
increases with C. In practice, we would prefer a smaller value
of C. A first thought for solving this question is to use the
Caratheodory’s theorem [23]. Specifically, since the capacity
region of the optimization problem in (1) is a convex hull of
all the feasible schedules, the Caratheodory’s theorem tells us
that the optimal solution to (1) can be written as the convex
combination of L+1 feasible schedules. As a result, we may
guess that we need C to be at least Θ(L) so that the optimal
solution to (1) can be approximated by a valid global schedule
V⃗ . Somewhat surprisingly, by allowing a small margin ϵ for
error and using a novel probabilistic argument, we can reduce
the order of C to O(logL). This nice result is presented in the
following proposition. Recall that R∗

ℓ is the optimal solution
of link ℓ in problem (1).

Proposition 2: If ϵ ≤ 0.1 and C ≥ 2 logL
3ϵ2 , then there exists

a state V⃗ s in the state space V of the Markov chain such that
rℓ(V⃗

s) ≥ R∗
ℓ − ϵ, for all link ℓ.
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Proof: The proof is given in Appendix B
Note that since the rate is always larger than zero, it then
follows from rℓ(V⃗

s) ≥ R∗
ℓ−ϵ that rℓ(V⃗ s) ≥ max(R∗

ℓ−ϵ, 0) ,
[R∗

ℓ−ϵ]+. With the help of Proposition 2, we can prove the first
main theorem in this paper. Recall that U(r⃗) =

∑L
ℓ=1 Uℓ(rℓ).

Theorem 3: Under our VMC-CSMA algorithm, for any ϵ ≤
0.1, we can choose C > 2 logL

3ϵ2 and α large enough such that
P{U(r⃗(V⃗ (t))) ≥

∑L
ℓ=1 Uℓ([R

∗
ℓ − ϵ]+)} ≥ 1− ϵ, where R⃗∗ is

the optimal solution of problem (1).
Proof: Consider a fixed C. Let V⃗ max be the solution to

(2). Then U(r⃗(V⃗ max)) ≥ U(r⃗(V⃗ )), for all V⃗ ∈ V . Define the
set A = {V⃗ ∈ V|U(r⃗(V⃗ )) = U(r⃗(V⃗ max))}. Denote f(V⃗ ) =
exp(αU(r⃗(V⃗ ))). Let fmax = f(V⃗ max). Note that f(V⃗ ) =
fmax for all V⃗ ∈ A. Since V is finite for a fixed C, there
must exist ϵ′ > 0 such that f(V⃗ ) ≤ fmaxe−αϵ′ for all V⃗ /∈ A.
Using Proposition 1 and this inequality, we can then show that

P ({V⃗ ∈ A}) =
∑

{V⃗ ∈A} f(V⃗ )∑
{V⃗ ∈A} f(V⃗ )+

∑
{V⃗ /∈A} f(V⃗ )

≥ fmax|A|
fmax|A|+fmaxe−αϵ′ (|V|−|A|) .

(5)

This implies that for any ϵ, there exists α such that P ({V⃗ ∈
A}) > 1 − ϵ. Further, from Proposition 2, for any ϵ ≤ 0.1,
we can choose a fixed C ≥ 2 logL

3ϵ2 such that for V⃗ ∈ A,
U(r⃗(V⃗ )) ≥ U(r⃗(V⃗ s)) ≥

∑
ℓ Uℓ([R

∗
ℓ − ϵ]+). The results then

follows.
Theorem 3 states that as long as α is sufficiently large, in
the steady-state the expected service rate achieved by VMC-
CSMA and measured at every time-instant will achieve a
close-to-optimal utility with high probability. Further, for a
given value of ϵ (which characterizes the optimality loss),
the number of channels C only needs to grow very slowly,
i.e., logarithmically, with the network size. Define rmin

ℓ as
the worst rate for link ℓ among all global schedules with the
maximum utility, i.e.,

rmin
ℓ = min

{V⃗ ∈V|U(r⃗(V⃗ ))=U(r⃗(V⃗ max))}
rℓ(V⃗ ), (6)

where V⃗ max is the solution of problem (2). Theorem 3 also
leads immediately to the following corollary on the average
throughput for each link ℓ and the total system utility.

Corollary 4: Under our VMC-CSMA algorithm, for any
ϵ ≤ 0.1, we can choose C > 2 logL

3ϵ2 and α large enough such
that the time-averaged throughput Rℓ of link ℓ has a lower
bound Rℓ ≥ (1−ϵ)rmin

ℓ . Further, U(R⃗) ≥ (1−ϵ)U([R⃗∗−ϵ]+).
Proof: To calculate the throughput of link ℓ, we have

to consider the real schedule, which is determined both by
V⃗ (t) and the common virtual channel k(t) that we choose at
each time slot. Note that P{k(t) = k} = 1/C, k = 1, · · · , C.
Further, k(t) is i.i.d. across time-slots and is independent of
V⃗ (t). Define the set A = {V⃗ ∈ V|U(r⃗(V⃗ )) = U(r⃗(V⃗ max))}.
Let P (V⃗ ) be steady state probability when the state of the
Markov chain V⃗ (t) is V⃗ . From the proof of Theorem 3, we can
find α such that P{V⃗ (t) /∈ A} ≤ ϵ. The average throughput

of link ℓ can then be derived as follows.

Rℓ =
∑

V⃗ ∈V
∑C

k=1 P{k(t) = k, V⃗ (t) = V⃗ }Vℓk

=
∑

V⃗ ∈V
∑C

k=1
1
CP{V⃗ (t) = V⃗ }Vℓk

=
∑

V⃗ ∈V P{V⃗ (t) = V⃗ }rℓ(V⃗ )

≥
∑

V⃗ ∈A P{V⃗ (t) = V⃗ }rℓ(V⃗ )

≥
∑

V⃗ ∈A P{V⃗ (t) = V⃗ }rmin
ℓ ≥ (1− ϵ)rmin

ℓ

(7)

Now, combining Theorem 3 and the fact that U(·) is a concave
function, we can have that

U(R⃗) ≥
∑
V⃗

P (V⃗ )U(r⃗(V⃗ )) ≥ (1− ϵ)U([R⃗∗ − ϵ]+).

This concludes the proof.
Remark: Under suitable time-scale separation assumptions,
the long-term time-averaged service rate under the standard
CSMA algorithm can also be shown to achieve the optimal
utility, which is similar to Corollary 4. However, we emphasize
that Theorem 3 is in fact much stronger. Since VMC-CSMA
chooses a virtual channel i.i.d. across time, even over a shorter
time-interval around time t, the average service rate of each
link will be close to rℓ(V⃗ (t)). Thus, Theorem 3 states that
the service rate averaged even over shorter intervals will
attain close-to-optimal system utility with high probability. In
contrast, due to the starvation problem, the short-term service
rate of the standard CSMA algorithm could be much more
unfair and far away from the optimal utility.

D. Delay Performance

In this subsection, we study the delay performance of VMC-
CSMA. A natural definition for packet delay is the number of
time-slots from the time when the packet is injected to the
buffer of a link by the congestion control component at the
corresponding source, to the time when the packet is served
by the link. It turns out that this packet delay has a simple
characterization. Note that since we use window-based control
with window size 1, the number of packets in the buffer at each
link ℓ is always 1. Further, the rate that packets arrive to and
depart from link ℓ is given by Rℓ. Hence, by Little’s law [24],
the expected packet delay (average across packets) at link ℓ
must be equal to 1/Rℓ, which is upper bounded by 1

(1−ϵ)rmin
ℓ

.
Thus, a high throughput at link ℓ immediately translates to a
low expected packet delay.

However, as we have mentioned in Section II, the above
definition of packet delay does not fully capture the effect
of starvation problem. A better metric is HOL (head-of-line)
waiting time, which is the time that the HOL packet at link
ℓ has waited in the system. For example, an extended period
of starvation will likely cause large expected HOL waiting
time average across time-slots (please refer to the example
in Section II). The following lemma shows that under VMC-
CSMA algorithm, the tail distribution of the HOL waiting time
will decay quickly.

Lemma 5: Under our VMC-CSMA algorithm, for a fixed
integer d > 0 and any ϵ > 0, there exists sufficiently large
α so that for each link ℓ, P{HOL waiting time ≥ d} ≤ (1−
rmin
ℓ )d + ϵ.
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Proof: Define the set A = {V⃗ ∈ V|U(r⃗(V⃗ )) =
U(r⃗(V⃗ max))}. From the proof of Theorem 3, we can find
α such that P{V⃗ (t) /∈ A} ≤ ϵ/d. Let E be the event that
V⃗ (t1) ∈ A, t1 = t − d + 1, · · · , t. Hence, by the union
bound, P (Ec) ≤ d ϵ

d = ϵ. Let dℓ(t) be the HOL waiting
time for link ℓ at time t. We have that P{dℓ(t) ≥ d|E} =
P{link ℓ is not served for t− d+ 1 to t|E} ≤ (1 − rmin

ℓ )d.
Use this inequality, we can then show that P{dℓ(t) ≥ d} =
P{dℓ(t) ≥ d|E}P{E}+ P{dℓ(t) ≥ d|Ec}P{Ec} ≤
(1− rmin

ℓ )d + ϵ. This concludes the proof.
Until now, we have developed bounds on the expected

packet delay and the tail distribution of the HOL waiting
time. These bounds only depend on rmin

ℓ and are otherwise
independent of the network size. Given that the delay of
CSMA algorithms have been observed to grow exponentially
with the network size [7,8]. Our ultimate goal in this section
is to develop conditions such that the delay of VMC-CSMA
does not grow with the network size. For this statement to
hold, we need to bound rmin

ℓ away from zero. Unfortunately,
without additional restrictions on the network setting, it is still
possible to construct an example such that rmin

ℓ is close to 0.
Example 1: Consider the following conflict graph, where

link 1 interferes with all other links, but no other links interfere
with each other. In other words, E1 = {2, 3, · · · , L}, and Eℓ =
{1}, ℓ = 2, 3, · · · , L. As a result, the scheduling algorithm can
turn on either link 1 or all links in E1. Hence, if the rate of link
1 is x, then the rate of all other links in E1 is 1− x. Assume
that every link has the same utility function log(·+h)−log(h).
By a slight abuse of notation, let U(x) denote the total utility
of the system when the rate of link 1 is x. Then, we have
U(x) = (L−1)[log(1−x+h)− log(h)]+log(x+h)− log(h).
Let f(x) = U(0)−U(x). We then have that f(0) = 0. Further,
f ′(x) > 0 ⇔ (L − 1) > x+1+h

x+h . Note that x+1+h
x+h < 2+h

h ,
for all x ∈ [0, 1]. Hence, if (L − 1) > 2+h

h , we must have
f ′(x) > 0, for all x ∈ [0, 1]. As a result, f(x) is a strictly
increasing function, which implies that U(0) > U(x) for all
x ∈ (0, 1]. Hence, the optimal solution of (1) does not allocate
any rate to link 1. For VMC-CSMA, when C is large we
would expect that the resulting rate-allocation will approach
the optimal solution of (1). Hence, the rate allocated to link ℓ
by VMC-CSMA can also be arbitrarily small.
This suggests that without additional restrictions, the value
of rmin

ℓ may be arbitrarily close to 0. However, this effect
has less to do with our VMC-CSMA algorithm. Rather, it
is mainly determined by the system setting and the rate-
allocation corresponding to the maximum utility. Basically,
when the number of links in Eℓ is large or the utility function of
link ℓ has a small derivative, the optimal solution for link ℓ may
already be very small. Motivated by the example, we introduce
the following conditions. Let ∆ℓ = |Eℓ| be the number of
links in the neighborhood of link ℓ. Let Kℓ be the maximum
number of links that can be scheduled simultaneously in the
neighborhood of link ℓ. In the new condition, we assume that
max

ℓ
∆ℓ ≤ ∆ and max

ℓ
Kℓ ≤ K for some constants ∆ and K.

Note that this condition is very general and will likely hold for
a large class of network topologies. Further, we assume that the
utility function of all links is of the form log(·+ h)− log(h).

Under these conditions, the next proposition shows that we
can have a lower bound for rmin

ℓ .
Proposition 6: Suppose that the utility functions of all links

are of the form log(· + h) − log(h). Further, assume that
0 < h < 1

(∆+2)(K−1) and ∆ℓ+1
C < 1

Kℓ(∆ℓ+2) −
h(Kℓ−1)

Kℓ
, ∀ℓ,

then under the VMC-CSMA algorithm, we have rmin
ℓ ≥

1
Kℓ(∆ℓ+2) −

h(Kℓ−1)
Kℓ

− ∆ℓ+1
C .

Proof: The proof is given in Appendix C
With Proposition 6, it is then easy to show the following lower
bound for rmin

ℓ that is independent of the network size.
Corollary 7: Suppose that the utility functions of all links

are of the form log(·+ h)− log(h). If 0 < h ≤ 1
2(∆+2)(K−1)

and C ≥ 4K(∆ + 1)(∆ + 2), then under the VMC-CSMA
algorithm, we have that rmin

ℓ ≥ 1
4K(∆+2) .

Proof: Since h ≤ 1
2(∆+2)(K−1) , we know that h <

1
2(∆ℓ+2)(Kℓ−1) for all ℓ. As a result, we have that 1

Kℓ(∆ℓ+2) −
h(Kℓ−1)

Kℓ
≥ 1

2K(∆+2) . Further, from C ≥ 4K(∆ + 1)(∆ + 2),
we know that for all ℓ, C ≥ 4K(∆ℓ+1)(∆+2) and ∆ℓ+1

C ≤
1

4K(∆+2) . Hence, 1
Kℓ(∆ℓ+2) −

h(Kℓ−1)
Kℓ

− ∆ℓ+1
C ≥ 1

4K(∆+2) . By
Proposition 6, we then have rmin

ℓ ≥ 1
4K(∆+2) .

Proposition 6 and Corollary 7 show that as long as the number
of interfering neighbors of each link is bounded, by making
the utility functions sufficiently steep (i.e., a small h) and by
using a sufficiently large (but constant) number of channels C,
rmin
ℓ can be bounded from below by a constant independent

of the network size. Hence, the average delay of each link ℓ
does not grow with the network size, and the tail distribution
of HOL waiting time is guaranteed to decay quickly.

We note that in [9], the authors show that for open-loop
systems, even at an offered load that is a small fraction of
the optimal capacity, there exists network topologies such that
either the complexity or the delay must grow exponentially
with the network size. We note that our result differs from
[9] in two important aspects. First, the delay definition is
different. We are interested in the steady state delay, i.e., after
the Markov chain converges to the stationary distribution. The
convergence time (which we did not capture in this paper) may
still be exponential in the network size. In contrast, the delay in
[9] is the worst-case delay across time and hence also captures
the transient phase. Second, we use a closed-loop system (with
congestion control) in contrast to an open-loop system in [9].
Hence, our results do not contradict with those of [9].

E. Computational Complexity and Communication Overhead

In this subsection, we discuss the computational complexity
and communication overhead of the VMC-CSMA algorithm. It
is easy to see that for each link, the computational complexity
of the VMC-CSMA algorithm is O(C). This is because
all of the computations can be carried out in parallel at
all links, and every link only needs to go through the C
virtual channels. Further, finding the random permutation in
the “update phase” is of complexity O(C) through the use of
the Fisher-Yates shuffle [25]. Regarding the communication
overhead, note that each link ℓ can use a C-bit vector to
denote its schedule V⃗ℓ across all virtual channels. At each time
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t, a link scheduled by S⃗D(t) may need to broadcast this C-
bit vector to all of its neighbors. Hence, the communication
overhead is also O(C). From Theorem 3 and Corollary 4,
we can see that C = O(logL), which grows very slowly
with the network size. Hence, our algorithm is scalable to
large networks. In practice, all C bits may be put into a
single control packet in one time-slot. For example, if the
size of a control packet is 250 bytes, it can accommodate
C = 2000 virtual channels. Even for a large network with
L = 1000 links, C = 2000 virtual channels are sufficient to
reduce ϵ to be 0.05 (see Theorem 3). Hence, the corresponding
capacity/utility reduction will be very small. If a data packet
of length 2000 bytes (like in 802.11) is transmitted in each
time-slot, such a control packet corresponds to a low overhead
of 12.5%. In practice, this overhead can be further reduced
by reducing the frequency of updates. For example, if the
operation in the update phase is performed every 5 time-
slots, the communication overhead is further reduced to 2.5%.
Note that at each time-slot, we can still randomly choose a
virtual-channel schedule for transmission. Thus, reducing the
frequency of updates will only affect the convergence of the
algorithm, but it will not affect the capacity and delay once
the Markov chain converges to its stationary distribution.

F. VMC-CSMA under Exogenous Packet Arrivals
Throughput this paper, we have focused on an infinite-

backlog setting where the packet injection to the system can
be controlled. In this subsection, we briefly discuss how the
key idea of VMC-CSMA may potentially be generalized to
the setting where packets arrive according to an exogenous
stochastic process. The basic idea is as follows. Assume that
we know the average packet-arrival rate λℓ of each link, and
we know that the vector λ⃗ = [λℓ] is strictly inside the capacity
region Ω, i.e., there exists ϵ1 such that λ⃗ + ϵ11⃗ ∈ Ω. If we
can let the VMC-CSMA algorithm compute a rate-allocation
vector R = [R⃗] such that rmin

ℓ > λℓ + γ, where γ < ϵ1, then
the end-to-end packet delay may also be small. To see this,
assume without loss of generality that the packet arrivals at
each link are i.i.d. across time. As we can see from the proof
of Lemma 5, whenever the event A occurs (whose probability
is close to 1), the service at each link stochastically dominates
an i.i.d. service with probability rmin

ℓ . Hence, as long as
rmin
ℓ > λℓ + γ, we expect that the end-to-end packet delay at

link ℓ will be on the order of 1/γ. The challenges, however,
are to design a utility function to compute such rate-allocation
vector R⃗ and to show exactly that the delay will be O(1/γ).
In the following, we provide an example that resolves the first
challenge, and we leave the second challenge for future work.

Let µℓ = λℓ + ϵ1. The details are provided as follows.
Lemma 8: Suppose that the utility function Uℓ(Rℓ) of each

link ℓ is given by a2Rℓ, if Rℓ < µℓ − ϵ
a2(µℓ − ϵ) + a(Rℓ − µℓ + ϵ), if µℓ − ϵ ≤ Rℓ < µℓ

log(Rℓ − µℓ + h)− log h+ a2(µℓ − ϵ) + aϵ, if Rℓ ≥ µℓ,

where a is a constant. For any 0 < ϵ2 < min
ℓ

µℓ, if a >

max( (L−1) log(1+h)
ϵ2

, (L−1) log(1+h)
ϵ ), then we have that R∗

ℓ ≥
µℓ − ϵ2,∀ℓ.

Proof: We prove this lemma by contradiction. Suppose
that there exists a link ℓ′ such that R∗

ℓ′ < µℓ′ − ϵ2. Recall that
U(R⃗) =

∑
ℓ Uℓ(Rℓ). Consider the following two cases.

Case 1: µ′
ℓ − ϵ ≤ R∗

ℓ′ . In this case, we have

U(λ⃗+ ϵ1)− U(R⃗∗)
= Uℓ′(µℓ′)− Uℓ′(R

∗
ℓ′) +

∑
ℓ̸=ℓ′ [Uℓ(µℓ)− Uℓ(R

∗
ℓ )]

≥ aϵ2 +
∑

{ℓ ̸=ℓ′,R∗
ℓ≥µℓ}

[Uℓ(µℓ)− Uℓ(R
∗
ℓ )]

≥ aϵ2 − (L− 1) log(1 + h) > 0

Note that we use a > (L−1) log(1+h)
ϵ2

for the last inequality.
This contradicts with the fact that R⃗∗ is the solution with
maximum utility.

Case 2: µ′
ℓ − ϵ > R∗

ℓ′ . In this case, we have

U(λ⃗+ ϵ1)− U(R⃗∗)
= Uℓ′(µℓ′)− Uℓ′(R

∗
ℓ′) +

∑
ℓ̸=ℓ′ [Uℓ(µℓ)− Uℓ(R

∗
ℓ )]

≥ Uℓ′(µℓ′)− Uℓ′(µ
′
ℓ − ϵ)− (L− 1) log(1 + h)

≥ aϵ− (L− 1) log(1 + h) > 0

The last inequality comes from the fact that a >
(L−1) log(1+h)

ϵ . This contradicts with the fact that R⃗∗ is the
solution with maximum utility.

Since we reach a contradiction for both case 1 and case 2,
R∗

ℓ ≥ µℓ − ϵ2, ∀ℓ.
With the lower bound for the optimal solution, we can then
expect that a lower bound for rmin

ℓ can also be derived, which
is shown in the following lemma.

Lemma 9: Suppose that the utility function Uℓ(Rℓ) of each
link ℓ is given by a2Rℓ, if Rℓ < µℓ − ϵ

a2(µℓ − ϵ) + a(Rℓ − µℓ + ϵ), if µℓ − ϵ ≤ Rℓ < µℓ

log(Rℓ − µℓ + h)− log h+ a2(µℓ − ϵ) + aϵ, if Rℓ ≥ µℓ,

where a is a constant and ϵ =
√

2 logL
3C = ϵ1/4. For any

0 < ϵ3 < ϵ1/4, 0 < ϵ2 < ϵ1/4, and ϵ2 < ϵ3
3(L−1) , if a >

max( (L−1) log(1+h)
ϵ2

, (L−1) log(1+h)
ϵ , 3(L−1)ϵ

ϵ3
,
√

3(L−1) log(1+h)
ϵ3

),
then we have that rmin

ℓ ≥ µℓ − ϵ− ϵ2 − ϵ3,∀ℓ.
Proof: We prove this lemma by contradiction. Sup-

pose that there exists a link ℓ′ such that rmin
ℓ′ < µℓ′ −

ϵ − ϵ2 − ϵ3. Recall that V⃗ max is the solution to (2), and
rmin
ℓ = min

{V⃗ ∈V,U(r⃗(V⃗ ))=U(r⃗(V⃗ max))}
rℓ(V⃗ ). From the definition

of rmin
ℓ′ , we know that there is a global schedule V⃗ such that

U(r⃗(V⃗ )) = U(r⃗(V⃗ max)) and rℓ′(V⃗ ) = rmin
ℓ′ . Now, from the

proof of Theorem 3, we know that U(r⃗(V⃗ )) ≥ U([R∗
ℓ − ϵ]+).

Further, by Lemma 8, R∗
ℓ ≥ µℓ − ϵ2, ∀ℓ. It then implies that

[R∗
ℓ − ϵ]+ ≥ µℓ − ϵ − ϵ2, and we have that U(r⃗(V⃗ )) ≥∑
ℓ Uℓ(µℓ − ϵ− ϵ2). However,∑

ℓ Uℓ(rℓ(V⃗ ))−
∑

ℓ Uℓ(µℓ − ϵ− ϵ2)
= Uℓ′(r

min
ℓ′ )− Uℓ′(µℓ′ − ϵ− ϵ2)

+
∑
ℓ̸=ℓ′

[Uℓ(rℓ(V⃗ ))− Uℓ(µℓ − ϵ− ϵ2)]

≤ a2(µℓ′ − ϵ− ϵ2 − ϵ3)− a2(µℓ′ − ϵ− ϵ2)
+(L− 1)[log(1 + h) + a2(µℓ − ϵ) + aϵ− a2(µℓ − ϵ− ϵ2)]

= −a2ϵ3 + (L− 1)[log(1 + h) + a2ϵ2 + aϵ]
< 0
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The last inequality follows from the fact that (L − 1)a2ϵ2 <
a2ϵ3
3 , (L− 1)aϵ < a2ϵ3

3 , and (L− 1) log(1 + h) < a2ϵ3
3 .

This contradicts with the fact that U(r⃗(V⃗ )) ≥
∑

ℓ Uℓ(µℓ −
ϵ− ϵ2). Hence, we have rmin

ℓ ≥ µℓ − ϵ− ϵ2 − ϵ3, ∀ℓ.
Since in Lemma 9, we have the conditions that ϵ = ϵ1/4,

ϵ2 < ϵ1/4, and ϵ3 < ϵ1/4. We have that rmin
ℓ ≥ λℓ + ϵ1/4 =

λℓ+γ, ∀ℓ, Note that γ only depends on the value of ϵ1, which
determines the distance from the arrival rate vector to the
boundary of the capacity, and are otherwise independent of
the network size. Also note that in Lemma 9, we may need
to choose a very large parameter a. However, the parameter
a is simply a constant in the utility function, and hence each
link has the freedom to set it to be arbitrary large. Finally,
the complexity of VMC-CSMA is determined by the value of
ϵ, and the corresponding constraint for C. When ϵ = ϵ1/4,
we only need C = 32 logL

3ϵ21
, and the complexity still grows

logarithmically with the network size.

IV. IMPLEMENTATION

In this section, we discuss two implementation issues.
We start with an improved scheduling algorithm. It is well
known that for CSMA algorithms, there is a trade-off between
optimality and convergence speed depending on the value of
α. In practice, we want to choose a suitable α that is not
too large to shorten the convergence time. However, when
α is not very large, we also observe a common source of
performance degradation, which can be explained as follows.
Suppose that the Markov chain has found the optimal state
V⃗ max, and a link ℓ is active in virtual channel k. When α
is not very large, there is a substantial probability that link ℓ
will turn itself off in virtual channel k. If all other links in its
neighborhood, i.e., Eℓ, have interfering links that are active in
virtual channel k, no links in Eℓ can be turned on in virtual
channel k. Hence, link ℓ may turn itself on again in virtual
channel k later, and for link ℓ, the transmission opportunities
during this period are lost unnecessarily. Such performance
degradation can be easily avoided with the following improved
algorithm. We call the schedule computed by VMC-CSMA as
the soft schedule. In addition, we now introduce hard schedule
as follows. Whenever a link ℓ is turned on in virtual channel
k by the soft schedule (i.e. Vℓk = 1), we also turn on link
ℓ in virtual channel k in the hard schedule. However, even if
Vℓk = 0, we will only turn off link ℓ in the virtual channel k in
the hard schedule when a neighboring link of link ℓ decides to
use virtual channel k (i.e., it turns itself on in virtual channel k
by the soft schedule). As a result, the hard schedule will give
up transmission opportunities until the last minute, and we can
avoid the throughput loss due to the reason described above.
Note that our earlier throughput/delay results still hold. Now,
we formally describe this simple fix. We define an additional
hard virtual schedule Hℓk for all virtual-channel schedule Vℓk,
and we will call Vℓk the soft virtual-channel schedule or simply
the virtual schedule. The update of soft virtual schedule Vℓk

will remain the same, and the update of hard virtual schedule
Hℓk is as follows.
Update Hard Virtual Schedule: At each time t,

• If Vℓk(t) = 1, we let Hℓk(t) = 1.

• If Vℓk(t) = 0, we let Hℓk(t) = 0 when link ℓ receives a
broadcast from any link ℓ′ with Vℓ′k(t) = 1, and ℓ′ ∈ Eℓ.
Otherwise, we let Hℓk(t) = Hℓk(t− 1).

Now, we modify the scheduling phase as follows.
Scheduling: At time t, a common virtual channel k is chosen
by all links in the network uniformly at random, and each link
ℓ uses Hℓk(t) as the real schedule at time t.

Note that it is easy to see that each “hard” virtual-channel
schedule will eventually become a maximal schedule. (Recall
that a maximal schedule must be feasible, and no more links
can be added to the schedule without interfering with the links
that has been scheduled.) The reason is that for the kth hard
virtual schedule of all the links, i.e., (H1k,H2k, · · · ,HLk),
once it becomes a maximal schedule, it will remain as a
maximal schedule in the rest of the time because each link
only relinquishes the transmission opportunity when one of its
neighbors is activated by the algorithm. Further, the kth hard
virtual schedule of all the links will have a trend to become
a maximal schedule starting from time 0. This confirms our
claim that we can avoid wasting transmission opportunity
when the soft virtual schedule V⃗ (t) jumps in the Markov
chain. It is easy to see that the throughput performance of this
improved scheduling algorithm using hard schedule is always
better than the algorithm described in Section III-B. Hence,
the analytical results in Section III-C and III-D still hold.

Second, we briefly discuss how to choose the decision
schedule at each time slot. Recall in Section III-B that at each
time slot, we choose a decision schedule S⃗D with a fixed
probability distribution from a set S of decision schedules.
Further, the set S of decision schedules should meet conditions
(C1), (C2), and (C3). Note that for the standard CSMA
algorithms [6], the authors provide a random backoff algorithm
for computing decision schedules that satisfy the first two con-
ditions. There are a number of ways to satisfy the remaining
third condition. One possibility is to assume that there is a
separate control channel (e.g. using CDMA). On the other
hand, if such a separate control channel is not available, the
other possibility is to make the decision schedule more sparse.
Specifically, two active links in the decision schedule do not
interfere with each other (and hence the decision schedule is
a feasible schedule), and the two active links do not share
any common neighbors. As a result, if a link is not scheduled
by the decision schedule, it will not receive more than one
broadcast transmission.

data transmissionC bitsF sub-slot

3 mini-slot

one time slot

Fig. 2. The composition of a time slot.

Such a decision schedule can be computed in each time-
slot via a random-backoff-based algorithm similar to that of
[6] with additional signaling messages to resolve conflicts
at common neighbors. The details are as follows. We first
describe the composition of a time slot as shown in Figure
2. The time slot is composed of three phases. The first phase
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includes F sub-slot, and each sub-slot has three mini-slots.
A decision schedule will be selected distributively in the
first phase. The second phase is the time required for each
link scheduled by the decision schedule to broadcast the C
bits of information for the updated virtual-channel schedules.
The third phase is the actual data transmission. The decision
schedule can be computed in a distributed fashion as follows.
At the beginning of each time slot, we assign each link a
mark bit equal to 0. Each link will choose a value from 1
to F + 1 to attempt to be included in the decision schedule.
If a link chooses F + 1, it will not attempt at all. Suppose
that a link ℓ chooses i, i ≤ F . If link ℓ hears any successful
transmission attempts before sub-slot i, it will set its mark
bit to 1, and it will not attempt to be included in the decision
schedule in this time-slot. On the other hand, if link ℓ does not
hear any successful transmission attempts before sub-slot i, the
transmitter of link ℓ transmits a RTS in the first mini-slot. This
RTS signal indicates to its neighbors that the link ℓ attempts to
be included in the decision schedule. The receiver of link ℓ will
transmit a CTS in the second mini-slot to confirm the reception
of RTS signal. For any other link k that does not choose the
ith sub-slot, it sends a signal in the third mini-slot under one
of the two conditions: (1) if there is a conflict because its
mark bit is 1, and it senses any message transmissions in the
first mini-slot, or (2) it senses a conflict due to more than one
RTS transmissions in the first mini-slot.

At the end of the ith sub-slot, if the transmitter of link ℓ does
not receive a CTS from the receiver for the RTS transmitting
in the first mini-slot, which implies that link ℓ collides with
other transmissions in the first mini-slot, the attempt fails.
Further, if link ℓ hears any signals in the third mini-slot, the
attempt fails. Otherwise, link ℓ is included in the decision
schedule. This algorithm ensures that the links selected in the
decision schedule do not have common neighbors, and hence
their neighboring links can receive the C-bit broadcast without
interference. Further, each link has a positive probability to be
selected in the decision schedule because there is a positive
probability that all the neighboring links will not attempt to
be included in the decision schedule.

V. SIMULATION

We evaluate the VMC-CSMA algorithm in two topolo-
gies with our C++ simulator. Specifically, we simulate the
improved scheduling algorithm and a random backoff-based
decision-schedule algorithm discussed in Section IV. For both
topologies, there is a one-hop flow associated with each link,
and its utility function is given by log(10−5+ ·)− log(10−5).
Further, the simulation time is 15,000 slots.

We first study a 8-by-8 torus interference graph as described
in Section I and compare our algorithm with the standard
CSMA algorithm.3 Note that because of symmetry, the op-
timal rate R∗

ℓ for each link ℓ under this setting will be 0.5.
For the standard CSMA algorithm, the weight is chosen as
wℓ(t) = log(0.5Qℓ(t)), and the parameter β for congestion
control is 0.1. For our VMC-CSMA algorithm, we let C = 30

3Note that we use this simple and symmetric topology first because it allows
us to easily compare with the optimal solution.

and α = 29. The corresponding ϵ = 0.3.4 We denote the node
in the top left corner of the torus as node 0 and the node right
next to it as node 1. Note that node 0 is active in the odd
schedule, and node 1 is active in the even schedule (See Fig.
1). The average throughput, average delay across packets, and
average HOL waiting time across the time-slots for node 0 are
presented in the following table.

throughput delay HOL waiting time
CSMA 0.427 159 372.8

VMC-CSMA 0.479 2.09 2.10
The result shows that our algorithm can indeed achieve
throughput close to the optimal rate. Further, the delay
performance is exactly equal to the inverse of the average
throughput. In contrast, both the packet delay and the HOL
waiting time of the standard CSMA algorithm are 80 and
170 times larger, respectively.5 In Figure 3(a), we plot the tail
distribution of the HOL waiting time under both algorithms.
The HOL waiting time of our algorithm decays quickly, which
confirms Lemma 5 and explains why the average HOL waiting
time is small. In contract, the HOL waiting time of CSMA
decays slowly (see Fig. 3(b)) due to the starvation problem.

To give a sense of the convergence time of our algorithm,
in Fig. 3(c), we plot the time evolution of the instantaneous
system utility

∑L
ℓ=1 Uℓ(rℓ(V⃗ (t))) under different α. The sim-

ulation results show that the utility approaches very close to
the optimal utility after 100 time slot. Further, the utility is
larger than the lower bound given by (1 − ϵ)U([R⃗∗ − ϵ]+)
(Corollary 4) even for a small value of C. Note that when α
is larger, the utility value after convergence is also closer to
the optimal value of (1). However, larger α also incurs longer
convergence time.

Before we proceed to a larger topology, we comment on
the choice of α for different values of C. Through our
simulation, we observe that a rule of thumb is to choose α
to be proportional to C. The reason can be explained by
equation (4). For a fixed value of rℓ =

xi
ℓ

C , as C increases,
in order to maintain the same probability of adding another
virtual channel, we should increase α proportional to C. Our
simulation studies indicate that as long as the ratio α/C
is fixed, the tradeoff between convergence and optimality is
roughly the same for different values of C. As this ratio
increases, the optimality is improved at the cost of a longer
convergence time. Thus, we will use this rule of thumb in the
following simulation results.

Next, we simulate our algorithm under a larger random
topology with 100 nodes and 100 links. We set the maximum
node degree to be 4, and under this constraint, each link
is generated by randomly choosing two nodes.6 We assume
that each link will interfere with the links that are two-hop

4Note that Theorem 3 requires ϵ = 0.1 and a corresponding C = 277.
In this simulation setting, we intentionally choose a small C to show that in
reality we can also use small C to achieve good performance.

5Note that the expected packet delay is an average over packets, and the
expected HOL waiting time is an average across time. As in the classical
Inspector’s Paradox [26], these two ways of taking expectation will lead to
different values when the inter-service time is not memoryless, which is the
case for the standard CSMA algorithm.

6We set a maximum on the node degree simply to guarantee a lower bound
of rmin

ℓ as suggested in Proposition 6 and Corollary 7.
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Fig. 3. The simulation results for the 8-by-8 torus graph.
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Fig. 4. The simulation results for a random network with 100 nodes and 100 links.

away (i.e., the two-hop interference model). In addition to the
standard CSMA algorithm, we will also compare our algorithm
with two other algorithms: the constant-time (CT) distributed
algorithm [27] and the well-known maximum weighted match-
ing algorithm (MWM) [3]. However, We caution that since
these algorithms incur very different computational complexity
and communication overhead, it is difficult to conduct a
completely fair comparison. Because our proposed VMC-
CSMA algorithm, the standard CSMA algorithm, and the CT
algorithm require only one round of local control-message
exchange (including channel sensing) in each iteration, we will
compare their performance directly. On the other hand, the
MWM algorithm is a centralized algorithm that requires the
queue length information of all links. Further, its complexity
may be exponential under the two-hop interference model. In
order to make the comparison slightly more fair, we simulate
a version of the MWM algorithm that exchanges queue length
information and computes the schedule once every 100 time-
slots. We call this algorithm LMWM (Low-frequency MWM).
Note that even at the reduced frequency, the LMWM algorithm
is still very costly to implement due to its high complexity and
the requirement of collecting global queue length information.

In Fig. 4(a), we report the throughput and delay tradeoff of
each algorithm. Specifically, the y-axis is the average packet
delay, and the x-axis is the average error percentage of the rate
vectors computed by these algorithms under various parameter
setting. The error percentage for each link is defined by
max[optimal rate − allocated rate, 0]/optimal rate. Thus, the
most desirable algorithm will correspond to a point close to

the origin, where it attains both high capacity and low delay.
As we can see in Fig. 4(a), for the VMC-CSMA algorithm,
when we vary C (which is labeled next to each point) and
set α = C ∗ 0.48, the VMC-CSMA consistently achieves
low error percentage and low delay. On the other hand, the
performance curves for CSMA and LMWM (each point is
labeled with the value of β, the step size used in the congestion
control) are significantly worse. For CT algorithm, the curve
(each point is labeled with the value of the backoff window
size) exhibits large error percentage because CT can only
achieve a fraction of the capacity region. The performance of
MWM algorithm is also included in Fig. 4(a) for a reference.
However, MWM incurs much higher complexity. Hence, the
VMC-CSMA algorithm is the only one that can attain high
throughput utility and low packet delay with low complexity.

Similar to the torus interference graph, we also report the
tail distribution of the HOL waiting time. Specifically, we let
C = 100 and choose a node where the optimal allocated
rate is 0.2177. The result is shown in Fig. 4(b). It shows
that the tail distribution under our algorithm again decays
quickly. In contrast, the tail distribution of the HOL waiting
time under CSMA algorithm does not decay even after 100.
Finally, we simulate our algorithm under the possibility of
traffic changes and observe how our algorithm adapts with
the change. Specifically, we let C = 100 and α = 48. Further,
we will turn off the traffic on half of the links after 4000
time-slots and turn on the traffic after 8000 time-slots. Then,
we record the evolution of the total utility compared with the
optimal utility computed offline. The result is shown in Fig.
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4(c). We can see that our algorithm adapts well to the traffic
changes, and the instantaneous utility quickly approaches to
the optimal utility.

VI. CONCLUSION

In this paper, we propose a virtual-multi-channel (VMC-)
CSMA algorithm that can provably achieve high throughput
utility and low delay with low complexity for wireless net-
works under the protocol interference model and a single-hop
utility-maximization setting. The key idea of VMC-CSMA is
to resolve the starvation problem of standard CSMA algo-
rithms by emulating a multi-channel system with C virtual
channels and computing multiple feasible schedules simultane-
ously. VMC-CSMA inherits the distributed nature of CSMA,
and the complexity of each link grows linearly with C. We use
a novel probabilistic argument to show that VMC-CSMA can
approach arbitrarily close to the optimal total system utility
with C (and hence the complexity) increasing logarithmically
with the network size. Further, we derive sufficient conditions
for the network topology and utility functions under which
the expected packet delay and the distribution of its head-of-
line (HOL) waiting time can be bounded independently of the
network size. Our simulation results show that VMC-CSMA
algorithm indeed achieves both high throughput utility and
low delay with low-complexity operations. In the future work,
we will study how to extend this novel idea to the wireless
networks with arrivals and multi-hop traffic.

APPENDIX A
PROOF OF PROPOSITION 1

It is easy to verify that the Markov Chain is irreducible
and aperiodic. The reason is that every feasible state V⃗
can communicate with state 0⃗, and the period of state zero
is 1. By [26, Theorem 4.3.3], if we can find a stationary
distribution of the Markov chain, this stationary distribution
will be the unique distribution. Now, we will show that
P (V⃗ ) = 1

Z exp(
∑L

ℓ=1 Uℓ(
xℓ(V⃗ )

C )) is the correct distribution.
We will demonstrate the correctness by verifying the local
balance equations. Consider two states V⃗ 1 and V⃗ 2. If V⃗ 1 has a
transition to V⃗ 2, it implies that there exists a decision schedule
S⃗D such that for every link ℓ that is scheduled by S⃗D, it is
feasible to change the state from V⃗ 1

ℓ to V⃗ 2
ℓ . Further, if link ℓ

is not scheduled by S⃗D, then V⃗ 1
ℓ = V⃗ 2

ℓ . Otherwise, there is no
transition from V⃗ 1 to V⃗ 2. Now, based on these conditions, we
also know that there is a transition from V⃗ 2 to V⃗ 1. The reason
is that for every link ℓ that is scheduled by the same decision
schedule S⃗D, it is feasible to change the state from V⃗ 2

ℓ to V⃗ 1
ℓ .

Further, if link ℓ is not scheduled by S⃗D, then V⃗ 2
ℓ = V⃗ 1

ℓ . Note
that there may be multiple decision schedules that can be used
to change the state from V⃗ 1 to V⃗ 2. We will call these decision
schedules “feasible decision schedules”. Further, for any link ℓ
that is scheduled by the decision schedule, any permutation can
be used to change the state from V⃗ 1

ℓ to V⃗ 2
ℓ . Now, let P (S⃗D)

be the probability that decision schedule S⃗D is chosen. Also,
let n⃗ℓ = (nℓ

1, · · · , nℓ
C) be a vector represent a permutation of

the set {1, 2, · · · , C}, and let n⃗′ℓ = (nℓ
C , · · · , nℓ

1). Note that

n⃗′ℓ is the permutation n⃗ℓ in reverse order. To verify the local
balance equations, we only need to show that

P (V⃗ 1)
∑

{feasible S⃗D}

P (S⃗D)
∏

{ℓ∈S⃗D}

(
∑
n⃗ℓ

Pℓ,nℓ
1
· · ·Pℓ,nℓ

C

C!
)

= P (V⃗ 2)
∑

{feasible S⃗D}

P (S⃗D)
∏

{ℓ∈S⃗D}

(
∑
n⃗′ℓ

P ′
ℓ,nℓ

C
· · ·P ′

ℓ,nℓ
1

C!
).

(8)
Note that Pℓ,nℓ

i
is the probability of changing V 1

ℓ,nℓ
i

to V 2
ℓ,nℓ

i
,

which is the ith iteration of updating the virtual-channel
schedules from V⃗ 1

ℓ to V⃗ 2
ℓ with permutation n⃗ℓ. Similarly,

P ′
ℓ,nℓ

i
is the probability of changing the state from V 2

ℓ,nℓ
i

to
V 1
ℓ,nℓ

i
, which is the (C + 1 − i)th iteration of updating the

virtual-channel schedules from V⃗ 2
ℓ to V⃗ 1

ℓ with permutation
n⃗′ℓ. Let fℓ(x) = exp(αUℓ(

x
C )). Also, let x2

ℓ = xℓ(V⃗
2), and

x1
ℓ = xℓ(V⃗

1). Recall that for any ℓ that is not scheduled
by S⃗D, we have that V⃗ 2

ℓ = V⃗ 1
ℓ . It implies that x2

ℓ = x1
ℓ

if ℓ is not scheduled by S⃗D. We can plug in P (V⃗ i) =
1
Z exp(α

∑L
ℓ=1 Uℓ(

xi
ℓ

C )), i = 1, 2, and rewrite equation (8) to
the following equation:∑

{feasible S⃗D}

P (S⃗D)

Z

∏
{ℓ∈S⃗D}

(
∑
n⃗ℓ

Pℓ,nℓ
1
· · ·Pℓ,nℓ

C

C!
)fℓ(x

1
ℓ)

=
∑

{feasible S⃗D}

P (S⃗D)

Z

∏
{ℓ∈S⃗D}

(
∑
n⃗′ℓ

P ′
ℓ,nℓ

C
· · ·P ′

ℓ,nℓ
1

C!
)fℓ(x

2
ℓ).

(9)
If we can show that given any permutation n⃗ℓ = (nℓ

1, · · · , nℓ
C),

we have that

fℓ(x
1
ℓ)Pℓ,nℓ

1
· · ·Pℓ,nℓ

C
= P ′

ℓ,nℓ
C
· · ·P ′

ℓ,nℓ
1
fℓ(x

2
ℓ), (10)

then equation (9) will be true, and we could finish the proof.
Now, we show that equation (10) is true.

By equation (3), Pℓ,nℓ
i

and P ′
ℓ,nℓ

i
can be described by

fractions, and we will show that the denominator (resp. nu-
merator) on the left hand side of equation (10) is equal to
the denominator (resp. numerator) on the right hand side of
equation (10). We first focus on at the numerator. Note that
the number of virtual channels activated by link ℓ, i.e., xℓ,
determines the probability of updating the schedule of the
virtual channel. Further, note that the product operation on
the left hand side of equation (10) implies that we proceed
the operation with the order depending on the permutation
vector (nℓ

1, · · · , nℓ
C). Similarly, for the right hand side of

equation (10), we proceed the product operation with the order
depending on the permutation vector (nℓ

C , · · · , nℓ
1). Hence, we

know that for the left hand side of equation (10), the value of
xℓ right before updating the schedule of virtual channel nℓ

k is

x1
ℓ +

k−1∑
i=1

(V 2
ℓ,nℓ

i
− V 1

ℓ,nℓ
i
). (11)

Similarly, for the right hand side of equation (10), the value
of xℓ right before updating the schedule of virtual channel nℓ

k

is

x2
ℓ +

k+1∑
i=C

(V 1
ℓ,nℓ

i
− V 2

ℓ,nℓ
i
). (12)
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Also, we have the equality between x1
ℓ and x2

ℓ

x2
ℓ = x1

ℓ +

C∑
i=1

(V 2
ℓ,nℓ

i
− V 1

ℓ,nℓ
i
). (13)

From equations (3), (11), and (12), we know that the numerator
on the left hand side of equation (10) is equal to

fℓ(x
1
ℓ)

C∏
k=1

fℓ(x
1
ℓ +

k∑
i=1

(V 2
ℓ,nℓ

i
− V 1

ℓ,nℓ
i
)). (14)

Similarly, we know that the numerator on the right hand side
of equation (10) is equal to

fℓ(x
2
ℓ)

1∏
k=C

fℓ(x
2
ℓ +

k∑
i=C

(V 1
ℓ,nℓ

i
− V 2

ℓ,nℓ
i
)). (15)

It then follows from equation (13) that equation (14) equals to
equation (15). Hence, the numerator on the left hand side of
equation (10) equals to the numerator on the right hand side of
equation (10). Now, we focus on the denominator of equation
(10). We will show that the denominator of Pℓ,nℓ

k
equal to that

of P ′
ℓ,nℓ

k

for all 1 ≤ k ≤ C. Specifically, from equations (3),
(11), and (12), we know that the denominator of Pℓ,nℓ

k
is

fℓ(x
1
ℓ +

∑k−1
i=1 (V

2
ℓ,nℓ

i
− V 1

ℓ,nℓ
i
))

+ fℓ(x
1
ℓ +

∑k−1
i=1 (V

2
ℓ,nℓ

i
− V 1

ℓ,nℓ
i
)

+1{V 1

ℓ,nℓ
k

=0} − 1{V 1

ℓ,nℓ
k

=1}),

(16)

and the denominator of P ′
ℓ,nℓ

k

is

fℓ(x
2
ℓ +

∑k+1
i=C(V

1
ℓ,nℓ

i
− V 2

ℓ,nℓ
i
))

+ fℓ(x
2
ℓ +

∑k+1
i=C(V

1
ℓ,nℓ

i
− V 2

ℓ,nℓ
i
)

+1{V 2

ℓ,nℓ
k

=0} − 1{V 2

ℓ,nℓ
k

=1}).

(17)

Let y = x1
ℓ +

∑k−1
i=1 (V

2
ℓ,nℓ

i
− V 1

ℓ,nℓ
i
). We can rewrite equation

(16) as

fℓ(y) + fℓ(y + 1{V 1

ℓ,nℓ
k

=0} − 1{V 1

ℓ,nℓ
k

=1}). (18)

By equation (13), we can also rewrite equation (17) as

fℓ(y + V 2
ℓ,nℓ

k

− V 1
ℓ,nℓ

k

)

+ fℓ(y + V 2
ℓ,nℓ

k

− V 1
ℓ,nℓ

k

+ 1{V 2

ℓ,nℓ
k

=0} − 1{V 2

ℓ,nℓ
k

=1}).

(19)
It is then easy to show that under all four possible conditions,
i.e, (V 2

ℓ,nℓ
k

, V 1
ℓ,nℓ

k

) = (0, 0), (0, 1), (1, 0), or (1, 1), equation
(18) is equal to equation (19). Hence, the denominator of Pℓ,nℓ

k

is equal to that of P ′
ℓ,nℓ

k

.
Now, we have proved that equation (10) is true. This implies

that equation (8) is true, and we have verified the local balance
equations. This concludes the proof.

APPENDIX B
PROOF OF PROPOSITION 2

We first prove some lemmas that are required for proving
Proposition 2.

Lemma 10: If 0 < ϵ ≤ 0.1, 3r2− (3+2ϵ)r+1+ ϵ > 0, ∀r.

Proof: Let f(r) = 3r2− (3+2ϵ)r+1+ϵ. Since f ′′(r) =
6 > 0, we know that there is a global minimum. Solving
f ′(r) = 0, we can get that r = 3+2ϵ

6 will lead to the minimum
value. Hence,

min
r

f(r) =
3− 4ϵ2

12
> 0,

where the inequality follows from ϵ ≤ 0.1. We can then
conclude that 3r2 − (3 + 2ϵ)r + 1 + ϵ > 0.

Lemma 11: If 0 < ϵ, log( 1−2ϵ
1+2ϵ ) + 4ϵ < 0.

Proof: Let f(ϵ) = log( 1−2ϵ
1+2ϵ )+4ϵ. We know that f ′(ϵ) =

−4
1−4ϵ2 + 4. Hence, f ′(ϵ) < 0 if ϵ > 0. Further, since f(ϵ) is
continuous and differentiable, by the mean-value theorem, for
any ϵ > 0, we have that

f(ϵ) = f(ϵ)− f(0) = f ′(δ)ϵ, 0 < δ < ϵ.

Hence, f(ϵ) < 0, and we finish the proof.
Lemma 12: If 0 < ϵ ≤ 0.1 and ϵ < r < 1,

(1− r + ϵ) log(
1− r + ϵ

1− r
) + (r − ϵ) log(

r − ϵ

r
) >

3

2
ϵ2

Now, we can prove Proposition 2.
Proof of Proposition 2: Recall that R⃗∗ = [R∗

ℓ ] is the
optimal rate allocation of problem (1). By Caratheodory’s
Theorem [23], R⃗∗ can be represented as a convex combi-
nation of L + 1 feasible schedules S⃗1, S⃗2, · · · , S⃗L+1, i.e.,
R⃗∗ =

∑L+1
i=1 αiS⃗i, where αi ≥ 0 and

∑L+1
i=1 αi = 1. Now,

consider the following random system. There are C trials.
For each trial k = 1, · · · , C, choose a S⃗ from S⃗1, · · · , S⃗L+1

based on the probability distribution P ({S⃗ = S⃗i}) = αi,
for all i, independently across k. Let rsℓ be the number of
times link ℓ is scheduled by this random set of C schedules
divided by C. Then, in order to show that there exists V⃗ s such
that rℓ(V⃗ s) ≥ R∗

ℓ − ϵ, for all link ℓ, it is sufficient to show
that the following event occurs with a positive probability:
R∗

ℓ − rsℓ ≤ ϵ for all links ℓ. Note that by union bound, we
have P (

∩
ℓ{R∗

ℓ − rsℓ ≤ ϵ}) ≥ 1 −
∑L

ℓ=1 P (R∗
ℓ − rsℓ > ϵ).

Hence, it is sufficient to show that

P (R∗
ℓ − rsℓ > ϵ) <

1

L
, for all links ℓ. (20)

Consider a fixed link ℓ. Intuitively, since the probability that
link ℓ is active in each trial is equal to R∗

ℓ , i.i.d. across trials,
(20) should hold when C is sufficiently large. Precisely, note
that (20) holds trivially if R∗

ℓ ≤ ϵ. Further, if R∗
ℓ = 1, then

link ℓ will be activated by all schedules S⃗i, and P (R∗
ℓ − rsℓ >

ϵ) = 0. Hence, we only need to consider the possibility that

ϵ < R∗
ℓ < 1. (21)

Let h be a random variable that represents the number of times
that link ℓ is activated by the series of C random schedules,
and rsℓ = h

C . Note that h is a Binomial random variable, and
its moment generating function is E[e−

ht
C ] = (R∗

ℓe
− t

C + 1−
R∗

ℓ )
C . Using the Chernoff bound, we then have, for all t > 0,

P (R∗
ℓ − rsℓ > ϵ) = P (− h

C > ϵ−R∗
ℓ )

≤ et(R
∗
ℓ−ϵ)E[e−

ht
C ] = ef(t),

(22)
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where f(t) = t(R∗
ℓ − ϵ) + C log(R∗

ℓe
− t

C + 1 − R∗
ℓ ), ∀t > 0.

To get the best bound, we solve the minimum of

f(t) = t(R∗
ℓ − ϵ) + C log(R∗

ℓe
− t

C + 1−R∗
ℓ ),∀t > 0.

We first observe that

f ′′(t) =
R∗

ℓ

C e−
t
C (1−R∗

ℓ )

(R∗
ℓe

− t
C + 1−R∗

ℓ )
2
> 0, ∀t > 0,

which follows from equation (21). Therefore, f(t) is strictly
convex, and there is one global minimum. Hence, we find the
minimum by solving

f ′(t) = (R∗
ℓ − ϵ) +

−R∗
ℓ e

− t
C

R∗
ℓ e

− t
C +1−R∗

ℓ

= 0

⇔ e−
t
C =

(1−R∗
ℓ )(R

∗
ℓ−ϵ)

R∗
ℓ (1−R∗

ℓ+ϵ) .
(23)

Substituting (23) into (22), we can then show that

P (R∗
ℓ − rsℓ > ϵ)

≤
[(

R∗
ℓ−ϵ
R∗

ℓ

)−(R∗
ℓ−ϵ) (

1−R∗
ℓ

1−R∗
ℓ+ϵ

)1−R∗
ℓ+ϵ

]C
.

(24)

Hence, a sufficient condition of (20) to hold is

C > logL

(1−R∗
ℓ+ϵ) log(

1−R∗
ℓ
+ϵ

1−R∗
ℓ

)+(R∗
ℓ−ϵ) log(

R∗
ℓ
−ϵ

R∗
ℓ

)
. (25)

It then follows from C ≥ 2 logL
3ϵ2 , Lemma 12, equation (25),

and equation (24) that P (R∗
ℓ − rsℓ > ϵ) < 1

L if ϵ < R∗
ℓ < 1.

Hence, equation (20) is true, and we finish the proof.

APPENDIX C
PROOF OF PROPOSITION 6

We first prove some lemmas that are required for proving
Proposition 6. In the following lemmas, we assume that 0 <
h < 1

(∆+2)(K−1) .

Lemma 13: If 0 < ϵ < 1
(∆ℓ+2)(1+Kℓ)

− (Kℓ−1)h
Kℓ+1 , then log(ϵ+

h)− log(h) > Kℓ(log(
1

∆ℓ+2 + h)− log( 1
∆ℓ+2 + h− ϵ)).

Proof: By the condition of h, we know that
1

(∆ℓ+2)(1+Kℓ)
− (Kℓ−1)h

Kℓ+1 > 0. Let f(ϵ) = log(ϵ + h) −
log(h)−Kℓ(log(

1
∆ℓ+2 + h)− log( 1

∆ℓ+2 + h− ϵ)). We know
f(0) = 0. We will show that f ′(ϵ) > 0, when 0 < ϵ <

1
(∆ℓ+2)(1+Kℓ)

− (Kℓ−1)h
Kℓ+1 . This then implies that f(ϵ) > 0

when 0 < ϵ < 1
(∆ℓ+2)(1+Kℓ)

− (Kℓ−1)h
Kℓ+1 . Now, f ′(ϵ) > 0

if and only if 1
ϵ+h − Kℓ

1
∆ℓ+2+h−ϵ

> 0, which is equivalent to

ϵ < 1
(∆ℓ+2)(1+Kℓ)

− (Kℓ−1)h
Kℓ+1 . This concludes the proof.

Lemma 14: Let x = 1
Kℓ(∆ℓ+2) −

h(Kℓ−1)
Kℓ

. If 0 < ϵ < x,
then log(x+ h)− log(x+ h− ϵ) > Kℓ(log(

1
∆ℓ+2 + h+ ϵ)−

log( 1
∆ℓ+2 + h)).
Proof: By the condition of h, we know that x > 0. Let

f(ϵ) = log(x + h) − log(x + h − ϵ) − Kℓ(log(
1

∆ℓ+2 + h +

ϵ)− log( 1
∆ℓ+2 + h)). We know f(0) = 0. We will show that

f ′(ϵ) > 0 if ϵ > 0. This then implies that f(ϵ) > 0 when
ϵ > 0. Now, f ′(ϵ) > 0 if and only if 1

x+h−ϵ −
Kℓ

1
∆ℓ+2+h+ϵ

> 0,

which is equivalent to ϵ > h(Kℓ−1)
1+Kℓ

+ xKℓ

1+Kℓ
− 1

(∆ℓ+2)(Kℓ+1) =
0. This concludes the proof.

Lemma 15: If we have x1 < x2 ≤ x4, x1 ≤ x3 < x4,
and x2 − x1 = x4 − x3, then log(x2 + h) − log(x1 + h) ≥
log(x4 + h)− log(x3 + h).

Proof: If x4 = x2 or x3 = x1, we know that x4 = x2

and x3 = x1. It is then trivial that log(x2 + h) − log(x1 +
h) ≥ log(x4 + h)− log(x3 + h). Hence, assume that x4 > x2

and x3 > x1. Since log(· + h) is concave, we know that for
x′
1 < x′

2 < x′
3 < x′

4,

log(x′
2+h)−log(x′

1+h)
x′
2−x′

1
≥ log(x′

3+h)−log(x′
2+h)

x′
3−x′

2

≥ log(x′
4+h)−log(x′

3+h)
x′
4−x′

3
.

(26)

Consider three subcases.
Subcase 1.1: x3 > x2 In this case, let x′

i = xi, 1 ≤ i ≤ 4.
It then follows from (26) that log(x2 + h) − log(x1 + h) ≥
log(x4 + h)− log(x3 + h).

Subcase 1.2: x3 = x2 In this case, let x′
1 = x1, x

′
2 = x2 =

x3, and x′
3 = x4. It then follows from (26) that log(x2+h)−

log(x1 + h) ≥ log(x4 + h)− log(x3 + h).
Subcase 1.3: x3 < x2 In this case, let x′

1 = x1, x
′
2 =

x3, x
′
3 = x2, and x′

4 = x4. It then follows from (26) and
x3−x1 = x4−x2 that log(x3+h)− log(x1+h) ≥ log(x4+
h)− log(x2+h). Add log(x2+h)− log(x3+h) to both sides.
We then have that log(x2+h)− log(x1+h) ≥ log(x4+h)−
log(x3 + h).

For all three subcases, we know that log(x2+h)− log(x1+
h) ≥ log(x4 + h)− log(x3 + h). This concludes the proof.

Lemma 16: Consider link ℓ and n links ℓ1, ℓ2, · · · , ℓn, where
link ℓ interferes with all n links, but these n links do not
interfere with each other. Suppose that the rate of link ℓ is rℓ,
and the rate of link ℓi is rℓi . Further, suppose that n ≤ Kℓ,
and the utility function of all links is log(·+ h)− log(h).

1) Suppose that 1
C < 1

(∆ℓ+2)(1+Kℓ)
− (Kℓ−1)h

Kℓ+1 and 1
C ≤

1
∆ℓ+2 . If rℓ = 0 and rℓi ≥ 1

∆ℓ+2 , for all i, then Uℓ(rℓ+
1
C ) +

∑n
i=1 Uℓi(rℓi − 1

C ) > Uℓ(rℓ) +
∑n

i=1 Uℓi(rℓi).

2) Suppose that 1
C < 1

Kℓ(∆ℓ+2) − h(Kℓ−1)
Kℓ

. If 0 < rℓ <
1

Kℓ(∆ℓ+2) − h(Kℓ−1)
Kℓ

− ∆ℓ+1
C and rℓi ≥ 1

∆ℓ+2 + 1
C ,

then Uℓ(rℓ + 1
C ) +

∑n
i=1 Uℓi(rℓi − 1

C ) > Uℓ(rℓ) +∑n
i=1 Uℓi(rℓi).

Proof: We first prove (1). We know that Uℓ(rℓ +
1
C ) −

Uℓ(rℓ) = log( 1
C +h)− log(h) and Uℓi(rℓi)−Uℓi(rℓi − 1

C ) =
log(rℓi + h) − log(rℓi − 1

C + h). For each link ℓi, let x4 =
rℓi , x3 = rℓ1 − 1

C , x2 = 1
∆ℓ+2 , and x1 = 1

∆ℓ+2 − 1
C . From

Lemma 15, we have that log( 1
∆ℓ+2 + h) − log( 1

∆ℓ+2 − 1
C +

h) ≥ log(rℓi +h)− log(rℓi − 1
C +h). Hence, Kℓ(log(

1
∆ℓ+2 +

h) − log( 1
∆ℓ+2 − 1

C + h)) ≥
∑n

i=1 Uℓi(rℓi) − Uℓi(rℓi − 1
C ).

From Lemma 13, we also have that log( 1
C + h) − log(h) >

Kℓ(log(
1

∆ℓ+2 + h) − log( 1
∆ℓ+2 − 1

C + h)). Hence, Uℓ(rℓ +
1
C )− Uℓ(rℓ) >

∑n
i=1 Uℓi(rℓi)− Uℓi(rℓi − 1

C ).
Now, we prove (2). We know that Uℓ(rℓ +

1
C )− Uℓ(rℓ) =

log(rℓ +
1
C +h)− log(rℓ +h) and Uℓi(rℓi)−Uℓi(rℓi − 1

C ) =

log(rℓi +h)− log(rℓi − 1
C +h). Let x = 1

Kℓ(∆ℓ+2) −
h(Kℓ−1)

Kℓ
.

Let x4 = x, x3 = x − 1
C , x2 = rℓ +

1
C , and x1 = rℓ. From

Lemma 15, we can then show that log(rℓ+ 1
C +h)− log(rℓ+

h) ≥ log(x + h) − log(x − 1
C + h). For each link ℓi, let

x4 = rℓi , x3 = rℓi − 1
C , x2 = 1

∆ℓ+2 + 1
C , and x1 = 1

∆ℓ+2 .
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From Lemma 15, we can then show that log( 1
∆ℓ+2 + 1

C +

h)− log( 1
∆ℓ+2 +h) ≥ log(rℓi +h)− log(rℓi − 1

C +h). Hence,
Kℓ(log(

1
∆ℓ+2 +

1
C +h)− log( 1

∆ℓ+2 +h)) ≥
∑n

i=1 Uℓi(rℓi)−
Uℓi(rℓi− 1

C ). From Lemma 14, we also know that log(x+h)−
log(x− 1

C + h) > Kℓ(log(
1

∆ℓ+2 + h+ 1
C )− log( 1

∆ℓ+2 + h)).
Hence, Uℓ(rℓ+

1
C )−Uℓ(rℓ) >

∑n
i=1 Uℓi(rℓi)−Uℓi(rℓi − 1

C ).

Proof of Proposition 6: We prove this proposition by
contradiction. Suppose that there is a link ℓ with rmin

ℓ <
1

Kℓ(∆ℓ+2) −
h(Kℓ−1)

Kℓ
− ∆ℓ+1

C . Let Iℓ = Eℓ
∪
{ℓ}. This implies

that there is a V⃗ such that V⃗ ∈ V , U(r⃗(V⃗ )) = U(r⃗(V⃗ max)),
i.e., U(r⃗(V⃗ )) ≥ U(r⃗(V⃗ ′)), for all V⃗ ′ ∈ V , and rℓ(V⃗ ) <

1
Kℓ(∆ℓ+2) −

h(Kℓ−1)
Kℓ

− ∆ℓ+1
C . In the sequel, we refer to the

rate rℓ(V⃗ ) as the optimal rate of each link ℓ. We will construct
another solution V⃗ ′ ∈ V such that U(r⃗(V⃗ ′)) > U(r⃗(V⃗ )),
which then leads to a contradiction.

From the definition of r⃗(V⃗ ), r⃗(V⃗ ) can be described by the
convex combination of C schedules, where each schedule has
L dimensions. Denote these schedules as S⃗1, · · · , S⃗C . Let ai
be the coefficient of S⃗i. Note that ai = 1/C for all i. Let
S = {S⃗i, 1 ≤ i ≤ C}. Now, we can truncate the schedule
S⃗i to the set Iℓ, i.e., we only keep the elements of S⃗i that
correspond to links in Iℓ. Let S⃗′

i be the truncated version of
S⃗i. We then know that the optimal rate for all links ℓ in Iℓ can
also be described by the convex combination of C schedules,
i.e., S⃗′

i, 1 ≤ i ≤ C, with dimension ∆ℓ+1. Let S ′ = {S⃗′
i, 1 ≤

i ≤ C}. Next, we will show that the optimal rate for all links
ℓ in Iℓ can actually be described by the convex combination
of k nonempty schedules from S ′ with positive coefficient,
where k is at most ∆ℓ + 2. First, S⃗′

i is not empty for each i.
Otherwise, we can include link ℓ in S⃗i, and we have another
global schedule with larger utility. Second, we can follow the
proof of the Caratheodory’s theorem to describe the optimal
rate in Iℓ as the convex combination of ∆ℓ+2 schedules in S ′

with positive coefficients. Without loss of generality, let these
schedules be S⃗′

1, · · · , S⃗′
k, k ≤ ∆ℓ+2. Let a′i be the weight of

S⃗′
i, 1 ≤ i ≤ k. We know that

∑k
i=1 a

′
i = 1, a′i > 0. Note that

for each S⃗′
i, there exists at least one corresponding untruncated

schedule S⃗i with a positive coefficient, i.e., ai = 1/C > 0,
and its truncation in Iℓ equal to S⃗′

i. Consider the following
two cases.

Case 1: rℓ(V⃗ ) = 0. In this case, we know that all these k
schedules do not schedule link ℓ. Further, since

∑k
i=1 a

′
i =

1, we can conclude that one of the k schedules must have
weight no smaller than 1

∆ℓ+2 . Without loss of generality, let
this schedule be S⃗′

1, and we have that a′1 ≥ 1
∆ℓ+2 . This implies

that the links scheduled by S⃗′
1 have optimal rate no smaller

than 1
∆ℓ+2 . Recall that S⃗1 is the corresponding untruncated

schedule with coefficient a1 = 1/C. Now, construct a schedule
S⃗ such that its schedule for link ℓ is the same as S⃗1 if ℓ /∈ Iℓ,
and it only schedules link ℓ in Iℓ. From the condition ∆ℓ+1

C <
1

Kℓ(∆ℓ+2) −
h(Kℓ−1)

Kℓ
, we can show that 1

C < 1
(∆ℓ+2)(1+Kℓ)

−
(Kℓ−1)h
Kℓ+1 and 1

C ≤ 1
∆ℓ+2 .

Consider another solution V⃗ ′ such that r⃗(V⃗ ′) =∑C
i=2

1
C S⃗i +

1
C S⃗. Suppose that there are n links scheduled

in S⃗′
1. Denote these n links as ℓi, i = 1, 2, · · · , n. Note that

n ≤ Kℓ. Then U(r⃗(V⃗ ′)) − U(r⃗(V⃗ )) = Uℓ(rℓ(V⃗ ) + 1
C ) −

Uℓ(rℓ(V⃗ ))−(
∑n

i=1 Uℓi(rℓi(V⃗ ))−Uℓi(rℓi(V⃗ )− 1
C )). For each

link ℓi scheduled in S⃗′
1, we know that rℓi(V⃗ ) ≥ 1

∆ℓ+2 . By
Lemma 16 (1), we then know that U(r⃗(V⃗ ′))−U(r⃗(V⃗ )) > 0.
This implies that the utility of r⃗(V⃗ ′) is larger than the
utility of r⃗(V⃗ ), which contradicts with the assumption that
U(r⃗(V⃗ )) = U(r⃗(V⃗ max)).

Case 2: rℓ(V⃗ ) > 0. We know that every feasible schedule
that schedules at least one link in Eℓ can not schedule link ℓ
because every link in Eℓ interferes with link ℓ. Further, every
schedule that schedules link ℓ can not schedule any links in
Eℓ. Hence, rℓ(V⃗ ) is equal to the sum of the coefficient of
the k schedules that only schedule link ℓ, and there exists at
lease one schedule (from the k schedules) that schedules link
ℓ. We then know that there are at most ∆ℓ + 1 schedules
(from the k schedules) that do not schedule link ℓ. (Note
that this step does not hold in Case 1.) Since rℓ(V⃗ ) <

1
Kℓ(∆ℓ+2) − h(Kℓ−1)

Kℓ
− ∆ℓ+1

C , we know that the sum of the
weight of the rest k′ schedules, 0 < k′ ≤ ∆ℓ+1, is larger than
Kℓ(∆ℓ+2)−1
Kℓ(∆ℓ+2) + h(Kℓ−1)

Kℓ
+ ∆ℓ+1

C . Hence, we can conclude that
one of the remaining k′ schedules must have weight larger than

Kℓ(∆ℓ+2)−1
Kℓ(∆ℓ+2)(∆ℓ+1) +

h(Kℓ−1)
Kℓ(∆ℓ+1) +

1
C , which can be shown to be

no smaller than 1
∆ℓ+2 +

1
C . Without loss of generality, let this

schedule be S⃗′
1, and we have that a′1 > 1

∆ℓ+2+
1
C . This implies

that the links scheduled by S⃗′
1 have rate larger than 1

∆ℓ+2+
1
C .

Recall that S⃗1 is the corresponding untruncated schedule with
coefficient a1 = 1/C. Now, construct a schedule S⃗ such that
its schedule for link ℓ is the same as S⃗1 if ℓ /∈ Iℓ, and it only
schedules link ℓ in Iℓ. Suppose that there are n links scheduled
in S⃗′

1. Denote these n links as ℓi, i = 1, 2, · · · , n. Note that
n ≤ Kℓ. Recall that 0 < rℓ(V⃗ ) < 1

Kℓ(∆ℓ+2)−
h(Kℓ−1)

Kℓ
−∆ℓ+1

C ,
and from a′1 > 1

∆ℓ+2 + 1
C , we have that 1

∆ℓ+2 + 1
C ≤ rℓi(V⃗ )

for any link ℓi scheduled in S⃗′
1.

Consider another solution V⃗ ′ such that r⃗(V⃗ ′) =∑C
i=2

1
C S⃗i +

1
C S⃗. Then U(r⃗(V⃗ ′))− U(r⃗(V⃗ )) = Uℓ(rℓ(V⃗ ) +

1
C )−Uℓ(rℓ(V⃗ ))−(

∑n
i=1 Uℓi(rℓi(V⃗ ))−Uℓi(rℓi(V⃗ )− 1

C )). By
Lemma 16 (2), we then know that U(r⃗(V⃗ ′))−U(r⃗(V⃗ )) > 0.
This implies that the utility of r⃗(V⃗ ′) is larger than the
utility of r⃗(V⃗ ), which contradicts with the assumption that
U(r⃗(V⃗ )) = U(r⃗(V⃗ max)).

Since for both cases, the assumption rℓ(V⃗ ) < 1
Kℓ(∆ℓ+2) −

h(Kℓ−1)
Kℓ

− ∆ℓ+1
C leads to a contradiction, we conclude that

rmin
ℓ ≥ 1

Kℓ(∆ℓ+2)−
h(Kℓ−1)

Kℓ
−∆ℓ+1

C . This concludes the proof.
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