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Constant-Time Distributed Scheduling Policies for
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Abstract— We propose a new class of distributed scheduling
policies for ad hoc wireless networks that can achieve provable
capacity regions. Previously known scheduling policies that
guarantee comparable capacity regions are either centralized
or require computation time that increases with the size of
the network. In contrast, the unique feature of the proposed
distributed scheduling policies is that they are constant-time
policies, i.e., given a fixed approximation ratio and a bounded
maximum node-degree of the network, the time needed for
computing a new schedule is independent of the network size.
Hence, they can be easily deployed in large networks.

Index Terms— Constant-time scheduling algorithms, ad hoc
wireless networks, distributed algorithms, efficiency ratio.

I. I NTRODUCTION

In this paper, we study the link scheduling problem in
ad hoc wireless networks. In wireless networks, the radio
transmissions at different links can interfere with each other.
Hence, in order to achieve the optimal capacity, it is usually
more efficient to only use a subset of the radio links at each
time [2]. Determining which subset of links should be active
at each time becomes the link scheduling problem, which is
mainly at the MAC layer in the OSI reference model.

Good scheduling policies are those that can achieve large
capacity regions and can be easily computed. Consider a
wireless network withL links, and letλl be the data rate
offered to link l. Let ~λ = [λ1, ..., λL]. The capacity region
under a particular scheduling policy is the set of data-rate
vectors~λ that the scheduling policy can support while keeping
the queues at all links finite. A scheduling policy is said to
be throughput-optimalif it can achieve the largest possible
capacity region. Known throughput-optimal policies require
solving a global optimization problem at each time [3]–[6].
Such scheduling policies are inappropriate for ad hoc networks
because the distributive nature of these networks requires
simple and decentralized scheduling solutions. Recently,a
number of distributed scheduling policies have been proposed
in the literature [7]–[12]. Since the capacity region undera
distributed policy is typically smaller than the optimal one
achieved by the throughput-optimal policy, we define the
efficiency ratioof such a sub-optimal scheduling policy as the
largest numberγ such that, given any network topology, for
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any~λ that can be supported by the throughput-optimal policy,
this policy can supportγ~λ. In other words, the scheduling
policy with efficiency ratioγ can achieve at leastγ fraction
of the optimal capacity region. Related works have studied a
number of distributed scheduling policies that are shown to
achieve provable efficiency ratios. For example, by extending
the result from the switching literature [13]–[15], the authors
of [8] have shown that the maximal matching policy can
achieve an efficiency ratio of no less than1/2 under the node-
exclusive interference model. Similar maximal scheduling
policies are also studied under the bidirectional-equal-power
model and the two-hop interference model [9]–[12], where
different bounds on the efficiency ratio are derived. Finally,
there also exists a class of randomized “pick-and-compare”
policies, which could be implemented in a distributed fashion
and could achieve an efficiency ratio of1 [16], [17].

The problem with these existing distributed scheduling poli-
cies, however, is that the time needed to compute a schedule
still increases with the size of the network. For example, one
of the best known distributed algorithms in graph theory can
compute maximal matching on a graph inO(logL) rounds,
whereL is the total number of links in the graph [18]. Hence,
its computation time increases as the size of the network
grows.

In this paper, we propose a new class of distributed schedul-
ing policies. A unique feature of these new policies is that,
under appropriate assumptions, the time needed to compute a
schedule can be made independent of the size of the network.
Hence, they are more scalable and easier to implement in large
networks. We provide such distributed scheduling policies
for two types of interference models, i.e., the node-exclusive
interference model and the two-hop interference model. Our
policies require each link to learn the queue lengths of its
one-hop neighboring links (in the case of the node-exclusive
interference model) or that of its two-hop neighboring links
(in the case of the two-hop interference model). Once they
learn the queue-length information from neighboring links, in
both cases our proposed policies only requireone round of
the computation of average lengthM/2 to compute a new
schedule, whereM is a parameter related to anapproximation
ratio that determines how close one wants to approach the
maximum possible efficiency ratio of this class of algorithms.
Further, assuming that transmitting one piece of queue-length
information takes constant time, one can design distributed
algorithms for information exchange such that the amount of
time required to exchange the queue-length information can
be bounded by a function of the maximum node-degree of the
network (see detailed discussions in Section III.) Therefore,
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given a fixed approximation ratio and a bounded maximum
node-degree, the total time for our proposed policies to com-
pute a new schedule can be made independent of the size of the
network. For this reason, we refer to the policies proposed in
the paper asconstant-timescheduling policies. We will show
that our proposed scheduling policies can achieve comparable
efficiency ratios as some of the non-constant-time policiesin
the literature.

We believe that the results in the paper offer new insights
for the design of simple and efficient scheduling policies
for ad hoc networks. The rest of the paper is organized as
follows. In Section II, we outline the network model and
review related results. In Sections III-IV, we will propose
the constant-time distributed scheduling policies for thenode-
exclusive interference model and the two-hop interference
model, respectively, and derive their efficiency ratios. We
discuss implementation issues in Section V, and present sim-
ulation results in Section VI. Then we conclude.

II. T HE SYSTEM MODEL

Consider a wireless network withN nodes andL directed
links. Each link corresponds to a pair of transmitter node and
receiver node. Letb(l) and e(l) denote the transmitter node
and the receiver node, respectively, of linkl. Two nodes are
one-hop neighbors of each other if they are the end-points
of a common link. For each nodei, let E(i) denote the
set of links that connect to the one-hop neighbors of node
i, i.e., E(i) is the set of links that nodei either acts as a
transmitter or as a receiver. Two links areone-hopneighbors
of each other if they share a common node. Two links are
two-hopneighbors of each other if they have a common one-
hop neighboring link. For each linkl, let N1(l) denote the
set of one-hop neighbors of linkl (including link l itself), i.e.,
N1(l) = E(b(l)) ∪ E(e(l)). Further, letN2(l) denote the set
of two-hop neighbors of linkl, i.e.,N2(l) =

⋃
k∈N1(l)N

1(k).
We first assume a single-hop traffic model, i.e., each packet

only needs to traverse one of theL links and then leave the
system. (We will discuss the extension to the multi-hop casein
Section V.) We assume that time is divided into slots of unit
length. LetAl(t) denote the number of packets that arrive
at link l at time slott. We assume that packets are of unit
length. Throughout the paper, we assume that the packet arrival
processesAl(t), l = 1, 2, ..., L, are independent across links
and i.i.d. in time, although the results of the paper could also
be extended to more general arrival processes [19], [20].

We will study two types of interference models that govern
the radio transmission. In both models, we say that two
links interfere with each other if they cannot transmit data
together. Under thenode-exclusive interference model, each
link l interferes with all of its one-hop neighboring links.
Under thetwo-hop interference model, each link l interferes
with all of its two-hop neighboring links. In both models, if
the above interference constraints are satisfied, an activelink l
can transfercl packets within the time slot. We further assume
that the system has carrier-sensing capabilities. In particular,
under the one-hop interference model, we assume that all the
one-hop neighboring links of linkl can sense the transmission

at link l. Under the two-hop interference model, we assume
that all one-hop neighboring nodes of nodei can sense the
transmission from nodei.

Remark: The node-exclusive interference model can be
viewed as a generalization of the bipartite graph model for
modeling high-speed packet switches [13]–[15]. It has been
used in [8], [21]–[23] to model wireless networks. While this
is a somewhat simplified model, the main results can often
be readily generalized to other more complex interference
models, e.g., the two-hop interference model. Note also that
the latter model is very close to the interference model that
IEEE 802.11 DCF (Distributed Coordination Function) deals
with [9], [12].

At time slot t, let M(t) denote the outcome of the schedul-
ing policy, which is defined as the set of non-interfering links
that are chosen to be active at timet. Let Dl(t) denote the
number of packets that linkl can serve at time slott. Then
Dl(t) = cl if l ∈ M(t), andDl(t) = 0 otherwise. LetQl(t)
denote the number of packets queued at linkl at the beginning
of time slot t, then the evolution ofQl(t) is governed by

Ql(t+ 1) = [Ql(t) +Al(t) −Dl(t)]
+, (1)

where[·]+ denote the projection to[0,+∞).
We say that the system isstable if the queue lengths at all

links remain finite [4], i.e.

lim
T→∞

1

T

T∑

t=1

1
{

LP
l=1

Ql(t)>η}
→ 0, almost surely asη → ∞.

(2)
Let λl be the mean packet arrival rate at linkl, i.e., λl =
E[Al(t)]. Let ~λ = [λ1, ...λL]. As we defined in the Introduc-
tion, thecapacity regionunder a particular scheduling policy
is the set of~λ such that the system remains stable. The optimal
capacity regionΩ is the union of the capacity regions of
all scheduling policies. A scheduling policy isthroughput-
optimal if it can achieve the optimal capacity regionΩ. The
efficiency ratioof a (possibly sub-optimal) scheduling policy
is the largest numberγ such that the scheduling policy can
stablize the system under any load~λ ∈ γΩ. By definition, a
throughput-optimal scheduling policy has an efficiency ratio
of 1.

A. Related Results

1) Scheduling Policies for the Node-Exclusive Interference
Model: One of the known throughput-optimal scheduling
polices under the node-exclusive interference model computes
the setM(t) of non-interfering links at time-slott such that
M(t) maximizes the sum of the queue-weighted-rates

∑

l∈M(t)

Ql(t)cl. (3)

This scheduling policy is a direct application of the more
general result in [3]–[6]. The resulted schedule corresponds
a Maximum-Weighted-Matching (MWM) of the underlying
graph, where the weight of each link isQl(t)cl. (Note that
a matching is a subset of the links such that no two links
share the same node. Theweight of a matching is the total
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weight over all links belonging to the matching. Amaximum-
weighted-matching (MWM)is the matching with the maxi-
mum weight.) AnO(N3)-complexity centralized algorithm for
MWM can be found in [24], whereN is the number of nodes.
On the other hand, the following much simpler algorithm can
be used to compute a suboptimal schedule that corresponds
to a Greedy Maximal Matching (GMM) [8], [15], [25],
[26]: Start from an empty schedule; From all possible links,
pick the link with the largest weightQl(t)cl; Add this link to
the schedule; Remove all links that are incident with either
the transmitter node or the receiver node of linkl; Pick
the link with the largest weightQl(t)cl from the remaining
links, and add to the schedule; Continue until there are no
links left. The above centralized GMM algorithm has only
O(L logL)-complexity (whereL is the number of links), and
is much easier to implement than MWM. Using the technique
in Theorem 10 of [15], we can show that the GMM policy
achieves an efficiency ratio no less than1/2. There also exist
distributed algorithms that can compute the GMM schedule in
O(L) rounds [27].

The optimal capacity regionΩ under the node-exclusive
interference model is known to be bounded by [21]:

2

3
Ψ0 ⊆ Ω ⊆ Ψ0, (4)

where

Ψ0 =





~λ

∣∣∣∣∣∣

∑

l∈E(i)

λl

cl
≤ 1, for all nodesi




 . (5)

The following Maximal-Matching (MM) policy can be
shown to achieve a capacity region ofΨ0/2, and thus also
has an efficiency ratio of at least1/2 [8]. The MM policy
simple picks a setM(t) of non-interfering links such that no
more links can be added toM(t) without violating the node-
exclusive interference constraint. To be precise, a Maximal
Matching M(t) is a set of non-interfering links such that:
(a) Ql(t) ≥ cl for all l ∈ M, and (b) for each linkl in the
network, eitherQl(t) < cl or some links inE(b(l))∪E(e(l)) is
included inM. The distributed algorithm in [18] can compute
a maximal matching inO(logL) rounds, whereL is the total
number of links in the network.

There also exists a class of randomized “pick-and-compare”
scheduling policies, which can be shown to be throughput-
optimal and could be implemented in a distributed fashion
[16], [17]. Their complexity is known to be at leastO(L).

2) Scheduling Policies for the Two-Hop Interference Model:
Under the two-hop interference model, the optimal capacity
regionΩ is bounded byΩ ⊆ Ψ′

0, where

Ψ′
0 =





~λ

∣∣∣∣∣∣

∑

k∈N1(l)

λl

cl
≤ 1, for all l




 . (6)

The policy that maximizes (3) among all setM(t) of non-
interfering links is still throughput-optimal. However, find-
ing such a setM(t) is generally an NP-Complete problem
[28], [29]. Greedy Maximal Scheduling policy and Maximal
Scheduling policy under the two-hop interference model can

be defined analogously to the GMM and MM policies, re-
spectively, under the node-exclusive interference model.The
efficiency ratio of these policies can be shown to be1/N̂1,
where N̂1 , maxl |N

1(l)| is the maximum number of one-
hop neighboring links of any link [12]. This efficiency ratio
can be tightened to1/Ñ1, whereÑ1 is the maximum number
of two-hop neighbors of each link that do not interfere with
each other [9]–[11]. Neither of the two policies are constant-
time scheduling policies.

III. A C ONSTANT-TIME DISTRIBUTED SCHEDULING

POLICY FOR THE NODE-EXCLUSIVE INTERFERENCE

MODEL

None of the distributed scheduling policies in Section II-A
can compute a schedule in constant time (i.e., in a time that is
independent of the network size). In this section, we propose
a new distributed scheduling policy for the node-exclusive
interference model that only needsO(1) time to compute a
new schedule, and we will show that it achieves an efficiency
ratio at least close to1/3. The new policy operates as follows:

Constant-Time Distributed Scheduling PolicyGP :
At each time slott:

• Each linkl computes a probabilitypl(t) based on its own
queue-length and that of its one-hop neighboring links as
follows: pl(t) = 0 if Ql(t) = 0. Otherwise,

pl(t) =
βlQ

α
l (t)

max[
∑

k∈E(b(l))

βkQα
k (t),

∑
k∈E(e(l))

βkQα
k (t)]

,

(7)
whereα is a system-wide positive constant, andβl is a
positive constant for each linkl.

• Each link l attempts transmission with probabilitypl(t),
and does not attempt transmission with probability1 −
pl(t). For those links that attempt transmission, each of
them randomly and independently chooses a backoff time
uniformly from {0, 1, ...,M − 1}, whereM is a system-
wide positive integer constant. We assume that all backoff
timers start at the beginning of the time slot. When a
link’s backoff timer expires, the transmission at the link
starts, provided that it has not overheard (i.e., through
carrier-sensing) any other transmission from its one-hop
neighboring links. Hence, the linkl whose backoff timer
expires ahead of all of its interfering links will win, and
will be able to successfully transfer packets in the time-
slot. It is possible that two or more links’ backoff timers
expire at the same time, in which case collision occurs
and none of the interfering links can transfer packets in
time-slot t.

Note that the constant-time distributed scheduling policyin
our earlier work [1] corresponds to the special caseα = 1
andβl = 1/cl. In this paper, we allowβl to take any positive
value. This wider choice ofβl is motivated by the idea of
providing preferential service to a subset of links. One would
expect that a link with a larger value ofβl will have a better
chance of being picked for transmission, and hence its backlog
will be smaller. The result of this paper shows that such wider
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choice ofβl will not degrade the overall capacity region of
the system.

We make the following remarks before we derive the
efficiency ratio of PolicyGP .

Random Backoff: Note that the random backoff procedure
in the second step of the policy is typical in random access
protocols (e.g., IEEE 802.11 and Ethernet) to reduce excessive
contention. In practical implementations, the actual backoff
time depends both on the constantM and on how long each
unit of backoff time lasts. In practice, due to propagation and
processing delays, the length of each unit of backoff time
cannot be arbitrarily small. For example, in IEEE 802.11, each
unit of backoff time lasts20µs. Therefore, in order to compute
the schedule in constant time, we need to provide an upper
bound onM . In Section III-A, we will see how the efficiency
ratio of PolicyGP depends onM .

Attempt Probability: The choice of the attempt probability
pl is also essential to obtain constant-time scheduling policies
with an efficiency ratio independent of the network topology.
Otherwise, ifpl is lower bounded by a constant, we can show
below that the throughput of the system may drop to zero. To
see this, consider the simple example ofL nodes transmitting
to a common receiver. Hence, theL links interfere with each
other. Given a fixed value ofM , the probability that any one
of the L links can successfully transfer data in a given time
slot is bounded from above by

L∑

l=1

pl

M

∏

k 6=l

(1 −
pk

M
) +

L∏

l=1

(1 −
pl

M
),

where the first term is the probability that one link wins with
backoff time equal to 1, and the second term is the probability
that no links have backoff times equal to 1. Ifpl is bounded
from below by a constantp, then the above bound will go to
zero asL→ ∞. Hence, the total system throughput will drop
to zero for any fixed value ofM . On the other hand, since
in (7) we set the attempt probability inversely proportional
to the sum of the queue-length at the interfering links, we
reduce the chance of contention in the neighborhood. As we
will see in Section III-A, a fixed value ofM will then be
sufficient to guarantee a fixed efficiency ratio forarbitrary
network topologies.

Overhead of Queue-length Exchange:To compute the
attempt probability, PolicyGP requires each link to learn
the queue-length of its one-hop neighboring links, which also
consumes time and communication overhead. Assume that the
number of one-hop neighbors of each link is at most̂N1,
which can be obtained as a function of the maximum node-
degree of the network if the degree of the nodes in the network
is bounded. Further, assume that transmitting one piece of
queue-length information takes constant time. It is then possi-
ble to design a distributed algorithm for information exchange
such that the amount of time required to exchange the queue-
length information is bounded by(N̂1)2+1. Specifically, using
results from graph-coloring, we can color the links with at
most(N̂1)2 +1 colors such that any two links within two-hop
of each other are labeled with different colors [30, Chapter
7]. We can then assign each color to a mini-slot, and have

each link broadcast its queue-length within the mini-slot that
corresponds to its color. Since the links with the same colorare
at least three-hop apart, their neighbors will be able to receive
the broadcast information without collision. This mechanism
allows all links to broadcast their queue-length to all of their
respective one-hop neighbors in at most(N̂1)2 +1 mini-slots.
Note that the graph coloring and the mini-slot assignment only
need to be computed once at the beginning of the system
operation, and they are independent of the traffic load. The
graph coloring can be computed by a distributed algorithm
such as the one in [30, Chapter 7]. After that, each link only
needs to remember which mini-slot it should use to broadcast
queue-length information. Hence, the above scheme can be
implemented in a distributed fashion provided that the clocks
at all links are synchronized. As a result, given a fixedM
and a bounded maximum node-degree, the total time required
for Policy GP to compute a new schedule can be made
independent of the size of the network.

Finally, we note that the special case of PolicyGP with
α = 1 and βl = 1/cl can also be viewed as an extension
of the Longest-Queue-Driven (LQD) scheduling algorithm
from the switching literature [15]. However, there are two
key differences: (a) in the switching literature, the network
topology is a bipartite graph, while ad hoc network topology
is non-bipartite; (b) in the switching literature, the transmitting
nodes (i.e., input ports) and receiving node (i.e., output ports)
are determined a priori, while in ad hoc networks a node can
alternate its role as transmitter or receiver from time-slot to
time-slot. The proposed policyGP has carefully accounted
for these differences through the random backoff phase in the
second part of the policy.

A. The Efficiency Ratio of PolicyGP

We next show that the efficiency ratio of the above policy
GP is at least close to1/3. Recall that the optimal capacity
regionΩ under the node-exclusive interference model is upper
bounded byΨ0 in (5). For a vector~Q = [Q1, ..., QL], define
function πl( ~Q) for each linkl as

πl( ~Q) =






0, if Ql = 0
βlQ

α
l

max[
P

k∈E(b(l))

βkQα
k

,
P

k∈E(e(l))

βkQα
k
] , otherwise.

Note that this function is simply the relationship used to
determine the attempt probability at each time slot in (7), i,e.,
pl(t) = πl( ~Q(t)). For any two vectors~x = [x1, ..., xd] and
~y = [y1, ..., yd] with the same dimensiond, we say that~x is
longer than ~y if

∑d
i=1 x

2
i >

∑d
i=1 y

2
i . For any ~Q 6= 0, let

~µ( ~Q) = [µ1, ..., µL] be the longestelement inΨ0 such that
for some non-negative real numberδ,

µl = δclβlQ
α
l , for all l. (8)

Note that such a longest element~µ( ~Q) always exists and is
unique because vectors that satisfy (8) are on the same line.
According to (8),µl( ~Q) = 0 if Ql = 0. Further, if ~Q = 0, we
define~µ( ~Q) = 0.

Let ψl( ~Q) be the expected amount of available service
provided by policyGP to link l at a given time slot, con-
ditioned on the queue length vector being~Q, i.e., ψl( ~Q) =
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E[Dl(t)| ~Q(t) = ~Q], where the expectation is taken with
respect to the randomness in the random-attempt and backoff
procedures of PolicyGP . We will see soon that the relation-
ship between the expected available serviceψl( ~Q) and the
value ofµl( ~Q) plays a key role in determining the stability of
the system. Letd0

l (
~Q) = πl( ~Q)cl, which can be interpreted as

the expected amount of available service at linkl if there was
no collision,conditioned on the queue length vector being~Q.
Let ~d0( ~Q) = [d0

1(
~Q), ..., d0

L( ~Q)]. The following lemma relates
~d0( ~Q) to ~µ( ~Q).

Lemma 1: If ~Q 6= 0, then for alll, we haved0
l (
~Q) ≥ µl( ~Q).

Proof: By definition of µl( ~Q), there exists someδ > 0
such thatµl( ~Q) = δclβlQ

α
l for all l. Substituting into (5), we

have

δ
∑

k∈E(i)

βkQ
α
k ≤ 1, for all nodei.

Since~µ( ~Q) forms the longest vector inΨ0 that satisfies the
above inequality, we have

δ =
1

maxi

∑
k∈E(i) βkQα

k

.

Combining with (7), we have

δ ≤
πl( ~Q)

βlQα
l

, for all l.

Hence,

d0
l ( ~Q) = πl( ~Q)cl ≥ δclβlQ

α
l = µl( ~Q), for all l.

Lemma 1 shows that, if links that attempt transmission
were to win every time, then the expected amount of service
available to each link would be component-wise no less than
~µ( ~Q). However, due to the random-backoff procedure in the
second part of PolicyGP , only a subset of those links that
attempt transmission will win. We next show that, if a link
attempts transmission, the conditional probability that it wins
is no less than13 − 1

M . In fact, we will prove a more general
result as follows. Fix a particular link0. Label its interfering
links as1, 2, ...,K.

Lemma 2:Let xk denote the probability that thek-th inter-
fering link attempts transmission,k = 1, 2, ...,K. Assume that
all links follow the random backoff procedure in the second
part of PolicyGP . If

∑K
k=1xk ≤ H, whereH ≥ 0, then

the conditional probability that link0 wins, conditioned on it
attempts transmission, is no less than1H+1 − 1

M .
Proof: Condition the following derivation on the event

that link 0 attempts transmission. LetY be the random
variable that denote the backoff time of link0. Conditioned
on Y = y, the probability that link0 wins is no less than the
probability that allK interfering links either do not attempting
transmission, or have backoff time greater thany. Note that
each interfering link attempts transmission and chooses its
backoff time independently. LetS denote the event that link

0 wins. We thus have,

P[S|Y = y] ≥
K∏

k=1

[
(M − 1 − y)xk

M
+ (1 − xk)

]

=
K∏

k=1

[
1 −

y + 1

M
xk

]
.

SinceY is uniformly distributed among{0, ...,M − 1}, we
have

P[S] =

M−1∑

y=0

P[S|Y = y]

M

≥

M−1∑

y=0

1

M

K∏

k=1

[
1 −

y + 1

M
xk

]
.

Since
∏K

k=1(1 − uxk) is decreasing inu, we have,

P[S] ≥

∫ 1

1
M

K∏

k=1

(1 − uxk) du

≥

∫ 1

0

K∏

k=1

(1 − uxk) du−
1

M
.

By comparing the derivatives, we can show that

K∏

k=1

(1 − uxk) ≥ (1 − u)H .

Hence,

P[S] ≥

∫ 1

0

(1 − u)H du−
1

M
=

1

H + 1
−

1

M
.

Remark:A special case of Lemma 2 that corresponds to
H = 1 andM = ∞ was shown in Theorem 5 of [15]. Here
we have provided a more general result using a much different
proof technique.

Under PolicyGP , we infer from (7) that, for any linkl, the
attempt probabilities of its one-hop neighboring links must
satisfy

∑
k∈E(b(l))

pk(t) ≤ 1 and
∑

k∈E(e(l))

pk(t) ≤ 1. Hence, the

sum of the attempt probabilities over its interfering linksis
no greater than2. We thus obtain the following corollary to
Lemma 2.

Corollary 3: Under PolicyGP , the conditional probability
that link l wins, conditioned on it attempts transmission, is no
less than1

3 − 1
M .

Let
1

S
=

1

3
−

1

M
.

Using Lemma 1 and Corollary 3, we thus conclude that,
conditioned on the queue-length vector being~Q, the expected
available serviceψl( ~Q) at link l under PolicyGP satisfies

ψl( ~Q) ≥

(
1

3
−

1

M

)
d0

l (
~Q) ≥

1

S
µl( ~Q) for all l. (9)

Note that by definitionψl( ~Q) = E[Dl(t)| ~Q(t) = ~Q]. The
following proposition will connect Inequality (9) with the
efficiency ratio of the scheduling policy.
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Proposition 4: If for any ~Q 6= 0, E[Dl(t)| ~Q(t) = ~Q] ≥
µl( ~Q)/S for all l, whereµl( ~Q) is defined in (8) andS is a
positive constant, then the system is stable for any offeredload
vector~λ strictly insideΨ0/S, i.e., for any offered load vector
~λ such that(1 + ǫ)~λ ∈ Ψ0/S for some positive numberǫ.

Remark:This result and the following proof technique are
inspired by the work in [31]. The authors of [31] show that
Dl(t) = µl( ~Q(t)) corresponds to a throughput-optimal policy,
which is a special case of Proposition 4 withS = 1. The
throughput-optimality in [31] is shown for allα > 1. In
this paper, we use a simple fluid-limit argument and prove
Proposition 4 for allα > 0.

We will use a Lyapunov function of the following form to
show Proposition 4, which is slightly different from the one
used in [31]:

V ( ~Q) = max
l
Ql

(
clβl

λl

)1/α

. (10)

The following lemma shows that if the maximum in (10) is
attained by some linkk, thenµk( ~Q) ≥ (1 + ǫ)Sλk.

Lemma 5:Assume that(1+ ǫ)~λ ∈ Ψ0/S for some positive
constantsǫ andS. Given ~Q 6= 0, if for somek the maximum
of (10) is attained, i.e.,

Qk

(
ckβk

λk

)1/α

= max
l
Ql

(
clβl

λl

)1/α

, (11)

thenµk( ~Q) ≥ (1 + ǫ)Sλk.
Proof: We prove by contradiction. Assume thatµk( ~Q) <

(1 + ǫ)Sλk, wherek is defined in (11). Then for all other
links l, eitherµl( ~Q) = 0, or, if µl( ~Q) > 0, we have (by the
definition of µl( ~Q)),

clβlQ
α
l

µl( ~Q)
=
ckβkQ

α
k

µk( ~Q)
.

Using (11), in either case we will have,

µl( ~Q) =
clβlQ

α
l

ckβkQα
k

µk( ~Q)

=
clβlQ

α
l

λl

λk

ckβkQα
k

µk( ~Q)
λl

λk

≤ µk( ~Q)
λl

λk
(using (11))

< (1 + ǫ)Sλl, for all l.

Since(1 + ǫ)S~λ ∈ Ψ0, this implies that~µ( ~Q) cannot be the
longest vector inΨ0 that satisfies (8), which contradicts with
the definition of~µ( ~Q). Thus, the result of the lemma must
hold.

We can now prove Proposition 4.
Proof: (of Proposition 4) We first prove the stability of the

fluid model of the system, where the fluid model is defined as

follows [14], [19]. For any integert > 0, letEl(t) =
t−1∑
s=0

Al(s)

denote the total number of arrivals to linkl in time-slots0 to

t− 1. Let Tl(t) =
t−1∑
s=0

Dl(s) be the total amount of available

service to linkl in time-slots0 to t− 1. Further, letEl(0) =

Tl(0) = 0. Then the evolution of the queue length can be
written as

Ql(t) = Ql(0) + El(t) − Fl(t), (12)

whereFl(t) =
t∑

s=1
min{Ql(s−1)+El(s)−El(s−1), Tl(s)−

Tl(s−1)}. We interpolate the values ofEl(t), Tl(t), Ql(t) and
Fl(t) to all non-negative real numbert by linear interpolation
between⌊t⌋ and⌊t⌋+1 (where⌊t⌋ denotes the largest integer
no greater thant). Then, using the techniques of Theorem 4.1
of [19], we can show that, for almost all sample paths and for
any positive sequencexn → ∞, there exists a subsequence
xnj

with xnj
→ ∞ such that the following convergence holds

uniformly over compact intervals of timet:

1

xnj

El(xnj
t) → λlt for all l

1

xnj

Tl(xnj
t) → νl(t) for all l

1

xnj

Ql(xnj
t) → ql(t) for all l

1

xnj

Fl(xnj
t) → fl(t) for all l, (13)

whereνl(t), ql(t) andfl(t) are continuous functions. Further,
since the functionsTl(t), Ql(t) andFl(t) are Lipschitz con-
tinuous, so are the functionsνl(t), ql(t) and fl(t). Hence,
these limiting functions are differentiable for almost allt.
Let T denote the set of time instants where these limiting
functions are differentiable. Let~q(t) = [q1(t), q2(t), ...qL(t)],
~ν(t) = [ν1(t), ..., νL(t)], and ~f(t) = [f1(t), f2(t), ...fL(t)],
Using the techniques of Theorem 4.1 of [19] again, we can
show that the limiting functions must satisfy the followingset
of equations: for alll and for all t ∈ T ,

d

dt
ql(t) = λl −

d

dt
fl(t) (14)

d

dt
fl(t) =

d

dt
νl(t) if ql(t) > 0 (15)

d

dt
νl(t) ≥

1

S
µl(~q(t)) if ql(t) > 0. (16)

To see this, note that (14) follows from the queue-evolution
equation (12) by taking limits of the form in (13) asxnj

→ ∞.
To show (15), note that, ifql(t) > 0, then there exists a positive
δ such that for alls ∈ [t, t + δ], ql(s) > 0. This implies that
for all sufficiently largej, the backlogQl(⌊xnj

s⌋) at link l
is larger than its maximum capacitycl for all s ∈ [t, t + δ].
Therefore, the available service to linkl will be fully utilized
during the time interval[⌊xnj

t⌋, ⌊xnj
(t+ δ)⌋]. We thus have,

Fl(⌊xnj
s′⌋) − Fl(⌊xnj

s⌋) = Tl(⌊xnj
s′⌋) − Tl(⌊xnj

s⌋)

for all t ≤ s ≤ s′ ≤ t + δ. Dividing both sides byxnj
, and

taking limits asxnj
→ ∞, we have

fl(s
′) − fl(s) = νl(s

′) − νl(s)

for all t ≤ s ≤ s′ ≤ t+δ. Equation (15) then follows. Finally,
(16) follows from the conditionE[Dl(t)| ~Q(t)] ≥ µl( ~Q(t))/S.
To see this, fix a linkl such thatql(t) > 0. Note that~q(t) is
Lipschitz-continuous with respect tot, andµl(~q) is continuous
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with respect to~q when ql > 0. Hence, for anyǫ > 0, there
exists aδ > 0 such that for alls ∈ [t, t+ δ],

µl(~q(s)) ≥ µl(~q(t)) − ǫ.

Further, since~Q(⌊xnj
s⌋) → ~q(s) uniformly over compact

intervals of time, andµ( ~Q) = µ(a~Q) for any a > 0, there
exists an integerJ > 0 such that for allj > J ands ∈ [t, t+δ],

µl( ~Q(⌊xnj
s⌋)) ≥ µl(~q(t)) − 2ǫ. (17)

By the definition of the limits in (13), for anys ∈ [t, t+ δ],

νl(s) − νl(t) = lim
j→∞

1

xnj

⌊xnj
s⌋∑

k=⌊xnj
t⌋

Dl(k). (18)

Define the filtration Fk, k = 1, 2, ..., where Fk is the
σ-algebra generated by the random variablesEl(⌊xnj

t⌋ +
k′), Tl(⌊xnj

t⌋ + k′) and Ql(⌊xnj
t⌋ + k′) for all l and for

k′ = 1, 2, ..., k. Let

Xk = Dl(⌊xnj
t⌋ + k) − E[Dl(⌊xnj

t⌋ + k)| ~Q(⌊xnj
t⌋ + k)]

and letYk =
∑k

h=1Xh. ThenYk, k = 1, 2, ... is a martingale
with respect to the filtrationFk, k = 1, 2, ... [32, p228].
Further,E[X2

k ] is bounded byc2l for all k. Hence, using a
strong law of large numbers for martingales [33], we have

lim
k→∞

Yk

k
= 0.

Substituting into (18), we have

νl(s) − νl(t) = lim
j→∞

1

xnj

⌊xnj
s⌋∑

k=⌊xnj
t⌋

Dl(k)

= lim
j→∞

1

xnj

⌊xnj
s⌋∑

k=⌊xnj
t⌋

E[Dl(k)| ~Q(k)].

By (17) and the condition thatE[Dl(t)| ~Q(t)] ≥ µl( ~Q(t))/S,
each term ofE[Dl(k)| ~Q(k)] is no smaller thanµl(~q(t)) − 2ǫ
for j > J and fork between⌊xnj

t⌋ and⌊xnj
s⌋. Hence,

νl(s) − νl(t) ≥
s− t

S
[µl(~q(t)) − 2ǫ]

for s ∈ [t, t+ δ]. Since we assume thatνl(t) is differentiable
at t (i.e., t ∈ T ), we have

d

dt
νl(t) ≥

1

S
[µl(~q(t)) − 2ǫ].

Finally, since this is true for allǫ > 0, Equation (16) then
follows.

Any such limit [~q(t), ~ν(t), ~f(t)] is called afluid limit of the
system. We say that a fluid limit model of the system is stable
if there exists a constantT that depends only on the network
topology, the arrival ratesλl and the active link capacities
cl, such that forany fluid limit with ||~q(0)|| = 1, we have
||~q(t)|| = 0 for all t ≥ T [19].

We next use the Lyapunov function (10) on the fluid model.
For all t ∈ T where the functions~q(t), ~ν(t) and ~f(t) are
differentiable, we have [34, p28],

D+V (~q(t))

dt+
≤ max

l∈R(t)

d

dt
ql(t)

(
clβl

λl

)1/α

,

where for any function f(t), D+

dt+ f(t) is defined as
lim supu↓0

f(t+u)−f(t)
u , and

R(t) =

{
k|qk(t)

(
ckβk

λk

)1/α

= max
l
ql(t)

(
clβl

λl

)1/α
}
.

If ~q(t) 6= 0, then by Lemma 5,l ∈ R(t) implies µl(~q(t)) ≥
(1 + ǫ)Sλl. Further,ql(t) > 0 for l ∈ R(t). Hence, using
(14)-(16), we have,

d

dt
ql(t) = λl −

d

dt
νl(t) ≤ −ǫλl, for all l ∈ R(t),

and thus,

D+V (~q(t))

dt+
≤ −ǫmin

l
λl

(
clβl

λl

)1/α

, if ~q(t) 6= 0.

Since the above property holds for almost allt, we can then
conclude that the fluid limit model of the system is stable. By
Theorem 4.2 of [19], the original system is positive Harris
recurrent. Note that positive Harris recurrence implies that
the stochastic process~Q(t), t ≥ 0 has a unique stationary
distribution Π. Further, for every measurable functionf( ~Q)
with Π(|f |) < ∞, the following ergodic property holds [19,
Section 3]

lim
T→∞

1

T

T∑

t=1

f( ~Q(t)) = Π(f) almost surely.

Taking f( ~Q(t)) = 1
{

LP
l=1

Ql(t)>η}
, and noting that

Π



1
{

LP
l=1

Ql(t)>η}



 → 0 as η → ∞ (since Π is a

finite measure), Equation (2) thus holds.
Combining with (9), we obtain the following immediate

result:
Corollary 6: The policyGP can stabilize the network as

long as the offered load vector~λ lies strictly inside( 1
3−

1
M )Ψ0,

i.e., as long as there exists a positive constantǫ such that

(1 + ǫ)~λ ∈

(
1

3
−

1

M

)
Ψ0.

Remarks:Since the optimal capacity regionΩ of the system
is a subset ofΨ0, we conclude that the efficiency ratio of
Policy GP is at least 1

3 − 1
M . For any givenǫ > 0, we

can choose the maximum backoff timeM = 1/ǫ, which then
ensures that the efficiency ratio of PolicyGP is no less than
1/3− ǫ. The parameterǫ can be viewed as anapproximation
ratio as to how close one want to approach1/3. Given ǫ,
the value ofM is independent of the network topology. As
we discussed earlier, one can design distributed algorithms for
information exchange such that the amount of time required
for all links to learn the queue-length information of their
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one-hop neighbors can be bounded by a function of the
maximum node-degree of the network. Hence, given a fixed
approximation ratioǫ and a bounded maximum node-degree,
Policy GP only takes constant time and can guarantee an
efficiency ratio close to1/3 for arbitrary network topologies.

B. An Alternate Lyapunov Function for the Case Whenα = 1
and βl = 1/cl

For the case whenα = 1 andβl = 1/cl, PolicyGP reduces
to PolicyP in our prior work [1]. There, an alternate Lyapunov
function was used to establish the efficiency ratio of Policy
P . This alternate Lyapunov function does not depend on the
arrival ratesλl, and hence could be of independent interest
[35], [36]. Due to space constraints, we omit the details here.
Interested readers can refer to [1].

IV. A C ONSTANT-TIME DISTRIBUTED SCHEDULING

POLICY FOR THE TWO-HOP INTERFERENCEMODEL

We next extend the constant-time distributed policy in the
previous section to the two-hop interference model. Under the
two-hop interference model, the known distributed scheduling
policies, i.e., the Maximal Scheduling Policy [9]–[12] andthe
distributed implementation of the Greedy Scheduling Policy
[28], can both guarantee a worst-case efficiency ratio of
1/N̂1, where N̂1 , maxl |N

1(l)| is the maximum number
of one-hop neighboring links for any link. However, they are
again not constant-time policies. We now propose a constant-
time distributed scheduling policyGQ that can guarantee a
comparable worst-case efficiency ratio. (We note however that
the worst-case efficiency ratio of Maximal Scheduling and
Greedy Scheduling can be tightened to1/Ñ1, whereÑ1 is
the maximum number of two-hop neighbors of each link that
do not interfere with each other [9]–[11]. The value ofÑ1 can
be smaller thanN̂1 for certain types of network topologies,
e.g., with geometric graphs [9]. Thus, the efficiency ratiosof
Maximal Scheduling and Greedy Scheduling will be better
than that of PolicyGQ for those types of network topologies.)

LetW be a positive number between1 andN̂1. We will see
soon that the parameterW puts an upper bound on the sum
of the attempt probabilities in any two-hop neighborhood.

Constant-Time Distributed Scheduling PolicyGQ:
At each time slott:
• Each linkl computes a probabilitypl(t) based on its own

queue-length and that of the interfering links as follows:
pl(t) = 0 if Ql(t) = 0. Otherwise,

pl(t) =
βlQ

α
l (t)

max
k∈N1(l)

∑
h∈N1(k)

βhQα
h(t)

×min



1,
W

max
k∈N2(l)

|N1(k)|



 ,

whereα is a system-wide positive constant, andβl is a
positive constant for each linkl.

• Each link l attempts transmission with probabilitypl(t),
and does not attempt transmission with probability1 −
pl(t). For those links that attempt transmission, each of

them randomly chooses a backoff time uniformly from
{0, 1, ...,M −1}. We assume that all backoff timers start
at the beginning of the time slot. When the backoff timer
of a link l expires, the transmitter nodeb(l) of link l
will broadcast an RTS to all of its one-hop neighboring
nodes, provided that nodeb(l) has not overheard any RTS
from these one-hop neighboring nodes. Once the receiver
nodee(l) correctly receives the RTS, it will then respond
with a CTS broadcasted to all of its neighboring nodes.1

Through this RTS-CTS procedure, the linkl that sends
out an RTS before any of its two-hop neighboring links
will win. This link l can then transfer packets at the rate
of cl during the rest of the time slot. It is possible that
two or more links in a two-hop neighborhood send out
RTS together, in which case collision occurs and none of
the interfering links can transfer data in time-slott.

We can use similar techniques as in Section III to show that
policy GQ guarantees an efficiency ratio close to1/(N̂1 +1).
To see this, note that under the two-hop interference model,
the optimal capacity regionΩ is upper bounded byΨ′

0 in (6).
As in Section III, letd0

l (
~Q) denote the expected amount of

available service at linkl if there was no collision,condi-
tioned on the queue-length vector being~Q. Let ~d0( ~Q(t)) =
[d0

1(
~Q(t)), ..., d0

L( ~Q(t))]. Using the technique of Lemma 1, we
have

~d0( ~Q(t)) �
W

N̂1
~µ( ~Q(t)),

where~µ( ~Q(t)) is the longest vector inΨ′
0 such that (8) holds.

Further, for each linkl, the sum of the attempt probabilities
of its interfering links (i.e., its two-hop neighboring links)
satisfies the following relationship: for allk ∈ N1(l),

∑

h∈N1(k)

ph ≤
∑

h∈N1(k)

βhQ
α
h(t)

max
m∈N1(h)

∑
n∈N1(m)

βnQα
n(t)

×min



1,
W

max
m∈N2(h)

|N1(m)|





≤
∑

h∈N1(k)

βhQ
α
h(t)∑

n∈N1(k)

βnQα
n(t)

W

|N1(l)|

(becausel ∈ N2(h) andk ∈ N1(h))

≤
W

|N1(l)|
.

We thus have,

∑

k∈N2(l)

pk ≤
∑

k∈N1(l)

∑

h∈N1(k)

ph ≤
∑

k∈N1(l)

W

|N1(l)|
= W.

Therefore, using Lemma 2 withH = W , and using the
technique of Proposition 4, we can show the following main
result.

Proposition 7: Under Policy GQ, the network is stable
when~λ lies strictly inside the setWcN1

( 1
1+W − 1

M )Ψ′
0.

1We assume that the time required for this RTS-CTS procedure is less than
one unit of backoff time.
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Remark: For any fixedW , by choosingM ≥ 1
(1+W )(2+W ) ,

the efficiency ratio of PolicyGQ is at least W

(2+W ) cN1
. For each

W , the value ofM is independent of the network topology.
Hence, once each link learns the queue-length information
within its two-hop neighborhood,GQ only requires a constant
time to compute a new schedule. Further, forW = N̂1, the
guaranteed efficiency ratio becomes1

1+ cN1
− 1

M . By letting

M → ∞, the guaranteed efficiency ratio goes to1
1+ cN1

. The

difference 1
M can be viewed as an approximation ratio as to

how close one wants to approach1

1+ cN1
.

Similar to the discussions in Section III, assuming that the
number of two-hop neighbors of each link is at most̂N2, and
that transmitting one piece of queue-length information takes
constant time, we can then design a distributed algorithms for
information exchange such that the amount of time required
to exchange the queue-length information can be bounded by
O[(N̂2)2 + 1]. The quantityN̂2 can again be written as a
function of the maximum node-degree if the degree of the
nodes in the network is bounded. Therefore, given a fixed
approximation ratio and a bounded maximum node-degree, the
total time required for PolicyGQ to compute a new schedule
can be made independent of the size of the network.

V. CONSTANT-TIME SCHEDULING POLICIES FOR

MULTI -HOP NETWORKS AND SUBJECT TOFEEDBACK

DELAYS

In this section, we extend the constant-time scheduling
policies of the previous sections to multi-hop networks, and
also address the overhead of communicating the queue lengths.
We will focus on the node-exclusive interference model (and
Policy GP ), while the same methodology can be applied to
the two-hop interference model (and PolicyGQ) as well.

A. Constant-Time Scheduling Policy for Multihop Wireless
Networks

In Section II, we have assumed a single-hop traffic model,
i.e., each packet only needs to traverse one of theL links and
then leaves the system. We next extend policyGP to multi-
hop networks with fixed routing. Assume that there areS end-
users in the system. Each users injects packets at the rate ofxs

packets per time-slot. Assume that each user has a fixed path
through the network, and let[H l

s] denote the routing matrix,
whereH l

s = 1 if the path of users traverse linkl, andH l
s = 0

otherwise. Thus, the aggregate data rate on linkl, denoted by

λl, is given byλl =
S∑

s=1
H l

sxs. Redefine the capacity region

of the network under a particular scheduling policy to be the
set of~x = [x1, ..., xS ] such that the system can remain stable.
Then the optimal capacity regionΩM is upper bounded by,

ΩM ⊂

{
~x

∣∣∣∣∣

[
S∑

s=1

H l
sxs

]
∈ Ψ0

}
,

whereΨ0 is given in (5). If we assume that the “queues” are
updated by

Ql(t+ 1) =

[
Ql(t) +

S∑

s=1

H l
sxs −Dl(t)

]+

, (19)

then we can show as in Section III that the system is stable
under PolicyGP , i.e.,Ql(t) satisfies (2), as long as

[
S∑

s=1

H l
sxs

]
∈ (

1

3
−

1

M
)Ψ0.

Thus, we have shown that, under PolicyGP , the capacity
region of the system is at least( 1

3 −
1
M ) fraction of the optimal

capacity regionΩM . In other words, the efficiency ratio of
Policy GP remains the same for multi-hop networks.

In the above argument, we have assumed in (19) that the
“queues” are updated as if the data rate from each end-user
s is applied instantaneously at all linksl along the path
of user s. In practice, the packets from each source have
to traverse the path link-by-link. Hence, the equation (19)
does not describe the dynamics of thereal queue. The re-
moval of this “user-rates-applied-simultaneously-to-all-links”
assumption could invalidate our earlier argument for stability.
In fact, examples have been created in prior works for wireline
networks [20], [37], [38], where a queueing network appears
to be stable under this “user-rates-applied-simultaneously-to-
all-links” assumption, but is actually unstable when packets
traverse the network link-by-link.

There are a number of approaches from the literature to
address the above issue [11], [37]–[40]. One approach is
to use the idea of aregulator at each link, which limits
the burstiness of the traffic from upstream nodes [11], [39],
[40], The other approach is to assign appropriate priorities to
packets in the queue when they are served [11], [38], [40],
[41]. Both approaches may be applied to PolicyGP so that
it retains the same efficiency ratio for multi-hop networks.

B. Overhead of Updating the Queue-lengths

PolicyGP requires each linkl to learn the queue-length of
neighboring links in order to compute the attempt probability
pl(t). We have discussed in Section III how one can design
a distributed algorithm for exchanging the queue-length infor-
mation among neighboring links such that the time needed
for information exchange is bounded by a function of the
maximum node-degree. Alternatively, it is well known that
even if this type of scheduling policies act upondelayed
queue-length information, as long as the delay is bounded,
the efficiency ratio will still remain the same (see, e.g.,
[5]). In fact, we can show that, as long as in every time-
slot each link exchanges its queue-length information witha
success-probability that is bounded from below by a positive
constant (which implies that the expected delay of queue-
length information is bounded), then under the fluid-limit
scaling (13), the fluid-limit model (14-16) will remain the
same. (Details are omitted due to space constraints.) Hence,
PolicyGP will retain the same efficiency ratio. In Section VI,
we will use simulation to study the performance of PolicyGP
when the queue length information is exchanged infrequently.

VI. SIMULATION RESULTS

We have simulated the proposed scheduling policies using
the network topology in Fig. 1. There are 16 nodes (repre-
sented by circles), and 24 links (represented by dashed lines).
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Fig. 1. Network topology
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Fig. 2. Performance comparison of PolicyGP under the node-exclusive
interference model. We have usedα = 1 andβl = 1/cl for all links l.

The capacity is labeled next to each link. The flows are
represented by arrows. We simulate single-hop flows, and we
let the rate of each flow beλ. Note that although the rates of
the flows are the same, the link capacities and the flows have
been chosen to avoid uniform patterns.

We first simulate PolicyGP (for the node-exclusive interfer-
ence model) under the setting that each link learns the current
queue-length information of its one-hop neighbors in every
time-slot. We first chooseα = 1 andβl = 1/cl for all links
l. This is equivalent to PolicyP in [1]. In Fig. 2, we plot
the mean total queue backlog summed over all links of the
network, as the offered loadλ increases. Whenλ approaches
a certain limit, the average total backlog will increase to
infinity. This limit can then be viewed as the boundary of
the capacity region. We have plotted the curves for Policy
GP with maximum backoff windowsM = 1,M = 10,
and M = 20. We can see that the performance of the
scheduling policy is much worse whenM = 1. Hence the
random backoff procedure in the second step of the policy is
essential. However, onceM is above a reasonable number, the
performance will be virtually the same (as we can see forM =
10 andM = 20). We have also plotted the performance of
the Maximal Matching (MM) policy and the Greedy Maximal
Matching (GMM) policy. Although the efficiency ratio that
can be guaranteed in Proposition 4 for policyGP is slightly
worse than that of MM, the simulation results indicate that
their actual performance is roughly the same.

We next simulate policyGP with other values ofα. In
Fig. 3, we plot the curves for PolicyGP with α = 1, α = 2
andα = 10. Other parameters are chosen as follows for all
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Fig. 3. Performance comparison of PolicyGP under the node-exclusive
interference model as the value ofα varies. We have usedM = 10 and
βl = 1/cl for all links l.

simulations:βl = 1/cl and M = 10. We observe that the
performance of policyGP is relatively invariant to the choice
of α, which is not surprising given the fact that with anyα
the policy can be shown to achieve the same efficiency ratio.

We also investigate the performance of PolicyGP when
queue-length information is exchanged less frequently (i.e.,
not in every time-slot). We use the following procedure to
update the queue-length information. At the beginning of
each time slot, we reserve a small mini-slot for queue-length
updates. During this mini-slot, each nodei will broadcast
with probability ǫ the current length of its out-going queues,
along with the most-recent queue-length information of its
incoming queues that it has received from its neighbors. At
each of its neighboring nodes, if this broadcast message does
not collide with the broadcast messages from other links, the
neighboring node is considered to correctly receive the queue-
length updates. Then, when each linkl computes the attempt
probability pl (we assume that this computation is carried
out at its transmitter), its transmitter will use thecurrent
queue-length of its own out-going links, and the most-recently
received queue-length information of its neighboring links.
This procedure ensures that the probability with which each
link l can update the current queue-length information from
its neighboring linkk is bounded from below by a positive
constant (which is a function ofǫ). Hence, the expected delay
of queue-length update is bounded. As discussed in Section V-
B, the efficiency ratio of PolicyGP will remain the same.

We have simulated the performance of PolicyGP using
the above procedure for exchanging queue length. In Fig. 4,
we plot the simulation results for the case when there is no
feedback delay (i.e., assuming that each link knows the current
queue-length information of all links in the network), and for
the case whenǫ = 0.1 and ǫ = 0.4, respectively. We observe
that the performance of PolicyGP is quite insensitive to the
choice ofǫ. This indicates that our algorithm is robust to the
delay in exchanging queue length information.

Finally, we simulate policyGQ for the two-hop interference
model, under the setting that each link learns the current
queue-length information of its neighboring links in every
time-slot. We plot the results in Fig. 5 forα = 1 and βl =
1/cl. Again, we observe that the performance of policyGQ
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Fig. 4. The performance of PolicyGP subject to feedback delays. We have
usedα = 1 andβl = 1/cl for all links, andM = 20.
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Fig. 5. Performance comparison under the two-hop interference model.

changes little when the maximum backoff window changes
from M = 10 to M = 20. Further, the performance is also
comparable to the maximal scheduling policy.

VII. C ONCLUSION

In this paper, we have proposed a class of new distributed
scheduling policies for ad hoc wireless networks. The unique
feature of these new distributed scheduling policies is that they
are constant-time policies, i.e., given a fixed approximation
ratio and a bounded maximum node-degree of the network, the
time needed for computing a new schedule is independent of
the network size. Hence, they can be easily deployed in large
networks. We have shown that these constant-time scheduling
policies can guarantee efficiency ratios comparable to some
other known distributed scheduling policies in the literature
that are not constant-time.

We believe that these results offer new insights for the
design of simple and efficient scheduling policies for ad hoc
networks. For future work, we plan to generalize the main
techniques and results to other types of interference models,
e.g., the bi-directional equal-power model in [9]. We also note
that PolicyGQ for the two-hop interference model operates
in a manner very similar to IEEE 802.11 DCF (Distributed
Coordination Function). The main difference is: when there
is excessive contention, IEEE 802.11 DCF will increase the
backoff window exponentially; however, PolicyGQ will re-
duce the attempt probability, and keep the backoff window

unchanged. It will be an interested direction for future work
to explore the performance difference of these two approaches.

We can observe in both Fig. 2 and Fig. 5 that there is still
a substantial performance gap when we compare PolicyGP
(andGQ, respectively) with the Greedy Maximal Matching
policy (and the Greedy Maximal Scheduling policy, respec-
tively). Note that the Greedy Maximal Matching policy and the
Greedy Maximal Scheduling policy can both be implemented
in a distributed fashion, although not in constant time. This
opens the question as to whether one can develop simple,
distributed, and constant-time scheduling policies that achieve
even better performance than PoliciesGP andGQ. In fact,
for the special case whenα = 1 and βl = 1/cl, the
more recent work in [35], [36] proposed a refined version
of Policy GP that can guarantee an efficiency ratio close to
1/2, and that empirically approximates the performance of
Greedy Maximal Matching when the backoff window size
is very large. However, it is not obvious how the idea of
[35], [36] can be applied to the general class of PoliciesGP
andGQ. In another paper [42], based on the idea of graph
partitioning, the authors propose a class of scheduling policies
that can achieve arbitrarily close to the optimal throughput
with computation-time that also does not increase with the size
of the network. (A different partitioning approach is proposed
in [43], which may also be used to construct constant-time
scheduling policies.) Compared with the policies in [42], [43],
the policies that we study in this paper are much simpler,
although with lower performance guarantees. In [44], the
authors propose a distributed randomized algorithm for the
node-exclusive interference model that achieves a similargoal
as that of [42]. Thus, the scheduling policies in [35], [36],
[42]–[44] and in this paper offer different tradeoffs in terms of
the provable efficiency ratios, simplicity and overhead of oper-
ation, flexibility of tuning policy parameters, and applicability
to a variety of network scenarios. It remains an interesting
open problem whether one can develop scheduling policies
that combine the benefits of all of them.
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