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Abstract

In this paper, we are interested in wireless scheduling algorithms
for the downlink of a single cell that can minimize the queue-overflow
probability. Specifically, in a large-deviation setting, we are interested
in algorithms that maximize the asymptotic decay-rate of the queue-
overflow probability, as the queue-overflow threshold approaches in-
finity. We first derive an upper bound on the decay-rate of the queue-
overflow probability over all scheduling policies. We then focus on
a class of scheduling algorithms collectively referred to as the “α-
algorithms.” For a given α ≥ 1, the α-algorithm picks the user for ser-
vice at each time that has the largest product of the transmission rate
multiplied by the backlog raised to the power α. We show that when
the overflow metric is appropriately modified, the minimum-cost-to-
overflow under the α-algorithm can be achieved by a simple linear
path, and it can be written as the solution of a vector-optimization
problem. Using this structural property, we then show that when α ap-
proaches infinity, the α-algorithms asymptotically achieve the largest
decay-rate of the queue-overflow probability. Finally, this result en-
ables us to design scheduling algorithms that are both close-to-optimal
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in terms of the asymptotic decay-rate of the overflow probability, and
empirically shown to maintain small queue-overflow probabilities over
queue-length ranges of practical interest.

1 Introduction

Link scheduling is an important functionality in wireless networks due to
both the shared nature of the wireless medium and the variations of the
wireless channel over time. In the past, it has been demonstrated that, by
carefully choosing the scheduling decision based on the channel state and/or
the demand of the users, the system performance can be substantially im-
proved (see the references in [2]). Most studies of scheduling algorithms have
focused on optimizing the long-term average throughput of the users. For
example, in a typical stability problem [3–5], the goal is to find scheduling
algorithms that can stabilize the network at given offered loads, which also
ensures that the long-term average service rate is no less than the packet
arrival rate at each user. An important result along this direction is the
development of the so-called “throughput-optimal” algorithms [3]. An algo-
rithm is called throughput-optimal if, at any offered load under which any
other algorithm can stabilize the system, this algorithm can stabilize the
system as well. Therefore, a throughput-optimal scheduling algorithm is op-
timal if we only impose stability constraints, i.e., it can stabilize the system
over the largest set of offered loads.

While stability (and ensuring that the long-term service rate is no smaller
than the arrival rate) is an important first-order metric of success, for many
delay-sensitive applications it is far from sufficient. Note that a stability
objective ensures that the queue-length (and thus the packet delay) do not
increase to infinity. For real-time applications such as voice and video, we
often need to ensure a stronger condition that the packet delay can be up-
per bounded with high probability. In this paper, we impose an alternate
constraint on the probability of queue overflow, which is equivalent to a con-
straint on the delay-violation probability under certain conditions. In other
words, we would like to guarantee that the probability of each user’s backlog
exceeding a given threshold is no greater than a target value.

We are interested in scheduling algorithms that are optimal subject to
the above type of queue-overflow constraints. We focus on the downlink of
a single cell in a cellular network. The base-station serves multiple users.
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Due to interference, the base-station can only serve one user at a time. We
assume that perfect channel information is available at the base-station. The
question that we attempt to answer is the following: Is there an optimal
algorithm in the sense that, at any given offered load, the algorithm can
achieve the smallest probability of queue-overflow. Note that if we impose
a quality-of-service (QoS) constraint on each user in the form of an upper
bound on the queue-overflow probability, then the above optimality condition
will also imply that the algorithm can support the largest set of offered loads
subject to the QoS constraint.

The above question has well-known to be a difficult one. First, calcu-
lating the exact queue-distribution is often mathematically intractable. To
make progress, one often has to use some asymptotic techniques, such as
heavy-traffic limits [6–8] or large deviations∗. To study small queue-overflow
probabilities, it is natural to use the large-deviation theory because the
probability of the event of interest is very small [11, 12]. In such a large
deviation setting, one attempts to compute the asymptotic decay-rate of
the queue-overflow probability, as the overflow-threshold approaches infin-
ity. The optimal scheduling algorithm will then correspond to the algorithm
that maximizes this decay-rate. Large-deviation theory has been success-
fully applied to wireline networks (see, e.g., [13–19]) and to wireless schedul-
ing algorithms that only use the channel state to make the scheduling de-
cisions [20–22]. However, when applied to wireless scheduling algorithms
that use also the queue-length to make scheduling decisions (e.g., for the
throughput-optimal scheduling policies proposed in [3–5]), this approach en-
counters a significant amount of technical difficulty. Specifically, in order
to apply the large-deviation theory to queue-length-based scheduling algo-
rithms, one has to use sample-path large-deviation, and formulate the prob-
lem as a multi-dimensional calculus-of-variations (CoV) problem for finding
the “most likely path to overflow.” The decay-rate of the queue-overflow
probability then corresponds to the cost of this path, which is referred to
as the “minimum cost to overflow.” Unfortunately, for many queue-length-
based scheduling algorithms of interest, this multi-dimensional calculus-of-
variations problem is very difficult to solve. In the literature, only some
restricted cases have been solved: Either restricted problem structures are
assumed (e.g., symmetric users and ON-OFF channels [23]), or the size of

∗Alternatively, one can focus on providing order-optimal bounds on the expected queue-
length/packet delay [9, 10].
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the system is very small (only two users) [24].
In a recent work [25]†, the author shows that the “exponential-rule” can

maximize the decay-rate of the queue-overflow probability over all scheduling
policies. In this paper, we build on the results of our preliminary work in [1],
and show a comparable but different result. Specifically, we study a class
of scheduling algorithms collectively referred to as the “α-algorithms.” For a
given α ≥ 1, the α-algorithm picks the user for service at each time that has
the largest product of the transmission rate multiplied by the backlog raised
to the power α. We show that when α approaches infinity, the α-algorithms
asymptotically achieve the largest decay-rate of the queue-overflow proba-
bility. In our preliminary work [1], we establish this result assuming that a
sample-path large-deviation principle (LDP) holds for the backlog process.
Unfortunately, such a sample-path LDP appears to be difficult to verify. In
this paper, we remove this assumption and prove our result using a different
approach.

The advantage of working with the α-algorithms instead of the exponential-
rule, is that the α-algorithms are scale-invariant (i.e., the outcome of the
scheduling decision does not change if all queue-lengths are multiplied by
a common factor). Hence, we can use the standard sample-path large-
deviation principle (LDP), instead of the refined LDP used in [25] that is
more technically-involved. In addition, our results highlight the role that
the exponent α plays in determining the asymptotic decay-rate. To cir-
cumvent the difficulty of the multi-dimensional calculus-of-variations (CoV)
problem, we apply a novel technique introduced in [26]. Specifically, we
use a Lyapunov function to map the multi-dimensional CoV problem to a
one-dimensional problem, which allows us to bound the minimum-cost-to-
overflow by solutions of simple vector-optimization problems. Finally, using
the insight of our main result, we design a scheduling algorithm that is both
close-to-optimal in terms of the asymptotic decay-rate of the overflow proba-
bility, and empirically shown to maintain small queue-overflow probabilities
over queue-length ranges of practical interest.

The rest of the paper is organized as follows. We first present the system
model and the class of queue-length-based scheduling algorithms (referred
to as α-algorithms) in Section 2. This is followed by Section 3 which dis-
cusses some of the mathematical preliminaries needed to apply a sample-
path LDP. In Section 4, we derive an upper bound on the decay-rate of the

†Note that this work is published after our preliminary results reported in [1].
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queue-overflow probability over all scheduling policies. Then in Section 5, we
establish a lower bound on the decay-rate of the queue-overflow probability
for α-algorithms and show that the bound is tight. In Section 6, we prove
the main result that, as the parameter α approaches infinity, this class of
scheduling algorithms asymptotically achieve the largest possible decay-rate.
In Section 7, we present numerical results, and we discuss how to design a
practical algorithm based on the insights from our main results. Then we
conclude.

2 The System Model and Assumptions

We consider the downlink of a single cell in which a base-station serves N
users. We assume a slotted system, and we assume that the state of the
channel at each time slot is chosen i.i.d from one of M possible states. Let
C(t) denote the state of the channel at time t = 1, 2, . . . , and let pm =
P[C(t) = m], m = 1, 2, . . . ,M. Let p = [p1, ..., pM ]. We assume that the
base-station can serve one user at a time. Let F i

m denote the service rate for
user i when it is picked for service and the channel state is m.

We assume that data for user i arrive as fluid at a constant rate λi. Let
λ = [λ1, . . . , λN ]. Let Qi(t) denote the backlog of user i at time t, and let
Q(t) = [Q1(t), . . . , QN(t)]. In general, the decision of picking which user to
serve is a function of the global backlog Q(t) and the channel state C(t). Let
U(t) denote the index of the user picked for service at time t. The evolution
of the backlog for each user i is then governed by

Qi(t + 1) = [Qi(t) + λi −
M
∑

m=1

1{C(t)=m,U(t)=i}F
i
m]+ (1)

where [·]+ denotes the projection to [0, +∞). Note that

M
∑

m=1

N
∑

i=1

1{C(t)=m,U(t)=i} = 1

since only one user can be served at a time.
A particular class of scheduling algorithms that we will focus on are col-

lectively referred to as the “α-algorithms”, where α is a parameter that takes
values from the set of natural numbers. Given α, the behavior of the algo-
rithm is as follows. When the backlog of the users is Q(t) and the state of
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the channel is C(t) = m, the algorithm chooses to serve the user i for which
the product Qα

i (t)F i
m is the largest. If there are several users that achieve the

largest Qα
i (t)F i

m together, one of them is chosen arbitrarily. It is well-known
that this class of algorithms are throughput-optimal, i.e. they can stabilize
the system at the largest set of offer-loads λ [3–5].

Consider the system when it is operated at a given offered load λ and
is stable under a given scheduling algorithm. Specifically, we assume that
there is a positive number έ > 0 such that λ(1 + έ) is in the capacity region
of the system. This implies (refer [3]) that there exists [γ̂ i

m] ≥ 0 such that
∑N

i=1 γ̂i
m = 1 for all m = 1, ...,M and

λi(1 + έ) ≤
M
∑

m=1

pmγ̂i
mF i

m for all i = 1, ..., N. (2)

In this paper, we are interested in the probability that the largest backlog
exceeds a certain threshold B. i.e.,

P[ max
1≤i≤N

Qi(0) ≥ B]. (3)

Note that the probability in (3) is equivalent to a delay-violation probability
when the arrival rates λi are constant, because the two types of events are
related by (see [23,27])

P[Delay at link i ≥ di] = P[Qi(0) ≥ λidi].

The focus of this paper is in scheduling algorithms that minimize (3).
The problem of calculating the exact probability P[max1≤i≤N Qi(0) ≥ B]

is often mathematically intractable. In this work, we are interested in using
large-deviation theory to compute estimates of this probability. Specifically,
we will use the following limits:

I0(λ) , − lim inf
B→∞

1

B
log P[ max

1≤i≤N
Qi(0) ≥ B] (4)

J0(λ) , − lim sup
B→∞

1

B
log P[ max

1≤i≤N
Qi(0) ≥ B]. (5)

In essence, I0(λ) and J0(λ) are upper and lower bounds, respectively, of the
decay rate of (3), as the overflow threshold B approaches infinity. In the
following sections, we will show that no scheduling algorithm can have a

6



decay-rate larger than a certain value Iopt (defined in Section 4), i.e. I0(λ) ≤
Iopt. Then, we will show that the α-algorithms asymptotically achieve the
decay-rate Iopt. In other words, for the α-algorithms, J0(λ) approaches Iopt,
as α → ∞.

3 Preliminaries

Since the channel states are i.i.d. in time, the following sample-path large-
deviation principle (LDP) holds for the channel-state process. Specifically,
we define the empirical measure process S(t) = [Sm(t),m = 1, ...,M ] as
follows,

Sm(t) =

∫ t

0

1{C(bτc)=m}dτ,

where bτc represents the largest integer no greater than τ . Then, for any
non-negative integer B, define the scaled channel-rate process

sB(t) =
S(Bt)

B
. (6)

It is easy to see that sB(·) is Lipschitz continuous and hence its derivative
exists almost everywhere. For any given T > 0, let Ψ̃T denote the space of
mappings from [0, T ] to R

M , equipped with the essential supremum norm [12,
p176, p352]. Let PM denote the set of probability vectors of dimension M ,
i.e. φ = [φm,m = 1, ...,M ] ∈ PM implies that φ ≥ 0 and

∑M
m=1 φm = 1. For

any φ ∈ PM define‡

H(φ||p) =
M
∑

m=1

φm log
φm

pm

,

with the convention that 0 log 0 = 0. Then, as B → ∞, it is well-known
that the sequence of scaled channel-rate processes sB(·) on the interval [0, T ]
satisfies a sample-path large-deviation principle (LDP) with good rate func-
tion [12, Mogulskii’s Theorem (Thm 5.1.2), p176]:

IT
s (s(·)) =

{
∫ T

0
H(ṡ(t)||p)dt, if s(·) ∈ AC

∞ otherwise

‡This is commonly known as the relative entropy between φ and p.
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where AC denote the set of absolute continuous functions in Ψ̃T . This LDP
means that, for any set Γ̃ of trajectories in Ψ̃T , the following inequality holds:

− inf
s(·)∈Γ̃o

IT
s (s(·)) ≤ lim inf

B→∞

1

B
log P[sB(·) ∈ Γ̃]

≤ lim sup
B→∞

1

B
log P[sB(·) ∈ Γ̃] ≤ − inf

s(·)∈Γ̃

IT
s (s(·)), (7)

where Γ̃o and Γ̃ denote the interior and closure, respectively, of the set Γ̃. In
addition, if Γ̃ is a continuity set [12, p5], the two bounds meet and we then
have,

lim
B→∞

1

B
log P[sB(·) ∈ Γ̃] = − inf

s(·)∈Γ̃
IT
s (s(·)). (8)

Hence, the large-deviation rate-fucnction IT
s (s(·)) characterizes how “rarely”

the trajectory s(·) occurs.
Using a similar scaling as sB(·), define the scaled backlog process

qB(t) =
Q(Bt)

B
, for t = 0, 1

B
, 2

B
, ..., (9)

and by linear interpolation otherwise. Hence, for each sB(·) and a given
initial condition qB(0), we can use (1) to determine the corresponding qB(·).
As B → ∞, we will have a sequence of sB(·) and qB(·). It is easy to
see that both sB(·) and qB(·) are Lipschitz-continuous. Hence, there must
exist a subsequence that converges uniformly over the interval [0, T ]. We use
(s(·), q(·)) to denote such a limit, and we refer to it as a fluid sample path.

In essense, the goal of the rest of the paper is to use the known sample-
path LDP of sB(·) to characterize that of qB(·) and that of the queue-overflow
probability. In [1], we assume that a sample-path LDP also holds for qB(·).
Unfortunately, such an assumption appears to be difficult to verify. Instead,
in this paper we will use a different approach to establish the desirable results.

4 An Upper Bound on the Decay-Rate of the

Overflow Probability

In this section, we first present an upper bound Iopt on I0(λ) (defined in (4))
under a given offered load λ. This value Iopt bounds from above the decay-
rate for the overflow probability of the stationary backlog process Q(t) over
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all scheduling policies. For every probability vector φ ∈ PM , define the
following optimization problem:

w(φ) , inf
[γ̃i

m]
max

1≤i≤N
[λi −

M
∑

m=1

φmγ̃i
mF i

m]+

subject to
N
∑

i=1

γ̃i
m = 1 for all m = 1, ...,M

γ̃i
m ≥ 0 for all i = 1, ..., N and m.

Here, γ̃i
m can be interpreted as some long-term fraction-of-time that user i

is served when the channel state is m. Hence, if the channel-rate process
is given by s(t) = φt, then [λi −

∑M
m=1 φmγ̃i

mF i
m]+ denotes the long-term

growth-rate of the backlog of user i. Further, if all queues start empty, then
w(φ) is the minimum rate of growth of the backlog of the largest queue.

Next, define Iopt as:

Iopt , inf
{φ∈PM | w(φ)>0}

H(φ||p)

w(φ)
. (10)

Given a fixed offered load λ, assume that the backlog process Q(·) under a
given scheduling policy is stationary and ergodic. We will show the following
result§.

Proposition 1 Under any scheduling policy, the following holds,

lim inf
B→∞

1

B
P( max

1≤i≤N
Qi(0) ≥ B) ≥ −Iopt. (11)

In other words, Iopt is an upper bound for the decay-rate of the overflow
probability over all scheduling policies. This upper bound, although in a
different form, is equal to the one derived in [25].

Towards this end, we first show that the function w(·) provides a lower
bound on the backlog of the largest queue, as proved in the following lemma.

Lemma 2 For any ε > 0, there exists B0 > 0 such that for all B ≥ B0 and
all scaled channel-rate process sB(·) (with sB(0) = 0), the following holds

max
1≤i≤N

qB
i (T ) ≥ Tw

(

sB(T )

T

)

− ε, for all T > 0.

§Note Proposition 1 also holds trivially if the system is unstable.
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Proof: Note that the queue backlog process is related to the channel-state
process by Equation (1). Take the scaling in (6) and (9). Then, given sB(·),
at any time t such that Bt is an integer, we must have,

qB
i (t) ≥

[

λit −

∫ t

0

M
∑

m=1

ṡB
m(τ)1{U(bBτc)=i}F

i
mdτ

]+

.

For any T > 0, there must exist a value of t such that Bt is an integer and
|t − T | ≤ 1/B. Hence, for any ε > 0, there must exist B0 > 0 such that for
all B ≥ B0,

qB
i (T ) ≥

[

λiT −

∫ T

0

M
∑

m=1

ṡB
m(τ)1{U(bBτc)=i}F

i
mdτ

]+

− ε.

Let φm = sB
m(T )/T,m = 1, ...,M . If φm > 0, let

γ̃i
m =

1

sB
m(T )

∫ T

0

ṡB
m(τ)1{U(bBτc)=i}dτ.

Otherwise, let γ̃1
m = 1 and γ̃i

m = 0 for i ≥ 2. We then have,

qB
i (T ) ≥ T

[

λi −
M
∑

m=1

φmγ̃i
mF i

m

]+

− ε.

Taking the maximum over all i = 1, ..., N , we have

max
1≤i≤N

qB
i (T ) ≥ T max

1≤i≤N
[λi −

M
∑

m=1

φmγ̃i
mF i

m]+ − ε.

Finally, since
∑N

i=1 1{U(bBτc)=i} = 1, [γ̃i
m] is a feasible point for the optimiza-

tion problem w(sB(T )
T

). Thus, we obtain the lower bound that max
1≤i≤N

qB
i (T ) ≥

Tw(sB(T )
T

) − ε. Q.E.D.

In addition, it is easy to show that the value of w(φ) is continuous with
respect to φ as stated below in Lemma 3. Let ‖φ‖ denote the Euclidean
norm of φ.
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Lemma 3 Let φ1 and φ2 be vectors from PM . The optimization problem
w(·) is continuous in the sense that for any ε > 0 and

∥

∥φ1 − φ2
∥

∥ < ε, the
following holds,

|w(φ1) − w(φ2)| ≤ ε

N
∑

i=1

M
∑

m=1

F i
m.

The intuition behind Lemma 3 comes from the fact that the function max
1≤i≤N

[λi−
∑M

m=1 φmγ̃i
mF i

m]+ is continuous in φ for any [γ̃i
m]. The detailed proof is pro-

vided in Appendix A. We can now prove Proposition 1.
Proof: (of Proposition 1)
For any δ > 0, we can find φδ from {φ ∈ PM | w(φ) > 0} such that

H(φδ||p)
w(φδ)

< Iopt + δ. Define sδ(t) , tφδ for t ≥ 0. Let ε be some positive num-

ber and let T =
1+ε+ε

PM
m=1

PN
i=1 F i

m

w(φδ)
. Let BT (sδ(·), ε) be the set of functions

in the space Ψ̃T such that supt∈[0,T ] ‖s(t) − sδ(t)‖ < ε. Therefore, for any B,

sB(·) ∈ BT (sδ(·), ε) implies
∥

∥

∥

sB(T )
T

− φδ

∥

∥

∥ < ε
T
. By Lemma 3, this in turn

implies that

Tw(
sB(T )

T
) ≥ Tw(φδ) − ε

M
∑

m=1

N
∑

i=1

F i
m. (12)

Now, using Lemma 2, for all B > B0 and sB(·), we have max
1≤i≤N

qB
i (T ) ≥

Tw(sB(T )
T

)− ε. Hence, by (12) we conclude that, for all B > B0 and sB(·) ∈
BT (sδ(·), ε), we have,

max
1≤i≤N

qB
i (T ) ≥ Tw(φδ) − ε − ε

M
∑

m=1

N
∑

i=1

F i
m = 1, (13)

where equality holds by the definition of T . Therefore,

P( max
1≤i≤N

Qi(0) ≥ B) = P( max
1≤i≤N

Qi(BT ) ≥ B)

= P( max
1≤i≤N

qB
i (T ) ≥ 1)

≥ P(sB(·) ∈ BT (sδ(·), ε)).

11



By the LDP for sB(·) (see Inequality (7)), we then have

lim inf
B→∞

1

B
log P( max

1≤i≤N
Qi(0) ≥ B)

≥ lim inf
B→∞

1

B
log P[sB(·) ∈ BT (sδ(·), ε)]

≥ − inf
s(·)∈BT (sδ(·),ε)

∫ T

0

H(ṡ(t)||p)dt

≥ −

∫ T

0

H(ṡδ(t)||p)dt

= −TH(φδ||p)

≥ −(1 + ε + ε
M
∑

m=1

N
∑

i=1

F i
m)(Iopt + δ).

Since δ and ε can be arbitrarily small, we conclude that

lim inf
B→∞

1

B
P( max

1≤i≤N
Qi(0) ≥ B) ≥ −Iopt.

Q.E.D.

5 A Lower Bound on the Decay-Rate of the

Overflow Probability for α-Algorithms

In this section we will develop a lower-bound on the decay-rate of a modified
overflow-probability for the α-algorithms. Then, in the next section, we will
use this result to show that, as α → ∞, the α-algorithms asymptotically
achieve the maximum decay-rate Iopt of the queue-overflow probability.

Throughout this section, we will use the following modified queue-overflow

event {Vα(qB(t)) ≥ 1}, where Vα(q) , (
∑N

i=1(qi)
α+1)

1
α+1 . Note that this

overflow-event is different from the queue-overflow event { max
1≤i≤N

qB
i (t) ≥ 1}

that is used in earlier sections. The main intuition is that Vα(·) is the Lya-
punov function of the system operated under the α-algorithm. Hence, we
can use the technique of [26] to easily characterize the most-likely path to
overflow. On the other hand, as α → ∞, the difference between the two
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overflow-events diminishes, which allows us to bound the overflow probabil-
ity P[ max

1≤i≤N
qB
i (t) ≥ 1] in Section 6.

5.1 A General Lower Bound

We first provide a lower-bound that relates the decay-rate of the overflow
probability to the “minimum-cost-to-overflow” among all fluid sample paths.
For ease of exposition, instead of considering the stationary system, we con-
sider a system that starts at time 0 (although the results can also be extended
to the stationary system as we will comment later). Specifically, let Q(0) = 0.
Let P0 denote the probability measure conditioned on Q(0) = 0. For any
T > 0, let Γ̂T denote the set of fluid sample paths (s(·), q(·)) on the interval
[0, T ] such that q(0) = 0 and Vα(q(T )) ≥ 1. We then have the following
lower-bound, which is comparable to Theorem 7.1 of [25] although we do not
need to use the refined LDP.

Proposition 4 Consider Γ̂T as defined earlier. Then, the following holds:

lim sup
B→∞

1

B
log P0[Vα(qB(T )) ≥ 1]

≤ − inf
(s(·),q(·))∈Γ̂T

∫ T

0

H(ṡ(t)||p)dt. (14)

Remark: The infimum on the right-hand-side of (14) is often called the
“minimum cost to overflow.” This result reflects the well-celebrated large-
deviation philosophy that “rare events occur in the most likely way.” Specif-
ically, Proposition 4 states that the probability of queue overflow is deter-
mined mostly by the smallest cost among all fluid sample paths that overflow.
This fluid sample path is often referred to as the “most likely path to over-
flow.”

Proof: Fix T > 0. Recall that we have set qB(0) = 0 for all B. Let Γ̃B be
the set of channel rate processes sB(·) such that the corresponding backlog
process satisfies Vα(qB(T )) ≥ 1. For all n ≥ 1, we have

lim sup
B→∞

1

B
log P[sB(·) ∈ Γ̃B] (15)

≤ lim sup
B→∞

1

B
log P[sB(·) ∈ ∪∞

B́=n
Γ̃B́]. (16)
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By the LDP for sB(·) (see (7)), we have

lim sup
B→∞

1

B
log P[sB(·) ∈ ∪∞

B́=n
Γ̃B́] ≤

− inf
s(·)∈∪∞

B=nΓ̃B

∫ T

0

H(ṡ(t)||p)dt.

Note that the sequence of sets ∪∞
B=nΓ̃B is decreasing in n, we therefore have

lim sup
B→∞

1

B
log P[sB(·) ∈ Γ̃B] ≤

− lim
n→∞

inf
s(·)∈∪∞

B=nΓ̃B

∫ T

0

H(ṡ(t)||p)dt. (17)

It remains to show that the right-hand-side of (17) is no greater than that

of (14). For each n, we can find yn(·) ∈ ∪∞
B=nΓ̃B such that

∫ T

0

H(ẏn(t)||p)dt < inf
s(·)∈∪∞

B=nΓ̃B

∫ T

0

H(ṡ(t)||p)dt +
1

n
. (18)

Since yn(·) is equicontinuous, we can find a subsequence that converges uni-
formly on [0, T ]. For ease of exposition, we slightly abuse notation and denote
this subsequence by yn(·). Let y∗(·) denote its limit, i.e., limn→∞ yn(·) =

y∗(·). Since the cost function
∫ T

0
H(·||p)dt is lower semi-continuous, we have

lim inf
n→∞

∫ T

0

H(ẏn(t)||p)dt ≥

∫ T

0

H(ẏ∗(t)||p)dt. (19)

For each yn(·), since it belongs to the closure of ∪∞
B=nΓ̃B, we can find a

sequence yn,m(·) ∈ ∪∞
B=nΓ̃B,m = 1, 2, ... such that yn(·) = limm→∞ yn,m(·).

Then from all yn,m(·), n = 1, 2, ...,m = 1, 2, ..., we can find another se-
quence yn,mn

(·), n = 1, 2, ... such that limn→∞ yn,mn
(·) = y∗(·). (For ex-

ample, we can let m1 = 1. Then, given mn, we can choose mn+1 such that

sup{t∈[0,T ]}

∥

∥yn+1,mn+1
(t) − yn+1(t)

∥

∥ <
sup{t∈[0,T ]}‖yn,mn

(t)−yn(t)‖
2

.) For nota-
tional convenience, let ýn(·) denote the sequence yn,mn

(·) from here on.
For each n, let q́n(·) be the backlog process corresponding to the channel

rate process ýn(·). By construction, q́n(0) = 0 and Vα(q́n(T )) ≥ 1 for all n.

14



Since the backlog processes are equicontinuous, we can find a subsequence
of (ýn, q́n) such that this subsequence converges to (y∗(·), q∗(·)) uniformly
over the interval [0, T ], where q∗(·) satisfies q∗(0) = 0 and Vα(q∗(T )) ≥ 1.
Therefore, (y∗(·), q∗(·)) is in Γ̂T and thus

∫ T

0

H(ẏ∗(t)||p)dt ≥ inf
(s(·),q(·))∈Γ̂T

∫ T

0

H(ṡ(t)||p)dt.

Combining with (18) and (19), we conclude that

lim
n→∞

inf
s(·)∈∪∞

B=nΓ̃B

∫ T

0

H(ṡ(t)||p)dt

≥ lim inf
n→∞

∫ T

0

H(ẏn(t)||p)dt

≥ inf
(s(·),q(·))∈Γ̂T

∫ T

0

H(ṡ(t)||p)dt.

This along with (17) proves the proposition. Q.E.D.

5.2 Bounding the Minimum-Cost-to-Overflow Through
Lyapunov Functions

Finding the minimum-cost to overflow in (14) is a multi-dimensional calculus-
of-variations problem, which is often very difficult [23,24,28]. In this section,
we first use the idea of [26] to show another much simpler lower bound
(Proposition 6). We will exploit the fact that Vα is a Lyapunov function
of the system operated under the α-algorithm. We will then show that this
lower bound is indeed equal to the minimum-cost to overflow, and it can be
attained by a simple linear trajectory.

We begin with a result that characterizes the relationship between Vα(q(·))
and the channel-rate process s(·).

Proposition 5 Let (s(·), q(·)) be any fluid sample path. Except for a set T0

of measure zero, at any time t /∈ T0 and q(t) 6= 0, the drift of the Lyapunov

15



function Vα(q(t)) is given by

V̇α(q(t)) =

(

N
∑

i=1

(qi(t))
α+1

)
−α
α+1
[

N
∑

i=1

(qi(t))
αλi

−

M
∑

m=1

ṡm(t) max
1≤k≤N

((qk(t))
αF k

m)

]

. (20)

The proof is provided in Appendix B.
Remark: An intuitive way to understand Proposition 5 is as follows. From

(1), if we take the scaling in (6) and (9) and let B → ∞, we would expect that
the limiting fluid sample path will follow an ordinary differential equation as
follows: There exists γ̃i

m(t), i = 1, ..., N,m = 1, ...,M such that

q̇i(t) = λi −

M
∑

m=1

ṡm(t)γ̃i
m(t)F i

m

if qi(t) > 0 or λi −
∑M

m=1 ṡm(t)γ̃i
m(t)F i

m ≥ 0; q̇i(t) = 0, otherwise; and [γ̃i
m(t)]

are non-negative and satisfy

N
∑

i=1

γ̃i
m(t) = 1 for all m = 1, ...,M, (21)

γ̃i
m(t) = 0 whenever (qi(t))

αF i
m < max

1≤k≤N
(qk(t))

αF k
m.

The variables γ̃i
m(t) can be viewed as the fraction of time that user i is served

when channel state is m, in an infinitesimal interval immediately after t.
Then, using the definition of Vα(·), at any time t when q(t) is differentiable,
we must have

V̇α(q(t)) =

(

N
∑

i=1

(qi(t))
α+1

)
−α
α+1

[

N
∑

i=1

(qi(t))
α

(

λi −
M
∑

m=1

ṡm(t)γ̃i
m(t)F i

m

)]

=

(

N
∑

i=1

(qi(t))
α+1

)
−α
α+1
[

N
∑

i=1

(qi(t))
αλi

−
M
∑

m=1

ṡm(t)
N
∑

i=1

(qi(t))
αγ̃i

m(t)F i
m

]

.
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Using (21), Equation (20) then follows. In Appendix B , we provide the proof
of Proposition 5, which makes this argument more precise.

Next, for any φ ∈ PM , let x = [xi, i = 1, ..., N ], and let

a(φ) = max
x≥0

[

N
∑

i=1

xα
i λi −

M
∑

m=1

φm max
1≤k≤N

(xα
kF k

m)

]

subject to
N
∑

i=1

xα+1
i ≤ 1. (22)

We will show soon that the Lyapunov drift on the right-hand-side of (20)
must be no larger than a(ṡ(t)). Further, let

Jα , inf
{φ∈PM | a(φ)>0}

H(φ||p)

a(φ)
. (23)

Then intuitively, Jα can be interpreted as a lower bound on unit cost to raise
Vα(q(t)). In order to overflow, we must raise Vα(q(t)) from 0 to 1. Hence, Jα

should be a lower bound on the minimum-cost to overflow, which is indeed
the case as we show in the following proposition.

Proposition 6 For any T > 0, the following holds,

lim sup
B→∞

1

B
log P0[Vα(qB(T )) ≥ 1] ≤ −Jα. (24)

Remark: Note that the event Vα(qB(T )) ≥ 1 is equivalent to Vα(Q(BT )) ≥
B. As T → ∞, we would expect that the probability P0[Vα(qB(T )) ≥ 1]
approaches the stationary overflow probability P[Vα(qB(0)) ≥ 1]. Since Jα

is independent of T , we would then expect that Jα becomes a lower bound
for the decay rate of the stationary overflow probability, i.e.

lim sup
B→∞

1

B
log P[Vα(qB(0)) ≥ 1] ≤ −Jα.

This convergence can indeed be shown using the so-called Freidlin-Wentzell
theory [11, 25]. However, the details are quite technical. Interested readers
can refer to Appendix D for the details.

Proof: (of Proposition 6) Fix T > 0. Recall the definition of Γ̂T in
Section 5.1. For any fluid sample path (s(·), q(·)) in Γ̂T (which overflows at
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time T ), we will show that the cost of the path
∫ T

0
H(ṡ(t)||p)dt is at least

Jα. The result of the proposition then follows from Proposition 4. Towards
this end, note that since the backlog process q(·) is Lipschitz-continuous, it
is differentiable almost everywhere. According to Proposition 5, for any t
such that t /∈ T0 and q(t) 6= 0, we must have,

V̇α(q(t)) =

(

N
∑

i=1

(qi(t))
α+1

)
−α
α+1
[

N
∑

i=1

(qi(t))
αλi

−

M
∑

m=1

ṡm(t) max
1≤k≤N

((qk(t))
αF k

m)

]

=
N
∑

i=1

q̃α
i λi −

M
∑

m=1

ṡm(t) max
1≤k≤N

(q̃α
k F k

m)

where

q̃i = qi(t)

[

N
∑

i=1

(qi(t))
α+1

]− 1
α+1

, i = 1,...,N.

Since
∑N

i=1 q̃α+1
i = 1, q̃ = [q̃i] is a feasible point that satisfies the constraint

in (22). We then have
V̇α(q(t)) ≤ a(ṡ(t)).

Hence, if V̇α(q(t)) > 0, we must have a(ṡ(t)) > 0. Then, using the definition
of Jα in (23), we have

H(ṡ(t)||p) ≥ JαV̇α(q(t)).

On the other hand, if V̇α(q(t)) ≤ 0, the above inequality also holds trivially.
Hence, the cost of the path must satisfy

∫ T

0

H(ṡ(t)||p)dt ≥ Jα

∫ T

0

V̇α(q(t))dt.

Recall that any fluid sample path in Γ̂T must satisfy q(0) = 0 and Vα(q(T )) ≥
1. Hence,

∫ T

0

V̇α(q(t))dt ≥ 1.

The result of the proposition then follows. Q.E.D.
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Remark: We briefly comment on why it is critical to use a Lyapunov
function in the above procedure. Although a result similar to Proposition 6
could also be derived if we replace Vα(·) by any function of q(t), such a result
is only useful when the lower bound Jα is positive (otherwise the bound is
trivial). The fact that Vα(·) is a Lyapunov function is the key to ensure this
property. To see this, note that if φ = p, then the drift of the Lyapunov
function will be negative for any q(t) (which is required for the stability of
the system), implying that the value of a(p) = 0. Hence, for the constraint
in (23) to be satisfied, φ must be away from p. As a result, the objective
function of (23) must be positive. We will see soon that this then implies
that the infimum in (23) is also positive.

5.3 The Path-to-Overflow That Attains the Lower Bound
Jα

In this subsection, we further simplify Jα, and then show that Jα is equal to
the minimum-cost to overflow in (14). We define the following optimization
problem. Let y = [y1, ..., yN ]. For any φ ∈ PM , define

wα(φ) = min
y≥0,[γ̃i

m]≥0
Vα(y)

subject to yi = [λi −
M
∑

m=1

φmγ̃i
mF i

m]+ for all i

N
∑

i=1

γ̃i
m = 1 for all m = 1, ...,M.

Note that wα(φ) is analogous to w(φ) defined in section 4. Again, γ̃ i
m can be

interpreted as some long-term fraction-of-time that user i is served when the
channel state is m. Hence, if the channel-rate process is given by s(t) = φt,
then yi denotes the long-term growth-rate of the backlog of user i. Further, if
all queues start empty, then wα(φ) is the minimum rate of growth of Vα(q(t))
over all policies. We have the following important lemma.

Lemma 7 For any φ ∈ PM , the following holds,

(a)
wα(φ) = a(φ).
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(b) The optimizer x∗ for a(φ) and the optimizer y∗ for wα(φ) are both
unique and they satisfy x∗ = γy∗ for some γ > 0. Further, if the
optimizer x∗ 6= 0, then x∗ and y∗ are the only vectors that satisfy the
following conditions: there exist µi

m ≥ 0 such that
∑N

i=1 µi
m = φm,

y∗
i = [λi −

∑M
m=1 µi

mF i
m]+, x∗

i = γy∗
i for some γ > 0,

∑N
i=1(x

∗
i )

α+1 ≤ 1,
and

µi
m = 0 whenever (x∗

i )
αF i

m < max
1≤k≤N

(x∗
k)

αF k
m.

This lemma is proved by showing that the two problems a(φ) and wα(φ)
can be viewed as dual problems of each other. The details of the proof is
provided in Appendix C.

Using part (a) of Lemma 7, we immediately obtain the following.

Jα = inf
{φ∈PM | wα(φ)>0}

H(φ||p)

wα(φ)
. (25)

Further, according to Proposition 6, the above expression provides a lower
bound for the decay-rate of the queue-overflow probability P0[Vα(qB

i (T )) ≥ 1]
for any T > 0. The following lemma shows that Jα is positive, and hence the
above bound is non-trivial.

Proposition 8

Jα ≥
1

N
1

α+1

Iopt.

Proof: Recall that

Jα = inf
{φ∈PM | wα(φ)>0}

H(φ||p)

wα(φ)

and

Iopt = inf
{φ∈PM | w(φ)>0}

H(φ||p)

w(φ)
.

For all x ≥ 0, we have N
1

α+1 max
1≤i≤N

xi ≥ Vα(x). Further, since w(φ) and

wα(φ) have the same constraint set, we have N
1

α+1 w(φ) ≥ wα(φ) and as a
consequence we have

{φ | wα(φ) > 0} ⊆ {φ | w(φ) > 0}. (26)
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Hence, for any φ such that wα(φ) > 0, we have

H(φ‖|p)

wα(φ)
≥

1

N
1

α+1

H(φ‖|p)

w(φ)
.

Taking infimum over the corresponding constraint sets and using (26), we
then obtain Jα ≥ 1

N
1

α+1
Iopt. Q.E.D.

Finally, we can show that the lower bound Jα is tight, in the sense that
there exists T > 0 and a trajectory that overflows at T with cost Jα. We
will need the following lemma, which provides a structural property of the
fluid sample path when the channel-rate process is linear. Specifically, if the
channel-rate process s(·) is linear, then the queue trajectory q(·) must also
be linear, and its derivative must solve wα(φ).

Lemma 9 Consider a fluid sample path (s(t), q(t)) under the α-algorithm.
If q(0) = 0 and s(t) = tφ for t ≥ 0, then the corresponding queue trajectory
q(t) must satisfy the following:

(a) The queue trajectory is linear, i.e., there exists ỹ = [ỹi, i = 1, ..., N ] ≥
0, such that q(t) = tỹ for all t ≥ 0.

(b) There must exist µi
m ≥ 0 such that

∑N
i=1 µi

m = φm, ỹi = [λi−
∑M

m=1 µi
mF i

m]+

and
µi

m = 0 whenever ỹα
i F i

m < max
1≤k≤N

ỹα
k F k

m.

In other words, the queue trajectory q(t) is consistent with the schedul-
ing rule of the α-algorithm.

(c) y∗ = ỹ is the unique minimizer of wα(φ).

Proof: Let

Ω(φ) =
{

λ | there exists µi
m ≥ 0 such that

λi ≤

M
∑

m=1

µi
mF i

m for all i = 1, ..., N,

and
N
∑

i=1

µi
m = φmfor all m = 1, ...,M

}

.
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Note that if φ = p, then Ω(φ) corresponds to the capacity region of the
system (for stability) [3]. The variables µi

m can be viewed as some long-term
fraction of time that user i is picked and the channel state is m.

Recall from Proposition 5 that

V̇α(q(t)) =

(

N
∑

i=1

(qi(t))
α+1

)
−α
α+1
[

N
∑

i=1

(qi(t))
αλi

−
M
∑

m=1

φm max
1≤k≤N

(qk(t))
αF k

m

]

.

First, consider the case when λ ∈ Ω(φ). We will have V̇α(q(t)) ≤ 0 if
q(t) 6= 0. Hence, starting from q(0) = 0, we must have Vα(q(t)) = 0 and
q(t) = 0 for all t ≥ 0. Therefore, part (a) holds with ỹi = 0 for all i. Part (b)
then trivially holds. Part (c) follows since the minimizer of wα(φ) for this
case is y∗ = 0.

On the other hand, if λ /∈ Ω(φ), then for all q(t) 6= 0, by setting q̂i(t) =
qi(t)

[
PN

i=1(qi(t))α+1]
1

α+1
, we have

V̇α(q(t)) =
N
∑

i=1

q̂α
i (t)λi −

M
∑

m=1

φm max
1≤k≤N

q̂α
k (t)F k

m,

and
[

∑N
i=1 q̂α+1

i (t)
] 1

α+1
= 1. We thus have V̇α(q(t)) ≤ a(φ) and Vα(q(t)) ≤

ta(φ) for all t ≥ 0. This shows that ta(φ) upper bounds the maximum growth
of Vα(q(t)). On the other hand, let µi

m be the average fraction of time in
[0, t] that user i is picked and the channel state is m. Then

∑N
i=1 µi

m = φm

for all m, and

qi(t) ≥ t[λi −

M
∑

m=1

µi
mF i

m]+.

(The inequality is due to the fact that the queue qi may be empty at some
points in this interval). Hence,

Vα(q(t)) ≥ twα(φ).

However, by Lemma 7, a(φ) = wα(φ). We thus have

Vα(q(t)) = ta(φ) = twα(φ),
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i.e. there is only one possible trajectory Vα(q(t)) given that s(t) = tφ.

Further, we have Vα(q(t)
t

) = wα(φ), i.e., q(t)
t

optimizes wα(φ). Since the
optimizer of wα(φ), denoted by ỹ, is unique, we thus have q(t) = tỹ. This
shows parts (a) and (c). Part (b) follows from part (b) of Lemma 7.

Q.E.D.

The following result then shows that the lower bound Jα is tight. Recall
the definition of Γ̂T in Section 5.1.

Proposition 10 There exists T and a fluid sample path in Γ̂T whose cost is
equal to Jα.

Proof: Let φ∗ denote the solution to Jα in (25), i.e., Jα = H(φ∗||p)
wα(φ∗)

, and let

w∗ = wα(φ∗) > 0. (We can show that such a φ∗ always exists by showing
that the infimum in (25) can be taken within a closed subset of the original
constraint set.) If we use s(t) = tφ∗, t ≥ 0 as the channel-rate process,
and let the queue process start from q(0) = 0, then q(·) must follow a linear
trajectory according to Lemma 9, i.e.,

q(t) = tx̃, for all t ≥ 0,

where y∗ = x̃ is the minimizer of wα(φ∗).
Let T = 1

wα(φ
∗
)
. Consider such a trajectory over the interval [0, T ].

Clearly, the cost of this trajectory is equal to Jα. It only remains to show
that the trajectory must overflow at T , which is true because

Vα(T x̃) = Twα(φ∗) = 1.

Q.E.D.

Hence, we conclude that the minimum-cost to overflow is attained by a
simple linear trajectory whose cost is Jα.

6 Asymptotical Optimality of α-algorithms

In this section, we will establish that in the limit as α → ∞, the α-algorithms
asymptotically achieve the largest minimum-cost-to-overflow equal to Iopt
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given in (10). To emphasize the dependence on α, we use Pα
0 to denote

the probability distribution conditioned on Q(0) = 0 under the α-algorithm
(with a particular value of α). We now show the following:

Proposition 11 For any T > 0, the following holds

lim
α→∞

lim sup
B→∞

1

B
log Pα

0 [ max
1≤i≤N

qB
i (T )) ≥ 1] ≤ −Iopt.

Proof: Since max
1≤i≤N

qi(T ) ≥ 1 implies Vα(q(T )) ≥ 1, we must have

Pα
0 [ max

1≤i≤N
qB
i (T )) ≥ 1] ≤ Pα

0 [Vα(q(T )) ≥ 1].

Using Proposition 6, for all T > 0,

lim sup
B→∞

1

B
log Pα

0 [ max
1≤i≤N

qB
i (T )) ≥ 1]

≤ lim sup
B→∞

1

B
log Pα

0 [Vα(q(T )) ≥ 1] ≤ −Jα.

From Proposition 8, limα→∞ Jα ≥ Iopt. The result then follows.
Q.E.D.

Combining Proposition 1 and Proposition 11, we conclude that the α-
algorithms asymptotically achieve the largest decay-rate Iopt of the queue-
overflow probability over all scheduling policies.

6.1 Systems with ON-OFF Channels

Consider the scenario where F i
m can either take the value 0 or a positive

constant C. This scenario corresponds to a wireless system with ON-OFF
channels and the ON-rates for all users are the same. In this case, for any
α > 0,

(qi)
αF i

m S max
1≤k≤N

(qk)
αF k

m ⇔ qiF
i
m S max

1≤k≤N
qkF

k
m.

Hence, for any α ≥ 1, the α-algorithms are equivalent to the max-weight
algorithm (i.e. with α = 1). Using the result in this paper, we immediately
reach the following corollary.

Corollary 12 For the above ON-OFF channel model, the max-weight schedul-
ing algorithm (i.e., α = 1) achieves the largest decay-rate Iopt of the queue-
overflow probability over all scheduling policies.
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Table 1: Link capacities in different states
F i

m m = 1 m = 2 m = 3
i = 1 0 3 5
i = 2 0 9 0
i = 3 0 9 1
i = 4 0 9 1

7 Simulation results

In this section we will provide simulation results to verify the analytical
results in earlier sections. We simulate the following system with 4 links
(i.e., N = 4) and 3 states (i.e., M = 3). In each time-slot, one unit of data
arrives at each of the links (i.e., λ1 = λ2 = λ3 = λ4 = 1). The probabilities
of each channel state are denoted as p1, p2 and p3, and will be given shortly.
The capacity F i

m of link i in channel state m is given by Table 1. The 95%-
confidence intervals are very small, and hence they are not shown in the
figures.

We first simulate Case 1 when p1 = 0.3, p2 = 0.6 and p3 = 0.1. In Fig. 1,
we plot the value of P[ max

1≤i≤N
Qi ≥ B] (in log-scale) against the overflow-

threshold B for the α-algorithms, where each curve corresponds to a different
value of α. We have also plotted a line with slope equal to Iopt given by (10).
Recall that Iopt is the maximum decay-rate of the queue-overflow probability.
We can observe from Fig. 1 that, as the value of α increases, the slopes at the
tail of the curves (i.e., for large B) approach Iopt. Hence, this confirms our
analytical result that, as the value of α increases, the asymptotic decay-rate
of the α-algorithms approaches the optimal decay-rate Iopt.

We have also simulated the exponential-rule of [25]. At any time t, if the
channel state is m, the exponential-rule chooses to serve the link i∗ such that

i∗ = argmax
i=1,...N

exp





Qi(t)

1 +
(

1
N

∑N
k=1 Qk(t)

)η



F i
m,

where η is a constant parameter in (0, 1). In Fig. 2, we plot P[ max
1≤i≤N

Qi ≥ B]

against the overflow threshold B for the exponential rule, as the parameter
η varies. According to the results of [25], the exponential rule achieves the
optimal decay-rate of the queue-overflow probability for any 0 < η < 1. We
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Figure 1: Case 1: Plot of P[ max
1≤i≤N

Qi ≥ B] versus the

overflow-threshold B for the α-algorithms. Each curve
corresponds to a different value of α.
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Figure 2: Case 1: Plot of P[ max
1≤i≤N

Qi ≥ B] versus the

overflow threshold B for the exponential-rule. Each
curve corresponds to a different value of η.
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observe from Fig. 2 that, for η = 0.25 and η = 0.5, the slopes at the tail
of the curves indeed become parallel to Iopt for large B. For η = 0.75, such
convergence has not occurred even for overflow-probability as low as 10−5.
Note that one should not conclude from the last curve that the results of [25]
are violated: the LDP results of [25] will still kick in eventually, although at
a larger value of the overflow-threshold B.

The previous set of simulation results raise some important issues on the
applicability of large-deviation results. Specifically, the results in this paper
(and in [25]) are large-buffer asymptotes, i.e., they characterize the behav-
ior of the queue only when the overflow-threshold approaches infinity. The
results often do not provide much information on what buffer level is large
enough for the asymptotic behavior to become dominant. Further, an LDP
only specifies the exponential decay-rate. The factor in front of exponential
term can still vary substantially. Hence, one needs to be careful when com-
paring the performance predicted by an LDP with the actual performance of
the protocol. This point is best illustrated with Case 2 that we simulated.
Here, the probability of each channel state is given by p1 = 0.35, p2 = 0.5
and p3 = 0.15. In Fig. 3, we again plot the value of P[ max

1≤i≤N
Qi ≥ B] against

the overflow-threshold B for the α-algorithms. We observe from Fig. 3 that,
as α increases, the slopes at the tail of the curve indeed approaches Iopt.
However, for small B the curve in fact shifts to the right, indicating that the
actual queue-overflow probability P[ max

1≤i≤N
Qi ≥ B] increases as α increases.

Such a shift is more evident for smaller value of B. As B increases, for larger
values of α the effect of the steeper slopes eventually dominates, and the
queue-overflow probability improves as well.

To better understand this behavior, we introduce a state-space plot as in
Fig. 6. The x-axis and the y-axis are the length of any two chosen queues
(e.g. Q1 and Q3 as in Fig. 6). This state space is divided into regions, each
of which corresponds to a fixed scheduling decision. For example, in Region
1, Queue 1 is served irrespective of the channel state (this is the case because
the length of Queue 1 is much larger than Queue 3). In Region 2, Queue 1 is
served in channel state m = 3, and Queue 3 is served in channel state m = 2.
Finally, in Region 3, Queue 3 is served irrespective of the channel state. We
refer to these regions as decision regions, and their boundary is determined
by the scheduling policy. The dots in the figure are the states that have been
visited by the system in the simulation (over some given length of time). A
similar state space plot for case 2 is shown in Fig. 8.
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Figure 3: Case 2: Plot of P[ max
1≤i≤N

Qi ≥ B] versus the

overflow-threshold B for the α-algorithm. Each curve
corresponds to a different value of α.
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Figure 4: Case 2: Plot of P[ max
1≤i≤N

Qi ≥ B] versus the

overflow threshold B for the exponential-rule. Each
curve corresponds to a different value of η.
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Figure 5: Shape of the capacity region.

Once the probabilities of channel states are given, the capacity region of
the system can be determined. For example, Fig. 5 represents the capacity
regions of case 1 and 2, projected to the space of Q1 and Q3. For this system
with two active states, we can draw a correlation between the decision regions
(e.g. Fig. 6), and the capacity region (e.g. case 1 in Fig. 5). We will refer to
Region 1 and Region 3 as max-queue regions, in the sense that the decision is
to serve the link with the longest queue, irrespective of the channel state. We
refer to Region 2 as the max-rate region, in the sense that now the decision
is to serve the link with the higher rate, depending on which channel state
the system is in. The two max-queue regions can be correlated to the points
µ1 and µ3 of the capacity region, where one user will be served in all states.
The max-rate region can be correlated to the point µ2 of the capacity region.
The significance of this correlation is that region 2 contributes to an enlarged
capacity region (i.e., the triangular area µ1µ2µ3).

For α-algorithms, as the value of α increases, the boundaries between the
decision regions all converge to the diagonal line. This convergence has two
implications. First, a larger value of α enlarges the two max-queue regions
(see Fig. 7). For example, Point A that was in a max-rate region for small α
(see Fig. 6), now moves to the max-queue region (see Fig. 7). Note that at
Point A, we have Q1 > Q3. Hence, as the decision boundaries approach the
diagonal line, the algorithm places more emphasis on reducing the largest
queue. Intuitively, this helps to improve the decay-rate of the probability
that the largest queue overflows.

However, a second effect of increasing α is that the size of the max-rate
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Figure 6: Case 1: Plot of the state space for α = 1.
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Figure 7: Case 1: Plot of the state space for α = 7.

region (i.e., Region 2) is reduced. As a result, for smaller value of queue-
length, it becomes less likely that the system state falls into the max-rate
region. Recall that the decision rule in the max-rate region contributes to
the improved capacity region (i.e., triangular area µ1µ2µ3). Hence, with
large value of α, the scheduling algorithm is unlikely to take advantage of
the increased capacity at small queue-lengths, which leads to a tendency for
the queue-length to grow. This phenomenon can be observed by the fact
that the dots in Fig. 7 now grows along the two boundary lines. It is even
more evident in a similar plot for Case 2 (in Fig. 9). After the queue length
increases, eventually the width of Region 2 will be sufficiently large so that
the system state is more likely to fall into the max-rate region. Only after
that, the effect of LDP starts to kick in, and the decay-rate of the queue-
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overflow probability starts to improve.
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Figure 8: Case 2: Plot of the state space for α = 1.
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Figure 9: Case 2: Plot of the state space for α = 7.

Although the above discussion is restricted to the dynamics of two queues
over two active states, we feel that the above two conflicting trends apply
to more general cases. Indeed, the understanding of these two trends help
us to interpret the results in Fig. 1 and Fig. 3. First, refer to Fig. 6 for
Case 1. For small value of α, the queues tend to accumulate around the
boundary between Region 1 and Region 2. As α increases, the max-queue
region (Region 1) enlarges, which helps to reduce the longer queue and push
the state space to the origin (Fig. 7). The conflicting effect due to thinning
of the max-rate region is not so strong, and the beneficial effect of large α
is manifested. Thus, these plots explain why the performance plot in Fig. 1
improves with increasing α. Now, comparing the capacity region for the two

31



cases (Fig. 5), we find that in case 2, the offered load, λ, is closer to the line
µ1µ3. Hence, the triangular section µ1µ2µ3 plays a more significant role in
reducing the queue length. We would thus expect the effect of thinning of
the max-rate region to be relatively stronger than in the previous case. This
is exactly what we observe in Fig. 8 and Fig. 9. At small value of α (Fig. 8),
the queues tend to accumulate relatively more in the max-rate region. Now,
as α increases, the stronger effect caused by the thinning of the max-rate
region forces the queue length to increase (Fig. 9). As a result, at small
values of threshold, B, the overflow probability in fact deteriorates.

The above observations motivate us to design a new class of hybrid
scheduling policies that have the benefits of both large α (for improving
the large-deviation decay-rate of the queue-overflow probability) and small
α (for having a large max-rate region, which helps to improve the overflow
probability at small queue lengths). Essentially, to have good large-deviation
decay-rates of the queue-overflow probability, we need to use a large α so that
the decision boundaries become close to parallel to the diagonal line. How-
ever, this may lead to poor performance at small queue-lengths due to the
thinner max-rate regions. To avoid this, we first use a smaller value of α
when the queue-length is small and gradually change to large α when queue
increases. More specifically, the hybrid policy works by modifying the weight
function. The scheduling policy still picks the user i for service such that it
has the largest value of wi(q)F i

m. However, the weight of user i, wi(q), is not
equal to qα

i anymore. Instead, it contains both a term for small α, and a term
for large α. Specifically, let us assume that we are interested in transitioning
from small α to large α when the queue length is around B∗ = 10. We tested
a hybrid policy that uses a combination of α = 1 and α = 15. The weight
function we used is wi(q) = qi + ([qi −

K(q)
F i

m
]+)15 where the value K(q) will

be specified later. For qi < K(q)
F i

m
, the weight function is simply qi. Hence,

the behavior of the scheduling algorithm is similar to α = 1. For large qi,
the term (qi −

K(q)
F i

m
)15 dominates. Hence, the behavior of the scheduling al-

gorithm switches to that of α = 15. The offset K(q)
F i

m
is chosen to ensure that

the decision boundary does not have sudden jumps. Specifically, the value
of K(q) is given by

K(q) = min
1≤i≤N

(

B∗F
i
m + [B∗ − qi]

+ max
1≤k≤N

F k
m

)

. (27)

To understand the intuition behind (27), first consider the case when qi > B∗
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for all queues. Then, K(q) = B∗ min
1≤i≤N

F i
m. The offset in this case becomes

(
B∗ min

1≤i≤N
F i

m

F 1
m

, . . . , B∗, . . . ,
B∗ min

1≤i≤N
F i

m

F N
m

) which is exactly the point where the de-
cision boundary of α = 1 meets the threshold boundary max

1≤i≤N
qi = B∗. How-

ever, if we just use K(q) = B∗ min
1≤i≤N

F i
m, the problem is that the transition to

large α occurs too early if not all qi are greater than B∗. For example, con-
sider channel state m = 2. In this case, the offset described above becomes
(B∗,

B∗

3
, B∗

3
, B∗

3
). The projection of this offset value to the space of the queues

q2, q3 and q4 is (B∗

3
, B∗

3
, B∗

3
). As a result, the transition from α = 1 to α = 15

would occur too early (at B∗

3
) for q2, q3 or q4 if q1 is small. To compensate for

this effect, we have introduced the second term in (27). Essentially, if q1 is
small, its channel rates do not play much role in determining the minimum
value of (27). In this specific example, if q1 = 0 and q2, q3, q4 > B∗, then the
offset value is K(q) = (3B∗, B∗, B∗, B∗). Hence, the transition occurs at the
desirable values of q2, q3 and q4.

We plot the decision boundaries for this hybrid algorithm in Fig. 10. As
we can see, the max-rate region is large even for small queue-lengths. In
Fig. 3, we also plotted the performance of the hybrid algorithm. Compare
with the curve for α = 15, we note that the curve for the hybrid algorithm
has moved to the left as desired. Also note that the slope of the curve is
close to Iopt. Hence, this figure confirms that the hybrid algorithm achieves
the benefit of both large α and small α.
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Figure 10: Plot of the decision boundaries for the hybrid algorithm.

We find that the same intuitions seem to also apply for the exponential-
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Figure 11: Plot of the decision boundaries for exponential-rule for various
values of η.

rule [25]. Recall that Fig. 2 plots the value of P[ max
1≤i≤N

Qi ≥ B] versus the

overflow-threshold B for the exponential-rule when the parameter η varies. A
similar figure for Case 2 is given in Fig. 4. To understand why η = 0.5 seems
to produce the best overall performance, we plot the decision boundaries of
the exponential-rule in Fig. 11. We can see that, if the value of η is too small,
then the max-rate region (between the decision boundaries) is too narrow,
which increases the queue-overflow probability at small threshold values. If
the value of η is too large, then the max-rate region is big enough. However,
the decision boundaries do not become parallel to the diagonal line until the
queue-length is very large. Hence, the large-deviation decay-rate kicks in
only at a larger queue-length. A medium value of η (around 0.5) seems to
achieve a balance between the above two cases, and produces a state-space
plot that is similar to our hybrid algorithm (Fig. 10). We have also plotted
the performance of the exponential-rule and our hybrid algorithm in Fig. 4.
Their performance appears to be quite comparable. Finally, we plot the
performance of the hybrid algorithm for case 1 and we find that the hybrid
algorithm also performs very well, which indicates that the hybrid algorithm
is quite robust and seems to work well in all cases.

8 Conclusion

In this paper, we study wireless scheduling algorithms for the downlink of a
single cell that can maximize the asymptotic decay-rate of the queue-overflow
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probability, as the overflow threshold approaches infinity. Specifically, we fo-
cus on the class of “α-algorithms,” which pick the user for service at each
time that has the largest product of the transmission rate multiplied by the
backlog raised to the power α. We show that when α approaches infinity,
the α-algorithms asymptotically achieve the largest decay-rate of the queue-
overflow probability. A key step in proving this result is to use a Lyapunov
function to derive a simple lower bound for the minimum-cost-to-overflow
under the α-algorithms. This technique, which is of independent interest, cir-
cumvents solving the difficult multi-dimensional calculus-of-variations prob-
lem typical in this type of problems. Finally, using the insight from this
result, we design scheduling algorithms that are both close-to-optimal in
terms of the asymptotic decay-rate of the overflow probability, and empiri-
cally shown to maintain small queue-overflow probabilities over queue-length
ranges of practical interest. For future work, we plan to extend the results
to more general network and channel models.
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A Proof of Lemma 3

Proof: For every δ > 0, by definition of w(φ1) there exists γ̃i,δ
m ≥ 0 such that

∑N
i=1 γ̃i,δ

m = 1 for all m = 1, ...,M , and

max
1≤i≤N

[λi −

M
∑

m=1

φ1
mγ̃i,δ

m F i
m]+ < w(φ1) + δ.

Since by assumption |φ1
m − φ2

m| < ε for all m = 1, ...,M , we have, for all
i = 1, ..., N ,

(λi −
M
∑

m=1

φ1
mγ̃i,δ

m F i
m)

≥ (λi −
M
∑

m=1

φ2
mγ̃i,δ

m F i
m) − ε

M
∑

m=1

F i
m.
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Taking projection on both sides to the positive real axis, and using the fact
that (x − y)+ ≥ x+ − y for non-negative y, we have

w(φ1) + δ

≥ max
1≤i≤N

[λi −
M
∑

m=1

φ1
mγ̃i,δ

m F i
m]+

≥ max
1≤i≤N

[λi −
M
∑

m=1

φ2
mγ̃i,δ

m F i
m]+ − ε

N
∑

i=1

M
∑

m=1

F i
m

≥ w(φ2) − ε

N
∑

i=1

M
∑

m=1

F i
m.

Since δ can be made arbitrarily small, the result then follows. Q.E.D.

B Proof of Proposition 5

Proof: Let T0 denote the set of time t where either s(·) or q(·) is not differ-
entiable. Since s(·) and q(·) are both Lipschitz-continuous, T0 is of measure
zero. Further, since (s(·), q(·)) is a fluid-sample-path, there exists a sequence
(sB(·), qB(·)) that converges to (s(·), q(·)) uniformly over compact intervals.
Fix any t /∈ T0 and q(t) 6= 0. We consider the summation

N
∑

i=1

(qi(t))
α(qB

i (t + δ) − qB
i (t))

for a small δ > 0. For each i = 1, ..., N , if qi(t) > 0, by the continuity of qi(·),
we can find δi

1 > 0 such that qi(s) ≥
3
4
qi(t) for s ∈ [t, t + δi

1]. Further, since
the convergence to q(·) is uniform over the interval [t, t + δ1], there exists
Bi

1 > 0 such that for all B ≥ Bi
1 and s ∈ [t, t + δi

1], we have

qB
i (s) ≥

qi(t)

2
> 0.

Take F̄ such that F i
m ≤ F̄ for all m and i. We then have, for all B ≥

max{Bi
1,

2F̄
qi(t)

} and s ∈ [t, t + δ1], the unscaled queue length must satisfy

Qi(bBsc) ≥ F̄ .
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Hence, the projection operation in (1) is not needed. By applying the scaling
operation (6) and (9), we have, for all B ≥ max{Bi

1,
2F̄

qi(t)
} and δ < δi

1,

qB
i (t + δ) = qB

i (t) + λiδ

−
1

B

bB(t+δ)c−1
∑

y=bBtc

M
∑

m=1

1{C(y)=m}1{U(y)=i}F
i
m + O(

1

B
),

where the additional O(1/B) term is to account for the fact that qB(t + δ)
is interpolated when B(t + δ) is not an integer. We then have,

(qi(t))
α(qB

i (t + δ) − qB
i (t))

= (qi(t))
α

×



λiδ −
1

B

bB(t+δ)c−1
∑

y=bBtc

M
∑

m=1

1{C(y)=m}1{U(y)=i}F
i
m





+O(1/B).

If qi(t) = 0, then the above equation also holds trivially. Let

B1 = max

{

max
i:qi(t)>0

Bi
1, max

i:qi(t)>0

2F̄

qi(t)

}

and δ1 = min
i:qi(t)>0

δi
1. Hence, summing over all i = 1, ..., N , we have, for all

B ≥ B1 and δ < δ1,

N
∑

i=1

(qi(t))
α(qB

i (t + δ) − qB
i (t))

=
N
∑

i=1

(qi(t))
αλiδ −

1

B

bB(t+δ)c−1
∑

y=bBtc

M
∑

m=1

1{C(y)=m}

×

[

N
∑

i=1

1{U(y)=i}(qi(t))
αF i

m)

]

+ O(
1

B
). (28)

Next, consider the second summation and consider the term correspond-
ing to each channel state m. For those users i such that (qi(t))

αF i
m <

max1≤k≤N (qk(t))
αF k

m, since q(·) is Lipschitz-continuous and the convergence
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of {qB(·)} to q(·) is uniform over compact intervals, there exists a small
enough δ2 > 0 and a large enough B2 > 0 such that for all B ≥ B2 and
s ∈ [t, t + δ2], we have

(qB
i (s))αF i

m < max
1≤k≤N

(qB
k (s))αF k

m.

Hence, over the time interval [t, t + δ2] the user i will not be selected in the
channel state m, i.e.,

1{U(bBsc)=i} = 0 for s ∈ [t, t + δ1]. (29)

We then have, for all B ≥ max{B1, B2} and δ < min{δ1, δ2},

1

B

bB(t+δ)c−1
∑

by=Btc

M
∑

m=1

1{C(y)=m}

×

[

N
∑

i=1

1{U(y)=i}(qi(t))
αF i

m)

]

=
M
∑

m=1





1

B

bB(t+δ)c−1
∑

by=Btc

1{C(y)=m}



 max
1≤k≤N

(qk(t))
αF k

m)

=
M
∑

m=1

(sB
m(t + δ) − sB

m(t)) max
1≤k≤N

(qk(t))
αF k

m) + O(
1

B
).

Substituting into (28), and letting B → ∞, we then have

N
∑

i=1

(qi(t))
α(qi(t + δ) − qi(t)) =

N
∑

i=1

(qi(t))
αλiδ

−

M
∑

m=1

(sm(t + δ) − sm(t)) max
1≤k≤N

(qk(t))
αF k

m). (30)

Finally, note that since t /∈ T0, q(·) is differentiable at t. We then have,

Vα(q(t + δ)) − Vα(q(t))

=

[

N
∑

i=1

(qi(t))
α+1

]
−α
α+1 N
∑

i=1

(qi(t))
α[qi(t + δ) − qi(t)]

+o(δ).
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Dividing both sides by δ, using (30) and taking the limit as δ goes to 0, the
result then follows.

Q.E.D.

C Proof of Lemma 7

Proof: We first show that a(φ) and wα(φ) are dual problem of each other.
Letting ξi = xα

i , i = 1, ..., N and ξ = [ξi], the problem a(φ) can be rewritten
as

a(φ) = max
ξ≥0

[

N
∑

i=1

ξiλi −
M
∑

m=1

φm max
1≤i≤N

ξiF
i
m

]

subject to
N
∑

i=1

ξ
α+1

α
i ≤ 1.

Introducing the variable ηm ≥ max
1≤i≤N

ξiF
i
m, the problem a(φ) can be further

rewritten as

a(φ) = max
ξ≥0,η

[

N
∑

i=1

ξiλi −
M
∑

m=1

φmηm

]

subject to
N
∑

i=1

ξ
α+1

α
i ≤ 1

ηm ≥ ξiF
i
m for all i,m.

This is a convex optimization problem. Introducing the Lagrange multiplier
µi

m ≥ 0 for each of the constraints ηm ≥ ξiF
i
m, we obtain the Lagrangian

L(ξ,µ,η)

=

[

N
∑

i=1

ξiλi −

M
∑

m=1

φmηm

]

+
M
∑

m=1

N
∑

i=1

µi
m[ηm − ξiF

i
m]

=
N
∑

i=1

ξi(λi −
M
∑

m=1

µi
mF i

m) −
M
∑

m=1

ηm

(

φm −
N
∑

i=1

µi
m

)

.
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The dual objective function is then given by

D(µ) = max
ξ≥0,η

L(ξ,µ,η)

subject to
N
∑

i=1

ξ
α+1

α
i ≤ 1.

Note that if
∑N

i=1 µi
m 6= φm, then D(µ) = +∞ since we can set |ηm| arbi-

trarily large. Otherwise, if
∑N

i=1 µi
m = φm for all m, we then have,

D(µ) = max
ξ≥0

N
∑

i=1

ξi(λi −

M
∑

m=1

µi
mF i

m)

subject to
N
∑

i=1

ξ
α+1

α
i ≤ 1. (31)

Clearly, for those i such that λi < µi
mF i

m, the optimal solution for D(µ) is
ξi = 0. Let I denote the set of i such that λi − µi

mF i
m ≥ 0. If I is an empty

set, then D(µ) = 0. If I is not empty, we can use Holder’s inequality that,
for any positive p and q such that 1/p + 1/q = 1, the following holds,

N
∑

i=1

aibi ≤ [
N
∑

i=1

ap
i ]

1/p[
N
∑

i=1

bq
i ]

1/q,

where equality holds if and only if there is a constant γ such that ap
i = γbq

i

for all i. Hence, for all ξ such that the constraint (31) is satisfied, we have

∑

i∈I

ξi(λi −
M
∑

m=1

µi
mF i

m)

=
N
∑

i=1

ξi[λi −
M
∑

m=1

µi
mF i

m]+

≤

[

N
∑

i=1

ξ
α+1

α
i

]
α

α+1
[

N
∑

i=1

([λi −
M
∑

m=1

µi
mF i

m]+)α+1

]
1

α+1

≤

[

N
∑

i=1

([λi −
M
∑

m=1

µi
mF i

m]+)α+1

]
1

α+1

,
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where equality holds if and only if

N
∑

i=1

ξ
α+1

α
i = 1, (32)

and for some constant γ > 0,

ξ
α+1

α
i = γα+1([λi −

M
∑

m=1

µi
mF i

m]+)α+1, for i = 1, . . . , N,

or, equivalently,

ξ
1
α
i = γ[λi −

M
∑

m=1

µi
mF i

m]+, for i = 1, . . . , N. (33)

Such a vector ξ clearly exists when I is not empty. Hence, if
∑N

i=1 µi
m = φm

for all m, we have

D(µ) =

[

N
∑

i=1

([λi −

M
∑

m=1

µi
mF i

m]+)α+1

]
1

α+1

,

which is true even when I is empty. We can therefore conclude that the dual
problem is

min
µ≥0

D(µ) = min
y≥0,µ≥0

(

N
∑

i=1

yα+1
i

)
1

α+1

subject to yi =

[

λi −

M
∑

m=1

µi
mF i

m

]+

N
∑

i=1

µi
m = φm for all m.

This is exactly the problem wα(φ). Hence, strong duality implies that a(φ) =
wα(φ).

The optimizer y of wα(φ) must be unique since the objective function in
wα(φ) is strictly convex in y. Using the complementary slackness condition,
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for any optimizer ξ and µ, we must have

µi
m ≥ 0,

N
∑

i=1

µi
m = φm,

ξ
1
α
i = γ[λi −

M
∑

m=1

µi
mF i

m]+

µi
m = 0 if ξiF

i
m < max

1≤k≤N
ξkF

k
m

N
∑

i=1

ξ
α+1

α
i = 1 whenever ξ 6= 0 by (32).

Since ξi = xα
i and yi = [λi −

∑M
m=1 µi

mF i
m]+, we must have x = γy. Further,

if x 6= 0, then since y is unique and
∑N

i=1 xα+1
i = 1, x must also be unique.

The above set of equations are then exactly the condition in part (b) of the
lemma. Conversely, any ξ and µ (or, equivalently, x and µ) that satisfy the
condition must correspond to the maximizer of a(φ) and wα(φ), respectively.
Since the optimizers of a(φ) and wα(φ) are both unique, there is at most
one x that satisfies the set of conditions in part (b) of the lemma. Q.E.D.

D Bounding the Decay-rate of the Stationary

Overflow Probability: Supporting Results

In this section and the next, we will extend the result of Proposition 6 and
show that Jα is also a lower-bound of the decay-rate of the stationary overflow
probability, i.e.,

lim sup
B→∞

1

B
log P[Vα(qB(0)) ≥ 1] ≤ −Jα. (34)

We will first establish some supporting results.

D.1 A More General Lower Bound

We start from a stronger version of Proposition 4, the proof of which is also
fairly similar. For any given T > 0, let ΨT denote the space of mappings from
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[0, T ] to R
N , equipped with the essential supremum norm [12, p176, p352].

For any x ∈ R
N , let Px denote the distribution conditioned on q(0) = x.

Proposition 13 Let X denote a closed set in R
N . Let ΓT be a closed subset

in ΨT such that any x(·) ∈ ΓT satisfies x(0) ∈ X . Let Γ̂T denote the set
of fluid sample paths (s(·), q(·)) on the interval [0, T ] such that q(·) ∈ ΓT .
Then the following holds,

lim sup
B→∞

1

B
log

(

sup
{x∈X}

Px[qB(·) ∈ ΓT ]

)

≤ − inf
(s(·),q(·))∈Γ̂T

∫ T

0

H(ṡ(t)||p)dt. (35)

Proof: Let Γ̃B be the set of sB(·) on [0, T ] such that there exists x ∈ X
with which sB(·) drives a backlog process qB(·) that starts from qB(0) = x

and satisfies qB(·) ∈ ΓT . Then, we have the following

lim sup
B→∞

1

B
log

(

sup
{x∈X}

Px[qB(·) ∈ ΓT ]

)

≤ lim sup
B→∞

1

B
log
(

P[sB(·) ∈ Γ̃B]
)

.

The rest of the proof is identical to that of Proposition 4 starting from
inequality (15). The only difference is that, in the last step, the sequence
(ýn(·), q́n(·)) converges to (y∗(·), q∗(·)) where q∗(·) ∈ ΓT (because q́n(·) ∈ ΓT

and the set ΓT is closed under the essential supremum norm.) Q.E.D.

D.2 Additional Bounds for the Lyapunov Drift

We will also need the following bounds on the Lyapunov drift. First, we
establish a result for the Lyapunov drift of fluid sample paths. Without loss
of generality, assume that λi > 0 for all i = 1, ..., N . Further, for stability,
we assume that for some έ > 0, λ(1 + έ) is inside the capacity region. Recall
that this implies (2).
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Proposition 14 Let (s(·), q(·)) be any fluid sample path. Except for a set
T0 of measure zero, at any time t /∈ T0 and q(t) 6= 0, the following bounds on
the drift of the Lyapunov function Vα(q(t)) holds:

(a)

V̇α(q(t)) ≤ (
N
∑

i=1

λα+1
i )

1
α+1 .

(b) For any ε > 0, if |ṡm(t) − pm| < ε for m = 1, . . . ,M , then

V̇α(q(t)) ≤ −έ
min

1≤i≤N
λi

N
α

α+1

+ ε
M
∑

m=1

[

N
∑

i=1

(F i
m)α+1

]
1

α+1

. (36)

Proof: We first show Part (a). As in the proof of Proposition 5, let T0

denote the set of time t where either s(·) or q(·) is not differentiable. Fix
any t /∈ T0 such that q(t) 6= 0. By Proposition 5, we have

V̇α(q(t)) =

[

N
∑

i=1

(qi(t))
α+1

]
−α
α+1
[

N
∑

i=1

(qi(t))
αλi

−

M
∑

m=1

ṡm(t) max
1≤k≤N

(qk(t))
αF k

m

]

≤

[

N
∑

i=1

(qi(t))
α+1

]
−α
α+1
[

N
∑

i=1

(qi(t))
αλi

]

. (37)

By Holder’s inequality, we know

N
∑

i=1

xα
i yi ≤ (

N
∑

i=1

xα+1
i )

α
α+1 (

N
∑

i=1

yα+1
i )

1
α+1 .

Applying this to the second term in (37), we obtain the result in part (a).
To show part (b), using (2), we have

(1 + έ)
N
∑

i=1

(qi(t))
αλi ≤

M
∑

m=1

pm

N
∑

i=1

(qi(t))
αγ̂i

mF i
m (38)

≤
M
∑

m=1

pm max
1≤i≤N

q̂α
i F i

m. (39)
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Since |ṡm(t)− pm| < ε, for each m, we have ṡm(t) ≥ pm − ε. Hence, using
Proposition 5 again,

V̇α(q(t)) ≤

[

N
∑

i=1

(qi(t))
α+1

]
−α
α+1
[

N
∑

i=1

(qi(t))
αλi

−
M
∑

m=1

(pm − ε) max
1≤k≤N

(qk(t))
αF k

m

]

≤

[

N
∑

i=1

(qi(t))
α+1

]
−α
α+1
[

−έ
N
∑

i=1

(qi(t))
αλi

+ ε

M
∑

m=1

N
∑

i=1

(qi(t))
αF i

m

]

≤ −έ

[

N
∑

i=1

(qi(t))
α+1

]
−α
α+1
[

N
∑

i=1

(qi(t))
αλi

]

+ε

[

N
∑

i=1

(qi(t))
α+1

]
−α
α+1
[

M
∑

m=1

N
∑

i=1

(qi(t))
αF i

m

]

.

We will simplify the above expression. For the first term, we use the
following two inequalities

[

N
∑

i=1

(qi(t))
α+1

]
α

α+1

≤ N
α

α+1 max
1≤i≤N

(qi(t))
α

and

max
1≤i≤N

(qi(t))
α ≤

∑N
i=1(qi(t))

αλi

min
1≤i≤N

λi

.

We then have,

−έ

[

N
∑

i=1

(qi(t))
α+1

]
−α
α+1
[

N
∑

i=1

(qi(t))
αλi

]

≤
−έ min

1≤i≤N
λi

N
α

α+1

.

For the second term, we use Holder’s inequality again,
[

N
∑

i=1

(qi(t))
α+1

]
α

α+1
[

N
∑

i=1

(F i
m)α+1

]
1

α+1

≥
N
∑

i=1

(qi(t))
αF i

m.
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Summing over the index m on both sides and rearranging the terms, we then
have,

ε

[

N
∑

i=1

(qi(t))
α+1

]
−α
α+1
[

M
∑

m=1

N
∑

i=1

(qi(t))
αF i

m

]

≤ ε
M
∑

m=1

[

N
∑

i=1

(F i
m)α+1

]
1

α+1

.

The result then follows. Q.E.D.

We next establish a result for the drift of the Lyapunov function of the
backlog process in discrete time. We will need the following Lemma.

Lemma 15 Consider two N-dimensional vectors x ≥ 0 and ∆x such that
x + ∆x ≥ 0. Assume that there exist Li, i = 1, ..., N such that |∆xi| < Li

for all i and Vα(x) >
∑N

i=1 Li. The following holds,

Vα(x + ∆x) ≤ Vα(x) +

∑N
i=1(xi)

α∆xi

(Vα(x))α
+ α

∑N
i=1(∆xi)

2

Vα(x) −
∑N

i=1 Li

.

Proof: Consider the function

y(t) = Vα(x + t∆x)

=

[

N
∑

i=1

(xi + t∆xi)
α+1

]
1

α+1

.

Using the Mean-Value-Theorem, we have

y(1) = y(0) +
dy(0)

dt
+

1

2

d2y(t́)

dt2
for some t́ ∈ [0, 1]. (40)

The derivatives of y(·) are

dy(t)

dt
=

∑N
i=1(xi + t∆xi)

α∆xi

(Vα(x + t∆x))α
(41)

d2y(t)

dt2
= α

∑N
i=1(∆xi)

2(xi + t∆xi)
α−1

(Vα(x + t∆x))α

−α

∑N
i=1(∆xi)

2(xi + t∆xi)
2α

(Vα(x + t∆x))2α+1
. (42)
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Since xi + t∆xi ≤ Vα(x + ∆x), we have from (42) that

d2y(t)

dt2
≤ α

∑N
i=1(∆xi)

2

Vα(x + t∆x)
.

Further, by the convexity of Vα(·) and y(·), we have

Vα(x + t∆x) = y(t)

≥ y(0) + t
dy(0)

dt

= Vα(x) +
t
∑N

i=1(xi)
α∆xi

(Vα(x))α
.

Using the fact that xi ≤ Vα(x) and ∆xi is bounded below by −Li , we have
Vα(x + t∆x) ≥ Vα(x) −

∑N
i=1 Li for t ∈ [0, 1]. This implies that

d2y(t)

dt2
≤ α

∑N
i=1(∆xi)

2

Vα(x) −
∑N

i=1 Li

.

This inequality, along with (41) and (40), proves the lemma. Q.E.D.

Using this lemma, we can then provide a bound on the drift of the Lya-
punov function in discrete time. Define Mi = max{λi, max

1≤m≤M
F i

m}. Define

F n
B

as the σ-field generated by random variables (qB( 1
B

), qB( 2
B

), . . . , qB( n
B

)).

Corollary 16 Assume that Vα(qB(n−1
B

)) ≥ δ > 0. There exists B0 > 0
(which may depend on δ) such that for all B ≥ B0, the following holds,

E

[

Vα(qB(
n

B
)) − Vα(qB(

n − 1

B
))|Fn−1

B

]

≤
−έ min

1≤i≤N
λi

BN
α

α+1

+

∑N
i=1(

Mi

B
)α+1

δα
+ α

∑N
i=1(

Mi

B
)2

δ −
∑N

i=1
Mi

B

.

Proof: Let x = qB(n−1
B

) and x + ∆x = qB( n
B

). Then from (1), we have

|∆xi| = |qB
i ( n

B
) − qB

i (n−1
B

)| ≤ Mi

B
. Let B0 =

2
PN

i=1 Mi

δ
. Then, for all B ≥ B0,
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we have
∑N

i=1
Mi

B
≤ δ

2
< Vα(qB(n−1

B
)). Therefore, we can apply Lemma 15

by taking Li = Mi

B
, and we have,

Vα(qB(
n

B
)) − Vα(qB(

n − 1

B
)) (43)

≤

∑N
i=1(q

B
i (n−1

B
))α∆xi

Vα(qB(n−1
B

))α
+ α

∑N
i=1(∆xi)

2

Vα(qB(n−1
B

)) −
∑N

i=1
Mi

B

.

The last term can be bounded by

α

∑N
i=1(∆xi)

2

Vα(qB(n−1
B

)) −
∑N

i=1
Mi

B

≤ α

∑N
i=1(

Mi

B
)2

δ −
∑N

i=1
Mi

B

. (44)

It remains to bound the conditional expectation of the first term on the
right-hand-side of (43). Note that when qB

i (n−1
B

) > Mi

B
, we have

∆xi =
λi −

∑M
m=1 1{C(n−1)=m}1{U(n−1)=i}F

i
m

B
.

When qB
i (n−1

B
) ≤ Mi

B
, we have

∆xi ≤
λi −

∑M
m=1 1{C(n−1)=m}1{U(n−1)=i}F

i
m

B
+

Mi

B
.

Combining the two cases, we have,

N
∑

i=1

(qB
i (

n − 1

B
))α∆xi

≤

N
∑

i=1

(
Mi

B
)α+1 +

N
∑

i=1

(qB
i (

n − 1

B
))α λi

B

−
N
∑

i=1

(qB
i (

n − 1

B
))α

∑M
m=1 1{C(n−1)=m,U(n−1)=i}F

i
m

B
.
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Taking expectation over the channel state m, we have,

E

[

N
∑

i=1

(qB
i (

n − 1

B
))α∆xi|Fn−1

B

]

≤
N
∑

i=1

(
Mi

B
)α+1 +

N
∑

i=1

(qB
i (

n − 1

B
))α λi

B

−

∑M
m=1 pm max

1≤k≤N
(qB

k (n−1
B

))αF k
m

B
,

where we have used the fact that the scheduling algorithm chooses to serve
the link i with the largest value of (qB

i (n−1
B

))αF i
m.

Now, since λ(1 + έ) is in the capacity region, using (38), we must have,

E

[

N
∑

i=1

(qB
i (

n − 1

B
))α∆xi|Fn−1

B

]

≤ −έ
N
∑

i=1

(qB
i (

n − 1

B
))α λi

B
+

N
∑

i=1

(
Mi

B
)α+1.

Substiting this inequality and (44) to (43), we have

E

[

Vα(qB(
n

B
)) − Vα(qB(

n − 1

B
))|Fn−1

B

]

≤ −
έ
∑N

i=1(q
B
i (n−1

B
))α λi

B

Vα(qB(n−1
B

))α
+

∑N
i=1(

Mi

B
)α+1

δα

+α

∑N
i=1(

Mi

B
)2

δ −
∑N

i=1
Mi

B

.

The result then follows by noting that

N
∑

i=1

(qB
i (

n − 1

B
))α ≥ max

1≤i≤N
(qB

i (
n − 1

B
))α

≥
1

N
α

α+1

Vα(qB(
n − 1

B
))α.

Q.E.D.
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E Bounding the Decay-rate of the Station-

ary Overflow Probability: The Proof using

Freidlin-Wentzell Theory

We next prove (34) using Freidlin-Wentzell theory [11,25]. Let PB(·) denote
the stationary probability distribution of qB(t). Since λ(1 + έ) is in the
capacity region, the backlog process is a stable Markov process. We define
the following stopping times. Fix any ρ ∈ (0, 1). Choose δ, ε and C such
that 0 < δ < ε < ρ < 1 < C. For each B, consider the following sequence of
stopping times. (For a similar construction, see section 8.4 in [25].)

βB
0 =

dinf {t ≥ 0|Vα(qB(t)) ≤ δ}Be

B

ηB
j =

dinf {t ≥ βB
j |Vα(qB(t)) ≥ ε}Be

B
, j = 1, 2, . . .

βB
j =

dinf {t ≥ ηB
j−1|Vα(qB(t)) ≤ δ}Be

B
, j = 2, 3 . . .

Consider the Markov chain q̂B obtained by sampling qB(t) at the stopping
times ηB

j , i.e., q̂B(j) = qB(ηB
j ), j = 1, 2, ... Let P̂B denote the stationary

distribution of this chain and let θB denote its state space. Note that when
B is sufficiently large, we must have Vα(x) ≤ ρ for every x ∈ θB.

The following equation provides a way to compute the stationary distribu-
tion of qB(·). Let Px denote the distribution conditioned on qB(0) = x, and
let Ex denote the expectation taken with repect to Px. Then, the following
holds (see [19, Lemma 10.1]),

PB(Vα(qB(0)) ≥ 1)

=

∫

θB P̂B(dx)Ex(
∫ ηB

1

0
1{Vα(qB(t))≥1}dt)

∫

θB P̂B(dx)Ex(ηB
1 )

. (45)

Recall that we are interested in the asymptotic decay-rate of the left hand
side. Hence, we can use (45) to bound the limit lim supB→∞

1
B

log(PB(Vα(qB(0)) >
1)) as follows. First, we will show that the denominator in (45) is bounded
from below. Then, we will show that the numerator is bounded from above
and we will estimate the asymptotics of this bound.
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E.1 Bounding the Denominator of (45)

We first show that the denominator in (45) is bounded from below. Consider
the following identity:

Vα(qB(ηB
1 )) − Vα(qB(βB

1 ))

=

(ηB
1 −βB

1 )B
∑

n=1

[

Vα(qB(βB
1 +

n

B
)) − Vα(qB(βB

1 +
n − 1

B
))

]

.

(46)

By (1), we have that

qB
i (βB

1 +
n

B
) ≤ qB

i (βB
1 +

n − 1

B
) +

λi

B
.

Therefore, by the monotonicity and convexity of the Lyapunov function, we
have

Vα(qB(βB
1 +

n

B
)) − Vα(qB(βB

1 +
n − 1

B
))

≤ Vα(qB(βB
1 +

n − 1

B
) +

λ

B
) − Vα(qB(βB

1 +
n − 1

B
))

≤
1

B
Vα(λ).

Substituting into (46), we have,

Vα(qB(ηB
1 )) − Vα(qB(βB

1 ))

≤

(ηB
1 −βB

1 )B
∑

n=1

1

B
Vα(λ)

= (ηB
1 − βB

1 )Vα(λ).

Now, for sufficiently large B, we must have

Vα(qB(ηB
1 )) ≥ ε −

ε − δ

4
,

and

Vα(qB(βB
1 )) ≤ δ +

ε − δ

4
.
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We thus have,

ηB
1 − βB

1 ≥
Vα(qB(ηB

1 )) − Vα(qB(βB
1 ))

Vα(λ)
≥

ε − δ

2Vα(λ)
.

Hence, the denominator of (45) is bounded from below, i.e.,

Ex(ηB
1 ) ≥ Ex(ηB

1 − βB
1 ) ≥

ε − δ

2Vα(λ)
.

E.2 Bounding the Numerator of (45)

Next, we bound the numerator of (45) as follows. We will use the following
additional stopping time in our analysis.

ηB,↑ , dinf {t ≥ 0|Vα(qB(t)) ≥ 1}Be

B
.

We then have,

Ex(

∫ ηB
1

0

1{Vα(qB(t))≥1}dt)

≤ Ex(1{ηB,↑≤βB
1 }(β

B
1 − ηB,↑))

= Ex(βB
1 − ηB,↑|ηB,↑ ≤ βB

1 )Px(ηB,↑ ≤ βB
1 )

= Ex[Eq(ηB,↑)(β
B
1 )|ηB,↑ ≤ βB

1 ]Px(ηB,↑ ≤ βB
1 ).

For sufficiently large B, we must have q(ηB,↑) ≤ C. Hence,

Ex(

∫ ηB
1

0

1{Vα(qB(t))≥1}dt)

≤

[

sup
{y|Vα(y)≤C}

Ey(βB
1 )

]

Px(ηB,↑ ≤ βB
1 ).

For any T > 0, we can further bound the above probability by

Ex(

∫ ηB
1

0

1{Vα(qB(t))≥1}dt)

≤

[

sup
{y|Vα(y)≤C}

Ey(βB
1 )

]

[

Px(ηB,↑ ≤ T )

+Px(βB
1 ≥ T )

]

.
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Therefore, for sufficiently large B, by combining the bound on the denomi-
nator and the bound on the numerator, we can bound (45) as follows:

PB(Vα(qB(0)) ≥ 1)

≤
sup{y | Vα(y)≤C} Ey(βB

1 )
ε−δ

2Vα(λ)

×
[

Px(ηB,↑ ≤ T ) + Px(βB
1 ≥ T )

]

. (47)

Next, we show that sup{y|Vα(y)≤C} Ey(βB
1 ) is bounded from above and

hence does not influence the asymptotic decay-rate of PB(Vα(qB(0)) ≥ 1).
For M̃ > 0 such that BM̃ is an integer, define the truncated stopping time

βB,M̃
1 = min{M̃, βB

1 }.

By Dynkin’s formula (see [29, Thm 11.3.1]), we have

Ey(Vα(qB(βB,M̃
1 ))) = Ey(Vα(qB(0)))

+Ey







BβB,M̃
1
∑

n=1

E

[

Vα(qB(
n

B
)) − Vα(qB(

n − 1

B
))|Fn−1

B

]






.

(48)

By definition, we have Ey(Vα(qB(0))) = Vα(y). Further, by our construction,

we have qB(n−1
B

) ≥ δ for n = 1 to BβB,M̃
1 . Therefore, by Corollary 16, we

have, for all sufficiently large B,

E

[

Vα(qB(
n

B
)) − Vα(qB(

n − 1

B
))|Fn−1

B

]

≤
−έ min

1≤i≤N
λi

BN
α

α+1

+

∑N
i=1(

Mi

B
)α+1

δα
+ α

∑N
i=1(

Mi

B
)2

δ −
∑N

i=1
Mi

B

.

By choosing large B, we can make the second and third terms on the right-

hand-side to be smaller than
έ min
1≤i≤N

λi

2BN
α

α+1
. We then have, for all sufficiently large

B,

E

[

Vα(qB(
n

B
)) − Vα(qB(

n − 1

B
))|Fn−1

B

]

≤
−έ min

1≤i≤N
λi

2BN
α

α+1

.
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Substituting into (48) and using Ey(Vα(qB(βB,M̃
1 ))) ≥ 0, we obtain

Ey(βB,M̃
1 ) ≤

Vα(y)
έ min
1≤i≤N

λi

2N
α

α+1

.

Note that this is true for all M̃ . Letting M̃ → ∞, and using the Monotone
Convergence Theorem [30, p208], we then have

Ey(βB
1 ) ≤

2CN
α

α+1

έ min
1≤i≤N

λi

,

for all y such that Vα(y) ≤ C. Hence, we conclude that sup{y|Vα(y)≤C} Ey(βB
1 )

is bounded from above by a constant.
Substituting the above bound into (47), we can then conclude that

lim sup
B→∞

1

B
log(PB(Vα(qB(0)) > 1)))

≤ max

{

lim sup
B→∞

1

B
log( sup

{x | Vα(x)≤ρ}

Px(ηB,↑ ≤ T )),

lim sup
B→∞

1

B
log( sup

{x | Vα(x)≤ρ}

Px(βB
1 ≥ T ))

}

.

(49)

In the rest of the section, we will bound the two terms on the right-hand-side.
Specifically, we will show that

lim sup
B→∞

1

B
log( sup

{x | Vα(x)≤ρ}

Px(ηB,↑ ≤ T )) ≤ −(1 − ρ)Jα. (50)

Further, by choosing large T , we can make

lim sup
B→∞

1

B
log( sup

{x | Vα(x)≤ρ}

Px(βB
1 ≥ T )) < −(1 − ρ)Jα. (51)

The result in (34) then follows by letting ρ → 0.
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E.3 Asymptotics for sup{x | Vα(x)≤ρ} Px(ηB,↑ ≤ T )

We first show (50). Let X = {x | Vα(x) ≤ ρ} and let

Γ≤ρ , {x(·) | Vα(x(0)) ≤ ρ and

Vα(x(t)) ≥ 1 for some t ∈ (0, T ]}.

Further, let Γ̂≤ρ be the set of fluid sample paths (s(·), q(·)) such that q(·) is
in Γ≤ρ. By Proposition 13, we have

lim sup
B→∞

1

B
log( sup

{x∈X}

Px(qB(·) ∈ Γ≤ρ))

≤ − inf
(s(·),q(·))∈Γ̂≤ρ

∫ T

0

H(ṡ(t)||p)dt. (52)

It remains to show that for any fluid sample path (s(·), q(·)) in Γ̂≤ρ, its cost
∫ T

0
H(ṡ(t)||p)dt must be no smaller than (1 − ρ)Jα. The proof technique is

similar to that of Proposition 6. Specifically, for any (s(·), q(·)) ∈ Γ̂≤ρ, let
T ′ by the first time that Vα(q(t) ≥ 1. Without loss of generality, assume
that q(t) 6= 0 for t ∈ (0, T ′). Using similar techniques as in the proof of
Proposition 6, we can show that for all t ∈ (0, T ′) where q(·) is differentiable,
we have,

V̇α(q(t)) ≤ a(ṡ(t)).

Hence, if V̇α(q(t)) > 0, we must have a(ṡ(t)) > 0. Then, using the definition
of Jα in (23), we have

H(ṡ(t)||p) ≥ JαV̇α(q(t)).

On the other hand, if V̇α(q(t)) ≤ 0, the above inequality also holds trivially.
Hence, the cost of the path must satisfy

∫ T

0

H(ṡ(t)||p)dt

≥

∫ T ′

0

H(ṡ(t)||p)dt

≥ Jα

∫ T ′

0

V̇α(q(t))dt.
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Recall that any fluid sample path in Γ̂≤ρ must satisfy q(0) ≤ ρ. Therefore,

∫ T ′

0

V̇α(q(t)) ≥ (1 − ρ).

Hence, by (52), we conclude that

lim sup
B→∞

1

B
log( sup

{x | Vα(x)≤ρ}

Px(ηB,↑ ≤ T ))

≤ − inf
(s(·),q(·))∈Γ̂≤ρ

∫ T

0

H(ṡ(t)||p)dt

≤ −(1 − ρ)Jα.

E.4 Asymptotics for sup{x | Vα(x)≤ρ} Px(βB
1 ≥ T )

We next show that (51) holds if we choose a large T . Let X = {x | Vα(x) ≤
ρ} and redefine

Γ≤ρ , {x(·) | Vα(x(0)) ≤ ρ and

Vα(x(t)) > δ for all t ∈ [0, T − 1]}.

Further, redefine Γ̂≤ρ to be the set of fluid sample paths (s(·), q(·)) such that
q(·) is in Γ≤ρ. Using Proposition 13 again, we have

lim sup
B→∞

1

B
log( sup

{x∈X}

Px(qB(·) ∈ Γ≤ρ))

≤ − inf
(s(·),q(·))∈Γ̂≤ρ

∫ T

0

H(ṡ(t)||p)dt.

By definition, for any (s(·), q(·)) ∈ Γ̂≤ρ, we have Vα(q(t)) ≥ δ for t ∈ [0, T−1].
Hence,

δ ≤ Vα(q(0)) +

∫ T−1

0

V̇α(q(t))dt

≤ ρ +

∫ T−1

0

V̇α(q(t))dt.

Now, let

ε = έ
min1≤i≤N λi

2N
α

α+1
∑M

m=1(
∑N

i=1(F
i
m)α+1)

1
α+1

.
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Applying Proposition 14, we obtain,

δ ≤ ρ +

∫ T−1

0

1{|ṡ(t)−p|<ε}

(

−έ min1≤i≤N λi

2Nα/(α+1)

)

dt

+

∫ T−1

0

1{|ṡ(t)−p|≥ε}





(

N
∑

i=1

λα+1
i

)1/(α+1)


 dt.

From the above inequality, we then obtain the following bound

∫ T−1

0

1{|ṡ(t)−p|≥ε}dt

≥
(T − 1)

έ min1≤i≤N λi

2Nα/(α+1) + δ − ρ
έ min1≤i≤N λi

2Nα/(α+1) + (
∑N

i=1 λα+1
i )1/(α+1)

. (53)

Now, note that,

∫ T

0

H(ṡ(t)||p)dt

≥

[

min
|ṡ(t)−p|≥ε

H(ṡ(t)||p)

] ∫ T−1

0

1{|ṡ(t)−p|≥ε}dt.

By (53), the quantity on the right-hand-side can be made arbitrarily large
by increasing T . Inequality (51) then holds.

Finally, to complete the proof of (34), note that by substituting (50) and
(51) to (49), we have shown that, for any ρ ∈ (0, 1),

lim sup
B→∞

1

B
log(PB(Vα(qB(0)) ≥ 1)) ≤ −(1 − ρ)Jα.

Since ρ can be made arbitrarily small, by letting ρ → 0, the result (34) then
follows.
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