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Constant-Time Distributed Scheduling Policies for
Ad Hoc Wireless Networks
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Abstract—We propose a new class of distributed scheduling anyX that can be supported by the throughput-optimal policy,
policies for ad hoc wireless networks that can achieve provable this policy can supportyA. In other words, the scheduling
capacity regions. Previously known scheduling policies that ,jicy with efficiency ratioy can achieve at least fraction
guarantee comparable capacity regions are either centralized . . . .
or require computation time that increases with the size of of the opt|ma.1I qapacny reg|on.. Relate.dlworks have studied a
the network. In contrast, the unique feature of the proposed numbel‘ Of d|Str|bUted SChedu“ng pO|ICIeS tha.t are ShOWﬂ to
distributed scheduling policies is that they are constant-time achieve provable efficiency ratios. For example, by extandi
policies, i.e., given a fixed approximation ratio and a bounded the result from the switching literature [13]-[15], the laaits
maximum node-degree of the network, the time needed for o 131 haye shown that the maximal matching policy can
computing a new schedule is independent of the network size. ) - .

Hence, they can be easily deployed in large networks. ach|ev_e an efficiency ratio of no Ie_ss_ thif2 un_der the node-_
exclusive interference model. Similar maximal scheduling
policies are also studied under the bidirectional-equalgr
model and the two-hop interference model [9]-[12], where
different bounds on the efficiency ratio are derived. Finall
I. INTRODUCTION there also exists a class of randomized “pick-and-compare”

In this paper, we study the link scheduling problem iRolicies, which could be implemented in a distributed fashi
ad hoc wireless networks. In wireless networks, the rad@nd could achieve an efficiency ratio bf16], [17].
transmissions at different links can interfere with eadneat ~ The problem with these existing distributed scheduling-pol
Hence, in order to achieve the optimal capacity, it is ugualfies, however, is that the time needed to compute a schedule
more efficient to only use a subset of the radio links at eaéhill increases with the size of the network. For exampleg on
time [2]. Determining which subset of links should be activef the best known distributed algorithms in graph theory can
at each time becomes the link scheduling problem, which g@mpute maximal matching on a graph d@log L) rounds,
mainly at the MAC layer in the OSI reference model. whereL is the total number of links in the graph [18]. Hence,

Good scheduling policies are those that can achieve lai§fe computation time increases as the size of the network
capacity regions and can be easily computed. Considedi@ws.
wireless network withZ links, and let)\; be the data rate In this paper, we propose a new class of distributed schedul-
offered to link[. Let X = [A1,...,AL]. The capacity region ing policies. A unique feature of these new policies is that,
under a particular scheduling policy is the set of data-ratéder appropriate assumptions, the time needed to compute a
vectors) that the scheduling policy can support while keepingchedule can be made independent of the size of the network.
the queues at all links finite. A scheduling policy is said tblence, they are more scalable and easier to implement ie larg
be throughput-optimalif it can achieve the largest possiblenetworks. We provide such distributed scheduling policies
capacity region. Known throughput-optimal policies requi for two types of interference models, i.e., the node-exetus
solving a global optimization problem at each time [3]-[6]interference model and the two-hop interference model. Our
Such scheduling policies are inappropriate for ad hoc nedsvo policies require each link to learn the queue lengths of its
because the distributive nature of these networks requi@e-hop neighboring links (in the case of the node-exctusiv
simple and decentralized scheduling solutions. Receatly,interference model) or that of its two-hop neighboring $ink
number of distributed scheduling policies have been pregog(in the case of the two-hop interference model). Once they
in the literature [7]-[12]. Since the capacity region under learn the queue-length information from neighboring links
distributed policy is typically smaller than the optimaleonboth cases our proposed policies only requree round of
achieved by the throughput-optimal policy, we define thHé@e computation of average lengff/2 to compute a new
efficiency ratioof such a sub-optimal scheduling policy as th&chedule, wheré/ is a parameter related to approximation
largest numbery such that, given any network topology, forratio that determines how close one wants to approach the

maximum possible efficiency ratio of this class of algoritim
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given a fixed approximation ratio and a bounded maximuat link [. Under the two-hop interference model, we assume
node-degree, the total time for our proposed policies to-comiat all one-hop neighboring nodes of noilean sense the
pute a new schedule can be made independent of the size oftthasmission from nodé
network. For this reason, we refer to the policies proposed i Remark: The node-exclusive interference model can be
the paper agonstant-timescheduling policies. We will show viewed as a generalization of the bipartite graph model for
that our proposed scheduling policies can achieve comfgaraimodeling high-speed packet switches [13]-[15]. It has been
efficiency ratios as some of the non-constant-time poligies used in [8], [21]-[23] to model wireless networks. While this
the literature. is a somewhat simplified model, the main results can often
We believe that the results in the paper offer new insighte readily generalized to other more complex interference
for the design of simple and efficient scheduling policiesiodels, e.g., the two-hop interference model. Note alsb tha
for ad hoc networks. The rest of the paper is organized tie latter model is very close to the interference model that
follows. In Section I, we outline the network model andEEE 802.11 DCF (Distributed Coordination Function) deals
review related results. In Sections llI-IV, we will proposewith [9], [12].
the constant-time distributed scheduling policies for rbee- At time slot¢, let M(¢) denote the outcome of the schedul-
exclusive interference model and the two-hop interferenggg policy, which is defined as the set of non-interferingdn
model, respectively, and derive their efficiency ratios. Wat are chosen to be active at timelLet D;(¢) denote the
discuss implementation issues in Section V, and present sinumber of packets that link can serve at time slat Then
ulation results in Section VI. Then we conclude. Di(t) = ¢ if 1 € M(t), and D;(t) = 0 otherwise. LetQ);(t)
denote the number of packets queued at liak the beginning
Il THE SYSTEM MODEL of time slott¢, then the evolution of);(¢) is governed by
Consider a wireless network witN nodes and. directed Qut+1) = [Qut) + Au(t) — Du(t)]", (1)
Iinks.. Each link corresponds to a pair of transmittc_ar node aRyhere[]* denote the projection tf), +oo).
receiver node. Leb(l) ande(l) denote the transmitter node \ye say that the system &ableif the queue lengths at all
and the receiver node, respectively, of lihkTwo nodes are | ks remain finite [4], i.e.
one-hop neighbors of each other if they are the end-points

of a common link. For each nodg¢ let E(i) denote the . lil . 0. almost surelv as —
set of links that connect to the one-hop neighbors of noders T — (35 Qu&)>n} ’ y as = oo
i, i.e., E(i) is the set of links that node either acts as a = @)

transmitter or as a receiver. Two links asee-hopneighbors | o A be the mean packet arrival rate at linki.e., \, —
of each other if they share a common node. Two links 84, (1)]. Let X = [A1,...\z]. As we defined in the Introduc-

two-hopneighbors of each other if they have a common ongg, the capacity regionunder a particular scheduling policy

hop neighboring link. For each link let N,l(l) denote the g the set ofk such that the system remains stable. The optimal
set of one-hop neighbors of link(including link [ itself), i.e., capacity region(2 is the union of the capacity regions of

N'(1) = BE(b(1)) U E(e(l)). Further, letN?(I) denote the set 5" scheduling policies. A scheduling policy Bsroughput-
of two-hop neighbors of link, i.e., N*(1) = Uyeniy N' (k). optimal if it can achieve the optimal capacity regiéh The
We first assume a single-hop traffic model, i.e., each packficiency ratioof a (possibly sub-optimal) scheduling policy
only needs to traverse one of theh.nks and thenlleave.the is the largest numbey such that the scheduling policy can
system. (We will discuss the extension to the multi-hop @asegtgpjize the system under any loads 79. By definition, a

Section V.) We assume that time is divided into slots of l?”fﬁroughput-optimal scheduling policy has an efficiencyorat
length. Let A;(t) denote the number of packets that arrivgs |

at link [ at time slott. We assume that packets are of unit
length. Throughout the paper, we assume that the packeslarri
processesd;(t),l = 1,2, ..., L, are independent across links™ Related Results
andi.i.d. in time, although the results of the paper could also 1) Scheduling Policies for the Node-Exclusive Interfeeenc
be extended to more general arrival processes [19], [20]. Model: One of the known throughput-optimal scheduling
We will study two types of interference models that goverpolices under the node-exclusive interference model cosspu
the radio transmission. In both models, we say that twibe setM(t) of non-interfering links at time-slot such that
links interfere with each other if they cannot transmit datd(t) maximizes the sum of the queue-weighted-rates
together. Under thenode-exclusive interference modehch
link [ interferes with all of its one-hop neighboring links. > Qa ©)
Under thetwo-hop interference modeéach link! interferes
with all of its two-hop neighboring links. In both models, ifThis scheduling policy is a direct application of the more
the above interference constraints are satisfied, an diotkvé general result in [3]-[6]. The resulted schedule corredgon
can transfer; packets within the time slot. We further assuma Maximum-Weighted-Matching (MWM) of the underlying
that the system has carrier-sensing capabilities. Inqdati, graph, where the weight of each link @;(¢)c;. (Note that
under the one-hop interference model, we assume that all thenatchingis a subset of the links such that no two links
one-hop neighboring links of linkcan sense the transmissiorshare the same node. Theight of a matching is the total

leM(t)
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weight over all links belonging to the matching.mdaximum- be defined analogously to the GMM and MM policies, re-
weighted-matching (MWMjs the matching with the maxi- spectively, under the node-exclusive interference motieé
mum weight.) AnO(N3)-complexity centralized algorithm for efficiency ratio of these policies can be shown to Iyev?,
MWM can be found in [24], wheréV is the number of nodes. where N1 £ max; IN'(1)] is the maximum number of one-
On the other hand, the following much simpler algorithm cafop neighboring links of any link [12]. This efficiency ratio
be used to compute a suboptimal schedule that correspoggf be tightened m,/]{fl, whereN! is the maximum number
to a Greedy Maximal Matching (GMM) [8], [15], [25], of two-hop neighbors of each link that do not interfere with
[26]: Start from an empty schedule; From all possible linksach other [9]-[11]. Neither of the two policies are constan
pick the link with the largest weigh®);(t)c;; Add this link to  time scheduling policies.
the schedule; Remove all links that are incident with either
the transmitter node or the receiver node of lik Pick
the link with the largest weigh®;(t)c¢; from the remaining
links, and add to the schedule; Continue until there are no
links left. The above centralized GMM algorithm has only
O(Llog L)-complexity (whereL is the number of links), and  None of the distributed scheduling policies in Section II-A
is much easier to implement than MWM. Using the technigugan compute a schedule in constant time (i.e., in a time ¢hat i
in Theorem 10 of [15], we can show that the GMM policyndependent of the network size). In this section, we prepos
achieves an efficiency ratio no less thif2. There also exist a new distributed scheduling policy for the node-exclusive
distributed algorithms that can compute the GMM schedule jiterference model that only needi1) time to compute a
O(L) rounds [27]. new schedule, and we will show that it achieves an efficiency
The optimal capacity regiof2 under the node-exclusiveratio at least close td/3. The new policy operates as follows:
interference model is known to be bounded by [21]: Constant-Time Distributed Scheduling Policy GP:
At each time slot:

IIl. A CONSTANT-TIME DISTRIBUTED SCHEDULING
PoLicY FOR THE NODE-EXCLUSIVE INTERFERENCE
MODEL

2
5% <R C Wy, “) « Each linkl computes a probability; () based on its own
where gueue-length and that of its one-hop neighboring links as
follows: p;(t) = 0 if Q,(t) = 0. Otherwise,
o =X > N <1, for all nodesi } . (5) () = BIQ7 ()
1en() ¢ max[ > BeQ(t), X BQR@)]
keE(b(1)) kEE(e(1))

The following Maximal-Matching (MM) policy can be
shown to achieve a capacity region ®f /2, and thus also
has an efficiency ratio of at least/2 [8]. The MM policy

simple picks a sef\(t) of non-interfering links such that no

more links can be added td1(¢) without violating the node-

exclusive interference constraint. To be precise, a Makima
Matching M(t) is a set of non-interfering links such that:

(@) Qi(t) > ¢ for all I € M, and (b) for each link in the
network, eitheiQ;(t) < ¢; or some links inE(b(1))UE(e(l)) is

included in M. The distributed algorithm in [18] can compute

a maximal matching irO(log L) rounds, wheré. is the total

)
where« is a system-wide positive constant, afdis a
positive constant for each link
Each link! attempts transmission with probabilipy(t),
and does not attempt transmission with probability-
pi(t). For those links that attempt transmission, each of
them randomly and independently chooses a backoff time
uniformly from {0, 1, ..., M — 1}, whereM is a system-
wide positive integer constant. We assume that all backoff
timers start at the beginning of the time slot. When a
link's backoff timer expires, the transmission at the link

number of links in the network. starts, provided that it has not overheard (i.e., through
There also exists a class of randomized “pick-and-compare” carrier-sensing) any other transmission from its one-hop

scheduling policies, which can be shown to be throughput- neighboring links. Hence, the linkwhose backoff timer

optimal and could be implemented in a distributed fashion expires ahead of all of its interfering links will win, and

[16], [17]. Their complexity is known to be at leaéX(L). will be able to successfully transfer packets in the time-
2) Scheduling Policies for the Two-Hop Interference Model: ~ slot. It is possible that two or more links’ backoff timers

Under the two-hop interference model, the optimal capacity expire at the same time, in which case collision occurs

region§ is bounded by C ¥, where and none of the interfering links can transfer packets in

time-slott.

- X Z Ao 1, forall 1} ©) Note t_hat the constant-time distributed sche_duling pailicy
& our earlier work [1] corresponds to the special case- 1
kEN1() ; o
andf; = 1/¢;. In this paper, we allows; to take any positive
The policy that maximizes (3) among all s&t(¢) of non- value. This wider choice of; is motivated by the idea of
interfering links is still throughput-optimal. However,nfl- providing preferential service to a subset of links. One ldou
ing such a setM(t) is generally an NP-Complete problemexpect that a link with a larger value &f will have a better
[28], [29]. Greedy Maximal Scheduling policy and Maximakhance of being picked for transmission, and hence its bgckl
Scheduling policy under the two-hop interference model cavill be smaller. The result of this paper shows that such wide
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choice of 5; will not degrade the overall capacity region ofach link broadcast its queue-length within the mini-sheitt

the system. corresponds to its color. Since the links with the same caler
We make the following remarks before we derive that least three-hop apart, their neighbors will be able teivec
efficiency ratio of PolicyGP. the broadcast information without collision. This meclsami

Random Backoff: Note that the random backoff procedurellows all links to broadcast their queue-length to all ofith
in the second step of the policy is typical in random accessspective one-hop neighbors in at maat!)2 + 1 mini-slots.
protocols (e.g., IEEE 802.11 and Ethernet) to reduce exeesINote that the graph coloring and the mini-slot assignmeht on
contention. In practical implementations, the actual béfick need to be computed once at the beginning of the system
time depends both on the constavit and on how long each operation, and they are independent of the traffic load. The
unit of backoff time lasts. In practice, due to propagatiod a graph coloring can be computed by a distributed algorithm
processing delays, the length of each unit of backoff timmich as the one in [30, Chapter 7]. After that, each link only
cannot be arbitrarily small. For example, in IEEE 802.1theaneeds to remember which mini-slot it should use to broadcast
unit of backoff time last20us. Therefore, in order to computequeue-length information. Hence, the above scheme can be
the schedule in constant time, we need to provide an uppeplemented in a distributed fashion provided that the kdoc
bound onM. In Section 1lI-A, we will see how the efficiency at all links are synchronized. As a result, given a fixed
ratio of Policy GP depends onV/. and a bounded maximum node-degree, the total time required

Attempt Probability: The choice of the attempt probabilityfor Policy GP to compute a new schedule can be made
p; is also essential to obtain constant-time scheduling jgslic independent of the size of the network.
with an efficiency ratio independent of the network topology Finally, we note that the special case of PoliGy? with
Otherwise, ifp; is lower bounded by a constant, we can show = 1 and 5, = 1/¢; can also be viewed as an extension
below that the throughput of the system may drop to zero. B the Longest-Queue-Driven (LQD) scheduling algorithm
see this, consider the simple examplelohodes transmitting from the switching literature [15]. However, there are two
to a common receiver. Hence, tlielinks interfere with each key differences: (a) in the switching literature, the netwo
other. Given a fixed value a¥/, the probability that any one topology is a bipartite graph, while ad hoc network topology
of the L links can successfully transfer data in a given tims non-bipartite; (b) in the switching literature, the tsamitting

slot is bounded from above by nodes (i.e., input ports) and receiving node (i.e., outputs)
I I are determined a priori, while in ad hoc networks a node can
Z D H(l _ Pry 1—[(1 _ ﬂ) alternate its role as transmitter or receiver from time-$to
M M M time-slot. The proposed policz P has carefully accounted

= = for these differences through the random backoff phaseen th
where the first term is the probability that one link wins witlsecond part of the policy.

backoff time equal to 1, and the second term is the probgbilit
that no links have backoff times equal to 1.pfis bounded A, The Efficiency Ratio of PoliogP

from below by a constarﬁz, thenl the abovﬁ bouL\d W'",ﬁ%to We next show that the efficiency ratio of the above policy
zero asL — co. Hence, the total system throughput wi ORGP is at least close td /3. Recall that the optimal capacity

Fo zero for any fixed value off. On th'e other hand, Si,nceregionQ under the node-exclusive interference model is upper
in (7) we set the attempt probability inversely proportlbnebOunded by@, in (5). For a vecto@ — [Q1,...,Q1], define
to the sum of the queue-length at the interfering links, WRnction m@) for each link as T

reduce the chance of contention in the neighborhood. As we

will see in Section IlI-A, a fixed value of\/ will then be . 0, s if Q=0

- . - X . _ : .
sufficient to gue}rantee a fixed efficiency ratio farbitrary m(Q) S ﬁngl, S Ao otherwise
network topologies. keB (1)) ke E(e(l)

Overhead of Queue-length ExchangeTo compute the Note that this function is simply the relationship used to
attempt probability, PolicyGP requires each link to learn determine the attempt probability at each time slot in (&), i
the queue-length of its one-hop neighboring links, whigoal p,(t) = m(@(t)). For any two vectors = [z, ...,24] and
consumes time and communication overhead. Assume that ghe: [y, ..., y4] with the same dimensiod, we say thatz is
number of one-hop neighbors of each link is at mo&t, |onger than 7 if ijle > Ele yZ. For anyQ # 0, let
which can be obtained as a function of the maximum nodg@’) = [p1, ..., ] be thelongestelement in¥, such that
degree of the network if the degree of the nodes in the netwat¢ some non-negative real numbgr
is bounded. Further, assume that transmitting one piece of o
queue-length information takes constant time. It is thesspo p = oafQr, foralll. (®)
ble to design a distributed algorithm for information exege Note that such a longest elemeym(t@) always exists and is
such that the amount of time required to exchange the queugique because vectors that satisfy (8) are on the same line.
length information is bounded yV1)?+1. Specifically, using According to (8),.;(Q) = 0 if Q, = 0. Further, ifG = 0, we
results from graph-coloring, we can color the links with wefineﬁ(c}') =0.
most(N1)2+1 colors such that any two links within two-hop Let ¢;(Q) be the expected amount of available service
of each other are labeled with different colors [30, Chapterovided by policyGP to link [ at a given time slot, con-

7]. We can then assign each color to a mini-slot, and hadéioned on the queue length vector beify i.e., wl(Q) =
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E[D;(t)|@(t) = @], where the expectation is taken with) wins. We thus have,

respect to the randomness in the random-attempt and backoff K

procedures of Policg; P. We will see soon that the relation-  p[S|y =y > H {(M_l_y)xk +(1- xk)}
ship between the expected available servigé)) and the iy M

value of ;1(Q) plays a key role in determining the stability of K L1

the system. Letl) (Q) = m(Q)c;, which can be interpreted as = H [1 - yM xk} .

the expected amount of available service at linkthere was k=1

no collision, conditioned on the queue length vector beidg SinceY is uniformly distributed amondo, ..., A/ — 1}, we
Let (@) = [d)(Q), ..., d} (Q)]. The following lemma relates paye

d(Q) to ji(Q). . . . M-lpigly _
Lemma 1:1f @ # 0, then for alll, we haved? (Q) > 1(Q). P[S] = Z PISIY =4]
Proof: By definition of w(Q), there exists somé > 0 y=0 M
such thaty, (Q) = ¢, 3,Qf for all I. Substituting into (5), we M1y ﬁ v+ 1
have > — [1 - z ]
. y=0 Mk:l M
5 > B@p <1, for all nodei. :
ke E(i) SincerKzl(l — uxy) is decreasing in,, we have,
- K
Sinceg(Q) for_ms the longest vector i, that satisfies the Pls] > /1 H(l ) du
above inequality, we have L
1 K
1 / H 1
= . > (1 —uxy) du — —.
max; e gy Oe@y 0 k=1 M

Combining with (7), we have By comparing the derivatives, we can show that

K

m(Q) [T —vaw) > @ —w).

for all [. 1

Hence,

B(Q) = m(Q)er > 6e4QY = m(Q), for all . _

Remark: A special case of Lemma 2 that corresponds to

Lemma 1 shows that, if links that attempt transmissioff — 1 @nd M = oo was shown in Theorem 5 of [15]. Here

were to win every time, then the expected amount of senvile have provided a more general result using a much different

available to each link would be component-wise no less thQﬁOOf technique.

fi(Q). However, due to the random-backoff procedure in the Under PolicyG:P, we infer from (7) that, for any link, the

second part of Policy?P, only a subset of those links thatdttempt probabilities of its one-hop neighboring links mus

attempt transmission will win. We next show that, if a |ink3at|5fyke%£(l))pk(t) =1 andkeg(i(l))pk(t) < 1. Hence, the

attempts transmission, the conditional probability thatins sum of the attempt probabilities over its interfering links

is no less tham; — 7. In fact, we will prove a more generalno greater thar2. We thus obtain the following corollary to

result as follows. Fix a particular link. Label its interfering Lemma 2.

links as1,2,..., K. Corollary 3: Under PolicyG P, the conditional probability
Lemma 2:Let z;, denote the probability that thieth inter- that link [ wins, conditioned on it attempts transmission, is no

fering link attempts transmissiok,= 1,2, ..., K. Assume that less than% - L

M
all links follow the random backoff procedure in the second Let

part of Policy GP. If Sz, < H, where H > 0, then L_1_ i
the conditional probability that link wins, conditioned on it s 3 M
attempts transmission, is no less thﬂ%ﬁ _ ﬁ Using Lemma 1 and Corollary 3, we thus conclude that,

Proof: Condition the following derivation on the eventconditioned on the queue-length vector beipgthe expected
that link 0 attempts transmission. LeY’ be the random available service);(Q) at link I under PolicyGP satisfies
variable that denote the backoff time of lik Conditioned - 1 1 0/ R 1 -
onY =y, the probability that link) wins is no less than the Yi(Q) > <3 - M) 4 (Q) 2 gm(Q) foralli. (9)
probability that allK" interfering links either do not attempting . . .
transmission, or have backoff time greater tharNote that Note that by definitiony,(Q) = E[D,(¢)|Q(t) = Q]. The
each interfering link attempts transmission and chooses fillowing proposition will connect Inequality (9) with the

backoff time independently. Le§ denote the event that link €fficiency ratio of the scheduling policy.
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Proposition 4: If for any @ # 0, E[D,(t)|Q(t) = ] > Ti(0) = 0. Then the evolution of the queue length can be
w(Q)/S for all I, where,;(Q) is defined in (8) ands is a written as
positive constant, then the system is stable for any offtrad Qi(t) = Qi(0) + Ei(t) — Fi(t), (12)
\iector)\ strictly inside\IJO/S, i.e., for any offered load vector ‘
A such that(1 + €)\ € ¥, /S for some positive numbex. whereF;(t) = Y min{Q;(s—1)+ Ei(s)— E;(s—1),Ti(s) —
Remark:This result and the following proof technique arep, s=1
L . 1(s—1)}. We interpolate the values &;(t), T;(¢), Q;(t) and
Bsplre_d by the work in [31(}' The ahuthorﬁ of [31] shlow lt_ha}ﬁ(t) to all non-negative real numberby linear interpolation
#t)h_' Q) _chJrresponf SPtO a throug 4putL;])p_t|ma 1‘_);]) ICybetweenm and|t| +1 (where|t] denotes the largest integer
V;'} Ic r'f‘ a spguall case c?:l _ropohsmonf w “1_ 1'1 Ie no greater tham). Then, using the techniques of Theorem 4.1
t roug put-optimality |n.[ ]is shown for allv > 1. 1N ¢ [19], we can show that, for almost all sample paths and for
this paper, we use a simple fluid-limit argument and provaﬁ1y positive sequence, — oo, there exists a subsequence

PVOPOS't_'ﬁ)n 4 for alla > 0. . he follow a,,, With ,,, — oo such that the following convergence holds
We will use a Lyapunov function of the following form touniformly over compact intervals of time

show Proposition 4, which is slightly different from the one

used in [31]: LEl(az:njt) — M\t for all [
T,
= am\ 1
V(Q) = max Q1 <)\l) . (10) Ty(zn,t) — vy(t) for all i
I'Ilj
The following lemma shows that if the maximum in (10) is 1 Qu(zn.t) — q(t) for all I
attained by some link;, then u;(Q) > (1 + €)SA. T, ’
Lemma 5:Assume that1 +6)X € Uy/S for some positive 1 F
— o t) for all [, 13
constants and S. Given Q # 0, if for somek the maximum T, 1(@n,t) — fi(t) 13)

of (10) is attained, i.e., wherev,(t), ¢;(t) and f;(¢) are continuous functions. Further,

enBe )Y ab\ Y since the functiond;(¢), Q;(t) and F;(t) are Lipschitz con-
Qk( " ) = max ()q) ; (11) tinuous, so are the functions;(t),q(t) and f;(t). Hence,
these limiting functions are differentiable for almost all
thenuk@) > (14 ¢€)SA. Let 7 denote the set of time instants where these limiting

Proof: We prove by contradiction. Assume that(() < functions are differentiable. Lef(t) = [q1(t), g2(t), .-.qr ()],

(14 €)SA, wherek is defined in (11). Then for all other 7(t) = [v1(1), ... ve(t)], and f(t) = [f1(t), fo(t), .. fL(D)],
links 1, either;;(Q) = 0, or, if (@) > 0, we have (by the Using the techniques of Theorem 4.1 of [19] again, we can

definition of 1;(Q)), show that the limiting functions must satisfy the followiagt
of equations: for all and for allt € 7,
aBiQr _ ckBkQR d p
m(Q) 1k (Q) %QI(t) =N - £fz(t) (14)
Using (11), in either case we will have, d _d -
. dtfl (t) dtyl(t) if ql(t) >0 (15)
@ = 9A9Q) 40> L) i
Hi Ckﬁng Hk %l/l(ﬂ > gul(q(t)) if ql(t) > 0. (16)
— adiQ M Nk(@)ﬁ To see this, note that (14) follows from the queue-evolution
Al eefBe@Qy Ak equation (12) by taking limits of the form in (13) as, — oc.
= AL : To show (15), note that, if;(¢) > 0, then there exists a positive
< o 1 1 1
< m(@)- (using (11)) 5 such that for alls € [t, + 4], q:(s) > 0. This implies that
(1+¢€)SN, forall l. for all sufficiently largej, the backlogQ;(|z,,s]) at link [

) . o e is larger than its maximum capacity for all s € [t,t + 4].
Since (1 + €)SA € Wy, this implies thati(Q) cannot be the Therefore, the available service to likwill be fully utilized
longest vector in¥, that satisfies (8), which contradicts withguring the time interval|z, ¢, |z (t + ) ]. We thus have,

—

the definition of i(Q). Thus, the result of the lemma must
hold. | Fl(l_mnj s']) — Fl(\_xnj s]) = Tl(l_xnj s']) — Tl(l_ajnj s])
We can now prove Proposition 4. N forall t < s < s’ < ¢+ 6. Dividing both sides by, , and
Proof: (of Proposition 4) We first prove the stability of thetaking limits asz. — co. we have !
fluid model of the system, where the fluid model is defined as " ’

— / /
follows [14], [19]. For any integet > 0, let E;(t) = tzl Ay(s) Ai(s) = fils) = mi(s) —nls)
forallt < s < s’ <t+4. Equation (15) then follows. Finally,
(16) follows from the conditiofE[D; (t)|Q(t)] > m(Q(t))/S.
= To see this, fix a link such thatg () > 0. Note thatg(t) is
service to linkl in time-slots0 to ¢t — 1. Further, letE;(0) = Lipschitz-continuous with respect tpandy; () is continuous

s=0
denote the total ntuin11ber of arrivals to linkn time-slots0 to
t—1. LetT;(¢t) = Y. Di(s) be the total amount of available
0



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. X, NO. XX, XXXXXXX 200X 7

with respect tog when g; > 0. Hence, for any > 0, there We next use the Lyapunov function (10) on the fluid model.

—

exists ad > 0 such that for alls € [¢,¢ + 4], For all t € 7 where the functionsj(t), 7(¢t) and f(t) are
B B differentiable, we have [34, p28],
m(q(s)) = m(q(t)) —e.

o | DV@L) o (aB)
Further, smceQ(anjsJ)qﬁ q(s) ijformly over compact dt+ = zren}%(}f) a N :
intervals of time, andu(Q) = w(aQ) for any a > 0, there _ o+ _ _
exists an integey > 0 such that for alj > J ands < [t,¢+¢], Where for any function f(), Z=f(t) is defined as
lim sup LW =J®)  gng
u]0 u ’

—

i (Q([zn;s])) = m(q(t)) — 2e. 17) Ve Ve
o o B B B apy
By the definition of the limits in (13), for any € [t, ¢ + 4], R(t) =  Klax(t) " = max q(?) N ~
[T s] - . . -
. i If ¢(t) # 0, then by Lemma 5] € R(t) implies u;(q(t)) >
vi(s) —wi(t) = lim —=— > Dik). (18) (1 4 €)SA,. Further,q,(t) > 0 for I € R(t). Hence, using
" k=l t] (14)-(16), we have,
Define the filtration 7,k = 1,2,.., where F; is the iql(t) A il/l(t) < _en, forall I € R(t)
o-algebra generated by the random variableg |z, t| + dt dt - ’ ’

K", Ti(lwn,t] + k') and Qi([z,,t] + k') for all [ and for and thus,

kK=1,2,...,k. Let DV () 5 1/a
q . C191 PP

- - < A — , if g(t) #0.
Xy, = Dy(|@n,t] + k) — BIDi(|2n,t] + k)|Q(|2n,t] + k)] ar = l( N ) it qit) #
Since the above property holds for almost#live can then
conclude that the fluid limit model of the system is stable. By
Theorem 4.2 of [19], the original system is positive Harris
recurrent. Note that positive Harris recurrence implieat th
the stochastic proces9(t),¢ > 0 has a unique stationary

and letY;, = Z’,jzl Xy. ThenYy, k = 1,2, ... is a martingale
with respect to the filtrationF,, & = 1,2,... [32, p228].

Further, E[X?] is bounded byc? for all k. Hence, using a
strong law of large numbers for martingales [33], we have

. Y 0 distribution II. Further, for every measurable functightQ)
Pravoll with TI(|f|) < oo, the following ergodic property holds [19,
Substituting into (18), we have Section 3]
T
1 =
g b Jim > £(Q(t)) =TI(f) almost surely
vi(s)—y(t) = lim — Z Dy(k) t=1
J=00 Tpy -
k=lan,t] Taking f(Q(t) = 1 . , and noting that
E (X Quo>n)
= lim — Y E[Di(k)|Q(K)].
IO TNy 4 mi1 . — 0 asn — oo (sincell is a
! {Z;Qz(t)>n}
By (17) and the condition thaE[D;(t)|Q(t)] > u(Q(t))/S, finite measure), Equation (2) thus holds. m
each term of£[D;(k)|Q (k)] is no smaller thany (g(t)) — 2¢ Combining with (9), we obtain the following immediate
for j > J and fork between|z,,t] and |z,,s]. Hence, result:
Corollary 6: The policy GP can stabilize the network as
— i iotlv inside( 1 _ 1
u(s) — m(t) > s—t [ (G(t)) — 2€] !ong as the offered load \_/ectarlles §t_r|ctly inside( 5 —7) Yo,
S i.e., as long as there exists a positive constastich that
for s € [t,t + d]. Since we assume thai(¢) is differentiable - 1 1
att (ie.,t € 7), we have (I+e)re (3_M Yo.
d 1 RemarksSince the optimal capacity regiénof the system
d—ul(t) > E[ul(cj’(t)) — 2¢]. is a subset ofl;, we conclude that the efficiency ratio of
t Policy GP is at least: — ;. For any givene > 0, we
Finally, since this is true for alt > 0, Equation (16) then can choose the maximum backoff tillé = 1/¢, which then
follows. ensures that the efficiency ratio of PoliG/P is no less than

—

Any such limit[g(t), 7(t), f(t)] is called afluid limit of the 1/3 —e. The parametet can be viewed as aapproximation
system. We say that a fluid limit model of the system is stabtatio as to how close one want to approatfB3. Given e,
if there exists a constart that depends only on the networkthe value of M is independent of the network topology. As
topology, the arrival rates,; and the active link capacitieswe discussed earlier, one can design distributed algositiom
¢1, such that forany fluid limit with ||¢(0)|| = 1, we have information exchange such that the amount of time required
[|g(¢)|| = 0 for all ¢t > T [19]. for all links to learn the queue-length information of their
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one-hop neighbors can be bounded by a function of the
maximum node-degree of the network. Hence, given a fixed
approximation ratia and a bounded maximum node-degree,
Policy GP only takes constant time and can guarantee an
efficiency ratio close td /3 for arbitrary network topologies.

B. An Alternate Lyapunov Function for the Case Whes 1
and ﬂl = 1/61

For the case whea = 1 andj; = 1/¢;, Policy GP reduces
to Policy P in our prior work [1]. There, an alternate Lyapunov
function was used to establish the efficiency ratio of Policy
P. This alternate Lyapunov function does not depend on the
arrival rates)\;, and hence could be of independent interest
[35], [36]. Due to space constraints, we omit the detaileher
Interested readers can refer to [1].

them randomly chooses a backoff time uniformly from
{0,1,..., M —1}. We assume that all backoff timers start
at the beginning of the time slot. When the backoff timer
of a link [ expires, the transmitter nodg!) of link !

will broadcast an RTS to all of its one-hop neighboring
nodes, provided that nod¢!) has not overheard any RTS
from these one-hop neighboring nodes. Once the receiver
nodee(l) correctly receives the RTS, it will then respond
with a CTS broadcasted to all of its neighboring notles.
Through this RTS-CTS procedure, the lihkhat sends
out an RTS before any of its two-hop neighboring links
will win. This link [ can then transfer packets at the rate
of ¢; during the rest of the time slot. It is possible that
two or more links in a two-hop neighborhood send out
RTS together, in which case collision occurs and none of
the interfering links can transfer data in time-stot

IV. A CONSTANT-TIME DISTRIBUTED SCHEDULING
PoLicY FOR THE TWO-HOPINTERFERENCEMODEL

We next extend the constant-time distributed policy in th
previous section to the two-hop interference model. Under t

two-hop interference model, the known distributed schedul
policies, i.e., the Maximal Scheduling Policy [9]-[12] atitk

We can use similar techniques as in Section Ill to show that
policy GQ guarantees an efficiency ratio closeltg N1 +1).
To see this, note that under the two-hop interference model,
t%e optimal capacity regiof? is upper bounded by, in (6).

—

As in Section Ill, letd?(Q) denote the expected amount of
available service at link if there was no collisioncondi-

—

tioned on the queue-length vector beifly Let d*(Q(t))

distributed implementation of the Greedy Scheduling Roli =~ = . .
[28], can both guarantee a worst-case efficiency ratio C}ﬁ?(@(t))a -, d7 (Q(t))]. Using the technique of Lemma 1, we
1/N1, where N! £ max; [N'(l)| is the maximum number
of one-hop neighboring links for any link. However, they are
again not constant-time policies. We now propose a constant
time distributed scheduling policgzQ that can guarantee awhere;i(Q(t)) is the longest vector i}, such that (8) holds.
comparable worst-case efficiency ratio. (We note howe\ar tiFurther, for each link, the sum of the attempt probabilities
the worst-case efficiency ratio of Maximal Scheduling angf its interfering links (i.e., its two-hop neighboring ks)
Greedy Scheduling can be tightened1taV!, where N' is  satisfies the following relationship: for ali € N'(1),

the maximum number of two-hop neighbors of each link that

—

P(Q(1) = —=i(Q(1)),

<) =

do not interfere with each other [9]-[11]. The value/ét can mo< Y Br@y(t)

be smaller thanV! for certain types of network topologies, heN™ (k) heEN (k) méﬂ]\?f%h) , BrnQs (1)

e.g., with geometric graphs [9]. Thus, the efficiency ratibs neNt(m)

Maximal Scheduling and Greedy Scheduling will be better . 197

than that of PolicyG@ for those types of network topologies.) xmin | 1, “Tmax  [N1(m)|
Let W be a positive number betwegérand N1. We will see meN?(h)

soon that the paramet&y puts an upper bound on the sum < Z BrQ5(t) W

of the attempt probabilities in any two-hop neighborhood. - - S BaQe(t) INY(1)|
Constant-Time Distributed Scheduling Policy GQ: RENT(R) e NT (k)

At each time slott: (becausd € N%(h) andk € N1(h))

« Each linkl computes a probability;(¢) based on its own < w
queue-length and that of the interfering links as follows: - INY()|
pi(t) = 0 if Q;(t) = 0. Otherwise, We thus have.
B (1)
pl(t) = W
max ﬂhQ;of(t) Z pr < Z Z P < Z TN w.
RENT W RN (k) kEN2(I) kEN(1) heN1 (k) KENL(D) NI
< min | 1 w Therefore, using Lemma 2 wittf = W, and using the
’ k%}gl) INT(K)| |’ technique of Proposition 4, we can show the following main
€

result.
Proposition 7: Under Policy GQ, the network is stable
when X lies strictly inside the setL (L — L)W
N1 —+ M

where« is a system-wide positive constant, afidis a
positive constant for each link
« Each link! attempts transmission with probabilipy(¢),

and does not attempt transmission with probability:  1yye assume that the time required for this RTS-CTS procedugsssthan
pi(t). For those links that attempt transmission, each efie unit of backoff time.
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Remark: For any fixedi, by choosing\/ > m then we can show as in Section lll that the system is stable

the efficiency ratio of Policy?Q is at Ieast%. For each under PolicyGP, i.e., Q,(t) satisfies (2), as long as

W, the value ofM is independent of the network topology. s 1 1
Hence, once each link learns the queue-length information ZHﬁxS] € (§ - M)%'

within its two-hop neighborhoodi@ only requires a constant s=1

time to compute a new schedule. Further, T6r = N, the Thus, we have shown that, under Poli&P, the capacity

guaranteed efficiency ratio becom% — % By letting region of the system is at Iea(s}—ﬁ) fraction of the optimal

M — oo, the guaranteed efficiency ratio goes-té—. The capacity regionQM. In other words, t_he efficiency ratio of
difference - can be viewed as an a roximatilc;rnNratio as tlgohcy G'P remains the same for muilti-nop neworks.
M P In the above argument, we have assumed in (19) that the

how close one wants to approachi—. u R .
. . .  I+N1 . queues” are updated as if the data rate from each end-user
Similar to the discussions in Section I, assuming that the

- o P s is applied instantaneously at all linkis along the path
number of two-hop neighbors of each link is at mo&t, and ¢ ;ser 5 In practice, the packets from each source have

that transmitting one piece of queue-length informatidresa ., (. averse the path link-by-link. Hence, the equation (19)
constant time, we can then design a distributed algorittms fj,.c hot describe the dynamics of treal queue. The re-
information exchange such that the amount of time required . 1 ¢ ihis “user—rates—applied—simuItaneoust:thaks"

to exchange the queue-length information can be bounded Ly, mption could invalidate our earlier argument for fitgibi

O[(N?)Q + 1]. The quantity N2 can again be written as a)n act, examples have been created in prior works for wieeli
funcUop of the maximum node-degree if the degree Of.th?etworks [20], [37], [38], where a queueing network appears
nodes in the network is bounded. Therefore, given a fixed pe stable under this “user-rates-applied-simultarigeos
approximation ratio and a bounded maximum node-degree, %)gjinks” assumption, but is actually unstable when paske
total time required for Policy~() to compute a new schedule;yerse the network link-by-link.

can be made independent of the size of the network. There are a number of approaches from the literature to
address the above issue [11], [37]-[40]. One approach is
to use the idea of aegulator at each link, which limits
the burstiness of the traffic from upstream nodes [11], [39],
In this section, we extend the constant-time scheduli 40(:]|’(;Zein0t:;g (?Septrj(;asyh:asnt(t)hiflsgg i@?&gzrlgf],p[gﬁm],

policies of the previous sections to n_1u|ti.-hop networksg a 41]. Both approaches may be applied to Poli@p so that
also address the overhead of communicating the queue lEng|dretains the same efficiency ratio for multi-hop networks.

We will focus on the node-exclusive interference model (an
Policy GP), while the same methodology can be applied t
the two-hop interference model (and PoliG¥Y) as well.

V. CONSTANT-TIME SCHEDULING POLICIES FOR
MULTI-HOP NETWORKS AND SUBJECT TOFEEDBACK
DELAYS

8. Overhead of Updating the Queue-lengths

Policy GP requires each link to learn the queue-length of
A. Constant-Time Scheduling Policy for Multihop Wirelesseighboring links in order to compute the attempt probgpbili
Networks pi(t). We have discussed in Section Ill how one can design

In Section II, we have assumed a single-hop traffic modé,distributed algorithm for exchanging the queue-lengtbrin
i.e., each packet only needs to traverse one offtieks and Mation among neighboring links such that the time needed
then |eaves the System_ We next extend pow to mu'ti_ for information eXChange iS bounded by a funCtion Of the
hop networks with fixed routing. Assume that there srend- maximum node-degree. Alternatively, it is well known that
users in the system. Each usenjects packets at the rate of €ven if this type of scheduling policies act upaelayed
packets per time-slot. Assume that each user has a fixed gé#gue-length information, as long as the delay is bounded,
through the network, and Iéf7!] denote the routing matrix, the efficiency ratio will still remain the same (see, e.g.,
whereH! = 1 if the path of uses traverse linki, andH! =0 [S])- In fact, we can show that, as long as in every time-

otherwise. ThUS, the aggregate data rate on lljrdenoted by slot each link EXChanges its queue-length information with
success-probability that is bounded from below by a pasitiv

= constant (which implies that the expected delay of queue-
of the network under a particular scheduling policy to be tHength information is bounded), then under the fluid-limit
set of # = [z1, ..., zg| such that the system can remain stablscaling (13), the fluid-limit model (14-16) will remain the
Then the optimal capacity regidn,, is upper bounded by, same. (Details are omitted due to space constraints.) Hence
S Policy G P will retain the same efficiency ratio. In Section VI,
Qu C {:f [ZHlx €, }

we will use simulation to study the performance of Pokgy’
—1 when the queue length information is exchanged infrequentl
where ¥, is given in (5). If we assume that the “queues” are
updated by VI. SIMULATION RESULTS

g + We have simulated the proposed scheduling policies using
Qit+1) = [Qz(t) +ZHle _ Dl(t)] . (19) the network topology in Fig. 1. There are 16 nodes (repre-

S
A, is given by\; = > Hlz,. Redefine the capacity region

sented by circles), and 24 links (represented by dashesl)line

s=1
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Offered load
1000 ——— —
be EO:!CV gg (Mfﬂ) Fig. 3. Performance comparison of Poli¢yP under the node-exclusive
> Policy GP (M=10) interference model as the value of varies. We have used/ = 10 and

—— Policy GP (M=20) Il N
Maximal Matching By = 1/¢; for all links 1.
—— Greedy Maximal Matching

800f

600

simulations: 3, = 1/¢; and M = 10. We observe that the
performance of policy P is relatively invariant to the choice
of a, which is not surprising given the fact that with any
the policy can be shown to achieve the same efficiency ratio.
= ‘ ‘ ‘ We also investigate the performance of PoliGy? when
0 0.2 0.4 0.6 0.8 1 . . . .
Offered load gueue-length information is exchanged less frequentsy, (i.
not in every time-slot). We use the following procedure to
update the queue-length information. At the beginning of
each time slot, we reserve a small mini-slot for queue-kengt
updates. During this mini-slot, each nodewill broadcast
with probability € the current length of its out-going queues,
The capacity is labeled next to each link. The flows arglong with the most-recent queue-length information of its
represented by arrows. We simulate single-hop flows, and weoming queues that it has received from its neighbors. At
let the rate of each flow bg&. Note that although the rates ofeach of its neighboring nodes, if this broadcast message doe
the flows are the same, the link capacities and the flows hawst collide with the broadcast messages from other links, th
been chosen to avoid uniform patterns. neighboring node is considered to correctly receive theigue
We first simulate Policyz P (for the node-exclusive interfer- length updates. Then, when each lihkomputes the attempt
ence model) under the setting that each link learns the murrerobability p; (we assume that this computation is carried
qgueue-length information of its one-hop neighbors in evenut at its transmitter), its transmitter will use therrent
time-slot. We first chooser = 1 and 3, = 1/¢; for all links queue-length of its own out-going links, and the most-rédgen
[. This is equivalent to Policy? in [1]. In Fig. 2, we plot received queue-length information of its neighboring $nk
the mean total queue backlog summed over all links of tAgéis procedure ensures that the probability with which each
network, as the offered loadl increases. When approaches link | can update the current queue-length information from
a certain limit, the average total backlog will increase tits neighboring linkk is bounded from below by a positive
infinity. This limit can then be viewed as the boundary ofonstant (which is a function af. Hence, the expected delay
the capacity region. We have plotted the curves for Poliof queue-length update is bounded. As discussed in Section V
GP with maximum backoff windowsM = 1,M = 10, B, the efficiency ratio of PolicyGP will remain the same.
and M = 20. We can see that the performance of the We have simulated the performance of PoliGy° using
scheduling policy is much worse whel = 1. Hence the the above procedure for exchanging queue length. In Fig. 4,
random backoff procedure in the second step of the policyvs plot the simulation results for the case when there is no
essential. However, onc¥ is above a reasonable number, théeedback delay (i.e., assuming that each link knows theeotirr
performance will be virtually the same (as we can seé\fo=  queue-length information of all links in the network), armt f
10 and M = 20). We have also plotted the performance othe case whem = 0.1 ande = 0.4, respectively. We observe
the Maximal Matching (MM) policy and the Greedy Maximalthat the performance of Poligg P is quite insensitive to the
Matching (GMM) policy. Although the efficiency ratio thatchoice ofe. This indicates that our algorithm is robust to the
can be guaranteed in Proposition 4 for polGy is slightly delay in exchanging queue length information.
worse than that of MM, the simulation results indicate that Finally, we simulate policy7Q for the two-hop interference
their actual performance is roughly the same. model, under the setting that each link learns the current
We next simulate policyGP with other values ofa. In  queue-length information of its neighboring links in every
Fig. 3, we plot the curves for Policg P with « =1, « = 2 time-slot. We plot the results in Fig. 5 far = 1 and 3, =
and o = 10. Other parameters are chosen as follows for all/c;. Again, we observe that the performance of polEg

400

Mean Total Backlog

200r

Fig. 2. Performance comparison of Poli€yP under the node-exclusive
interference model. We have usad= 1 and8; = 1/¢; for all links .
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1000

unchanged. It will be an interested direction for future kvor
to explore the performance difference of these two appesmch
We can observe in both Fig. 2 and Fig. 5 that there is still
a substantial performance gap when we compare Pdligy
(and GQ, respectively) with the Greedy Maximal Matching
policy (and the Greedy Maximal Scheduling policy, respec-
tively). Note that the Greedy Maximal Matching policy ané th
Greedy Maximal Scheduling policy can both be implemented
in a distributed fashion, although not in constant time.sThi
et ‘ ‘ opens the question as to whether one can develop simple,
04 treredicag 08 1 distributed, and constant-time scheduling policies tichieve
even better performance than Polici@® and GQ. In fact,
Fig. 4. The performance of PoqugP subject to feedback delays. We havefgr the special case when 1 and 5, = l/cl, the
useda =1 andf, = 1/¢, for all links, andM = 20. more recent work in [35], [36] proposed a refined version
of Policy GP that can guarantee an efficiency ratio close to
1/2, and that empirically approximates the performance of
Greedy Maximal Matching when the backoff window size
is very large. However, it is not obvious how the idea of
[35], [36] can be applied to the general class of Polici&s
and GQ. In another paper [42], based on the idea of graph
partitioning, the authors propose a class of schedulingipsl
that can achieve arbitrarily close to the optimal throughpu
with computation-time that also does not increase with the s
of the network. (A different partitioning approach is prepd
in [43], which may also be used to construct constant-time
scheduling policies.) Compared with the policies in [42]3],
the policies that we study in this paper are much simpler,
although with lower performance guarantees. In [44], the
authors propose a distributed randomized algorithm for the
node-exclusive interference model that achieves a simgdat

changes little when the maximum backoff window chang aﬁs that of [42]. Thus, the scheduling policies in [35], [36],
from M = 10 to M = 20. Further, the performance is alsj 2]-[44] and in this paper offer different tradeoffs inres of

X : . the provable efficiency ratios, simplicity and overhead péie
comparable to the maximal scheduling policy. . . ’ .
ation, flexibility of tuning policy parameters, and apphbdéy
to a variety of network scenarios. It remains an interesting
VIl. CONCLUSION ; i
open problem whether one can develop scheduling policies
In this paper, we have proposed a class of new distributétht combine the benefits of all of them.
scheduling policies for ad hoc wireless networks. The umiqu
feature of these new distributed scheduling policies isttieay
are constant-time policies, i.e., given a fixed approxiorati
r_atlo and a bounded ma>§|mum nOde'degree ‘?f t_he network, t ﬁ X. Lin and S. Rasool, “Constant-Time Distributed SchéuiylPolicies
time needed for computing a new schedule is independent of for Ad Hoc Wireless Networks,” ifProceedings of the IEEE Conference
the network size. Hence, they can be eas”y dep|oyed in |arge 0262ecision and ContrglSan Diego, CA, December 2006, pp. 1258—
' > 1263,
net_vv_orks. We have shown _th_at these _constant-tlme scheduli ] P. Gupta and P. R. Kumar, “The Capacity of Wireless Nets@riEEE
policies can guarantee efficiency ratios comparable t0 some Transactions on Information Thegryol. 46, no. 2, pp. 388-404, March
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