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Abstract

Peer-to-Peer (P2P) streaming technologies can take advantage of the upload capacity of clients, and hence can

scale to large content distribution networks with lower cost. A fundamental question for P2P streaming systems is

the maximum streaming rate that all users can sustain. Prior works have studied the optimal streaming rate for a

complete network, where every peer is assumed to be able to communicate with all other peers. This is however an

impractical assumption in real systems. In this paper, we are interested in the achievable streaming rate when each

peer can only connect to a small number of neighbors. We show that even with a random peer-selection algorithm

and uniform rate allocation, as long as each peer maintains Ω(logN) downstream neighbors, where N is the total

number of peers in the system, the system can asymptotically achieve a streaming rate that is close to the optimal

streaming rate of a complete network. These results reveal a number of important insights into the dynamics of the

system, base on which we then design simple improved algorithms that can reduce the constant factor in front of the

Ω(logN) term, yet can achieve the same level of performance guarantee. Simulation results are provided to verify

our analysis.

I. INTRODUCTION

With the proliferation of high-speed broadband services, the demand for rich multimedia content over the Internet,

in particular high-quality video delivery over the Internet, has kept increasing. Streaming video directly from the

server requires a large amount of upload bandwidth at the server, which can be very costly. The service quality can

also be poor when the clients are far away from the server. In addition, it may be difficult for the server bandwidth

to keep up when the demand is exceedingly high. There have been different approaches to off-load traffic from the

server, using either CDN (content distribution network) or P2P (peer-to-peer) technologies. Deploying a large CDN

can introduce a high fixed cost. In contrast, P2P technologies are particularly attractive because they take advantage

of the upload bandwidth of the clients, which does not incur additional cost to the video service provider. Several

well-known commercial P2P live streaming systems have been successfully deployed, include CoolStreaming [2],
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PPLIVE [3], TVAnts [4], UUSEE [5], PPStream [6]. A typical P2P streaming system can now offer thousands of

TV channels or movies for viewing, and may serve hundreds of thousands of users simultaneously [5].

In contrast to the practical success of these P2P streaming systems, the theoretical understanding of the perfor-

mance of P2P streaming seems to be lagging behind, which may impede further improvement of P2P live streaming.

A basic question can be asked is what is the maximum streaming rate that all users can sustain for all possible

policies? This question has been studied under the assumption of a complete network, where each peer can connect

to all other peers simultaneously. Under this assumption, the maximum streaming capacity has been found in [7],

and both centralized and distributed rate allocation algorithms to achieve this maximum streaming capacity have

been developed [7]–[10]. However, the assumption of a complete network is impractical for any large-scale P2P

streaming systems. In a real P2P streaming system, typically each peer is only given a small list of other peers

(which we refer to as neighbors) chosen from the entire population, and each peer can only connect to this subset

of neighboring peers (neighbors may not be close in terms of physical distance). The number of neighboring peers

is often much smaller than the total population, in order to limit the control overhead.

When each peer only has a small number of neighbors, the P2P network can be modeled as an incomplete graph

with node-degree constraints. In this case, the streaming capacity of P2P systems becomes more complicated to

characterize. Liu et al. [11] investigate the case when the number of downstream peers in a single sub-stream tree is

bounded. However, the number of neighbors that each peer could have over all sub-streams can still be very large

(in the worse case it can be connected to all the other peers simultaneously). Some approximated and centralized

solutions to solve the optimal streaming capacity problem on a given incomplete network has been proposed in [12].

However, for large-scale P2P streaming systems, such a centralized approach will be difficult to scale. Liu et al.

[13] proposed a Cluster-Tree algorithm to construct a topology subject to a bounded node-degree constraint, which

could achieve a streaming rate that is close to the optimal streaming capacity of a complete network. This result

gives us hope that, even with node-degree constraints, a P2P network may achieve almost the same streaming rate

as that of a complete network. However, the Cluster-Tree algorithm is not a completely de-centralized algorithm

because it requires the tracker (a central entity) to apply the Bubble algorithm at the cluster level. The Bubble

algorithm is a centralized algorithm. Some other works such as SplitStream [14] and Chinasaw [15] have also

studied the problem of how to improve the streaming capacity when there is a node-degree constraint. However,

these works did not provide theoretical results on the achievable streaming rate. To the best of our knowledge,

there is no fully distributed algorithm in the literature that can achieve close-to-optimal P2P streaming capacity in

incomplete networks.

In this paper, we are interested in the following question: without centralized control, how many neighbors does

a peer in a large P2P network need to maintain in order to achieve a streaming capacity that is close to the optimal

streaming capacity of an otherwise complete network? Further, can we develop fully-distributed algorithms for

peer-selection and rate-allocation to achieve the close-to-optimal streaming capacity? This paper provides some

interesting and positive answers to these questions. We first show that, if each peer has Ω(logN) neighbors, where

N is the total number of peers in the system, close-to-optimal streaming rate can be achieved with probability
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approaching 1 as N goes to infinity. Further, in order to achieve this goal, each peer only needs to choose Ω(logN)

downstream neighbors uniformly and randomly from the entire population, and simply allocates its upload capacity

evenly among all downstream peers. Only the server needs a slightly different peer-selection policy (see Section

II-B for details).

The results that we obtain have a similar flavor as scaling-law results in wireless ad hoc networks [16]. Although

such results only hold when the size of the network N is large, they do provide important insights into the dynamics

of the system. For example, our analysis indicates that, with a random peer selection strategy, for each user the

most likely bottle neck for its streaming capacity is at the “last hop”, i.e. the sum of the upload capacity allocated to

this user by its immediate upstream neighbors. This insight suggests that we could focus on balancing the capacity

at the last hop when designing new distributed resource allocation algorithms for P2P streaming. Based on this

insight, we then design an alternative algorithm that can substantially reduce the number of neighbors required

to achieve the same probability of attaining the near-optimal streaming rate. This improved algorithm is still very

simple and can be implemented in a distributed fashion. Hence, we believe that the insights from these results can

be very helpful for designing more efficient control algorithms for P2P streaming. Finally, although due to space

constraints we focus in this paper on single-channel P2P systems (i.e., only one video is served), we believe that

the results and insights obtained here can also be generalized to multi-channel P2P systems [17]. Readers can refer

to [1] for examples.

II. SYSTEM MODEL AND MAIN RESULT

In this section, we will show that even without centralized control, Ω(logN) neighbors are sufficient for large P2P

streaming networks. Specifically, we will show that just by letting each peer select its Ω(logN) neighbors randomly

and do uniform rate allocation among these neighbors, the close-to-optimal streaming rate could be achieved with

high probability when the network size N is large.

A. System Model

We consider a peer-to-peer live streaming network with N peers and one source s. In the rest of the paper, we

will use the terms “source” and “server” interchangeably. Similarly, we will use the terms “peer”, “node” and “user”

interchangeably. Denote the set of all peers and the source as V (thus, |V | = N + 1). We assume that the source

has an infinitely long video stream to be streamed to all peers and it has a fixed upload capacity us. Let Ui denote

the upload capacity of peer i. For ease of exposition, we use a simple ON-OFF model to model the heterogeneity

and random variation of the upload capacity: each peer has an upload capacity of Ui = u with probability p and

an upload capacity of Ui = 0 with probability 1 − p, i.i.d. across peers. Thus, an ON peer represents a user with

large upload capacity, while an OFF peer represents a user with low upload capacity.1 We assume that us ≥ u.

1We note that the ON-OFF model can be viewed as the most extreme case of heterogeneous upload capacity. In fact, among all possible
distributions of the peers’ upload capacity that are between [0, Umax] and that have the same mean µ, the ON-OFF model has the largest
variance. Hence, the uncertainty/variability of the ON-OFF model will be the largest, and the performance of the system will also likely be the
worst. Based on this relationship, we can also generalize the main conclusions of this paper to other distributions for the upload capacity (see
also the numerical results in Section V). Interested readers can refer to Section IV

November 19, 2012 DRAFT



4

Like other works [7], [12], [13], [18], we assume that the download capacity and the core network capacity are

sufficiently large, and hence the only capacity constraints are on the upload capacity. Each peer i ∈ V \{s} has a

fixed set Ei of M downstream neighbors. Similarly, the source has a set Es of M downstream peers. We can then

model the P2P network as a directed and capacitated random graph [19]. If j ∈ Ei, assign a directed edge (i, j)

from i to j. Let the set of all edges be E. Note that there may be multiple peers that have a common downstream

neighbor. Define Cij and Csj be the streaming rate from peer i and source s, respectively, to peer j.

The values of Ei, Es, Cij and Csj depend on the peer-selection and rate-allocation algorithm. Given such an

algorithm, we can define the “streaming capacity” of the system as the maximum rate that the source can distribute

the streaming content to all peers. For example, for a complete network, we have Ei = V \{i, s} and Es = V \{s}.

Under such an idealized setting, [7] shows that the optimal streaming capacity is min
{
us,

us+
∑

i∈V Ui

N

}
, and it

can be achieved by setting Cij = Ui/(N − 1) and Csj = Us/N for all i, j. Note that the min(·) function is a

concave function. Therefore, the expectation of the above optimal streaming capacity satisfies

E

[
min

{
us,

us +
∑

i∈V Ui

N

}]
≤min

{
us,

us +
∑

i∈V E[Ui]

N

}
, Cf . (1)

For ease of exposition, we refer to Cf as “the optimal streaming capacity” throughout the rest of this paper. For our

ON-OFF model of upload capacity, this optimal streaming capacity is equal to Cf = min
{
us,

us

N + up
}

. However,

as we discussed in the introduction, the assumption of a complete network is impractical. In this paper, we are

interested in the streaming capacity of an incomplete network, which can be calculated by the minimum cuts.

Specifically note that for a given user t, a cut that separates s and t is defined by dividing the peers in V into a

set Vn of size (n + 1) that contains the server, and the complementary set V c
n of size (N − n) that contains the

peer t, i.e.,

s ∈ Vn, |Vn| = n+ 1, t ∈ V c
n and |V c

n | = N − n.

The capacity of the cut Cn is defined as Cn =
∑

i∈Vn

∑
j∈V c

n
Cij . See Fig 1 for illustration.

Let Cmin(s → t) denote the minimum-cut capacity, which is the minimum capacity of all cuts that separate the

source s and the destination t. It is well-known that this min-cut capacity is equal to the maximum rate from s to

t. Let Cmin−min(s → T ) denote the min-min-cut which is the minimum cut of all individual min-cut capacities

from the source to each destination t within a set T , i.e.,

Cmin−min(s → T ) = min
t∈T

Cmin(s → t).

The streaming capacity of the network is then equal to Cmin−min(s → V \{s}) [20]. Note that given the graph and

the capacity of each edge, this streaming capacity can be achieved with simple transmission schemes, e.g., with

network coding [21], [22] or with a latest-useful-chunk policy [8]. However, it may required global knowledge and

centralized control in order to optimally construct the network graph and allocate the upload capacity. A natural

question is then the following: without centralized control, can the streaming capacity over an incomplete network
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Fig. 1. Illustration of the neighbor selection and a cut

approach the optimal streaming capacity Cf of a complete network? In the next subsection we will provide a simple

and distributed peer-selection and rate-allocation algorithm that can achieve this with high probability when the

network size is large.

B. Algorithms

We will now give explicit description of our simple control algorithm. First, we use a random peer-selection

algorithm. Specifically, each peer randomly selects M downstream neighbors uniformly from all other peers. On

the other hand, the server selects M downstream neighbors uniformly and randomly among the ON peers. We note

that uniformly-random peer-selection is very easy to implement in practice, even with dynamic peer arrivals and

departures. Specifically, note that the number of upstream neighbors of a peer will be a binomial random variable

(sum of N Bernoulli random variables with mean M
N ). Note that the mean of X is M . Thus, when a new peer joins

the system, it simply contacts X peers chosen uniformly randomly among the existing peers. Then, each contacted

peer will choose one of its current downstream neighbor uniformly randomly, break this downstream connection, and

take the new peer as the downstream neighbor. Further, the new peer selects M downstream neighbors uniformly

randomly among the existing peers. On the other hand, when a peer leaves the system, all of its upstream neighbors

simply re-selects a new downstream neighbor randomly. With this mechanism, it is easy to verify that, at any point

in time, the set of M downstream neighbors of each peer is uniformly distributed among the current set of active

peer.

Second, we use a uniform rate-allocation algorithm, i.e., each peer i simply divides its upload capacity equally

among all of its downstream neighbors in Ei. Therefore, each peer in the set Ei receives a streaming rate Ui/M

from peer i. Similarly, each downstream peer of the server receives Us/M from the server. Under the above scheme,

the link capacity Cij is given by
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Cij =


Ui/M, if j ∈ Ei, i ̸= s

Us/M, if j ∈ Es, i = s

0, otherwise.

Note that since Ei and Es are chosen randomly, Cij’s are also random variables. We define another import parameter

for the total capacity that each peer i directly receives from its upstream neighbors, which is given by CR
i =∑

j∈V Cji. We will see that this value is the main factor that determines the streaming capacity from the source to

each node.

Remark: Since an OFF peer represents a user with low upload capacity, the above scheme implies that, regardless

of each user’s upload capacity, it will choose the same number M of downstream neighbors uniformly and divide

its capacity evenly among these downstream neighbors. In Section IV, we use this model and show that, even

with a general distribution of upload capacity, O(logN) neighbors are still sufficient to attain a close-to-optimal

streaming capacity.

Somewhat surprisingly, we will show that, as long as M = O(logN), the algorithm achieves close-to-optimal

streaming capacity, with probability approaching 1 as N → ∞ (Theorem 1).

Remark: Note that the server only chooses ON peers as its downstream neighbors. This is essential for achieving

the close-to-optimal streaming capacity. To see this, note that the optimal streaming capacity Cf of a complete

network is also constrained by the server capacity (see Equation (1)). If the server had used a substantial fraction

of its upload capacity to serve OFF peers, intuitively the rest of the peers would then suffer a lower streaming rate.

With the same intuition, one would think that the peers directly connected to the server also need to be careful

in choosing their downstream neighbors. However, this turns out to be unnecessary. For our main result (Theorem

1) to hold, no other peers (except the server) are required to differentiate their downstream neighbors. As readers

will see, this is because those cuts with Vn only containing the downstream neighbors of s play a small role in the

overall probability of attaining the close-to-optimal streaming capacity.

We also note that the above algorithm uses the “push” model, where upstream peers choose downstream neighbors.

An alternate model is the “pull” model, where downstream peers choose upstream neighbors. Note that both models

create a mesh-topology, and there is considerable symmetry between the two models. We use the push model in

this paper because it is easier to analysis, although we believe that the main results of the paper can be generalized

to the pull model, which we leave as future work.

C. Main Result

Theorem 1. For any ϵ ∈ (0, 1) and d > 1, there exist α and N0 such that for any M = α log(N) and N > N0

the probability for the min-min-cut under the algorithm in Section II-B to be smaller than (1− ϵ)Cf is bounded by

P (Cmin−min(s → V ) ≤ (1− ϵ)Cf ) ≤ O

(
1

N2d−1

)
.

Recall that the min-min-cut is equal to the streaming rate to all peers. Hence, Theorem 1 shows that as long as

the number of downstream neighbors M is Ω(logN), for any ϵ ∈ (0, 1) the streaming rate of our algorithm will
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be larger than (1− ϵ) times the optimal streaming capacity with probability approaching 1 as the network size N

increases.

D. Proof of Theorem 1

We first find the min-cut for any fixed peer t. We will use a similar approach as the one in [19]. We will show that

the probability for the capacity of a cut to be smaller than (1−ϵ) times its mean is very small, as N becomes large.

Then, we will take the union bound over all cuts and show that overall probability is also very small. However, the

techniques in [19] do not directly apply to our model due to the following two reasons. First, due to the ON-OFF

model, there are fewer “ON” peers and hence the probability for each cut to fall below its expected value is larger

than the case when all peers’ upload capacity is the same. However, there are still the same number of cuts we need

to account for, which may cause the union bound in [19] to diverge. Second, the link capacity Cij in [19] is assumed

to be independent across j, which is not the case in our model. To address the first difficulty, we will first consider

the subgraph that only contains the ON users, and hence the number of cuts is also reduced correspondingly. To

address the second difficulty, we will show that the joint distribution of Cij can be approximated by i.i.d. random

variables, which significantly simplifies the analysis.

We first introduce the following general relationship between the min-cut from the server s to the peer t in a

random graph G and the min-cut from the server s to the peer t in the any subgraph Ht of G that contains s and t.

Proposition 2. Let G be a random graph defined on some probability space Ω that has a fixed source s and a fixed

destination t. Let Ht be another random graph defined on the same probability space such that Ht(ω) ⊆ G(ω) for

all ω ∈ Ω and Ht contains s and t. Then for any given positive value C, the following holds,

P (Cmin,G(s → t) ≤ C) ≤ P (Cmin,Ht(s → t) ≤ C) . (2)

where Cmin,G(s → t) is the min-cut in G from s to t, and Cmin,Ht(s → t) is the min-cut in Ht from s to t.

Proof: Let A = {G(ω) : Cmin,G(ω)(s → t) ≤ C} and B = {ω : Cmin,Ht(ω)(s → t) ≤ C}. For any ω ∈ A,

the min-cut from s to t in the graph G(ω) is less than C. Since Ht is a subgraph of G(ω), the min-cut from s to

t in Ht(ω) is smaller than the min-cut in G, i.e., Cmin,Ht(ω)(s → t) ≤ Cmin,G(ω)(s → t) ≤ C. Hence, ω ∈ B. We

then have A ⊆ B and (2) holds consequently.

Proposition 2 is intuitive because every cut in G(ω) has a larger capacity than the corresponding cut in the

subgraph Ht(ω). For a given destination t, let Ht(W,F ) be the subgraph of G(V,E) such that W contains the

peer t, the server and all of the nodes whose channel condition is ON, and F ⊂ E are those edges between nodes

in W . The capacity of the edges in F is the same as the capacity of the edges in E. Proposition 2 allows us to

focus on the subnetwork Ht instead of the entire network G. Assume that there are Y ON peers in the network

excluding peer t, and thus |W | = Y +2. Clearly, Y is a random variable with binomial distribution with parameter

N − 1 and p. For ease of exposition, we assume that Y is fixed during the following discussion for one given cut,

and we will consider the randomness of Y later when we take the union bound over all cuts. We define a cut on

November 19, 2012 DRAFT



8

Ht by dividing the peers in W into a set Wm of size m + 1 that contains the server, and the complementary set

W c
m of size Y −m+ 1 that contains peer t. The capacity of the cut Dm is then given by

Dm =
∑

k∈W c
m

Csi +
∑

i∈Wm

∑
k∈W c

m

Cik. (3)

Note that for each peer i ∈ Wm (and i ̸= s), we have
∑

k∈W c
m
Cik = Liu/M , where Li is the number of downstream

neighbors of peer i that are in the set W c
m. Note that the value of Li must satisfy max{0,M− (N−Y +m−2)} ≤

Li ≤ min{M,Y −m+1}. Since downstream neighbors of peer i are uniformly chosen from other peers, we have

P

 ∑
k∈W c

m

Cik = l · u

M

 =

(
Y−m+1

l

)(
N−Y+m−2

M−l

)(
N−1
M

) .

This is the probability that l out of M downstream neighbors of peer i are in W c
m (of size Y −m+1) and M − l

of them are in the set Wm. The distribution of Li is known as a hyper-geometric distribution with expectation
(Y−m+1)M

N−1 [23, p167]. We can get a similar expression for the source s, i.e.,

P

 ∑
i∈W c

m

Csi = l · us

M

 =


(Y −m

l )( m
M−l)

(Y
M)

if t is OFF,

(Y −m+1
l )( m

M−l)
(Y +1

M )
if t is ON.

E

 ∑
i∈W c

m

Csi

 =


us(Y−m)

Y if t is OFF,

us(Y+1−m)
Y+1 if t is ON.

.

Hence, we obtain the expectation of Dm as

E [Dm] = E

 ∑
k∈W c

m

Csi

+
∑

i∈Wm

E

 ∑
k∈W c

m

Cik


=


us(Y−m)

Y + u
N−1m(Y −m+ 1) if t is OFF,

us(Y+1−m)
Y+1 + u

N−1m(Y −m+ 1) if t is ON.

(4)

Next, we are interested in the probability that Dm ≥ (1 − ϵ)E[Dm] for all m for a given constant ϵ ∈ (0, 1). In

other words, this is the probability that the min-cut value is no less than (1− ϵ) times its average. For all m, it is

not hard to see

E[Dm] ≥min{E[D0],E[DY ]} = min

{
us,

us

Y
+

Y

N − 1
u

}
.

If we have Y ≥ (1− ϵ)p(N − 1), we will get

E[Dm] ≥ (1− ϵ)min
{
us,

us

N
+ pu

}
.

Recall that Cf = min{us,
us

N + pu} is the optimal streaming capacity assuming a complete network [7]. Hence,

Dm ≥ (1− ϵ)E[Dm] then implies that Dm ≥ (1− ϵ)2Cf . In other words, the probability that Dm ≥ (1− ϵ)E[Dm]

for all m becomes a lower bound for the probability that the min-cut is no less than (1− ϵ)2Cf . In the following,
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we will derive P(Dm ≥ (1−ϵ)E[Dm]). We will use the moment generating function for Dm. Before we go further,

we need to address the second difficulty we mentioned above, i.e., the Cij’s are correlated across j. To remove the

coupling, we need to introduce the notion of negatively related for Bernoulli random variables [24], [25].

Definition 3. The Bernoulli random variables Ii, i = 1, ..., n, are said to be negatively related if for each i ≤ n

there exists random variables Jij , such that the distribution of the random vector [Ji1, Ji2, ..., Jin] is equal to the

distribution of the random vector [I1, I2, ..., In], given that Ii = 1 and Jij ≤ Ij for j ̸= i.

For negatively related random variables, the following theorem holds (Theorem 4 in [25]).

Theorem 4. Suppose Ii’s are negatively related Bernoulli random variables with identical distribution, i =

1, 2, ..., n. Let Ĩi, i = 1, 2, ..., n, be i.i.d. random variables, where Ĩi has the same distribution as Ii for all i.

Then for any real t,

E
[
et

∑n
i=1 Ii

]
≤ E

[
et

∑n
i=1 Ĩi

]
.

Theorem 4 thus allows us to bound the moment generating function of negatively related random variables by

that of independent random variables. Its intuition can be explained as follows. Roughly speaking, for negatively

related Bernoulli random variables, conditioned on the event that one of them is 1, the others are more likely to

be small. Correspondingly, conditioned on the event that one of them is 0, the others are more likely to be large.

Therefore, when t > 0, the moment generating function is mainly determined by the probability of the sum of all

indicator random variables achieving the larger value. The sum of negatively related random variables is less likely

to achieve a larger value and hence the value of the moment generation function is smaller. For t < 0, the moment

generating function is mainly determined by the probability of the sum of all indicator random variables achieving

the smaller value. The sum of negatively related random variables is also less likely to achieve a smaller value and

hence the value of the moment generation function is smaller.

One can show that hyper-geometric random variables can be viewed as the sum of negatively related Bernoulli

random variables (See Example 1 in [25]). Specifically, we first construct Ii by choosing M neighbors out of

N − 1 peers. For each peer i on the right, let Ii = 1 if peer i is chosen as a neighbor, and let Ii = 0 otherwise

(Note that Ii is not defined for peers on the left). We can then construct Jij as follows. First, set Jij = Ij for

all j. Then if Jii = 0, in order to make Jii = 1, we choose one neighbor k randomly (either from the left or the

right), and exchange that neighbor with peer i. If k was on the left, we then let Jii = 1. If k was on the right,

we then let Jii = 1 and Jik = 0. Clearly, Ji has the same distribution as I given that Ii = 1. However, by our

construction, Jij ≤ Ij for all j ̸= i. Hence, Ii, i = 1, ...,M , are negatively related. We can now use Theorem 4

to bound the moment generation function of
∑

k∈Wd
m
Cik by the moment generating functions of the sum of i.i.d.

random variables. Towards this end, we have the following Proposition.

Proposition 5. For any given cut Vk and V c
k of a network G(V,E), let W̃1 and W̃2 be subsets of Vk and V c

k ,

respectively. Assume that |W̃1| = q ≤ k + 1 and |W̃2| = r ≤ N − k. Let the upload capacity of each peer i ∈ W̃1
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be u. For each peer in W̃1, it chooses M downstream neighbors uniformly and randomly from a given subset Ṽ

of V that is a superset of W̃2. Let Ñ = |Ṽ |. Then the moment generating function of
∑

i∈W̃1

∑
j∈W̃2

Cij satisfies

E
[
e−θ

∑
i∈W̃1

∑
j∈W̃2

Cij

]
≤ exp

[
Mq

r

Ñ

(
e−θ u

M − 1
)]

. (5)

Note that the right hand side of (5) can be viewed as the moment generating function of
∑

i∈W̃1

∑
j∈W̃2

Cij

assuming that Cij’s are independent. The proof of Proposition 5 can be found in Appendix B. Proposition 5

combined with the Chernoff bound will be frequently used to estimate the probability for a cut to “fail”, i.e., the

capacity of a cut being less than (1 − ϵ) times its expected capacity. Recall that the capacity Dm of the cut Wm

is given by (3). Then by taking W̃1 and W̃2 in Proposition 5 to be Wm and W c
m, respectively, we can show the

following result for the cut Wm in Ht under the assumption of ON-OFF upload capacities.

Lemma 6. Let ϵ ∈ (0, 1). Given that the total number of ON peers in the entire network Y is equal to y, the

probability that the capacity Dm of the cut Wm in Ht is less than (1− ϵ)E[Dm] can be bounded by the following,

P(Dm ≤ (1− ϵ)E[Dm]|Y = y)

≤ exp

[
−
(
Mm

y −m+ 1

N − 1
+M

y −m

y

)
u

us

ϵ2

2

]
.

The proof of Lemma 6 can be found in Appendix C. Lemma 6 gives us an upper bound on the probability that

the capacity Dm of a cut Wm is less than 1− ϵ times its mean conditioned on the event that the total number of

ON peers Y is equal to y. Note that Mmy−m+1
N is the average number of edges from peers in Wm to peers in

W c
m, while M y−m

y is a lower bound on the average number of edges from the server to peers in W c
m. Hence, the

upper bound in Lemma 6 decreases exponentially if the average number of edges increases. Furthermore, since the

average number of edges is proportional to M , the upper bound also decreases exponentially if M increases. We

will use Lemma 6 for each m = 1, 2, ..., Y . The following lemma then bounds the effect of all cuts separating s

and t. Note that for each value of m, there are
(
Y
m

)
possible cuts Wm. Due to symmetry, the capacity of all

(
Y
m

)
cuts has the same distribution.

Lemma 7. Define B̃m to be the event {Dm ≤ (1 − ϵ)Cf for any cut Wm among the
(
Y
m

)
cuts }. Suppose that

there exists η ∈ (0, 1) such that for any y ≥ ηpN and any integer m between 0 and y, the following holds for

β = exp(−M u
us

ϵ′2

2 ) and γ = ηp,

P(Dm ≤ (1− ϵ)Cf |Y = y) ≤ βm y−m+1
N−1 + y−m

y .

Then, the probability of the union of all B̃m’s is bounded by

P

(
Y∪

m=0

B̃m

)
≤ O(e−(1−η)2p2N ) + βγ

[(
1 + pβ

γ
2

)N−1
]
.
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In addition, we can separate the union bound into two parts:

P

(
Y−1∪
m=0

B̃m

)
≤ O(exp(−(1− η)2p2N))

+ βγ

[(
1 + pβ

γ
2

)N−1

− 1

]
, (6)

P
(
B̃Y

)
≤ O(exp(−(1− η)2p2N)) + βγ . (7)

Lemma 7 is obtained by taking the union bound over all cuts. The detailed proof of Lemma 7 is in Appendix D.

Combing Lemma 6 and Lemma 7, we can now prove Theorem 1.

Proof of Theorem 1: According to Proposition 2 and Lemma 7, for any peer t, the minimum cut from the

source s to t can be bounded by

P (Cmin(s → t) ≤ (1− ϵ)Cf )

≤P (Cmin,Ht(s → t) ≤ (1− ϵ)Cf ) = P

(
Y∪

m=0

B̃m

)
. (8)

Recall that if Y ≥
√
1− ϵpN , Dm ≥

√
1− ϵE[Dm] implies Dm ≥ (1−ϵ)Cf . By Lemma 6, letting ϵ′ = 1−

√
1− ϵ

and β = exp(−M u
us

ϵ′2

2 ), we have if Y ≥ (1− ϵ′)pN ,

P(Dm ≥ (1− ϵ)Cf ) ≤ P(Dm ≥ (1− ϵ′)E[Dm])

≤ exp

[
−
(
Mm

y −m+ 1

N − 1
+M

y −m

y

)
u

us

ϵ′2

2

]
=βm y−m+1

N−1 + y−m
y .

Now let η = 1− ϵ′ and apply Lemma 7 to (8). We get

P (Cmin(s → t) ≤ (1− ϵ)Cf ) ≤ P

(
Y∪

m=0

B̃m

)

≤2βγ
(
1 + pβ

γ
2

)N−1

+O(exp(−ϵ′2p2N)).

Note that by assumption, M = α log(N). For any ϵ > 0 and ϵ′ = 1−
√
1− ϵ, choose a sufficiently large α such

that α ≥ 4dus

γuϵ′2 . We then have, for large N ,

βγ = exp(−Mγ
u

us

ϵ′2

2
) = exp(−2d log(N)) = 1/N2d.

Hence, the minimum cut satisfies,

P (Cmin(s → t) ≤ (1− ϵ′)Cf )

≤ 1

N2d
2

(
1 + pO(

1

Nd
)

)N−1

= O

(
1

N2d

)
.
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Thus, the min-min cut satisfies

P (Cmin−min ≤ (1− ϵ)Cf )

≤
N∑
t=1

P (Cmin(s → t) ≤ (1− ϵ)Cf )

≤O

(
1

N2d

)
·N = O

(
1

N2d−1

)
.

We remark on several implications of Theorem 1. First, Theorem 1 not only shows that pure random selection is

sufficient to achieve close-to-optimal streaming capacity as long as each peer has Ω(logN) downstream neighbors,

it also reveals important insights on the significance of different types of cuts. To see this, note that if we choose

α as in the proof such that βγ = O(1/N2d), we have (from (6))

P

(
Y−1∪
m=0

B̃m

)
≤ 2βγ

[(
1 + pβ

γ
2

)N−1

− 1

]
=O(1/N2d)O(e1/N

d−1

− 1) = o(1/N2d).

On the other hand, we have P
(
B̃Y

)
= O(1/N2d). Hence, the probability that the last cut (the WY and W c

Y cut)

fails is much larger than the probability that any other cut fails. Thus, for each peer t, the min-cut from the source

to t is mainly determined by CR
t (recall that CR

t is the total capacity received by peer t directly from its upstream

neighbors, which is also the capacity of the last cut).

The above insight suggests that, if we want to design improved distributed control algorithms for P2P streaming

systems, we may want to focus on improving the capacity CR
t at the last hop. Note that one of the main reasons

for CR
t to fall below its mean value is the imbalance of CR

t across t. More specifically, some peers t may have a

larger number of upstream peers, and hence have a larger-than-average value of CR
t , while other peers may have a

smaller-than-average value of CR
t . Such imbalance will lead to an increase in the probability that some peers have

low streaming rates. Based on this intuition, we can design a slightly more sophisticated scheme to balance the

value of CR
t of different peers, which will be discussed explicitly in section III.

Theorem 1 also reveals important relationships between the number of neighbors required and key system

parameters. For example, if we require a better performance (smaller ϵ or larger d) or have fewer ON peers

(smaller p), the number of downstream neighbors needed by each peer will increase. Specifically, according to the

proof, we need α ≥ 4dus

γuϵ′2 . If we require a higher streaming rate or a faster convergence rate, i.e., ϵ is smaller

(consequently ϵ′ is smaller) or d is larger, we will need a larger α. If the probability that a peer is ON is reduced,

i.e., p is reduced, we will also need a larger α.

III. AN IMPROVED HYBRID ALGORITHM

In the previous section, we proposed a simple scheme with random neighbor selection and uniform rate allocation

that can sustain a close-to-optimal streaming rate for all users. Our scheme only requires O(logN) neighbors for
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each peer. However, our simulation results (see Section V) indicate that the number of neighbors that each peer

needs may still be quite large. This is because the actual number of neighbors required also depends on the constant

factor α before the logN term. As in the remarks following Theorem 1, for uniform rate-allocation schemes, we

need α ≥ 4dus

γuϵ′2 , which increases inversely proportional to the square of ϵ′. The goal of this section is to study

whether we can design a slightly more sophisticated scheme for neighbor selection and/or rate allocation that can

significantly reduce the constant factor α. Specifically, our strategy is to retain the random peer-selection algorithm

but focus on improving the rate allocation algorithm. One may argue that random peer-selection may still be sub-

optimal. However, as we explain in Section II-B, random peer-selection has the advantage that it is very easy to

implement and robust to peer dynamics. In contrast, other peer-selection algorithms (e.g., based on forming tree

[13]) will likely be more costly in the presence of peer dynamics. Since our goal in this paper is both to attain a

close-to-optimal streaming capacity and to use simple, robust and distributed control, we believe that the choice of

using random peer-selection strikes a reasonable trade-off. In fact, as we will show below, even by improving the

rate-allocation alone, significant performance improvement can be attained.

As we observed in earlier sections, with high probability, the bottle neck for uniform rate allocation lies in the

last hop, i.e., the total upload capacity allocated to some peers from their immediate upstream neighbors is smaller

than average. Hence, a natural idea is to design a more sophisticated rate-allocation scheme such that the capacity

of the last hop is more balanced, and therefore, we may be able to reduce the number of neighbors that each user

needs in order to achieve a close-to-optimal streaming rate. More specifically, we may find Cij ≥ 0, i, j ∈ V , such

that with as few neighbors as possible, the following holds∑
j∈Ei

Cij ≤ ui for all i,∑
i∈Uj

Cij ≥ Rj for all j,
(9)

where Uj denotes the set of all the upstream neighbors of peer j. Such a rate-allocation scheme is in general not

difficult to complete: It can be found by solving a linear optimization problem. Wu and Li [26] has proposed a

fully distributed rate-allocation algorithm to solve a similar linear program. However, the limitation of this approach

is that such a rate-allocation scheme only guarantees the capacity for the last hop, and there may be another cut

with smaller capacity, which still constrains the overall streaming rate of the system (readers can refer to Fig 3

for simulation results that confirm this observation.) On the other hand, if we were to formulate the rate-allocation

problem as another linear program for the minimum cut, the complexity would be much higher than (9). Hence, it

remains a challenging question to develop low-complexity rate-allocation algorithms that significantly outperform

the uniform rate-allocation scheme.

Recall that in the previous section, using uniform rate allocation among the downstream neighbors, we show

that all the other cuts have a much higher probability than the last-hop cut does, to achieve a larger rate than the

required streaming rate. A natural question is then whether we can design a scheme that combines the advantages

of both the more sophisticated rate allocation in (9) for improving the last-cut, and the uniform rate allocation for
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maintaining the high values at other cuts. This question leads us to the following hybrid algorithm that is simple

to implement and significantly reduces the number of neighbors required.

We consider the following class of hybrid algorithms πθ for rate allocation: each peer reserves a fraction θ ∈ (0, 1)

of its upload capacity for the more sophisticated rate allocation similar to (9) and uses the remaining (1−θ) fraction

of its upload capacity for uniform rate allocation. Specifically, let CS
ij be the allocated capacity to j from i’s θ

fraction of upload capacity using the more sophisticated rate-allocation scheme, and let CU
ij be the uniformly

allocated capacity to peer j from peer i’ remaining (1 − θ) fraction of upload capacity. Note that each peer still

randomly selects M downstream neighbors. Hence CU
ij = (1−θ)ui

M if j ∈ E(i). Then, the total allocated capacity

from i to j is Cij = CU
ij +CS

ij =
(1−θ)ui

M +CS
ij . We now formulate a linear feasibility problem to control CS

ij . As

we did before, we wish our algorithm could achieve a close-to-optimal streaming capacity. Hence we set the target

streaming rate of each user j to be Rj = (1− ϵ)Cf . Recall that Cf is the optimal streaming capacity. Therefore,

the goal of the more sophisticated rate allocation algorithm is to find CS
ij’s such that∑

j∈E(i)

CS
ij ≤ θui, for all i,∑

i∈U(j)

(
CU

ij + CS
ij

)
≥ (1− ϵ)Cf , for all j.

(10)

Note that the distributed algorithm proposed in [26] is still suitable for solving this problem whenever the solution

exists. Therefore, this hybrid algorithm still preserves the feature of being fully distributed and simple to implement.

Next, we will show that it can achieve a close-to-optimal streaming capacity with a significantly lower number of

neighbors.

A. Performance Analysis

Next we will show that this hybrid algorithm can achieve a streaming capacity of (1 − ϵ)Cf with a much

smaller number of downstream neighbors of each peer. The following theorem states the performance of this hybrid

algorithm more clearly.

Theorem 8. For any ϵ ∈ (0, 1), θ > 1/2 and d > 1, there exist

α ≥ max

 (2d)us

ηpumax
{

ϵ2

2 ,
(2θ−1)2

8θ2

} , 2 + p+ϵ
θ + d

[p− (p+ϵ)δ
θ ](1− ϵ)

 , (11)

and N0 such that for any N > N0 and M = α log(N), the probability that for the capacity of the min-min-cut

under the algorithm πθ is smaller than (1− ϵ)Cf is bounded by

P (Cmin−min(s → V ) ≤ (1− ϵ)Cf ) ≤ O

(
1

Nd

)
.

This result shows that the hybrid algorithm indeed reduces the lower bound on the number of required neighbors

of each peer. Note that for small ϵ, the factor α does not depend on ϵ at all. In contrast, the factor α for the

uniform rate-allocation scheme must increase proportional to 1/ϵ2. As a numerical example, suppose that we want
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to sustain at least 90% of the optimal streaming capacity, which means that ϵ = 0.1. The uniform rate-allocation

scheme requires α ≥ 400dus

up . In contrast, if we use the hybrid algorithm πθ and choose θ = 0.9, then we only need

α ≥ 20dus

up . The number of neighbors of each peers is reduced by 20 times.

We separate the proof of Theorem 8 into two parts. First, since the allocation of CS
ij is based on (10), we need

to show that, given the uniform rate allocation of CU
ij = (1−θ)ui

M , there exists a feasible solution to (10) with high

probability. Hence, all last cuts should be able to exceed the required streaming rate with high probability. Second,

we need to show that, based on the uniform rate allocation CS
ij alone, the values of all other cuts should also exceed

the required streaming rate with high probability. Theorem 8 would then follows.

For the first step, we will use the following results, which state an equivalent characterization to (9) and (10).

Specifically, there exists a rate-allocation such that the sum of the upload capacity allocated to each user from its

immediate upstream neighbors is larger than its required streaming rate Rj if and only if, for any group of peers in

the network, the total upload capacity from their upstream neighbors is larger than the sum of the streaming rates

of this group of users.

Lemma 9. There exist Cij ≥ 0, i, j ∈ V , such that (9) holds if and only if for any subset S ⊆ V , the following

holds ∑
i∈U(S)

ui ≥
∑
j∈S

Rj , (12)

where U(S) = ∪j∈SU(j).

Corollary 10. There exist Cij ≥ 0, i, j ∈ V such that (10) holds if and only if for any subset S ⊆ V , the following

holds ∑
i∈U(S)

θui ≥
∑
j∈S

(1− ϵ)Cf −
∑

i∈U(j)

CU
ij

 , (13)

where CU
ij = (1−θ)ui

M .

The proof of Lemma 9 follows a similar line of the argument as the Hall’s Theorem [27]. The complete proof

using the min-cut max-flow theorem is provided in Appendix A. Note that for the hybrid schemes, the reserved

upload capacity of each user for the more sophisticated rate-allocation is θui. In addition, each user receives a

capacity of
∑

i∈U(j) C
U
ij from the uniform rate allocation. Thus, since the required streaming rate for each user j is

(1−ϵ)Cf , the target downloading rate for the more sophisticated rate-allocation should be (1−ϵ)Cf −
∑

i∈U(j) C
U
ij .

Therefore, Corollary 10 follows from Lemma 9 immediately, by letting the upload capacity of each user in Lemma

9 be θui, and letting Rj in Lemma 9 be (1− ϵ)Cf −
∑

i∈U(j) C
U
ij . Corollary 10 states that if (13) holds, then we

can find a proper hybrid rate-allocation scheme such that the capacity of the last hop of each user is enough for

its streaming rate. Next we will show that (13) holds with high probability.
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Lemma 11. Fix θ ∈ (0, 1). For any ϵ ∈ (0, 1) and d > 1, there exist N0 and α0 such that if N ≥ N0 and

α ≥ 2 + (p+ ϵ)/θ + d

[p− (p+ ϵ)δ/θ](1− ϵ)
, (14)

the following holds for the hybrid algorithm πθ

P

θ
∑

i∈U(S)

ui ≤
∑
j∈S

[
(1− ϵ)Cf −

∑
i∈V

CU
ij

]
for some S ⊂ V


≤ O

(
1

Nd

)
.

Lemma 11 and Corollary 10 together imply that the probability with which (10) has no solution, converges to 0

as the network size N grows. Therefore, with high probability, we can find a rate-allocation such that (10) holds,

i.e., the capacities of all last-hop cuts are greater than (1− ϵ)Cf with high probability. For others cuts, our random

graph approach in Section II still applies. Theorem 8 then follows. Readers can refer to Appendix F for the detailed

proof.

IV. GENERAL DISTRIBUTION FOR THE UPLOAD CAPACITY

In the previous sections, we have assumed that the upload capacity of each peer is either 0 or u. In this section,

we are going to extend our result to the case when the random upload capacity of each peer follows a general

distribution. Specifically, we now assume that the upload capacity Ui of user i is a bounded random variable with

a general distribution, and is i.i.d. across i. Let Umax be the upper bound of all Ui’s, i.e., 0 ≤ Ui ≤ Umax for all

i ∈ V . Assume that E[Ui] = µ, and let p be the probability that the upload capacity of a user is larger than its

mean value, i.e., P(Ui ≥ µ) = p. The following theorem holds.

Theorem 12. For any ϵ ∈ (0, 1), and d > 1, there exists α and N0 such that for any N > N0 and M = α log(N),

the probability for the min-min-cut to be smaller than (1− ϵ)Cf is bounded by

P (Cmin−min(s → V ) ≤ (1− ϵ)Cf ) ≤ O

(
1

Nd

)
.

Although the statement of this theorem is the same as Theorem 1, here we do not restrict the distribution of the

user upload capacity to any specific distribution. To develop the proof of Theorem 12, consider the peers whose

upload capacity Ui is larger than its mean value µ. These peers can be interpreted as “ON” peers. According to

Proposition 2, we would hope that if the capacity from these peers alone is sufficiently large, we can just focus

on the sub-network that only consists of these “ON” peers. Unfortunately, the capacity from the “ON” peers alone

is not always enough. For example, fix a peer t, and consider the total capacity that this peer received from its

direct upstream neighbors CR
t , which is the capacity at the last hop as aforementioned. In the sub-network that

only consists ON peers, the mean value of CR
t can be calculated as

E[CR
t ] =

us

N
+Mp

µ

M
=

us

N
+ pµ < Cf .
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Hence, in the worst case, the mean value of CR
t could be even smaller than Cf . Thus, there will be a significantly

large probability that the actual value of CR
t is less than Cf .

Although for some cuts the capacity from the “ON” peers alone is not sufficient, we observe that for other cuts,

these capacities will actually be enough. In the following, we will divide all the cuts into three groups: The first

group consists of those cuts whose capacity is so large that, the capacity from only the ON peers on the left side

to only the ON peers on the right side is sufficient. The second group consists of the those cuts whose capacity is

smaller such that, the capacity between only the ON peers is insufficient, but the capacity from only the ON peers

on the left side to all the peers on the right is still sufficient. The third group consists of all the other cuts with

even smaller capacities. We can thus work with the sub-network of ON peers and use similar techniques as we did

in the previous sections to analyze the first two groups of cuts, and consider the last group of cuts separately.

For any fixed destination peer t, let Ht be the sub-network that contains only the ON peer and peer t, which will

be used to analyze groups 1 and 2 discussed above. Assume that there are Y of ON peers in the system other than

peer t. Let Dm be the capacity of the cut Wm of the sub-network Ht, where there are m peers on one side, Y −m

peers on the other side. Construct another network G̃ as follows: G̃ has the same set of peers and the same set of

edges as G. For each peer i in G̃, let its upload capacity Ũi be µ if its corresponding upload capacity Ui in G is

no less than µ, and let its upload capacity Ũi be 0 otherwise, i.e., Ũi = µ if Ui ≥ µ and Ũi = 0 if Ui < µ. Then,

the upload capacity Ui of each peer is given by the ON-OFF model with P(Ũi = µ) = p and P(Ũi = 0) = 1− p.

For any destination peer t, define H̃t, W̃m and D̃m similarly as Ht, Wm and Dm. Obviously, G̃ has smaller cut

capacity than G. We have, for any m,

Dm ≥ D̃m.

Thus, if the cut capacity D̃m in the network G̃ is sufficiently large, so is Dm. For a given Y , the expectation value

of D̃m is given by (similar to (4))

E
[
D̃m

]
=


us(Y−m)

Y + µ
N−1m(Y −m+ 1) if t is OFF,

us(Y+1−m)
Y+1 + µ

N−1m(Y −m+ 1) if t is ON.

Since Y−m
Y > Y+1−m

Y+1 , we have

E
[
D̃m

]
≥ us(Y + 1−m)

Y + 1
+

µ

N − 1
m(Y −m+ 1). (15)

Note that for any ϵ′, one can use the Chernoff bound to show that

P (Y ≥ (1− ϵ′)p(N − 1)) ≥ 1−O(exp(−ϵ′2p2(N − 1))).

In the following, we will focus on the case when the event Yϵ′ = {Y = y, y ≥ (1− ϵ′)p(N − 1)} holds. For the

first group of cuts, we are interested in those cuts with m < Y − 2
p . We have the following lemma.
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Lemma 13. For any ϵ ∈ (0, 1), there exists N0 such that if N > N0 then for any m < Y − 2
p , we have

P (Dm ≤ (1− ϵ)Cf |Yϵ′)

≤P
(
D̃m ≤ (1− ϵ′)E[D̃m|Yϵ′ ]|Yϵ′

)
,

where ϵ′ = 1−
√
1− ϵ.

Proof: If m < 2
p , we have

E[D̃m|Yϵ′ ] ≥
(
1− m

Y + 1

)
us ≥

(
1− m

(1− ϵ′)p(N − 1) + 1

)
us

N→∞−→ us ≥ Cf .

Therefore, for any ϵ′ ∈ (0, 1), if N is large enough, we will have

E[D̃m|Yϵ′ ] ≥ (1− ϵ′)Cf .

Hence, for any ϵ ∈ (0, 1), ϵ′ = 1−
√
1− ϵ, if N is large enough and Y ≥ (1− ϵ′)p(N − 1), we have

P (Dm ≤ (1− ϵ)Cf |Yϵ′)

≤P
(
Dm ≤ (1− ϵ′)E[D̃m|Yϵ′ ]|Yϵ′

)
≤P

(
D̃m ≤ (1− ϵ′)E[D̃m|Yϵ′ ]|Yϵ′

)
.

Similarly, for any m such that 2
p ≤ m ≤ Y − 2

p , we will have

E[D̃m|Yϵ′ ] ≥
µ

N − 1
m(Y −m+ 1) (Using (15))

≥
2
p

(
(1− ϵ′)p(N − 1) + 1− 2

p

)
µ

N − 1

=

(
2(1− ϵ′)− 4− 2p

p2(N − 1)

)
µ

N→∞−→ 2(1− ϵ′)µ,

where the second inequality is due to the fact that the quadratic function m(Y −m+1) of m reaches its minimum

on
[
2
p , Y − 2

p

]
at m = 2

p . Recall that

Cf ≤ us

N
+ µ

N→∞−→ µ.

Thus, for any ϵ′ ∈ (0, 1), if N is sufficiently large, then

E[D̃m|Yϵ′ ] ≥
√
2(1− ϵ′)µ ≥ (1− ϵ′)Cf .

We now have shown that for m ≤ Y − 2
p , the expected capacity of all the cuts W̃m will approach to the optimal
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streaming capacity Cf . That is, for 0 ≤ m ≤ Y − 2
p , if N is large enough, then

E[D̃m|Yϵ′ ] ≥ (1− ϵ′)Cf ,

and

P (Dm ≤ (1− ϵ)Cf |Yϵ′)

≤P
(
D̃m ≤ (1− ϵ′)E[D̃m|Yϵ′ ]|Yϵ′

)
.

For m ≥ Y − 2
p , unfortunately the total upload capacities between the ON peers alone is insufficient. Luckily,

for the second group of cuts (to be defined shortly), if we consider the capacities from the ON peers on the left to

all peers on the right not only the ON peers on the right, we may still receive adequate capacity. Consider a cut

in the whole network. Let k be the number of OFF peers on the left. Denote Dm,k and D̃m,k as the cut capacity

from the ON peers on the left to all the peers on the right in G and G̃, respectively. For the second group of cuts,

we are interested in those cuts with m ≥ Y − 2
p and N − k −m > 2

p2 . The following result holds.

Lemma 14. For any ϵ ∈ (0, 1), there exists N0 such that, if N > N0, then for any m and k such that m ≥ Y − 2
p

and N − k −m > 2
p2 , we have

P (Dm,k ≤ (1− ϵ)Cf |Yϵ′)

≤P
(
D̃m,k ≤ (1− ϵ′)E[D̃m|Yϵ′ ]|Yϵ′

)
,

where ϵ′ = 1−
√
1− ϵ.

Proof: Similarly to (15), the expectation of D̃m,k would be bounded as

E
[
D̃m,k|Yϵ′

]
≥ Y −m+ 1

Y + 1
us +

m(N − k −m)

N − 1
µ.

Note that m ≥ Y − 2
p and N − k −m > 2

p , therefore,

E
[
D̃m,k|Yϵ′

]
≥

(Y − 2
p )

2
p

N − 1
µ

≥
2(1− ϵ′)(N − 1)− 4

p2

N − 1
µ

N→∞−→ 2(1− ϵ′)µ.

Recall that

Cf ≤ us

N
+ µ

N→∞−→ µ.
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As a result, for any ϵ′ ∈ (0, 1), when Yϵ′ holds, we have for sufficiently large N ,

E
[
D̃m,k

]
≥ (1− ϵ′)Cf ,

and

P (Dm,k ≤ (1− ϵ)Cf |Yϵ′)

≤P
(
D̃m,k ≤ (1− ϵ′)E[D̃m,k|Yϵ′ ]|Yϵ′

)
.

Lemma 13 and Lemma 14 allow us to use a network G̃ with ON-OFF upload capacity to bound the performance

of the original network when m < Y − 2
p or m ≥ Y − 2

p and N − k−m+1 > 2
p . We can then apply our previous

results to analyze the network G̃ and obtain an upper bound on probability that the capacity of cuts in the original

network is smaller than (1− ϵ)Cf . The detailed proof can be found in the proof of Theorem 12 in Appendix H.

Finally, for the third group of cuts, we are interested in those cuts with m ≥ Y − 2
p and N−k−m < 2

p . For these

cuts, the capacities from the ON peers alone will be insufficient. We need to take account all the peer capacities in

the network. Under such situation, we will not need to differentiate the ON peers and OFF peers. Let us consider

a cut Vk̃ where there are k̃ peers on the left and N − k̃ peers on the right. The condition N − k−m < 2
p2 will be

equivalent to N − k̃ < 2
p2 when we do not care about the actual number of ON peers. The following bound holds

for this case.

Lemma 15. When N − k̃ < 2
p2 , for any ϵ ∈ (0, 1), if N is sufficiently large, we have

P(Ck̃ ≤ (1− ϵ)E[Ck̃]) ≤ e
−p̃k̃

[
(N−k̃)q ϵ2

2 +O(q2)
]
,

where p̃ = µ
Umax

and q = M
N−1 .

The proof of 15 is in Appendix G. Until now, we have divided all the cuts into three different groups: 1)when

the capacities between ON peers are sufficient, 2)when the capacities from the ON peers to all kinds of peers are

adequate and 3)when the capacities from the ON peers alone are insufficient. For the first two groups of cuts, since

the capacities from the ON peers alone is sufficient, we can apply a similar technique as we did for the ON-OFF

model to show that all the cuts will have a capacity lager than (1−ϵ)Cf with high probability. For the last group of

cuts, Lemma 15 provides us an upper bound on the probability that the capacity of any cut in this group is smaller

than (1 − ϵ)Cf . By treating these three groups of cuts separately, we can then prove Theorem 12. The detailed

proof can be found in Appendix H.

V. SIMULATION

In this section, we provide simulation results to verify our analytical results in previous sections. We simulate a

P2P network with N = 10000 peers and one server. Although the analytical results in this paper focus on the ON-
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OFF model for peers’ upload capacity, here we provide simulation results both for the ON-OFF model and a uniform

distribution model. In the ON-OFF model, each user has an ON probability of p. When a user is ON, it contributes

an upload capacity u = 10. On the other hand, in the uniform distribution model, the upload capacity of each peer

is uniformly distributed between [0, 20]. Further, each peer chooses the same number of downstream neighbors

and divides its upload capacity evenly among these neighbors, regardless of its upload capacity. In both cases, the

server has a capacity of us = 20. The optimal streaming capacity is thus Cf = 9.002 for the ON-OFF model with

p = 0.9, and Cf = 5.002 for the ON-OFF model with p = 0.5 and for the uniform distribution model. We vary the

number of downstream neighbors of each user from 10 logN = 90 to 80 logN = 720, which correspond to 0.9%

and 7.2% of the total number of peers N . For each choice of the number of downstream neighbors, we generate

the network for 200 times. During each iteration, all users select their downstream neighbors randomly as described

in section II-B, and we use the algorithm in [28] (a modified push-relabel algorithm) to find the min-min cut from

the source to all the users and compare it with (1 − ϵ)Cf . We count the number of times that the min-min cut

of the network is larger than (1 − ϵ)Cf and plot the probability for that to happen as the number of downstream

neighbors of each peer varies.The result is shown in Fig. 2, where we simulate four different combinations of p

(for the ON-OFF model) and ϵ. We can observe that, using pure random selection, when p = 0.5 for the ON-OFF

model and when the number of downstream neighbors of each peer is more than 40 logN = 360 (3.6% of N ),

the success probability that the system could sustain a streaming rate higher than 70% of the optimal streaming

capacity is greater than 0.9. If p = 0.9 for the ON-OFF model, the number of downstream neighbors needed by

each peer to achieve the same success probability of 0.9 reduces to 30 logN = 270 (2.7% of N ). Further, we can

observe that with the same ON probability, when we increase ϵ, the required number of downstream neighbors to

achieve the same success probability of 0.9 decreases. These observations verify our remarks following Theorem

1 that M needs to be larger if ϵ is smaller or p is smaller. We also observe that, when the upload capacity of

each peer follows the uniform distribution and when the number of downstream neighbors of each peer is more

than 40 logN = 360 (3.6% of N ), the success probability of sustaining more than 70% of the optimal streaming

capacity is almost 1. This suggests that our analytical result is still valid for other models of peer upload capacity.

We note that in the above simulation results, the number of neighbors required to achieve a high success probability

is still quite large for a network with 10000 peers. Although our analytical results show that having Ω(logN)

neighbors is sufficient to achieve close-to-optimal streaming capacity with high probability when N → ∞, the

actual number of neighbors required depends on the constant factor before the logN term. As these simulations

show, while the random peer-selection and uniform rate-allocation algorithm is the easiest to implement and the

most robust to changes, it does suffer some performance penalty in terms of the number of neighbors required. The

hybrid algorithm proposed in Section III is designed to further improve the constant factor. We then run the hybrid

algorithm on a P2P network with N = 10000 peers with ON probability p = 0.5. We first choose the parameter

θ to be 1/3 (i.e., each user allocates 1/3 of its upload capacity uniformly among its downstream neighbors and

performs the more sophisticated rate-allocation with the remaining 2/3 upload capacity as described in Section III).

The result is shown in Fig 3. We first notice that the same general trend still holds for the relationship between the
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Fig. 2. The success probability versus the number of downstream neighbors under uniform rate-allocation

ON probability p, the approximation ratio ϵ and the success probability, as discussed earlier for the uniform rate-

allocation scheme. However, the number of neighbors required is reduced by an order of magnitude. For example,

in Fig 3 when the number of downstream neighbors of each peer is more than 4 logN = 36 (0.36% of N ), the

probability that the system can sustain a streaming rate higher than 80% of the optimal streaming capacity is already

almost 1. In contrast, we observe from Fig 2 that if we use uniform rate allocation, each peer needs more than

90 logN = 810 (8.1% of N ) downstream neighbors to achieve the same performance. Hence, the hybrid algorithm

reduces the required number of downstream neighbors of each peer by more than 20 times, while still retaining

the simplicity and robustness of the random peer-selection scheme. In addition, we simulate the hybrid algorithm

with θ = 2/3 and θ = 1. As we can see from Fig. 2, the performance of the hybrid algorithm with θ = 2/3 is

almost identical to that of θ = 1/3. On the other hand, by comparing the two curves with θ = 1/3 and θ = 1

but same p and ϵ, we can observe that the hybrid algorithm with θ = 1/3 has a higher success probability than

the algorithm with θ = 1. Note that when θ = 1, the hybrid algorithm reduces to the pure “sophisticated” rate

allocation algorithm. Therefore, this simulation result confirms our argument in Section III that pure “sophisticated”

rate-allocation algorithm may sacrifice the capacity of cuts other than the last-hop cuts.

We next simulate the performance of both the uniform and the hybrid rate-allocation algorithm when the total

number of users N changes. We vary the total number of users in the systems from N = 100 to N = 6400. The

results are shown in Fig. 4 and Fig. 5. For the results of the uniform rate-allocation algorithm in Fig. 4, we choose

the parameters p = 0.9 and ϵ = 0.2. Each curve corresponds to a different choice of M from M = 30 logN to

M = 80 logN . An interesting observation is that when M is small (e.g. M = 30 logN ), the performance in fact

degrades as N increases. The reason is that when N is small, M may be even larger than N , in which case we
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Fig. 3. The success probability versus the number of downstream neighbors under hybrid rate-allocation

use M = N and the network becomes fully connected. However, as N increases, the sparse connectivity and the

negative effect of low M will eventually kick in. On the other hand, when M is sufficiently large (M = 80 logN),

the success probabilities under all different values of N are always 1. For the results of the hybrid rate-allocation

algorithm in Fig. 5, we choose the parameters p = 0.5 and ϵ = 0.2. Each curve corresponds to a different choice

of M from M = 2 logN to M = 5 logN . We observe that the performance of the hybrid rate-allocation algorithm

is less sensitive to the total number of users N . Under the same value of M , the success probability remains on

the same level as N varies. On the other hand, we can still see that when M is sufficiently large, the success

probability becomes 1 for all different values of N .

VI. CONCLUSION

In this paper, we study the streaming capacity of sparsely-connected P2P networks. We show that even with a

random peer-selection algorithm and uniform rate allocation, as long as each peer maintains Ω(logN) downstream

neighbors, the system can achieve close-to-optimal streaming capacity with high probability when the network size

is large. These results provide important new insights on the streaming capacity of large P2P network with a sparse

topology. One such insight is that the capacity of the last cut (i.e., the capacity from direct upstream neighbors) is

often the bottleneck. We then use this insight to improve the peer-selection and rate-allocation algorithm to further

optimize the achievable streaming capacity. Specifically, we design a hybrid algorithm that uses a slightly more

sophisticate rate-allocation algorithm to improve the capacity and to reduce the constant factor in the Ω(logN)

result. This new algorithm still retains the simplicity and robustness of the random peer-selection scheme, but it
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significantly reduces the number of neighbors required to achieve a certain performance guarantee.

Throughout this paper, we have assumed a uniformly-random peer-selection scheme. It is highly likely that more

sophisticated peer-selection schemes (albeit with a higher complexity) may lead to even better performance, e.g., an

even smaller factor α. For instance, one may assign a larger number of downstream neighbors to a peer with a larger

upload capacity. However, we caution that the resulting performance improvement is not automatic. As we have seen
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in Section III for the hybrid algorithm, the effect of local improvement on the global performance can be difficult

to quantify. Thus, the insights obtained from our analysis may be used to guide the design of more sophisticated

algorithms. Further, our analysis has focused on attaining a close-to-optimal streaming rate. In practice, it may

be important to estimate the value of the optimal streaming rate. It is possible to use the structure of the hybrid

algorithm (e.g., Equation (10)) to design a distributed algorithm that can determine an estimate of this streaming rate.

Finally, this paper has focused on P2P live-streaming systems. For future work, we will investigate whether similar

insights can also be extended to P2P video-on-demand services, which have also become increasingly popular.
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APPENDIX A

PROOF OF LEMMA 9

Proof: For the “only if” part, suppose that for some subset S of V , (12) does not hold. Note that all peers in

S can only receive capacity from the peers in U(S). Then, the total upload capacity of the peers in U(S) could

not satisfy the total demand of the peers in S. Hence, there must be some peer in S that could not achieve the

required streaming rate, which leads to a contradiction. Therefore, (12) must hold for any subset S of V if there

exists a feasible assignment for (9).

To prove the “if” part, we will use the max-flow min-cut theorem. Construct a new network GF with two vertex-

sets V1 and V2, and two additional vertices s and t. Each peer i has a copy in both V1 and V2. Add a directed edge

from node i in V1 to node j in V2 with capacity ui if i is a upstream neighbor of j. Further,add a directed edge

from s to every node i in V1 with capacity ui, and a directed edge from every node j in V2 to t with capacity

Rj . For each set of feasible values of Cij’s in (9), one can construct a corresponds feasible flow in this new flow

network, where the value of Cij equals to the amount of the flow from node i in V1 to node j in V2.

We claim that there exists a feasible assignment of Cij’s such that condition (9) holds if and only if the maximum

flow from s to t in the above network GF is equal to
∑

j∈V Rj . To see this, note that condition (9) implies that every

peer could receive an allocated capacity of at least Rj from its upstream neighbors, while the total capacity allocated

from each peer i to its downstream neighbors is no more than ui. Then, by further reducing Cij’s appropriately,

we can find a set of Cij’s such that every peer receives an allocated capacity exactly equal to Rj . By letting Cij be

the flow in GF from node i in V1 to node j in V2, we obtained a flow from s to t, where the amount of outgoing

flow from every node i in V1 is no greater than ui and the amount of flow that comes into every node j in V2 is

exactly equal to Rj . Clearly, one can then construct a flow from s to t with value equal to
∑

j∈V Rj . On the other

hand, if there exists a flow from s to t with value equal to
∑

j∈V Rj , then the flow from every node j in V2 to

t must be Rj . Therefore, the incoming flow to every node i must be equal to Rj . In addition, the outgoing flow

from every node i in V1 must be no greater than its incoming flow, which is at most ui. Therefore, every peer j

receives an allocated upload capacity from its upstream neighbors equal to Rj , while the total capacity allocated

from each peer i to its downstream neighbors is no more than ui.
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Now to prove the “if” part of the statement of Lemma 9, we only need to show that if (12) holds for any subset

S ⊂ V , then the maximum flow of the network is equal to
∑

j∈V Rj . To show this part, assume in the contrary that

(12) holds for any subset S ⊂ V but the maximum flow of the network is less than
∑

j∈V Rj . By the max-flow

min-cut theorem, this assumption means that the minimum cut of the network is less than
∑

j∈V Rj . Therefore,

there exists a cut (X1, X2) with capacity less than
∑

j∈V Rj , where s ∈ X1 and t ∈ X2. Let T2 = X2 ∩ V2.

Let U ′(T2) denote the set of vertices in V1 that have an edge to at least one vertex in T2. Next, construct another

cut (X ′
1, X

′
2) by moving all the nodes in U ′(T2) to X2. The significant of this new cut is that all the vertices in

U ′(T2) are in X ′
2, which will be used to construct a contradiction. First, we claim that the capacity of the new cut

C(X ′
1, X

′
2) is no greater than the capacity of the old cut (X1, X2). To see this, consider a vertex vi in U(T2) but

not in X2. If we move vi from X1 to X2, we will get a new cut (X ′′
1 , X

′′
2 ). Then the edge (s, vi) crosses the new

cut (X ′′
1 , X

′′
2 ), but did not cross the old cut (X1, X2). Any edge from vi to the vertices in T2 crossed the old cut

(X1, X2), but does not cross the new cut (X ′′
1 , X

′′
2 ). Further, all other edges cross either both cuts or no cut (see

Fig 6 for illustration). As a result,

C(X ′′
1 , X

′′
2 ) = C(X1, X2) + C(s, vi)− C(vi, T2).

Since vi is the upsteam neighbor of at least one node in T2, we have C(vi, T2) ≥ ui. In addition, note that

C(s, vi) = ui. We thus have C(X ′′
1 , X

′′
2 ) ≤ C(X1, X2). Hence, the capacity of the new cut C(X ′′

1 , X
′′
2 ) is no

greater than the capacity of the old cut C(X1, X2), which is less than
∑

j∈V Rj . Therefore, as we move more

peer in U ′(T2) from X1 to the other side of the cut, the capacity of the cut cannot increase. We thus have
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C(X ′
1, X

′
2) ≤ C(X ′′

1 , X
′′
2 ) <

∑
j∈V Rj . Now let T1 = X ′

2 ∩ V1. We have U(T2) ⊆ T1. Note that the edges

from s to T1 and the edges from V2 \ T2 to t cross the cut (X ′
1, X

′
2). Thus, the capacity of the cut is at least∑

i∈T1
ui +

∑
j∈V2\T2

Rj , i.e., ∑
i∈T1

ui +
∑

j∈V2\T2

Rj ≤ C(X ′
1, X

′
2) <

∑
j∈V

Rj .

Note that there is a one-to-one mapping between vertices in V2 and the nodes in V . Therefore,
∑

j∈V Rj =∑
j∈V2

Rj . Since U(T2) ⊆ T1, we then have,∑
j∈T2

Rj >
∑
i∈T1

ui ≥
∑

i∈U(T2)

ui,

which contradicts with (12). The result of the lemma thus follows.

APPENDIX B

PROOF OF PROPOSITION 5

Proof: We can write
∑

j∈W̃2
Cij = Li · u

M , where Li is the number of downstream neighbors of peer i in

W̃2. As mentioned above, peer i select M downstream neighbors from Ñ different peers. Consider all the potential

downstream neighbors j ∈ W̃2. Let Iij be the indicator function of the event that peer j is a downstream neighbors

of i. Clearly, Iij has a Bernoulli distribution with parameter M/Ñ . Moreover, the number of downstream neighbors

in W̃2 would be equal to the summation of all the Iij’s over j, i.e., Li =
∑

j∈W̃2
Iij and follows a hyper-geometric

distribution. According to Theorem 4 in [25], if Ĩij , j ∈ W̃2 are i.i.d. Bernoulli random variables such that Ĩij

has the same marginal distribution as Iij , we will have, for any real t E
[
et

∑
j∈W̃2

Iij
]
≤ E

[
et

∑
j∈W̃2

Ĩij
]
. This

means that we could use the moment generating function of a binomial random variable, which is the summation of

i.i.d. Bernoulli random variables, to bound the moment generating function of the hyper-geometric random variable.

Letting t = −θ, we then have, for each i ∈ W̃1

E
[
e−θ u

M

∑
j∈W̃2

Iij
]
≤ E

[
e−θ u

M

∑
j∈W̃2

Ĩij
]

=
(
E
[
e−θ u

M Ĩij
])r

= 1− M

Ñ

(
1− e−θ u

M

)
(16)

Note that, 1 − M
Ñ

(
1− e−θ u

M

)
≤ exp

[
M
Ñ

(
e−θ u

M − 1
)]

, since 0 ≤ M
Ñ

(
1− e−θ u

M

)
≤ 1, and 1 − x ≤ e−x when

0 ≤ x ≤ 1. Therefore, substituting the above inequality into (16) yields

E
[
e−θ u

M

∑
j∈W̃2

Iij
]
≤ exp

[
r
M

Ñ

(
e−θ u

M − 1
)]

.
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For different peers in W̃1, they will select their downstream neighbors independently. Hence,
∑

j∈W̃2
Cij are

independent across i. Therefore,

E
[
e−θ

∑
i∈W̃1

∑
j∈W̃2

Cij

]
=
(
E
[
e−θ

∑
j∈W̃2

Cij

])q
=
(
E
[
e−θ u

M

∑
j∈W̃2

Iij
])q

≤ exp

[
Mrq

Ñ

(
e−θ u

M − 1
)]

.

APPENDIX C

PROOF OF LEMMA 6

Proof: By Chernoff bounds, we have for θ > 0

P(Dm ≤ (1− ϵ)E[Dm]|Y = y, t is ON)

≤
E
[
e−θDm |Y = y

]
e−(1−ϵ)θE[Dm|Y=y]

= eϕ(θ)+ϕs(θ), (17)

where

ϕ(θ) = logE
[
e−θ

∑m
j=1

∑y+1
i=m+1 Cji

]
+ θ(1− ϵ)m(y −m+ 1)

u

N − 1
;

ϕs(θ) = logE
[
e−θ

∑y+1
i=m+1 Csi

]
+ θ(1− ϵ)(y −m+ 1)

us

y + 1
.

Now we apply Proposition 5. Recall that we define a cut on Ht by dividing peers into sets Wm and W c
m. We

could also view Wm and W c
m as subsets of some cut Vk and V c

k of network G. We need to exclude the server

from Wm since it has a different upload capacity. For each peer in Wm\s, it will choose M downstream neighbors

randomly from the entire network. Hence, Ṽ = V . According to proposition 5, we have q = |Wm\s| = m,

r = |W c
m| = y −m+ 1 and |Ṽ | = N . Therefore, using (5), we have,

ϕ(θ) ≤ log

{
exp

[
Mm

y + 1−m

N − 1

(
e−θ u

M − 1
)]}

+ θ(1− ϵ)(y + 1−m)
u

N − 1

=
1

N − 1

[
Mm

(
e−θ u

M − 1
)
+ θ(1− ϵ)u

]
(y + 1−m).

Note that the server only choose neighbors from the y + 1 ON peers, |Ṽ | = y + 1. Using similar techniques, for

the server, we can bound ϕs(θ) by

ϕs(θ) ≤
1

y + 1

[
M
(
e−θ us

M − 1
)
+ θ(1− ϵ)us

]
(y + 1−m).
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Define

ϕ̃(θ) , M
(
e−θ u

M − 1
)
+ θ(1− ϵ)u;

ϕ̃s(θ) , M
(
e−θ us

M − 1
)
+ θ(1− ϵ)us.

The ϕ(·) and ϕs(·) can be written as

ϕ(θ) ≤ 1

N − 1
ϕ̃(θ)m(y + 1−m);

ϕs(θ) ≤
1

y + 1
ϕ̃s(θ)(y + 1−m).

Let ϕ̃min and ϕ̃s,min be the minimum of ϕ̃(θ) and ϕ̃s(θ) respectively, over θ > 0. It is easy to see ϕ̃min = ϕ̃s,min < 0.

Also since ϕ̃ and ϕ̃s is convex on θ > 0, these minimum is attainable. Let θmin and θs,min be the minimizer

respectively. We must have

ϕ̃s(θs,min) = ϕ̃s,min = ϕ̃min ≤ ϕ̃(θs,min). (18)

One can show that θs,min = −M
us

log(1− ϵ). Note that for 0 < a < 1 and 0 ≤ x ≤ 1, we have (1− x)a ≤ 1− ax

since (1−x)a is concave and its derivative at 0 is −a. Moreover, for 0 ≤ x ≤ 1, one can see that (1−x) log(1−x) ≥

x2/2−x by checking d
dx (1−x) log(1−x)− (x2/2−x) = − log(1−x)−x ≥ 0 and (1−x) log(1−x) = x2/2−x

when x = 0. Then, substituting θs,min into (18) and using the above relationship, we have

ϕ̃s(θs,min) ≤ ϕ̃(θs,min)

=M
[
(1− ϵ)

u
us − 1

]
−M

u

us
(1− ϵ) log(1− ϵ)

≤M

[
1− u

us
ϵ− 1− u

us

(
ϵ2

2
− ϵ

)]
= −M

u

us

ϵ2

2
.

Consequently,

mϕ(θs,min) + ϕs(θs,min)

≤ϕ̃(θs,min)m(y + 1−m)/(N − 1)

+ ϕ̃s(θs,min)(y + 1−m)/(y + 1)

≤−
(
m
y + 1−m

N − 1
+

y + 1−m

y + 1

)
M

u

us

ϵ2

2
.

Since (17) holds for any θ > 0, letting θ = θs,min yields

P(Dm ≤ (1− ϵ)E[Dm]|Y = y, t is ON)

≤ exp(mϕ(θs,min) + ϕs(θs,min))

≤ exp

[
−
(
Mm

y + 1−m

N − 1
+M

y + 1−m

y + 1

)
u

us

ϵ2

2

]
.
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Similarly, one can show that if t is OFF, we have

P(Dm ≤ (1− ϵ)E[Dm]|Y = y, t is OFF)

≤ exp

[
−
(
Mm

y + 1−m

N − 1
+M

y −m

y

)
u

us

ϵ2

2

]
.

Since y+1−m
y+1 ≥ y−m

y , we have

P(Dm ≤ (1− ϵ)E[Dm]|Y = y, t is ON)

≤P(Dm ≤ (1− ϵ)E[Dm]|Y = y, t is OFF)

Hence,

P(Dm ≤ (1− ϵ)E[Dm]|Y = y)

≤P(Dm ≤ (1− ϵ)E[Dm]|Y = y, t is OFF)

≤ exp

[
−
(
Mm

y + 1−m

N − 1
+M

y −m

y

)
u

us

ϵ2

2

]
.

APPENDIX D

PROOF OF LEMMA 7

Proof: For γ = ηp. We then have

P

(
Y−1∪
m=0

B̃m

)

≤
⌈γN⌉−1∑

y=0

(
N − 1

y − 1

)
py(1− p)N−1−yP

(
y∪

m=0

B̃m

∣∣∣∣∣Y = y

)

+
N−1∑

y=⌈γN⌉

(
N − 1

y − 1

)
py(1− p)N−1−yP

(
y∪

m=0

B̃m

∣∣∣∣∣Y = y

)
.

The first term satisfies,

⌈γN⌉−1∑
y=0

(
N − 1

y − 1

)
py(1− p)N−1−yP

(
y∪

m=0

B̃m

∣∣∣∣∣Y = y

)

≤P(Y < ⌈γN⌉ − 1) ≤ e−2
(p(N−1)−(⌈γN⌉−1))2

p(N−1)

=O(exp(−(1− η)2pN)),

November 19, 2012 DRAFT



32

where the last inequality follows from the Chernoff bound.For m = 0, Dm = us ≥ Cf . Therefore the probability

P(B̃0|Y = y) is always 0. We can then take the summation from m = 1. We have,

P

(
y−1∪
m=0

B̃m

∣∣∣∣∣Y = y

)
≤

y−1∑
m=1

(
y

m

)
βm y−m+1

N−1 + y−m
y

≤βγ

y−1∑
m=1

(
y

m

)
βmγ y−m

y

=βγ

⌊y/2⌋∑
m=1

(
y

m

)
βmγ y−m

y +

y−1∑
m=⌊y/2⌋+1

(
y

m

)
βmγ y−m

y


≤βγ

⌊y/2⌋∑
m=1

(
y

m

)
β

mγ
2 +

y−1∑
m=⌊y/2⌋+1

(
y

m

)
β

(y−m)γ
2


=2βγ

[(
1 + β

γ
2

)y
− 1
]
. (19)

We then have

N−1∑
y=⌈γN⌉

(
N − 1

y

)
py(1− p)N−1−yP

(
y−1∪
m=0

B̃m

∣∣∣∣∣Y = y

)

≤2
N−1∑

y=⌈γN⌉

(
N − 1

y

)
py(1− p)N−1−yβγ

[(
1 + β

γ
2

)y
− 1
]

≤
N−1∑
y=0

(
N − 1

y

)
2βγ

(
p(1 + β

γ
2 )
)y

(1− p)N−1−y

=2βγ

[(
1 + pβ

γ
2

)N−1

− 1

]
.

Then, plugging in the value of β will yields (6). For m = y,

P
(
B̃y

∣∣∣Y = y
)
= P (Dy ≤ (1− ϵ)Cf |Y = y)

≤e−(My 1
N−1 )

u
us

ϵ′2
2 = βγ

(7) then follows trivially.

APPENDIX E

PROOF OF LEMMA 11

Proof: Let Y be the number of ON users in the system, which is a random variable with binomial distribution

Bin(N, p). For any subset S of V , define TS as the number of ON peers that are the upstream neighbors of at least

one peer in S, i.e. TS = |{i ∈ U(S)|i is ON}|. Let S = |S| be the number of peers in S. Then,
∑

i∈U(S) ui = uTS ,
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and the following two events are equivalent (defined as ΓS ):

ΓS ,

θ
∑

i∈U(S)

ui ≤
∑
j∈S

[
(1− ϵ)Cf −

∑
i∈V

CU
ij

]
=

θuTS +
∑
i∈V

∑
j∈S

CU
ij ≤ S(1− ϵ)Cf

 . (20)

In the last event of (20), the first term of the left hand side is the capacity from the more sophisticated allocation

and the second term is the capacity from uniform allocation. We divide the proof into two parts according to the

value of S.

1) We first consider the case when S is small, i.e., S ≤ δN , where δ ∈ (0, θ/2) is a small constant that does

not depend on N . We will show that, when s is very small, the capacity of the more sophisticated allocation

θuTS alone will be sufficient with high probability, i.e., it may be larger than S(1 − ϵ)Cf . Recall that Cf =

min
{
up+ us

N , us

}
≤ u

(
p+ us

uN

)
. Let p′ = p + us

uN . Then, for any ϵ > 0, there exists N0 such that whenever

N > N0, p′ < p+ ϵ. We thus have θuTS < S(1− ϵ)Cf implies TS < (1− ϵ)Sp′/θ. Therefore,

P (ΓS) ≤ P (θuTS ≤ S(1− ϵ)Cf )

≤P (TS < (1− ϵ)Sp′/θ) . (21)

Next, we are going to show that the probability that TS < (1− ϵ)Sp′/θ for some S ⊂ V is very small. To prove

this, we first make the following claim: if there exists a set of peers S such that TS < (1 − ϵ)Sp′/θ, then there

exists another set of peers S ′ such that

TS′ ∈ IS′(ϵ, p′) ,
[
(1− ϵ)(S′ − 1)p′

θ
,
(1− ϵ)S′p′

θ

]
, (22)

where S′ = |S ′|. To see this, first note that if S = 1 and TS < (1− ϵ)Sup′/θ, (22) automatically holds by letting

S ′ = S. Suppose that TS < (1− ϵ)Sp′θ for some S > 1 but TS < (1− ϵ)(S − 1)p′/θ. We then remove one peer

from S and obtain S ′. Clearly S′ = |S ′| = S − 1. We will have

TS′ ≤ TS < (1− ϵ)(S − 1)p′/θ = (1− ϵ)S′p′θ.

Hence, S ′ still satisfies TS′ < (1−ϵ)S′p′

θ . If (22) is still not true for S ′, we can remove another node from S ′ and

repeat these steps until we find a set that satisfies (22). Note that by removing nodes one by one from S, in the

worst case we will end up with a set S ′ that contains one peer. However, as mentioned above, if S′ = |S ′| = 1,

(22) is automatically satisfied. As a result, we can always find a set S ′ that satisfies (22) by removing the nodes

from S one by one. Therefore, the claim holds. Consequently,

P

(
TS <

(1− ϵ)Sp′

θ
for some S

)
≤P (TS ∈ IS(ϵ, p′) for some S) . (23)
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Now we are going to characterize the probability on the right hand side of (23). Define ri(S) to be the probability

that a given user i select at least one of the peers in S as its downstream neighbor. For any peer i ∈ S , ri(S) is

equal to 1 minus the probability that peer i choose all its M downstream neighbors from the peers that are not in

S. More specifically, for i ∈ S we have

ri(S) = P (i ∈ U(S)) = 1−
(
N−S
M

)(
N−1
M

) . (24)

Similarly, for i ∈ V \ S , we have

ri(S) = P (i ∈ U(S)) = 1−
(
N−S−1

M

)(
N−1
M

) .

Note that for any peer i, the value of ri(S) is identical for all the sets S that have the same size |S|. In the rest

of the proof, we will use ri(S) to denote the probability that user i selects at least one of the peers in S as its

downstream neighbor for all the sets S that satisfies |S| = S, i.e., ri(S) = ri(S), ∀S ⊂ V such that |S| = S. Note

that,

1−
(
N−S
M

)(
N−1
M

) ≤ 1−
(
N−S−1

M

)(
N−1
M

) .

Thus, for any i ∈ V , (24) become a lower bound of ri(S).

ri(S) ≥ 1−
(
N−S
M

)(
N−1
M

) . (25)

The second term on the right hand side of (25) satisfies(
N−S
M

)(
N−1
M

) =

(N−S)!
M !(N−S−M)

N !
M !(N−M)!

=

(
1− M

N

)
...

(
1− M

N − S + 1

)

≤
(
1− M

N

)S

≤ e−
SM
N .

Combining (25) and the above inequality, we get a uniform lower bound of ri(S) for all i, which is denoted by

r(S),

ri(S) ≥ 1− e−
SM
N , r(S).

Now we have, for y ≥ (1− ϵ)Np

P (TS ∈ IS(ϵ, p′)|Y = y)

≤
⌊(1−ϵ)Sp′/θ⌋∑

t=⌈(1−ϵ)(S−1)p′/θ⌉

(
y

t

)
r(S)t(1− r(S))y−t

≤1

θ

(
y

⌊(1− ϵ)Sp′/θ⌋

)
r(S)⌊(1−ϵ)Sp′

θ ⌋(1− r(S))y−⌊(1−ϵ)Sp′
θ ⌋

≤1

θ
N

Sp′
θ e

− S
N M(1−ϵ)

(
Np−Sp′

θ

)
.
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Then, for y ≥ (1− ϵ)Np, we have

P

(
TS ∈ IS(ϵ, p′) for some S ≤ δN

∣∣∣∣Y = y

)
≤

δN∑
S=1

(
N

S

)
P (TS ∈ IS(ϵ, p′)|Y = y)

≤
δN∑
S=1

1

θ
NSN

Sp′
θ e

− S
N M(1−ϵ)

(
Np−Sp′

θ

)

≤
δN∑
S=1

1

θ
N

S
(
1+ p′

θ

)
N

−αS(1−ϵ)
(
p− p′δ

θ

)
(since M = α logN ).

It follows that

P (TS ∈ IS(ϵ, p′) for some S ≤ δN)

≤P(Y < (1− ϵ)Np) +
N∑

⌈y=(1−ϵ)Np⌉

P(Y = y)

×P

(
TS ∈ IS(ϵ, p′) for some S ≤ δN

∣∣∣∣Y = y

)
≤O(exp(−ϵ2p2N)) +

δN∑
S=1

1

θ
NS(1+p′/θ)N−αS(1−ϵ)(p−p′δ/θ). (26)

Note that when N is large, α satisfies,

α >
2 + (p+ ϵ)/θ + d

[p− (p+ ϵ)δ/θ](1− ϵ)
≥ 2 + p′/θ + d

[p− p′δ/θ](1− ϵ)
.

We have,

δN∑
S=1

1

θ
Ns(1+p′/θ)N−αS(1−ϵ)(p−p′δ/θ)p

≤1

θ
N1+1+p′/θN−(2+p′/θ+d) =

1

θNd
= O

(
1

Nd

)
. (27)

Finally, combining (21), (23), (26) and (27), we have

P

 ∪
S⊂V,|S|≤δN

ΓS


≤P

(
TS <

(1− ϵ)sp′

θ
for some S ≤ δN

)
≤P (TS ∈ IS(ϵ, p′) for some S ≤ δN)

≤O

(
1

Nd

)
.

2) When s is large, i.e., S > δN , the capacity from sophisticate allocation alone may not be adequate. We then

need to count both parts of the capacity in (20). Consider the quantity θuTS +
∑

i∈V

∑
j∈S CU

ij in (20). It can
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be viewed as the maximum capacity that can be assigned to S from both the more sophisticate and uniform rate

allocation. Now consider a purely uniform rate allocation. The total capacity allocated to S must be a lower bound

of the above value. Next, we will show that the above lower bound will be larger than (1 − ϵ)SCf with high

probability. More precisely, let Iij be the indicator function of the event that there is a link between node i and

node j, and node i is an ON peer or the server. Then we have∑
i∈V

∑
j∈S

CU
ij =

us

M

∑
j∈S

Isj +
(1− θ)u

M

∑
i∈V \s

∑
j∈S

Iij .

Note that for fixed i ∈ V ,
∑

j∈S Iij ≤ M . Further, if i is OFF or i /∈ U(S), then
∑

j∈S Iij = 0. Recall that TS is

the number of ON users in U(S). We have∑
i∈V \s

∑
j∈S

Iij =
∑

i∈U(S),i is ON

∑
j∈S

Iij ≤ TSM,

and hence

TS ≥ 1

M

∑
i∈V \s

∑
j∈S

Iij .

Then, the total available capacity from U(S) to S will be

θuTS +
∑
i∈V

∑
j∈S

CU
ij

≥us

M

∑
j∈S

Isj + θu
1

M

∑
i∈V \s

∑
j∈S

Iij +
(1− θ)u

M

∑
i∈V

∑
j∈S

Iij

=
us

M

∑
j∈S

Isj +
u

M

∑
i∈V \s

∑
j∈S

Iij .

The above value is equal to the capacity from U(S) to S if we use purely uniform rate allocation scheme. Note

that

E

us

M

∑
j∈S

Isj +
u

M

∑
i∈V \s

∑
j∈S

Iij


=N

M

N
· us

M
+NS

M

N
· u

M
p ≥ Cf .

Applying Chernoff bound and Lemma 5, and using similar argument as we did when proving Lemma 6, we can

show that

P(ΓS) =P

θuTS +
∑
i∈V

∑
j∈S

CU
ij ≤ (1− ϵ)SCf


≤P

us

M

∑
j∈S

Isj +
u

M

∑
i∈V \s

∑
j∈S

Iij ≤ (1− ϵ)SCf


≤e−

ϵ2

2
u
us

MSp
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Consequently,

P

 ∪
S⊂V,|S|>δN

ΓS


≤

N∑
S=δN+1

(
N

s

)
e−

ϵ2

2
u
us

MSp ≤
N∑

S=δN+1

(
Ne

S

)S

e−
ϵ2

2
u
us

MSp

≤
N∑

S=δN+1

eS(1−log δ)e−
ϵ2

2
u
us

MSp ≤ 2e(1−log δ− ϵ2

2
u
us

Mp)δN .

Hence, as long as 1 − log δ − ϵ2

2
u
us
Mp < 0, the above expression will converge to 0 exponentially fast. In fact,

if M = α logN and α satisfies (14), then for sufficiently large N , the inequality 1 − log δ − ϵ2

2 Mp < 0 always

holds. Hence, if (14) holds, we have,

P

 ∪
S⊂V,|S|>δN

ΓS

 ≤ O(1/Nd).

Finally, by combining the result of part (1) and part (2) together, we can thus prove the lemma.

APPENDIX F

PROOF OF THEOREM 8

Proof: Recall that for any fixed destination t, Ht denotes the sub-network of the system that only contains

the ON peers, and Dm is the capacity of the cut Wm in Ht that have m ON peers on and the server on the left

and the destination t and all other ON peers on the right. Let B′
m denote the event {Dm ≤ (1− ϵ)Cf for any cut

among the
(
Y
m

)
cuts }. Using Proposition 2, we have

P (Cmin−min(s → V ) ≤ (1− ϵ)Cf )

≤
N−1∑
y=0

P (Cmin−min(s → V ) ≤ (1− ϵ)Cf |Y = y)P(Y = y)

=
N−1∑
y=0

P

( ∪
t∈V

Y∪
m=0

B′
m

∣∣∣∣∣Y = y

)
P(Y = y)

≤
N−1∑
y=0

P

( ∪
t∈V

{DY ≤ (1− ϵ)Cf}

∣∣∣∣∣Y = y

)
P(Y = y)

+
N−1∑
y=0

P

( ∪
t∈V

Y−1∪
m=0

B′
m

∣∣∣∣∣Y = y

)
P(Y = y). (28)

The first term in the last step of (28) corresponds to the “last hop”. It is the probability that the capacity that

some peer receives from its direct upstream neighbors is smaller than (1 − ϵ)Cf , or equivalently, the probability

that we cannot find CS
ij’s such that (10) holds. According to Corollary 10, for the hybrid scheme πθ, this event is

equivalent to the event that for some subset S of V , the total allocated capacity from their upstream neighbors is
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smaller than |S|(1− ϵ)Cf . Then, by Lemma 11, the probability of such an event is O
(

1
Nd

)
. More specifically, if

(14) holds, we have

N−1∑
y=0

P

( ∪
t∈V

{DY ≤ (1− ϵ)Cf}

∣∣∣∣∣Y = y

)
P(Y = y)

=P

(∪
t∈V

{∑
i∈V

Cit ≤ (1− ϵ)Cf

})

=P
(
There do not exist CS

ij’s such that (10) holds
)

=P

 ∑
i∈U(S)

θui ≥
∑
j∈S

(1− ϵ)Cf −
∑

i∈U(j)

CU
ij


≤O

(
1

Nd

)
,

where the second last step comes from Corollary 10 and the last step comes from Lemma 11.

The second term in the last step of (28) represents the probability that some cut other than the “last hop” does

not have sufficient capacity. The capacity from the more sophisticated allocation is difficult to characterize for

non-last-hop cuts. Fortunately, since we have at least two peers on the right side of the cut, the capacity from the

uniform allocation alone will be sufficient. Define η = max{1− ϵ, 1
2θ}. It is not hard to see that if θ > 1/2, then

for all Y ≥ ηp(N − 1) + 1, m ≤ Y − 1 and large enough N ,

E[Dm] ≥us(Y −m)

Y
+ θ

u

N − 1
m(Y −m+ 1)

≥min{2θηus,
us

N
+ 2θηup}

=max{2(1− ϵ)θ, 1}Cf .

Hence, the expectation of the cut capacity Dm is always larger than the optimal streaming rate Cf . Therefore,

P (Dm ≤ (1− ϵ)Cf |Y = y)

≤P

(
Dm ≤ (1− ϵ)

max{2(1− ϵ)θ, 1}
E[Dm]

∣∣∣∣Y = y

)
≤P

(
Dm ≤ min{1− ϵ,

1

2θ
}E[Dm]

∣∣∣∣Y = y

)
.

Now apply Lemma 4 and replace ϵ by min{1− ϵ, 1
2θ}. We then have

P

(
Dm ≤ min{1− ϵ,

1

2θ
}E[Dm]

∣∣∣∣Y = y

)
≤exp

[
− u

us
max

{
ϵ2

2
,
(2θ − 1)2

8θ2

}

×
(
Mm

y −m+ 1

N − 1
+M

y −m

y

)]
.
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Let

β′ = exp

(
− u

us
max

{
ϵ2

2
,
(2θ − 1)2

8θ2

})
.

Applying Lemme 7, we have

N−1∑
y=0

P

(
Y−1∪
m=0

B′
m

∣∣∣∣∣Y = y

)
P(Y = y) = P

(
Y−1∪
m=0

B′
m

)

≤O(exp(−(1− η)2p2N)) + β′ηp
[(

1 + β′ ηp
2

)N−1

− 1

]
.

Then follow the same approach as in the proof of Theorem 1, one can show that if M = α logN and

α ≥ (2 + d)us

ηpumax
{

ϵ2

2 ,
(2θ−1)2

8θ2

} , (29)

then

N−1∑
y=0

P

(
Y−1∪
m=0

B′
m

∣∣∣∣∣Y = y

)
P(Y = y) ≤ O

(
1

Nd+1

)
.

It follows that the second term in (28) can be bounded by

N−1∑
y=0

P

( ∪
t∈V

Y−1∪
m=0

B′
m

∣∣∣∣∣Y = y

)
P(Y = y)

≤NO

(
1

Nd+1

)
= O

(
1

Nd

)
.

In conclusion, if (14) and (29) hold, i.e., (11) holds then

P (Cmin−min(s → V ) ≤ (1− ϵ)Cf ) ≤ O

(
1

Nd

)
.

APPENDIX G

PROOF OF LEMMA 15

Proof: We first claim that for any θ > 0, the moment generating function of any bounded random variable U

between [0, Umax] with the mean value µ will be smaller than the moment generating function of the “ON-OFF”

random variable Ũ with the same expectation µ, where P(Ũ = Umax) =
µ

Umax
and P(Ũ = 0) = 1− µ

Umax
. More

specific, we claim the following inequality holds for any θ > 0

E[e−θU ] ≤ E[e−θŨ ] =
µ

Umax
e−θUmax + 1− µ

Umax
.

To see this, note that for θ = 0,

E[e−θU ] = E[e−θŨ ] = 1.
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For any θ > 0
d

dθ
E[e−θU ] = E[−Ue−θU ] ≤ E[−Ue−θUmax ] = −µe−θUmax .

On the other hand,

d

dθ
E[e−θŨ ] =

d

dθ
E

[
µ

Umax
e−θUmax + 1− µ

Umax

]
= −µe−θUmax .

Thus, for any θ > 0
d

dθ
(E[e−θU ]−E[e−θŨ ]) ≤ 0.

Consequently, for any θ > 0

E[e−θU ] ≤ E[e−θŨ ].

Now, by Chernoff bounds, we have for, θ > 0,

P(Ck̃ ≤ (1− ϵ)E[Ck̃]) ≤
E[e−θCk̃ ]

e−θE[Ck̃]
. (30)

We are going to find an upper bound on the moment generating function of Ck̃, E[e−θCk̃ ], as we did in Proposition 5.

E[e−θCk̃ ] = E

[
e
−θ

∑
i∈V

k̃

∑
j∈V c

k̃
Cij

]

=

[
E

[
e
−θ

∑
j∈V c

k̃
C1j

]]k̃
. (31)

Recall that Iij is the indicator function of the event that peer j is a downstream neighbors of i, and Ĩij , j ∈ V c
k̃

are i.i.d. Bernoulli random variables such that Ĩij has the same marginal distribution as Iij . Then, according to
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Theorem 4, we have

E

[
e
−θ

∑
j∈V c

k̃
C1j

]

=E

(e−θ
∑

j∈V c
k̃
I1j
)U1

M


=E

E
(e−θ

∑
j∈V c

k̃
I1j
)U1

M

∣∣∣∣∣∣U1


≤E

E
(e−θ

∑
j∈V c

k̃
Ĩ1j
)U1

M

∣∣∣∣∣∣U1

 (by Theorem 4)

=E

[
E

[(
1− M

N − 1
+

M

N − 1
e−θ

U1
M

)N−k
∣∣∣∣∣U1

]]

=E

[(
1− M

N − 1
+

M

N − 1
e−θ

U1
M

)N−k̃
]
. (32)

Note that according to our claim, letting p̃ = µ
Umax

and q = M
N−1 , we have,

E

[(
1− M

N − 1
+

M

N − 1
e−θ

U1
M

)N−k̃
]

=
N−k̃∑
l=0

(
N − k̃

l

)
(1− q)

N−k̃−l
qlE

[
e−θ

U1
M l
]

≤
N−k̃∑
l=0

(
N − k̃

l

)
(1− q)

N−k̃−l
qlE

[
e−θ Ũ

M l
]

=
N−k̃∑
l=0

(
N − k̃

l

)
(1− q)

N−k̃−l
ql
(
pe−θUmax

M l + 1− p̃
)

=p̃
(
1− q + qe−θUmax

M

)N−k̃

+ 1− p̃. (33)

Now, combine (31), (32) and (33) we get

E[e−θCk̃ ] ≤
[
p̃
(
1− q + qe−θUmax

M

)N−k̃

+ 1− p̃

]k̃
. (34)

Hence, (30) can be written as

P(Ck̃ ≤ (1− ϵ)E[Ck̃]) ≤
E[e−θCk̃ ]

e−θE[Ck̃]

≤
[
p̃
(
1− q + qe−θUmax

M

)N−k̃

+ 1− p̃

]k̃
eθ(1−ϵ)µ

k̃(N−k̃)
N−1 .
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Pick θ = − M
Umax

log(1− ϵ), we get

P(Ck̃ ≤ (1− ϵ)E[Ck̃])

≤E[e−θCk̃ ]

e−θE[Ck̃]

≤
[
p̃ (1− q + q(1− ϵ))

N−k̃
+ 1− p̃

]k̃
e−(1−ϵ) log(1−ϵ)p̃M

k̃(N−k̃)
N−1

=
[
p̃ (1− ϵq)

N−k̃
+ 1− p̃

]k̃
e−(1−ϵ) log(1−ϵ)p̃qk̃(N−k̃)

≤ exp
(
p̃[(1− ϵq)(N−k̃) − 1]k̃ − (1− ϵ) log(1− ϵ)p̃qk̃(N − k̃)

)
. (35)

Note that N − k̃ < 2/p and it will not scale with N . The Taylor expansion of (1− ϵq)(N−k̃) around q = 0 is

(1− ϵq)(N−k̃) = 1− ϵ(N − k̃)q +O(q2).

The exponent of (35) would be

p̃k̃
[
(1− ϵq)(N−k̃) − 1− (N − k̃)q(1− ϵ) log(1− ϵ)

]
=p̃k̃

[
1− ϵ(N − k̃)q +O(q2)− 1− (N − k̃)q(1− ϵ) log(1− ϵ)

]
≤p̃k̃

[
ϵ(N − k̃)q +O(q2)− (N − k̃)q

(
ϵ2

2
− ϵ

)]
=− p̃k̃

[
(N − k̃)q

ϵ2

2
+O(q2)

]
.

Finally, the following holds,

P(Ck̃ ≤ (1− ϵ)E[Ck̃]) ≤ e
−p̃k̃

[
(N−k̃)q ϵ2

2 +O(q2)
]
.

APPENDIX H

PROOF OF THEOREM 12

Proof: As discussed before, we will divide all the cuts into three different groups: 1)where the capacities

between ON peers is sufficient, 2)where the capacities from the ON peers to all kinds of peers is adequate and
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3)where the capacities from the ONE peers alone is insufficient. More specifically, let ϵ′ = 1−
√
1− ϵ, we have

P(Cmin−min(s → V ) ≤ (1− ϵ)Cf ) ≤ O(exp(−ϵ′2p2(N − 1))) +
N∑

y=(1−ϵ′)p(N−1)

P(Y = y)

×

[ y− 2
p∑

m=0

(
y

m

)
P(Dm ≤ (1− ϵ)Cf |Y = y) (36)

+

y∑
m=y− 2

p

(
y

m

)N−m− 2
p2

−1∑
k=0

(
N − y

k

)
P(Dm,k ≤ (1− ϵ)Cf |Y = y) (37)

+

y∑
m=y− 2

p

(
y

m

) N−y∑
k=N−m− 2

p2

(
N − y

k

)
P(Cm,k ≤ (1− ϵ)Cf |Y = y)

]
. (38)

For (36), by Lemma 13, we have for y ≥ (1− ϵ′)p(N − 1)

P (Dm ≤ (1− ϵ)Cf |Y = y)

≤P
(
D̃m ≤ (1− ϵ′)E[D̃m]|Y = y

)
.

Thus, when m ≤ y − 2
p , we have

y− 2
p∑

m=0

(
y

m

)
P(Dm ≤ (1− ϵ)Cf |Y = y)

≤
y− 2

p∑
m=0

(
y

m

)
P(D̃m ≤ (1− ϵ′)E[D̃m]|Y = y).

Recall that Dm is capacity of a cut in the sub-network that contains only the ON peers of the network where the

upload capacity of each peer is given by a ON-OFF model. By our previous result, when α ≥ 4dus

(1−ϵ′)ϵ′2pu , we have

N∑
y=(1−ϵ′)pN

y− 2
p∑

m=0

(
y

m

)
P(D̃m ≤ (1− ϵ′)E[D̃m]|Y = y)P(Y = y) < O

(
1

N2d

)
.

For (37), by Lemma 14, we have

P (Dm,k ≤ (1− ϵ)Cf |Y = y)

≤P
(
D̃m,k ≤ (1− ϵ′)E[D̃m,k]|Y = y

)
.
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Thus, when m ≥ Y − 2
p and N − k −m > 2

p2 , we have

y∑
m=y− 2

p

(
y

m

)N−m− 2
p2

−1∑
k=0

(
N − y − 1

k

)
P(Dm,k ≤ (1− ϵ)Cf |Y = y)

≤
y∑

m=y− 2
p

(
y

m

)N−m− 2
p2

−1∑
k=0

(
N − y − 1

k

)
P(D̃m,k ≤ (1− ϵ′)E[D̃m,k]|Y = y).

Using Proposition 3 and Lemma 4, one can show that

P(D̃m,k ≤ (1− ϵ′)E[D̃m,k]|Y = y) ≤ e−
ϵ2

2
m(N−k−m)

N−1 M .

Note that for m ≥ y − 2
p , when N is sufficiently large and so is y, we have m ≥ (1− ϵ′)pN . Then (37) become

N∑
y=(1−ϵ′)pN

y∑
m=y− 2

p

(
y

m

)N−m− 2
p2

−1∑
k=0

(
N − y − 1

k

)
P(Dm,k ≤ (1− ϵ)Cf |Y = y)P(Y = y)

≤
N∑

y=(1−ϵ′)pN

y∑
m=y− 2

p

(
y

m

)N−m− 2
p2

−1∑
k=0

(
N − y − 1

k

)
e−

ϵ′2
2

(y− 2
p
)(N−k−m)

N−1 MP(Y = y)

≤
N∑

y=(1−ϵ′)pN

y∑
m=0

(
y

m

)N−y−1∑
k=0

(
N − y − 1

k

)
e−

ϵ′2
2

(1−ϵ′)pN(N−k−m)
N−1 MP(Y = y)

≤
N∑

y=(1−ϵ′)pN

P(Y = y)e−(1−ϵ′) ϵ′2
2 pM

y∑
m=0

(
y

m

)
e−(1−ϵ′) ϵ′2

2 p(Y−m)M

×
N−y−1∑
k=0

(
N − y − 1

k

)
e−(1−ϵ′) ϵ′2

2 p(N−y−1−k)Me−(1−ϵ′) ϵ′2
2 p(N−y−1−k)M

≤
N∑

y=(1−ϵ′)pN

P(Y = y)e−(1−ϵ′) ϵ′2
2 pM

(
1 + e−(1−ϵ′) ϵ′2

2 pM
)y (

1 + e−(1−ϵ′) ϵ′2
2 pM

)N−y−1

≤ e−(1−ϵ′) ϵ′2
2 pM

(
1 + e−(1−ϵ′) ϵ′2

2 pM
)N−1

.

Clearly, if α ≥ 4dus

(1−ϵ′)ϵ′2pu , the above expression will be

e−(1−ϵ′) ϵ′2
2 pM

(
1 + e−(1−ϵ′) ϵ′2

2 pM
)N−1

≤ N−2d(1 +N−2d)N−1

≤O

(
1

N2d

)
.
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For (38), we have

N∑
y=(1−ϵ′)pN

P(Y = y)

y∑
m=y− 2

p

(
y

m

) N−y−1∑
k=N−m− 2

p2

(
N − y

k

)
P(Cm,k ≤ (1− ϵ)Cf |Y = y)

=
∑

m,k:N−m−k≤2/p2

(
y

m

)(
N − y − 1

k

)
P(Cm,k ≤ (1− ϵ)Cf |Y = y)

≤
N∑

y=(1−ϵ′)pN

P(Y = y)
∑

m,k:N−m−k≤2/p2

(
N

m+ k

)
P(Cm+k ≤ (1− ϵ)Cf |Y = y)

=

N−1∑
k̃=N−2/p2

(
N − 1

k̃

)
P(Ck̃ ≤ (1− ϵ)Cf ) (k̃ = m+ k).

By Lemma 15, we have

N−1∑
k̃=N−2/p2

(
N − 1

k̃

)
P(Ck̃ ≤ (1− ϵ)Cf )

≤
N−1∑

k̃=N−2/p2

(
N − 1

k̃

)
e
−p̃k̃

[
(N−k̃)q ϵ2

2 +O(q2)
]

=
N−1∑

k̃=N−2/p2

(
N − 1

k̃

)
e
−p̃k̃

[
(N−k̃)M

N−1
ϵ2

2 +O
(

M2

(N−1)2

)]

≤e
O
(

M2

N−1

)
e−p̃M ϵ2

2

N−1∑
k̃=N−2/p2

(
N

k̃

)
e−p̃ ϵ2

2 (N−1−k̃)M

≤e
O
(

M2

N−1

)
e−p̃ ϵ2

2 M
(
1 + e−p̃ ϵ2

2 M
)N−1

If α ≥ 4d
ϵ2p̃ , then

e−p̃ ϵ2

2 M ≤ 1

N2d
,

and

e
O
(

M2

N−1

)
e−p̃ ϵ2

2 M
(
1 + e−p̃ ϵ2

2 M
)N−1

≤O(1)
1

N2d

(
1 +

1

N2d

)N−1

≤O

(
1

N2d

)
.

By combining the three parts of results together, we can conclude that if

α ≥ max

{
4d

ϵ2p̃
,

4dus

(1− ϵ′)ϵ′2pu
,

}
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then

P(Cmin−min(s → V ) ≤ (1− ϵ)Cf ) ≤ O

(
1

N2d

)
.
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