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Abstract

In this paper, we study utility maximization problems for communication networks

where each user (or class) can have multiple alternative paths through the network. This type

of multi-path utility maximization problems appear naturally in several resource allocation

problems in communication networks, such as the multi-path flow control problem, the

optimal QoS routing problem, and the optimal network pricing problem. We develop a

distributed solution to this problem that is amenable to online implementation. We analyze

the convergence of our algorithm in both continuous-time and discrete-time, and with and

without measurement noise. These analyses provide us with guidelines on how to choose

the parameters of the algorithm to ensure efficient network control.

1 Introduction

In this paper we are concerned with problems of the following form:

max

xij≥0,mi≤
J(i)
∑

j=1
xij≤Mi,i=1,...,I

I
∑

i=1

fi(

J(i)
∑

j=1

xij) (1)

subject to
I

∑

i=1

J(i)
∑

j=1

El
ijxij ≤ Rl for all l = 1, ..., L. (2)

∗This work has been partially supported by the NSF grant ANI-0099137, the Indiana 21st Century Fund

651-1285-074 and a grant through the Purdue Research Foundation. An earlier version of this paper has been

presented at the 41st Annual Allerton Conference on Communication, Control, and Computing [1].
†Corresponding author. Phone: 1-765-494-3471; Fax: 1-765-494-3358; Email: shroff@ecn.purdue.edu.

1



As we will describe in Section 2, optimization problems of this form appear in several resource

allocation problems in communication networks, when each user or (class of users) can have mul-

tiple alternative paths through the network. Generically, the problem (1) amounts to allocating

resources R1, ..., RL from network components l = 1, 2, ..., L to users i = 1, 2, ..., I such that the

total system “utility” is maximized. The “utility” function fi(·) represents the performance, or

level of “satisfaction,” of user i when a certain amount of resource is allocated to it. In practice,

this performance measure can be in terms of revenue, welfare, or admission probability, etc.,

depending on the problem setting. We assume throughout that fi(·) is concave. Each user i

can have J(i) alternative paths (a path consists of a subset of the network components). Let

xij denote the amount of resources allocated to user i on path j. Then the utility fi(
J(i)
∑

j=1

xij),

subject to mi ≤
J(i)
∑

j=1

xij ≤ Mi, is a function of the sum of the resources allocated to user i on

all paths. Hence, the resources on alternative paths are considered equivalent and interchange-

able for user i. The constants E l
ij represent the routing structure of the network: each unit of

resource allocated to user i on path j will consume E l
ij units of resource on network component

l. (El
ij = 0 for network components that are not on path j of user i.) The inequalities in (2)

represent the resource constraints at the network components (hence Rl can be viewed as the

capacity of network component l, and
I

∑

i=1

J(i)
∑

j=1

El
ijxij is the total amount of resources consumed at

network component l summed over all users and all alternative paths). We assume that Rl > 0,

El
ij ≥ 0, mi ≥ 0 and Mi > 0 (Mi could possibly be +∞).

We will refer to problem (1) as the multi-path utility maximization problem. In this paper,

we are interested in solutions to this problem that are amenable to online implementation. In

Section 2, we will identify several resource allocation problems in communication networks that

can be modeled as (1), including the multi-path flow control problem, the optimal QoS routing

problem, and the optimal pricing problem. Essentially, once the network can support multi-path

routing, the resource allocation problem changes from a single-path utility maximization problem

to a multi-path utility maximization problem. As we will soon see, the multi-path nature of the

problem leads to several difficulties in constructing solutions suitable for online implementation.

One of the main difficulties is that, once some users have multiple alternative paths, the objective

function of problem (1) is no longer strictly concave, and hence the dual of the problem may

not be differentiable at every point. Note that this lack of strict concavity is mainly due to the

linearity
J(i)
∑

j=1

xij. (The objective function in (1) is still not strictly concave even if the utility

functions fi are strictly concave.) On the other hand, the requirement that the solutions must
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be implementable online also imposes a number of important restrictions on our design space.

We outline these restrictions below:

• The solution has to be distributed because these communication networks can be very large

and centralized solutions are not scalable.

• In order to lower the communication overhead, the solution has to limit the amount of

information exchanged between the users and different network components. For example,

a solution that can adjust resource allocation based on online measurements is preferable

to one that requires explicit signaling mechanisms to communicate information.

• It is also important that the solution does not require the network components to store

and maintain per-user information (or per-flow information, as it is referred to in some of

the networking literature). Since the number of users sharing a network component can be

large, solutions that require maintaining per-user information will be costly and will not

scale to large networks.

• In the case where the solution uses online measurements to adjust the resource allocation,

the solution should also be resilient to measurement noise due to estimation errors.

In this paper, we develop a distributed solution to the multi-path utility maximization problem.

Our distributed solution has the aforementioned attributes desirable for online implementation.

The main technical contributions of the paper are as follows:

1) We provide a rigorous analysis of the convergence of our distributed algorithm. This anal-

ysis is done without requiring the two-level convergence structure that is typical in standard

techniques in the convex programming literature for dealing with the lack of strict concavity of

the problem. Note that algorithms based on these standard techniques are required to have an

outer level of iterations where each outer iteration consists of an inner level of iterations. For the

convergence of this class of algorithms to hold, the inner level of iterations must converge before

each outer iteration can proceed. Such a two-level convergence structure may be acceptable for

off-line computation, but not suitable for online implementation because in practice it is difficult

for the network to decide in a distributive fashion when the inner level of iterations can stop.

A main contribution of this paper is to establish the convergence of our distributed algorithm

without requiring such a two-level convergence structure.

2) By proving convergence, we are able to provide easy-to-verify bounds on the parameters

(i.e., step-sizes) of our algorithm to ensure convergence. Note that when distributed algorithms

based on our solution are implemented online, a practically important question is how to choose
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the parameters of the algorithm to ensure efficient network control. Roughly speaking, the step-

sizes used in the algorithm should be small enough to ensure stability and convergence, but not

so small such that the convergence becomes unnecessarily slow. The main part of this paper

addresses the question of parameter selection by providing a rigorous analysis of the convergence

of the distributed algorithm.

3) We also study the convergence of the algorithm in the presense of measurement noise and

provide guidelines on how to choose the step-sizes to reduce the disturbance in the resource

allocation due to noise.

4) Our studies reveal how the inherent multi-path nature of the problem can potentially lead

to such difficulties as instability and oscillation, and how these difficulties should be addressed

by the selection of the parameters in the distributed algorithm.

We believe that these results and insights are important for network designers who face these

types of resource allocation problems. In the rest of the paper, we will first present a number of

examples that provide motivation for the multi-path utility maximization problem, and discuss

related works in Section 2. We will then present our distributed solution in Section 3. The con-

vergence of the distributed algorithm will be studied in Sections 4 when there is no measurement

noise in the system, and in Section 5 when there is measurement noise. Simulation results are

presented in Section 6.

2 Applications and Related Work

We now give a few examples of the networking contexts where optimization problems of the

form (1) appear.

Example 1: A canonical example is the multi-path flow control problem in a wireline network

(sometimes referred to as the multi-path routing and congestion control problem) [2, 3, 4, 5].

The network has L links and I users. The capacity of each link l is Rl. Each user i has J(i)

alternative paths through the network. Let H l
ij = 1 if the path j of user i uses link l, H l

ij = 0,

otherwise. Let sij be the rate at which user i sends data on path j. The total rate sent by user i

is then
J(i)
∑

j=1

sij. Let Ui(
J(i)
∑

j=1

sij) be the utility received by the user i at rate
J(i)
∑

j=1

sij. The utility

function Ui(·) characterizes how satisfied user i is when it can transmit at a certain data rate.

We assume that Ui(·) is a concave function, which reflects the “law of diminishing returns.” The

flow control problem can be formulated as the following optimization problem [2, 3, 4, 5], which

is essentially in the same form as (1):
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max
[sij ]≥0

I
∑

i=1

Ui(

J(i)
∑

j=1

sij)

subject to
I

∑

i=1

J(i)
∑

j=1

H l
ijsij ≤ Rl for all l = 1, ..., L.

Example 2: We next consider the optimal routing problem, which deals with a dynamic group

of users instead of a static set of users as in Example 1. The network has L links. The capacity

of each link l is Rl. There are I classes of users. Users of class i arrive to the network according

to a Poisson process with rate λi. Each user of class i can be routed to one of the J(i) alternative

paths through the network. Let H l
ij = 1 if path j of class i uses link l, H l

ij = 0, otherwise. Each

user of class i, if admitted, will hold ri amount of resource on each of the links along the path that

it is routed to, and generate vi amount of revenue per unit time. The service time distribution

for users of class i is general with mean 1/µi. The service times are i.i.d. and independent of

the arrivals. The objective of the network is, by making admission and routing decisions for

each incoming user, to maximize the revenue collected from the users that are admitted into the

network.

The above optimal routing problem is important for networks that attempt to support users

with rigid Quality of Service (QoS) requirements. In fact, maximizing the global revenue can be

translated into minimizing the blocking probability, which has been used as the main performance

measure in numerous past comparison studies of QoS routing proposals [6, 7, 8]. Unfortunately,

the global optimal routing policy is usually difficult to solve. When the service time distribution

is exponential, we can formulate the problem as a Dynamic Programming problem. However,

the complexity of the solution grows exponentially with the number of classes. When the service

time distribution is general, there are few tools available to obtain the optimal routing policy.

Note that the revenue to be optimized here is a global performance measure defined over all

incoming users. Most QoS routing proposals deal with local optimality rather than this global

optimality, i.e., they attempt to optimize the routing decision for each incoming user based on

some performance measure defined at the time of the user’s arrival. These greedy approaches

cannot achieve (globally) optimal revenue because their local decisions tend to be myopic and

can easily lead to suboptimal configuration of the whole network. Understanding the global

performance tradeoffs of these locally optimized solutions appears to be a challenging problem,

especially if the network can only carry out route computation and link state updates infrequently

[6, 7, 8].

Despite the difficulty in solving the optimal routing policy, there exists a simple solution to
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the optimal routing problem that is asymptotically optimal when the capacity of the system is

large. It can be shown that the optimal long term average revenue that the network can achieve

is bounded by the following upper bound [9]:

max

pij≥0,
J(i)
∑

j=1
pij≤1,i=1,...,I

I
∑

i=1

λi

µi

J(i)
∑

j=1

pijvi (3)

subject to
I

∑

i=1

J(i)
∑

j=1

λi

µi

ripijH
l
ij ≤ Rl for all l,

The solution to the upper bound, ~p = [pij], induces the following simple proportional routing

scheme. In this scheme, each user of class i will be admitted with probability
J(i)
∑

j=1

pij, and once

admitted, will be routed to path j with probability pij/
J(i)
∑

j=1

pij. One can show that the above

scheme asymptotically achieves the upper bound when the capacity of the network is large [9].

This result holds even if the service time distribution is general. Hence, solving (3) gives us a

simple and asymptotically optimal routing policy. Note that (3) is a special case of (1) where

the utility function fi(·) is linear. It is also possible to generalize the result to the case of strictly

concave utility functions [10].

Readers can refer to [1] for another application of the multi-path utility maximization problem

where the network uses pricing to control the users’ behavior.

2.1 Related Work

The single-path utility maximization problem, i.e., when each user (or class) has only one path,

has been extensively studied in the past, mainly in the context of Internet flow control (see,

for example, [2, 11, 12, 13, 14] and the reference therein). However, the multi-path utility

maximization problem has received less attention in the literature [2, 3, 4, 5]. In [2], after

studying the single-path utility maximization problem, the authors briefly discuss the extension

to the multi-path case. They categorize the solutions into primal algorithms and dual algorithms.

Global convergence of the primal algorithms is studied in [2] for the case when feedback delays

are negligible. (On the other hand, the dual algorithms there have an oscillation problem as we

will discuss soon). Local stability of primal algorithms with feedback delays is further studied

in [5]. Since [2] and [5] use a penalty-function approach, in general the algorithms there can only

produce approximate solutions to the original problem (1).

The method in [3] can be viewed as an extension of the primal algorithms in [2] for computing
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exact solutions to problem (1). It employs a (discontinuous) binary feedback mechanism from the

network components to the users: each network component will send a feedback signal of 1 when

the total amount of resources consumed at the network component is greater than its capacity,

and it sends a feedback signal of 0 otherwise. The authors of [3] show that, if each network

component can measure the total amount of consumed resources precisely, their algorithm will

converge to the exact optimal solution of problem (1). However, their algorithm will not work

properly in the presence of measurement noise: if the network component can only estimate

the amount of consumed resources with some random error (we will see in Section 3.1 how such

situations arise), it could send a feedback signal of 1 erroneously even if the true amount of

resources consumed is less than its capacity (or, a feedback signal of 0 even if the true amount

of resources consumed exceeds its capacity). Therefore, the algorithm in [3] cannot produce the

exact optimal solution when there is measurement noise. The AVQ algorithm [12, 15] is also

worth mentioning as an extension of the primal algorithms in [2] for computing exact solutions.

However, the literature on the AVQ algorithm has focused on the single-path case. The extension

to the multi-path case has not been rigorously studied.

Dual algorithms that can produce exact solutions are developed in [11] for the single-path

case. When extended to the multi-path case, both this algorithm and the dual algorithm in

[2] share the same oscillation problem. That is, although the dual variables in their algorithms

may converge, the more meaningful primal variables (i.e., the resource allocation xij) will not

converge. (We will illustrate this problem further in Section 3.) This difficulty arises mainly

because the objective function of problem (1) is not strictly concave in the primal variables

xij once some users have multiple paths. The authors in [4] attempt to address the oscillation

problem by adding a quadratic term onto the objective function. Their approach bears some

similarities to the idea that we use in this paper. However, they do not provide rigorous proofs

of convergence for their algorithms.

Another method that is standard in convex programming for dealing with the lack of strict

concavity is the Alternate Direction Method of Multipliers (ADMM) [16, p249, P253]. It has

known convergence property (when there is no measurement noise) and can also be implemented

in a distributed fashion. However, when implemented in a network setting, the ADMM algorithm

requires substantial communication overhead. At each iteration, the ADMM algorithm requires

that each network component divides the amount of unallocated capacity equally among all users

sharing the network component and communicates the share back to each user. Each user not

only needs to know the cost of each path (as in the distributed algorithm we will propose in this

paper), but also needs to know its share of unallocated capacity at each network component.
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Further, in a practical network scenario where the set of active users in the system keep changing,

unless the network has a reliable signaling mechanism, even keeping track of the current number

of active users in the system requires maintaining per-user information. It is also unclear how

the ADMM algorithm would behave in the presence of measurement noise. In this paper, we

will study new solutions that are specifically designed for online implementation, and that do

not require each network component to store and maintain per-user information.

3 The Distributed Algorithm

As we have pointed out earlier, one of the main difficulties in solving (1) is that, once some

users have multiple alternative paths, the objective function of (1) is not strictly concave. As

we go into the details of the analysis, we will see the manifestation of this difficulty in different

aspects. At a high level, since the primal problem is not strictly concave, the dual problem may

not be differentiable at every point. In this paper, we would still like to use a duality based

approach, because the dual problem usually has simpler constraints and is easily decomposable.

To circumvent the difficulty due to the lack of strict concavity, we use ideas from Proximal

Optimization Algorithms [16, p232]. The idea is to add a quadratic term to the objective

function. Let ~xi = [xij, j = 1, ..., J(i)] and

Ci = {~xi|xij ≥ 0 for all j and

J(i)
∑

j=1

xij ∈ [mi,Mi]}, i = 1, ..., I. (4)

Let ~x = [~x1, ..., ~xI ]
T and let C denote the Cartesian product of Ci, i.e., C =

⊗I

i=1 Ci. We now

introduce an auxiliary variable yij for each xij. Let ~yi = [yij, j = 1, ..., J(i)] and ~y = [~y1, .., ~yI ]
T .

The optimization then becomes:

max
~x∈C,~y∈C

I
∑

i=1

fi(

J(i)
∑

j=1

xij) −
I

∑

i=1

J(i)
∑

j=1

ci

2
(xij − yij)

2 (5)

subject to
I

∑

i=1

J(i)
∑

j=1

El
ijxij ≤ Rl for all l,

where ci is a positive number chosen for each i. It is easy to show that the optimal value of (5)

coincides with that of (1). In fact, Let ~x∗ denote the maximizer of (1), then ~x = ~x∗, ~y = ~x∗ is the

maximizer of (5). Note that although a maximizer of (1) always exists, it is usually not unique

since the objective function is not strictly concave.

The standard Proximal Optimization Algorithm then proceeds as follows:
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Algorithm P :

At the t-th iteration,

P1) Fix ~y = ~y(t) and maximize the augmented objective function with respect to ~x. To

be precise, this step solves:

max
~x∈C

I
∑

i=1

fi(

J(i)
∑

j=1

xij) −
I

∑

i=1

J(i)
∑

j=1

ci

2
(xij − yij)

2 (6)

subject to
I

∑

i=1

J(i)
∑

j=1

El
ijxij ≤ Rl for all l.

Note that the maximization is taken over ~x only. With the addition of the quadratic term
J(i)
∑

j=1

ci

2
(xij − yij)

2, for any fixed ~y, the primal objective function is now strictly concave with

respect to ~x. Hence, the maximizer of (6) exists and is unique. Let ~x(t) be the solution to

this optimization.

P2) Set ~y(t + 1) = ~x(t).

It is easy to show that such iterations will converge to the optimal solution of problem (1) as

t → ∞ [16, p233].

Step P1 still needs to solve a global non-linear programming problem at each iteration. Since

the objective function in (6) is now strictly concave, we can use standard duality techniques. Let

ql, l = 1, ..., L be the Lagrange Multipliers for the constraints in (6). Let ~q = [q1, ..., qL]T . Define

the Lagrangian as:

L(~x, ~q, ~y) =
I

∑

i=1

fi(

J(i)
∑

j=1

xij) −
L

∑

l=1

ql(
I

∑

i=1

J(i)
∑

j=1

El
ijxij − Rl) −

I
∑

i=1

J(i)
∑

j=1

ci

2
(xij − yij)

2 (7)

=
I

∑

i=1







fi(

J(i)
∑

j=1

xij) −

J(i)
∑

j=1

xij

L
∑

l=1

El
ijq

l −

J(i)
∑

j=1

ci

2
(xij − yij)

2







+
L

∑

l=1

qlRl.

Let qij =
L
∑

l=1

El
ijq

l, ~qi = [qij, j = 1, ..., J(i)]. The objective function of the dual problem is then:

D(~q, ~y) = max
~x∈C

L(~x, ~q, ~y) =
I

∑

i=1

Bi(~qi, ~yi) +
L

∑

l=1

qlRl, (8)

where

Bi(~qi, ~yi) = max
~xi∈Ci







fi(

J(i)
∑

j=1

xij) −

J(i)
∑

j=1

xijqij −

J(i)
∑

j=1

ci

2
(xij − yij)

2







. (9)
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The dual problem of (6), given ~y, then corresponds to minimizing D over the dual variables ~q,

i.e.,

min
~q≥0

D(~q, ~y).

Since the objective function of the primal problem (6) is strictly concave, the dual is always

differentiable. Let ~q = ~q(t′). The gradient of D is

∂D

∂ql
= Rl −

I
∑

i=1

J(i)
∑

j=1

El
ijx

0
ij(t

′),

where x0
ij(t

′) solves (9) for ~q = ~q(t′). The step P1 can then be solved by gradient descent iterations

on the dual variables ~q, i.e.,

ql(t′ + 1) =



ql(t′) + αl(
I

∑

i=1

J(i)
∑

j=1

El
ijx

0
ij(t

′) − Rl)





+

, (10)

where [·]+ denotes the projection to [0, +∞). It is again easy to show that, given ~y, the dual

update (10) will converge to the minimizer of D(~q, ~y) as t′ → ∞, provided that the step-sizes αl

are sufficiently small [16, p214].

Remark (The Oscillation Problem Addressed): From (9) we can observe the potential

oscillation problem caused by the multi-path nature of problem (1), and the crucial role played by

the additional quadratic term in dampening this oscillation. Assume that there is no additional

quadratic term, i.e., ci = 0. Readers can verify that, when (9) is solved for any user i that

has multiple alternative paths, only paths that have the least qij will have positive xij. That

is, qij > mink qik ⇒ xij = 0. This property can easily lead to oscillation of xij when the dual

variables ~q are being updated. To see this, assume that a user i has two alternative paths, and

the sum of the dual variables on these two paths, qi,1 =
L
∑

l=1

El
i,1q

l and qi,2 =
L
∑

l=1

El
i,2q

l, are close to

each other. At one time instant qi,1 could be greater than qi,2, in which case the maximum point

of (9) satisfies xi,1 = 0 and xi,2 > 0. At the next time instant, since more resources are consumed

on network components on path 2, the dual variables ~q could be updated such that qi,2 > qi,1

(see the update equation (10)). In this case, the maximum point of (9) will require that xi,1 > 0

and xi,2 = 0, i.e., the resource allocation will move entirely from path 2 over to path 1. This

kind of flip-floping can continue forever and is detrimental to network control. When ci > 0,

however, the maximum point ~xi of (9) is continuous in ~qi (shown later in Lemma 1). Hence, the

quadratic term serves a crucial role to dampen the oscillation and stablize the system.
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3.1 Towards Constructing Online Solutions

The algorithm P that we have constructed requires the two-level convergence structure typical in

proximal optimization algorithms. The algorithm P consists of an outer level of iterations, i.e.,

iterations P1 and P2, where each outer iteration P1 consists of an inner level of iterations (10).

For the convergence of algorithm P to hold, the inner level of iterations (10) must converge before

each outer iteration can proceed from step P1 to P2. Such a two-level convergence structure is

unsuitable for online implementation because in practice, it is difficult for the network elements

to decide in a distributive fashion when the inner level of iterations should stop.

Despite this difficulty, the main building blocks (9) and (10) of algorithm P have several

attractive attributes desirable for online implementation. In particular, all computation can be

carried out based on local information, and hence can be easily distributed. More precisely, in

the definition of the dual objective function D(~q, ~y) in (8), we have decomposed the original

problem into I separate subproblems for each user i = 1, ..., I. Given ~q, each subproblem Bi

(9) can now be solved independently. If we interpret ql as the implicit cost per unit resource on

network component l, then qij is the cost per unit resource on path j of user i. We can call qij

the cost of path j of user i. Thus the costs qij, j = 1, ..., J(i), capture all the information that

each user i needs to know in order to determine its resource allocation xij. Given qij, an efficient

algorithm can solve the subproblem (9) in at most O[J(i) log J(i)] steps (see Appendix A).

Further, according to (10), the implicit cost ql can be updated at each network component

l based on the difference between the capacity Rl and the aggregate load
I

∑

i=1

J(i)
∑

j=1

El
ijx

0
ij(t

′). In

many applications, this aggregate load can be measured by each network component directly. For

example, in the multi-path flow control problem (Example 1), the aggregate load
I

∑

i=1

J(i)
∑

j=1

H l
ijsij

is simply the aggregate data rate going through link l, which can be estimated by counting the

total amount of data forwarded on the link over a certain time window. Hence, no per-user

information needs to be stored or maintained. In some applications, there is yet another reason

why the measurement-based approach is advantageous. That is, by measuring the aggregate

load directly, the algorithm does not need to rely on prior knowledge of the parameters of the

system, and hence can automatically adapt to the changes of these parameters. For example,

in the optimal routing problem (Example 2), each link l needs to estimate the aggregate load
I

∑

i=1

J(i)
∑

j=1

λi

µi
ripijH

l
ij. Since the probability that a user of class i is routed to path j is pij, the arrival

process of users of class i on link l is a Poisson process with rate λipij. Assume that neither the

mean arrival rate λi nor the mean service time 1/µi are known a priori, but each user knows its

own service time in advance. Each link can then estimate the aggregate load as follows: over a
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certain time window W , each link l collects the information of the arriving users from all classes

to link l. Let w be the total number of arrivals during W . Let rk, Tk, k = 1, ...w denote the

bandwidth requirement and the service time, respectively, of the k-th arrival. (This information

can be carried along with the connection setup message when the user arrives.) Let

θ =

∑w

k=1 rkTk

W
.

Then, it is easy to check that

E[θ] =
I

∑

i=1

J(i)
∑

j=1

λi

µi

ripijH
l
ij,

i.e., θ is an unbiased estimate of the aggregate load. Note that no prior knowledge on the demand

parameters λi and µi is needed in the estimator. Hence, the algorithm can automatically track

the changes in the arrival rates and service times of the users [10].

3.2 The New Algorithm

In the rest of the paper, we will study the following algorithm that generalizes algorithm P .

Algorithm A:

Fix K ≥ 1. At the t-th iteration:

A1) Fix ~y = ~y(t) and use gradient descent iteration (10) on the dual variable ~q for K

times. To be precise, let ~q(t, 0) = ~q(t). Repeat for each k = 0, 1, ...K − 1:

Let ~x(t, k) be the primal variable that solves (9) given the dual variable ~q(t, k), i.e., ~x(t, k) =

argmax
~x∈C

L(~x, ~q(t, k), ~y(t)). Update the dual variables by

ql(t, k + 1) =



ql(t, k) + αl(
I

∑

i=1

J(i)
∑

j=1

El
ijxij(t, k) − Rl)





+

, for all l. (11)

A2) Let ~q(t + 1) = ~q(t,K). Let ~z(t) be the primal variable that solves (9) given the new

dual variable ~q(t + 1), i.e., ~z(t) = argmax
~x∈C

L(~x, ~q(t + 1), ~y(t)). Set

yij(t + 1) = yij(t) + βi(zij(t) − yij(t)), for all i, j, (12)

where 0 < βi ≤ 1 for each i.

As discussed in Section 3.1, in certain applications the aggregate load
I

∑

i=1

J(i)
∑

j=1

El
ijxij(t, k) is

estimated through online measurement with non-negligible noises. The update (11) should then
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be replaced by:

ql(t, k + 1) =



ql(t, k) + αl(
I

∑

i=1

J(i)
∑

j=1

El
ijxij(t, k) − Rl + nl(t, k))





+

, (13)

where nl(t, k) represents the measurement noise at link l.

From now on, we will refer to (11) or (13) as the dual update, and (12) as the primal update.

A stationary point of the algorithm A is defined to be a primal-dual pair ( ~y∗, ~q∗) such that

~y∗ = argmax
~x∈C

L(~x, ~q∗, ~y∗),
I

∑

i=1

J(i)
∑

j=1

El
ijy

∗
ij ≤ Rl for all l, (14)

ql,∗ ≥ 0, and ql,∗(
I

∑

i=1

J(i)
∑

j=1

El
ijy

∗
ij − Rl) = 0 for all l.

These are precisely the complementary slackness conditions for the problem (1). By standard

duality theory, for any stationary point ( ~y∗, ~q∗) of the algorithm A, ~x = ~y∗ solves the problem (1).

The main components of algorithm A (i.e., the primal and dual updates) are essentially the

same as that of the standard proximal optimization algorithm P . Therefore, our new algorithm

A inherits from algorithm P those attributes desirable for online implementation. However, the

main difference is that, in algorithm A, only K number of dual updates are executed at each

iteration of step A1. If K = ∞, then algorithm A and algorithm P will be equivalent, i.e., at

each iteration of step A1 the optimization (6) is solved exactly. As we discussed earlier, such a

two-level convergence structure is inappropriate for online implementation because it would be

impractical to carry out an algorithm in phases where each phase consists of an infinite number of

dual updates. Further, because each phase only serves to solve the augmented problem (6), such

a two-level convergence structure is also likely to slow the convergence of the entire algorithm as

too many dual updates are wasted at each phase.

On the other hand, when K < ∞, at best an approximate solution to (6) is obtained at each

iteration of step A1. If the accuracy of the approximate solution can be controlled appropriately

(see [17]), one can still show convergence of algorithm A. However, in this case the number of

dual updates K in step A1 has to depend on the required accuracy and usually needs to be large.

Further, for online implementation, it is also difficult to control the accuracy of the approximate

solution to (6) in a distributed fashion.

In this work, we take an entirely different approach. We do not require a two-level convergence

structure and we allow an arbitrary choice of K ≥ 1. Hence, our approach does not impose any

requirement on the accuracy of the approximate solution to (6). As we just discussed, relaxing the

13



algorithm in such a way is a crucial step in making the algorithm amenable to online distributed

implementation. Somewhat surprisingly, we will show in the next section that algorithm A will

converge for any K ≥ 1.

4 Convergence without Measurement Noise

In this section, we study the convergence of algorithm A when there is no measurement noise, i.e.,

when the dynamics of the system are described by (11) and (12). The convergence of algorithm

A can be most easily understood by looking at its continuous-time approximation as follows:

Algorithm AC:

A1-C) dual update:

d

dt
ql(t) =











α̂l(
I

∑

i=1

J(i)
∑

j=1

El
ijxij(t) − Rl) if ql(t) > 0 or

I
∑

i=1

J(i)
∑

j=1

El
ijxij(t) ≥ Rl

0 otherwise

, (15)

where ~x(t) = argmax
~x∈C

L(~x, ~q(t), ~y(t)).

A2-C) primal update:
d

dt
yij(t) = β̂i(xij(t) − yij(t)). (16)

Note that α̂l dt and β̂i dt would correspond to the step-sizes αl and βi in the discrete-time

algorithm A. The continuous-time algorithm AC can be view as the functional limit of the

discrete-time algorithm by driving the step-sizes αl and βi to zero and by appropriately rescaling

time (see Section 5 and Appendix D).

For the sake of brevity, we will use the following vector notation for the rest of the paper.

Let E denote the matrix with L rows and
∑I

i=1 J(i) columns such that the (l,
∑i−1

k=1 J(k) + j)

element is El
ij. Let R = [R1, R2, ...Rl]T . Then the constraint of problem (1) can be written as

E~x ≤ R. Let V and B̂ be
∑I

i=1 J(i)×
∑I

i=1 J(i) diagonal matrices, where the (
∑i−1

k=1 J(k)+1)-th

to (
∑i

k=1 J(k))-th diagonal elements are ci and β̂i, respectively (i.e., each ci or β̂i is repeated

J(i) times). Let Â be the L × L diagonal matrix whose l-th diagonal element is α̂l. It will

also be convenient to view the objective function in (1) as a concave function of ~x, i.e, f(~x) =
∑I

i=1 fi(
∑J(i)

j=1 xij). Further, we can incorporate the constraint ~x ∈ C into the definition of the

function f by setting f(~x) = −∞ if ~x /∈ C. Then the function f is still concave, and the problem

(1) can be simply rephrased as maximizing f(~x) subject to E~x ≤ R. The Lagrangian (7) also
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becomes:

L(~x, ~q, ~y) = f(~x) − ~xT ET~q −
1

2
(~x − ~y)T V (~x − ~y) + ~qT R. (17)

The continuous time algorithm AC can then be viewed as the projected forward iteration for

solving the zeros of the following monotone mapping [18]:

T : [~y, ~q] → [~u,~v], (18)

with

~u(~y, ~q) = −V ( ~x0(~y, ~q) − ~y), ~v(~y, ~q) = −(E ~x0(~y, ~q) − R),

where ~x0(~y, ~q) = argmax~x L(~x, ~q, ~y). Define the inner product

〈 [~y, ~q], [~u,~v] 〉 = ~yT~u + ~qT~v, (19)

and the following norms:

||~q||Â = ~qT Â−1~q, ||~y||V = ~yT V ~y, ||~y||B̂V = ~yT B̂−1V ~y. (20)

Part 3 of the following Lemma shows that the mapping T is monotone [18]. Note that a mapping

T is monotone if

〈 X1 − X2, T X1 − T X2 〉 ≥ 0 for any X1 and X2. (21)

Lemma 1 Fix ~y = ~y(t). Let ~q1, ~q2 be two implicit cost vectors, and let ~x1, ~x2 be the corresponding

maximizers of the Lagrangian (17), i.e., ~x1 = argmax~x L(~x, ~q1, ~y(t)) and ~x2 = argmax~x L(~x, ~q2, ~y(t)).

Then,

1. (~q2 − ~q1)
T E(~x2 − ~x1) ≤ −(~x2 − ~x1)

T V (~x2 − ~x1).

2. (~x2 − ~x1)
T V (~x2 − ~x1) ≤ (~q2 − ~q1)

T EV −1ET (~q2 − ~q1), and

3. 〈 [~y1 − ~y2, ~q1 − ~q2], T [~y1, ~q1] − T [~y2, ~q2] 〉 ≥ 0 for any (~y1, ~q1) and (~y2, ~q2).

Remark: Part 2 of Lemma 1 also shows that, given ~y, the mapping from ~q to ~x is continuous.

Proof: We start with some additional notation. For ~x0 = argmax~x L(~x, ~q, ~y), by taking subgra-

dients (see [17]) of the Lagrangian (17) with respect to ~x, we can conclude that there must exist

a subgradient ∇f( ~x0) of f at ~x0 such that

∇f( ~x0)|~y,~q − ET~q − V ( ~x0 − ~y) = 0. (22)
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Note that ∇f( ~x0)|~y,~q defined above depends not only on the function f and the vector ~x0, but

also on ~y and ~q. However, in the derivation that follows, the dependence on ~y and ~q is easy

to identify. Hence, for the sake of brevity, we will drop the subscripts and write ∇f( ~x0) when

there is no ambiguity. Similarly, let ( ~y∗, ~q∗) denote a stationary point of algorithm A. Then

~y∗ = argmax~x L(~x, ~q∗, ~y∗), and we can define ∇f(~y∗) as the subgradient of f at ~y∗ such that

∇f(~y∗) − ET ~q∗ = 0. (23)

Applying (22) for ~q1 and ~q2, and taking difference, we have,

ET (~q2 − ~q1) = [∇f(~x2) −∇f(~x1)] − V (~x2 − ~x1).

The concavity of f dictates that, for any ~x1, ~x2 and ∇f(~x1), ∇f(~x2),

[∇f(~x2) −∇f(~x1)]
T (~x2 − ~x1) ≤ 0. (24)

Hence,

(~q2 − ~q1)
T E(~x2 − ~x1) = [∇f(~x2) −∇f(~x1)]

T (~x2 − ~x1) − (~x2 − ~x1)
T V (~x2 − ~x1)

≤ −(~x2 − ~x1)
T V (~x2 − ~x1).

Part 2 of the Lemma can be shown analogously. To show Part 3, let ~x
′

2 = argmax~x≥0 L(~x, ~q2, ~y2).

Applying (22) for ~q1, ~y1 and ~q2, ~y2, and taking difference, we have

ET (~q2 − ~q1) =
[

∇f(~x
′

2) −∇f(~x1)
]

− V (~x
′

2 − ~x1) + V (~y2 − ~y1).

Hence, using (24) again, we have,

〈 [~y1 − ~y2, ~q1 − ~q2], T [~y1, ~q1] − T [~y2, ~q2] 〉

= −(~y1 − ~y2)
T V (~x1 − ~x

′

2 − (~y1 − ~y2)) − (~q1 − ~q2)
T E(~x

′

2 − ~x1)

≥ ||~y1 − ~y2||
2
V − 2(~x1 − ~x

′

2)
T V (~y1 − ~y2) + ||~x1 − ~x

′

2 ||
2
V ≥ 0. (25)

Q.E.D.

We can now prove the following result.

Proposition 2 The continuous-time algorithm AC will converge to a stationary point ( ~y∗, ~q∗)

of the algorithm A for any choice of α̂l > 0 and β̂i > 0.
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Proof: We can prove Proposition 2 using the following Lyapunov function. Let

V (~y, ~q) = ||~q − ~q∗||Â + ||~y − ~y∗||B̂V , (26)

where the norms are defined in (20). We will first show that, if (~y(t), ~q(t)) is governed by the

algorithm AC, V (~y(t), ~q(t)) is non-increasing in t. To see this, note that,

d

dt
V (~y(t), ~q(t)) = 2(~q(t) − ~q∗)T Â−1 d

dt
~q(t) + 2(~y(t) − ~y∗)T B̂−1V

d

dt
~y(t). (27)

By (15), we have for all l,

2(ql(t) − ql,∗)
d

dt
ql(t) ≤ 2αl(ql(t) − ql,∗)(

I
∑

i=1

J(i)
∑

j=1

El
ijxij(t) − Rl)

= 2αl(ql(t) − ql,∗)
I

∑

i=1

J(i)
∑

j=1

El
ij(xij(t) − y∗

ij)

+2αl(ql(t) − ql,∗)(
I

∑

i=1

J(i)
∑

j=1

El
ijy

∗
ij − Rl).

Since (~y∗, ~q∗) is a stationary point,
I

∑

i=1

J(i)
∑

j=1

El
ijy

∗
ij−Rl ≤ 0 and ql,∗(

I
∑

i=1

J(i)
∑

j=1

El
ijy

∗
ij−Rl) = 0. Further,

since ql(t) ≥ 0, we obtain,

2(ql(t) − ql,∗)
d

dt
ql(t) ≤ 2αl(ql(t) − ql,∗)

I
∑

i=1

J(i)
∑

j=1

El
ij(xij(t) − y∗

ij). (28)

Substituting (16) and (28) into (27), we have,

d

dt
V (~y(t), ~q(t)) = 2(~q(t) − ~q∗)T Â−1 d

dt
~q(t) + 2(~y(t) − ~y∗)T B̂−1V

d

dt
~y(t)

≤ 2(~q(t) − ~q∗)T E(~x(t) − ~y∗) + 2(~y(t) − ~y∗)T V (~x(t) − ~y(t))

= −2〈 [~y(t) − ~y∗, ~q(t) − ~q∗], T [~y(t), ~q(t)] − T [~y∗, ~q∗] 〉,

where the inner product is defined in (19). Hence, by Lemma 1,

d

dt
V (~y(t), ~q(t)) ≤ 0.

In fact, using (25), we can show that

d

dt
V (~y(t), ~q(t)) ≤ −2(~x(t) − ~y(t))T V (~x(t) − ~y(t)) ≤ 0. (29)
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Therefore, V (~y(t), ~q(t)) must converge to a limit V0 as t → ∞, i.e.,

lim
t→∞

||~q(t) − ~q∗||Â + ||~y(t) − ~y∗||B̂V = V0 ≥ 0. (30)

It remains to show that V0 = 0 for some choice of the stationary point ( ~y∗, ~q∗). Towards this end,

define a set M to be an invariant set with respect to algorithm AC if, starting from any point

in M, the trajectory (~y, ~q) governed by the algorithm AC will lie entirely in M. Let M0 denote

the set of limit points of (~y(t), ~q(t)). Since V (~y(t), ~q(t)) is non-negative, by LaSalle’s Theorem

[19, p115], it follows that M0 is an invariant set, and d
dt

V (~y, ~q) = 0 for any points in M0. We

will now show that M0 contains a stationary point of algorithm A. To see this, pick a point

(~y0, ~q0) ∈ M0. Let ~̃y(0) = ~y0 and ~̃q(0) = ~q0. Let (~̃y(t), ~̃q(t)) denote the trajectory of algorithm

AC starting from (~y0, ~q0). We first study ~̃y(t). Using the fact that

d

dt
V (~̃y(t), ~̃q(t)) = 0 for all t ≥ 0,

we have, from (29),

~̃x(t) = ~̃y(t) for all t ≥ 0,

where ~̃x(t) = argmax~x L(~x,~̃q(t), ~̃y(t)). Hence,

d

dt
~̃y(t) = B̂(~̃x(t) − ~̃y(t)) = 0.

Therefore, ~̃x(t) = ~̃y(t) = ~̃y(0) for all t ≥ 0. We next study ~̃q(t). For any link l, there are two

possibilities. The first possibility is

I
∑

i=1

J(i)
∑

j=1

El
ijx̃ij(t) =

I
∑

i=1

J(i)
∑

j=1

El
ij ỹij(0) > Rl. (31)

If this was true, since

d

dt
q̃l(t) = αl(

I
∑

i=1

J(i)
∑

j=1

El
ijx̃ij(t) − Rl) = αl(

I
∑

i=1

J(i)
∑

j=1

El
ij ỹij(0) − Rl) > 0,

we have q̃l(t) → ∞, as t → ∞. It implies that x̃ij(t) → 0, as t → ∞, for all i, j such that E l
ij > 0.

We then conclude that
I

∑

i=1

J(i)
∑

j=1

El
ijx̃ij(t) → 0 as t → ∞.

This contradicts with the assumption (31). Hence, only the other possibility can be true, i.e.,

I
∑

i=1

J(i)
∑

j=1

El
ijx̃ij(t) =

I
∑

i=1

J(i)
∑

j=1

El
ij ỹij(0) ≤ Rl.
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Note that if the above inequality is strict, then q̃l(t) will decrease to zero after a finite time t.

On the other hand, q̃l(t) will be unchanged if q̃l(t) = 0 or
I

∑

i=1

J(i)
∑

j=1

El
ij ỹij(0) = Rl.

Define (~̃y0, ~̃q0) as

~̃y0 = ~y0 = ~̃y(0)

q̃l
0 =



















ql
0 if

I
∑

i=1

J(i)
∑

j=1

El
ij ỹij(0) = Rl

0 if
I

∑

i=1

J(i)
∑

j=1

El
ij ỹij(0) < Rl

.

We can now conclude that, starting from (~y0, ~q0), eventually (~̃y(t), ~̃q(t)) = (~̃y0, ~̃q0). By the

definition of M0, (~̃y0, ~̃q0) is also a limit point of (~y(t), ~q(t)). Further, (~̃y0, ~̃q0) satisfies the definition

of the stationary point of algorithm A. Pick a subsequence (~y(th), ~q(th)), h = 1, 2, ... such that

th → ∞ and (~y(th), ~q(th)) → (~̃y0, ~̃q0), as h → ∞. We can now replace (~y∗, ~q∗) by (~̃y0, ~̃q0) in (30),

and conclude that

lim
t→∞

||~q(t) − ~̃q0||Â + ||~y(t) − ~̃y0||B̂V

= lim
h→∞

||~q(th) − ~̃q0||Â + ||~y(th) − ~̃y0||B̂V

= 0.

The result then follows. Q.E.D.

We next study the convergence of the discrete-time algorithm A. Since the continuous-time

algorithm AC can be viewed as an approximation of the discrete-time algorithm A when the step-

sizes are close to zero, we can then expect from Proposition 2 that algorithm A will converge when

the step-sizes αl and βi are small. However, when these step-sizes are too small, convergence

is unnecessarily slow. Hence, in practice, we would like to choose larger step-sizes, while still

preserving the convergence of the algorithm. Such knowledge on the step-size rule can only be

obtained by studying the convergence of the discrete-time algorithm directly.

Typically, convergence of the discrete-time algorithms requires stronger conditions on the

associated mapping T defined in (18), i.e., the mapping T needs to be strictly monotone [18]. A

mapping T is strictly monotone if and only if

〈 X1 − X2, T X1 − T X2 〉 ≥ d||T X1 − T X2|| for any vectors X1 and X2, (32)

where d is a positive constant and || · || is an appropriately chosen norm. Note that strict

monotonicity in (32) is stronger than monotonicity in (21). Such type of strict monotonicity
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indeed holds for the case when K = ∞, which is why the convergence is much easier to establish

under the two-level convergence structure. However, when K < ∞, strict monotonicity will

not hold for the mapping T defined in (18) whenever some users in the network have multiple

paths. To see this, choose X2 = [~y∗, ~q∗] to be a stationary point of algorithm A and assume that

E ~y∗ = R. Let X1 = [~y, ~q∗] such that
J(i)
∑

j=1

yij =
J(i)
∑

j=1

y∗
ij for all i. Note that for a user i that has

multiple paths, we can still choose yij 6= y∗
ij for some j such that E~y 6= R. By comparing with the

complementary slackness conditions (14), we have ~x0(~y, ~q∗) , argmax~x L(~x, ~q∗, ~y) = ~y. Hence,

~u(~y, ~q∗) = 0, and ~v(~y, ~q∗) = −(E~y − R).

Further, since ~u(~y∗, ~q∗) = 0 and ~v(~y∗, ~q∗) = 0 by the complementary slackness conditions (14),

we have

〈 X1 − X2, T X1 − T X2 〉 = 〈 [~y − ~y∗, ~q∗ − ~q∗], T [~y, ~q∗] − T [~y∗, ~q∗] 〉

= [~y − ~y∗]T (~u(~y, ~q∗) − ~u(~y∗, ~q∗)) + ~0 T (~v(~y, ~q∗) − ~v(~y∗, ~q∗)) = 0.

However, T X1 − T X2 = [0,−(E~y − R)] 6= 0. Hence, the inequality (32) will never hold! As we

have just seen, it is precisely the multi-path nature of the problem that leads to this lack of strict

monotonicity. (One can indeed show that (32) would have held if all users had one single path

and the utility functions fi(·) were strictly concave.)

This lack of strict monotonicity when K < ∞ forces us to carry out a more refined convergence

analysis than that in the standard convex programming literature. We will need the following

key supporting result. Let (~y∗, ~q∗) denote a stationary point of algorithm A. Using (24), we have

[

∇f(~x1) −∇f(~y∗)
]T

(~x1 − ~y∗) ≤ 0. (33)

The following Lemma can be viewed as an extension of the above inequality. The proof is very

technical and is given in Appendix B.

Lemma 3 Fix ~y = ~y(t). Let ~q1, ~q2 be two implicit cost vectors, and let ~x1, ~x2 be the corresponding

maximizers of the Lagrangian (17). Then,

[

∇f(~x1) −∇f(~y∗)
]T

(~x2 − ~y∗) ≤
1

2
(~q2 − ~q1)

T EV −1ET (~q2 − ~q1),

where ∇f(~x1) and ∇f(~y∗) are defined in (22) and (23), respectively.

Remark: If ~q2 = ~q1, then ~x2 = ~x1 and we get back to (33). Lemma 3 tells us that as long as ~q1

is not very different from ~q2, the cross-product on the left hand side will not be far above zero

either.
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We can then prove the following main result, which establishes the sufficient condition on the

step-sizes for the convergence of the discrete-time algorithm A.

Proposition 4 Fix 1 ≤ K ≤ ∞. As long as the step-size αl is small enough, algorithm A

will converge to a stationary point ( ~y∗, ~q∗) of the algorithm, and ~x∗ = ~y∗ will solve the original

problem (1). The sufficient condition for convergence is:

max
l

αl <















2
SL

mini ci if K = ∞
1

2SL
mini ci if K = 1

4
5K(K+1)SL

mini ci if K > 1

,

where L = max{
L
∑

l=1

El
ij, i = 1, ..., I, j = 1, ...J(i)}, and S = max{

I
∑

i=1

J(i)
∑

j=1

El
ij, l = 1, ..., L}.

Proposition 4 establishes the convergence of algorithm A for any value of K (even K = 1 is

good enough). Hence, the typical two-level convergence structure is no longer required. Further,

we observe that the sufficient condition for convergence when K = 1 differs from that of K = ∞

by only a factor of 4. Note that for K = ∞, the sufficient condition in fact ensures the convergence

of the dual updates to the solution of the augmented problem (6) during one iteration of step

A1. On the other hand, the sufficient condition for K = 1 ensures the convergence of the entire

algorithm A. By showing that the sufficient conditions for the two cases differ by only a factor

of 4, we can infer that the convergence of the entire algorithm when K = 1 is not necessarily

much slower than the convergence of one iteration of step A1 when K = ∞. Hence, the algorithm

A with K = 1 in fact converges much faster. For K > 1, our result requires that the step-size

be inversely proportional to K2. This is probably not as tight a result as one could get: we

conjecture that the same condition for K = 1 would work for any K. However, we leave this

for future work. We also note that ci appears on the right hand side of the sufficient conditions.

Hence, by making the objective function more concave, we also relax the requirement on the

step-sizes αl. Finally, Proposition 4 indicates that convergence will hold for any βi (the step-size

in the primal update) that is in (0, 1]. In summary, the discrete-time analysis allows much wider

choices of the step-sizes than those predicted by the continuous-time analysis.

Proof of Proposition 4 : For the sake of brevity, we will report the case when K = 1 in the

main text, and report the proof for the other cases in Appendix C. Define matrices A and B

analogously to matrices Â and B̂, respectively, except that their diagonal elements are now filled

with the step-sizes αl and βi of the discrete-time algorithm A. Define the norms analogously to

(20). When K = 1,

~q(t + 1) = [~q(t) + A(E~x(t) − R)]+. (34)
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Let (~y∗, ~q∗) be any stationary point of algorithm A. We will show that the Lyapunov function

V (~y(t), ~q(t)) = ||~q(t) − ~q∗||A + ||~y(t) − ~y∗||BV

is non-increasing in t. Using the property of the projection mapping [16, Proposition 3.2(b),

p211], we have

(~q(t + 1) − ~q∗)T A−1(~q(t + 1) − [~q(t) + A(E~x(t) − R)]) ≤ 0. (35)

Hence,

||~q(t + 1) − ~q∗||A = ||~q(t) − ~q∗||A − ||~q(t + 1) − ~q(t)||A + 2(~q(t + 1) − ~q∗)T A−1(~q(t + 1) − ~q(t))

≤ ||~q(t) − ~q∗||A − ||~q(t + 1) − ~q(t)||A + 2(~q(t + 1) − ~q∗)T (E~x(t) − R) (36)

≤ ||~q(t) − ~q∗||A − ||~q(t + 1) − ~q(t)||A + 2(~q(t + 1) − ~q∗)T E(~x(t) − ~y∗). (37)

where in the last step we have used the fact that E ~y∗ − R ≤ 0 and ~q∗
T
(E ~y∗ − R) = 0. On the

other hand, since yij(t + 1) = (1 − βi)yij(t) + βizij(t), we have

(yij(t + 1) − y∗
ij)

2 ≤ (1 − βi)(yij(t) − y∗
ij)

2 + βi(zij(t) − y∗
ij)

2

||~y(t + 1) − ~y∗||BV − ||~y(t) − ~y∗||BV ≤ ||~z(t) − ~y∗||V − ||~y(t) − ~y∗||V . (38)

Hence, combining (37) and (38), we have,

||~q(t + 1) − ~q∗||A + ||~y(t + 1) − ~y∗||BV − (||~q(t) − ~q∗||A + ||~y(t) − ~y∗||BV )

≤ −||~q(t + 1) − ~q(t)||A + 2(~q(t + 1) − ~q∗)T E(~x(t) − ~y∗)

+||~z(t) − ~y∗)||V − ||~y(t) − ~y∗||V

≤ −||~q(t + 1) − ~q(t)||A

+
{

||~z(t) − ~y∗)||V − ||~y(t) − ~y∗||V − 2(~z(t) − ~y(t))T V (~x(t) − ~y∗)
}

(39)

+2
[

∇f(~z(t)) −∇f(~y∗)
]T

(~x(t) − ~y∗), (40)

where in the last step we have used (22) and (23), and consequently

ET (~q(t + 1) − ~q∗) = ∇f(~z(t)) −∇f(~y∗) − V (~z(t) − ~y(t)). (41)

By simple algebraic manipulation, we can show that the second term (39) is equal to

||~z(t) − ~y∗||V − ||~y(t) − ~y∗||V − 2(~z(t) − ~y(t))T V (~x(t) − ~y∗)

= ||(~z(t) − ~x(t)||V − ||~y(t) − ~x(t)||V . (42)
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Invoking Lemma 1, part 2,

||~z(t) − ~x(t)||V ≤ (~q(t + 1) − ~q(t))T EV −1ET (~q(t + 1) − ~q(t)). (43)

For the third term (40), we can invoke Lemma 3,

2
[

∇f(~z(t)) −∇f(~y∗)
]T

(~x(t) − ~y∗) ≤ (~q(t + 1) − ~q(t))T EV −1ET (~q(t + 1) − ~q(t)). (44)

Therefore, by substituting (42-43) into (39), and substituting (44) into (40), we have

V (~y(t + 1), ~q(t + 1)) − V (~y(t), ~q(t)) ≤ −(~q(t + 1) − ~q(t))T C1(~q(t + 1) − ~q(t)) − ||~y(t) − ~x(t)||V .

where C1 = A−1 − 2EV −1ET . If C1 is positive definite, then

||~q(t + 1) − ~q∗||A + ||~y(t + 1) − ~y∗||BV − (||~q(t) − ~q∗||A + ||~y(t) − ~y∗||BV )

≤ −(~q(t + 1) − ~q(t))T C1(~q(t + 1) − ~q(t)) − ||~y(t) − ~x(t)||V ≤ 0. (45)

This proves that V (~y(t), ~q(t)) is non-increasing in t and hence must have a limit, i.e.,

lim
t→∞

||~q(t) − ~q∗||A + ||~y(t) − ~y∗||BV = V0 ≥ 0. (46)

Therefore, the sequence {~y(t), ~q(t), t = 1, ...} is bounded, and there must exist a subsequence

{~y(th), ~q(th), h = 1, ...} that converges to a limit point. Let (~y0, ~q0) be this limit. From (45), we

have,

lim
h→∞

~q(th + 1) = ~q0 and lim
h→∞

~x(th) = ~y0.

Taking limits at both sides of (34) as h → ∞, we have,

~q0 = [~q0 + A(E~y0 − R)]+. (47)

Hence

~q0 ≥ 0, E~y0 ≤ R and ~qT
0 (E~y0 − R) = 0. (48)

Further, note that ~x(th) maximizes L(~x, ~q(th), ~y(th)) over all ~x. Similar to Lemma 1, one can

show that the mapping from (~y(th), ~q(th)) to ~x(th) is continuous. Hence, taking limits as h → ∞,

we have

~y0 maximizes L(~x, ~q0, ~y0) over all ~x .

Therefore, (~y0, ~q0) is a stationary point of algorithm A. We now replace ( ~y∗, ~q∗) by (~y0, ~q0) in

(46) and thus,

lim
t→∞

||~q(t) − ~q0||A + ||~y(t) − ~y0||BV = lim
h→∞

||~q(th) − ~q0||A + ||~y(th) − ~y0||BV = 0.

Hence (~y(t), ~q(t)) → (~y0, ~q0) as t → ∞. Finally, in Lemma 7 in Appendix C, we show that a

sufficient condition for C1 to be positive definite is maxl α
l < 1

2SL
mini ci. Q.E.D.
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5 Convergence with Measurement Noise

In this section, we will study the convergence of algorithm A when there is measurement noise,

i.e., when the dynamics of the system are governed by (12) and (13). The convergence of

algorithm A will be established in the “stochastic approximation” sense, i.e., when the step-sizes

are driven to zero in an appropriate fashion. To be specific, we replace the step-sizes αl and βi

by

αl(t) = ηtα
l
0, βi(t) = ηtβi,0,

for some positive sequence {ηt, t = 1, 2, ...} that goes to zero as t → ∞. For simplicity, we will

focus on the case when K = 1 and we will drop the index k in (13). Let N(t) = [nl(t), l =

1, ..., L]T . Use the vector notation from the previous section and define matrices A0 and B0

analogously as the matrices A and B, respectively, except that the diagonal elements are now

filled with αl
0 and βi,0. We can then rewrite algorithm A as:

Algorithm AN :

A1-N) Let ~x(t) = argmax~x L(~x, ~q(t), ~y(t)). Update the dual variables by

~q(t + 1) = [~q(t) + ηtA0(E~x(t) − R + N(t))]+. (49)

A2-N) Let ~z(t) = argmax~x L(~x, ~q(t + 1), ~y(t)). Update the primal variables by

~y(t + 1) = ~y(t) + ηtB0(~z(t) − ~y(t)).

Proposition 5 If
∞

∑

t=1

ηt = ∞,

∞
∑

t=1

ηt
2 < ∞,

and

E[N(t)|~x(s), ~y(s), ~q(s), s ≤ t] = 0, (50)
∞

∑

t=1

ηt
2E||N(t)||2 < ∞, (51)

then algorithm AN will converge almost surely to a stationary point ( ~y∗, ~q∗) of algorithm A.

Assumption (50) simply states that the noise term N(t) should be un-biased. Assumption

(51) is also quite general. For example, it will hold if the variance of the noise, i.e., E[(nl(t))2] is

bounded for all l and t. We can prove Proposition 5 by first extending the analysis of Proposition 4

to show that, as t → ∞, V (~y(t), ~q(t)) converges almost surely to a finite non-negative number.
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This implies that (~y(t), ~q(t)) is bounded almost surely. We can then use the ODE method of [20]

to show that, as t → ∞, the limiting behavior of the stochastic approximation algorithm will

converge to that of the ordinary differential equations defined by the continuous-time algorithm

AC in Section 4 with Â = A0 and B̂ = B0. Proposition 2 can then be invoked to show that

(~y(t), ~q(t)) converges to a stationary point. The details of the proof are provided in Appendix D.

We now comment on the step-size rule used in Proposition 5. As is typical for stochastic

approximation algorithms, the convergence of algorithm AN is established when the step-sizes

are driven to zero. When this type of stochastic approximation algorithms are employed online,

we usually use step-sizes that are away from zero (e.g., constants). In this case, the trajectory

(~y(t), ~q(t)) (or (~x(t), ~q(t))) will fluctuate in a neighborhood around the set of stationary points,

instead of converging to one stationary point. In practice, we are interested in knowing how to

choose the step-sizes so that the trajectory stays in a close neighborhood around the solutions.

Since Proposition 5 requires that both αl and βi be driven to zero, we would expect that, if we

were to choose both αl and βi small enough (but away from zero), the trajectory (~x(t), ~q(t)) will

be kept in a close neighborhood around the solutions. This choice of the step-sizes might seem

overly conservative at first sight. In particular, since the noise terms nl(t) are only present in the

dual update (13), it appears at first quite plausible to conjecture that only αl needs to be driven

to zero in Proposition 5 (in order to average out the noise), while βi can be kept away from zero.

If this conjecture were true, it would imply that, in order to keep the trajectory (~x(t), ~q(t)) in a

close neighborhood around the set of stationary points, only αl needs to be small. However, our

simulation results with constant step-sizes seem to suggest the opposite. We observe that, when

there is measurement noise, the disturbance in the primal variables ~x(t) cannot be effectively

controlled by purely reducing the step-sizes αl at the links. We will elaborate on this observation

in the next section with a numerical example, and we will show that the required step-size rule

(i.e., both αl and βi needs to small) is again a consequence of the multi-path nature of the

problem.

6 Numerical Results

In this section, we present some simulation results for algorithm A. For all simulations, we have

chosen K = 1, i.e., we do not use the two-level convergence structure. We will use the multi-path

flow control problem as an example, but the results here apply to other problems as well. We

first simulate the case when there is no measurement noise. We use the “Triangle” network in

Fig. 1. There are three users (AB,BC,CA). For each user, there are two alternate paths, i.e., a
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Figure 1: Network Topologies

direct one-link path (path 1), and an indirect two-link path (path 2). For example, user AB can

take the one-link path A → B or the two-link path A → C → B. The utility functions for all

three users are of the form:

fi(

J(i)
∑

j=1

xij) = wi ln(

J(i)
∑

j=1

xij),

where wi is the “weight” of user i, and xij is the data rate of user i on path j. We choose the

weights as follows: wAB = 5.5, wBC = 2.5, wCA = 0.5. The capacity on each link is 10 units.

Fig. 2 demonstrates the evolution over time of the implicit costs ql and the users’ data rates

xij, respectively, for algorithms A. We choose ci = 1.0 for all users. The step-sizes are αl = 0.1

for all links, and βi = 1.0 for all users. We observe that all quantities of interest converge to the

optimal solution, which is

qAB = 0.425, qBC = 0.354, qCA = 0.071,

xAB,1 = 10, xAB,2 = 2.94, xBC,1 = xCA,1 = 7.06, xBC,2 = xCA,2 = 0.

Note that at the stationary point, user AB will use both alternative paths while users BC and

CA will only use the direct paths. Because the weight of the utility function of user AB is larger

than that of the other users, algorithm A automatically adjusts the resource allocation of users

BC and CA to give way to user AB.

Fig. 3 demonstrates the evolution of algorithm A for the same network when there is measure-

ment noise. We assume that an i.i.d. noise term uniformly distributed within [−2, 2] is added to

each xij when each link estimates the aggregate load
I

∑

i=1

J(i)
∑

j=1

H l
ijxij. The step-sizes are αl = 0.003

for all links, and βi = 0.1 for all users. We can observe that all quantities of interest eventually

fluctuate around a small neighborhood of the solution.

We now investigate how the choice of the step-sizes αl and βi affect the level of fluctuation on

the implicit costs and the users’ data rates when there is measurement noise. We use a simpler

“Two-Link” topology in Fig. 1. The capacity of the two links is 10 and 5, respectively. There is
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Figure 2: Evolution of the implicit costs and

the data rates when there is no measurement

noise. αl = 0.1, βi = 1.0.
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Figure 3: Evolution of the implicit costs and

the data rates when there is measurement

noise. αl = 0.003, βi = 0.1.

only one user, which can use both links. Its utility function is given by

fi(x) = 5.5 ln x.

The noise term nl(t) is i.i.d. and uniformly distributed within [−2, 2].

Fig. 4 shows the evolution over time of the implicit costs (top) and that of the users’ data rates

(bottom) of algorithm A for different choices of the step-sizes. In the first three columns, we

keep β unchanged and reduce the step-size α from 0.01 to 0.0001. We observe that, although the

fluctuation in the implicit costs becomes smaller as the step-size α is reduced, the fluctuation in

the data rates decreases only a little. Note that the unit on the x-axis becomes larger as we move

from the first column to the third column. These figures indicate that, by reducing the step-size

α alone, the fluctuation in the data rates becomes slower, but the magnitude of the fluctuation

changes little. In the fourth column, we decrease both β and α. The fluctuation in the data rates

is now effectively reduced.

Although somewhat counter-intuitive, these observations are consistent with Proposition 5

where we require both α and β to be driven to zero for the convergence of the stochastic approxi-

mation algorithm to hold. As we will show next by studying the linearized version of the system,

this step-size rule appears to be necessitated by the multi-path nature of the problem. Assume

that algorithm A has a unique stationary point ( ~y∗, ~q∗). We can linearize the continuous-time

system (15)-(16) around this unique stationary point, and use Laplace transforms to study the

frequency response of the system in the presence of noise N(t). Without loss of generality, we can
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Figure 4: Simulation of Algorithm A with measurement noise. Top: the implicit costs. Bottom:

the data rates. Note that the unit on the x-axis becomes larger as we move from the first column

to the third column.

assume that xij(t) > 0 for all i, j and ql(t) > 0 for all l. (Otherwise, we can eliminate the paths

with xij(t) = 0 and the links with ql(t) = 0 from the analysis because they do not contribute to

the dynamics of the linearized system.) Let X (s) and N (s) denote the Laplace transform of the

perturbation of ~x(t) and the noise N(t), respectively. We can then compute the transfer function

from N(t) to ~x(t) as (see Appendix E for the detail)

X (s) = H(s)N (s)

with

H(s) = −

{

B̂−1sI + G + V −1(I − G)
ET ÂE

s
B̂−1(sI + B̂)

}−1

B̂−1(sI + B̂)V −1(I − G)
ET Â

s
,

where the matrices E, Â, B̂ and V are defined as in Section 4, I is the
I

∑

i=1

J(i)×
I

∑

i=1

J(i) identity

matrix, G = diag{Gi, i = 1, ..., I} and each Gi is a J(i) × J(i) matrix whose elements are all

gi =

f ′′
i (

J(i)
∑

j=1

y∗
ij)

J(i)f ′′
i (

J(i)
∑

j=1

y∗
ij) − ci

.
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If the utility function fi(·) is strictly concave, gi will be positive. However, since each Gi has

all identical elements, the matrix G is not invertible whenever some users have multiple paths.

Its presence in the denominator of H(s) turns out to be a source of instability. To see this, we

compute H(s) for the above Two-Link example. Note that

E =

[

1 0

0 1

]

, G = g

[

1 1

1 1

]

for some g > 0,

Â = αI, B̂ = βI, and V = cI.

Let s = jω. We have,

H(jω) = −

{

jω

β
I + G +

α

c

jω + β

jωβ
(I − G)

}−1
α

c

jω + β

jωβ
(I − G). (52)

The terms in the denominator can be collected into
[

α

βc
+

jω

β
(1 −

αβ

cω2
)

]

I +

[

(1 −
α

βc
) + j

α

cω

]

G. (53)

Since the matrix G is not invertible, if the terms that are associated with I is small, a “spike” in

the transfer function H(jω) will appear. This will happen when ω ≈ ω∗, where ω∗ is determined

by

1 −
αβ

c(ω∗)2
= 0,

i.e.,

ω∗ =

√

αβ

c
. (54)

Substituting ω∗ into (52) and (53) and assuming that α � β, we have

H(jω∗) ≈ −
α
c
( 1

β
+ 1

jω
)

α
βc

(I − G)

≈ j
α
ωc
α
βc

(I − G) ≈ j

√

cβ

α
(I − G). (55)

We can draw the following conclusions from equations (54) and (55). If we keep β fixed and

reduce α alone, the cutoff frequency ω∗ will decrease with α. However, the gain H(jω∗) at the

cutoff frequency will increase! In Fig. 5, we plot ||H(jω)||2 with respect to ω for different values

of α and β. We can easily observe the increased spike when α alone is reduced from 0.1 (the

solid curve) to 0.001 (the dotted curve). If we further assume that nl(t) is white noise with unit

energy, then the total energy of the fluctuation of ~x can be estimated by the area under the

curve ||H(jω)||2 in Fig. 5. Due to the increased spike, the total energy of the fluctuation of ~x(t)
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Figure 5: The frequency response ||H(jω)||2

will not decrease much when α alone is reduced, even though the frequency of the fluctuation

becomes smaller. On the other hand, if we reduce β as well as α, the gain at the cutoff frequency

ω∗ will remain the same as the cutoff frequency itself decreases (shown as the dashed curve in

Fig. 5 when β is also reduced to 0.001). Hence, the total energy of the fluctuation in ~x(t) is

effectively reduced. These conclusions are thus consistent with our simulation results in Fig. 4.

Hence, the step-size rule (i.e., both αl and βi needs to be reduced) is necessary to address the

potential instability in the system due to the multi-path nature of the problem.

7 Concluding Remarks

In this work, we have developed a distributed algorithm for the utility maximization problem in

communication networks that have the capability to allow multi-path routing. We have studied

the convergence of our algorithm in both continuous-time and discrete-time, with and without

measurement noise. We have shown how the multi-path nature of the problem can potentially

lead to difficulties such as instability and oscillation, and our analyses provide important guide-

lines on how to choose the parameters of the algorithm to address these difficulties and to ensure

efficient network control. When there is no measurement noise, our analysis gives easy-to-verify

conditions on how large the step-sizes of the algorithm can be while still ensuring convergence.

When there is measurement noise, we find that the step-sizes in the updates of both the user

algorithm and the network component algorithm have to decrease at the same time in order to

reduce the fluctuation of the resource allocation. Reducing only the step-sizes in the update of

the network component algorithm will reduce the frequency of the fluctuation, but not necessarily

its magnitude. These guidelines are confirmed by our simulation results.

We briefly discuss possible directions for future work. The analysis in this work has focused
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on the case when all computation is synchronized. An interesting problem is to study the

convergence and stability of the algorithm when the computation is asynchronous and when

feedback delays are non-negligible. Simulations suggest that our distributed algorithm may still

be used in those situations, however, the step-size rules may need to change. Another direction is

to extend our solution to resource allocation problems in wireless networks. In wireline networks,

the resource constraints of different network components are orthogonal to each other. In wireless

networks, however, the capacity of a link is a function of the signal to interference ratio, which

depends not only on its own transmission power, but also on the power assignments at other

links. Hence, the resource constraints in wireless networks are of a more complex form than that

of wireline networks. It would be interesting to see whether the results of this paper can be

extended to multi-path utility maximization problems in wireless networks.

Appendix

A An Efficient Algorithm for Solving the Local Subprob-

lem (9)

Given the implicit costs ~q, each user i solves its local subproblem (9) to compute its resource

allocation ~xi. Recall that the local subproblem is:

Bi(~qi, ~yi) = max
~xi∈Ci







fi(

J(i)
∑

j=1

xij) −

J(i)
∑

j=1

xijqij −

J(i)
∑

j=1

ci

2
(xij − yij)

2







, (56)

where

Ci , {xij ≥ 0 for all j, and mi ≤

J(i)
∑

j=1

xij ≤ Mi}.

Let Lj be the Lagrangian multiplier for the constraint xij ≥ 0, let L0 be the Lagrangian mul-

tiplier for the constraint
J(i)
∑

j=1

xij ≤ Mi, and let L′
0 be the Lagrangian multiplier for the constraint

J(i)
∑

j=1

xij ≥ mi. The Karush-Kuhn-Tucker condition then becomes:

L0 ≥ 0, L′
0 ≥ 0, Lj ≥ 0, j = 1, ..., J(i),

mi ≤

J(i)
∑

j=1

xij ≤ Mi, xij ≥ 0, j = 1, ..., J(i),
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L0(

J(i)
∑

j=1

xij − Mi) = 0, L′
0(

J(i)
∑

j=1

xij − mi) = 0, Ljxij = 0, j = 1, ..., J(i),

f ′
i(

J(i)
∑

j=1

xij) − qij − ci(xij − yij) + Lj − L0 + L′
0 = 0.

Let Qij = ciyij − qij. The last equation becomes:

f ′
i(

J(i)
∑

j=1

xij) − cixij + Qij + Lj − L0 + L′
0 = 0. (57)

Without loss of generality, assume that the alternate paths are ordered such that Qi,1 ≥ Qi,2 ≥

... ≥ Qi,J(i). Then we can show the following:

Lemma 6 For any 1 ≤ k ≤ j ≤ J(i), xik ≥ xij.

Proof: The result trivially holds if xij = 0. If xij > 0, we have Lj = 0. Then for any k < j,

f ′
i(

J(i)
∑

j=1

xij) − cixij + Qij − L0 + L′
0 = 0, and

f ′
i(

J(i)
∑

j=1

xij) − cixik + Qik + Lk − L0 + L′
0 = 0.

Hence, ci(xik − xij) = (Qik − Qij) + Lk ≥ 0. Q.E.D.

By the above Lemma, there must exists a number J such that:

xij > 0 for any j ≤ J , and xij = 0 for any j > J.

This number J is important because once J is known, the resource allocation xij on all paths

can be easily computed. To see this, let Lj = 0 and sum (57) for all j ≤ J . We have,

Jf ′
i(

J(i)
∑

j=1

xij) − ci

J(i)
∑

j=1

xij +
J

∑

j=1

Qij − J(L0 − L′
0) = 0,

mi ≤

J(i)
∑

j=1

xij ≤ Mi, L0 ≥ 0, L′
0 ≥ 0, L0





J(i)
∑

j=1

xij − Mi



 = 0, and L′
0





J(i)
∑

j=1

xij − mi



 = 0.

Let g(x) = Jfi(x) − ci

2
x2 + x

J(i)
∑

j=1

Qij. Thus, in order to find the value of
J(i)
∑

j=1

xij that satisfies the

above set of equations, it is equivalent to maximize g(x) over mi ≤ x ≤ Mi. Note that g(x) is
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strictly concave in x. Hence, if g′(Mi) ≥ 0, then we have x = Mi, L′
0 = 0 and L0 = g′(Mi)/J . On

the other hand, if g′(mi) ≤ 0, then we have x = mi, L0 = 0 and L′
0 = −g′(mi)/J . Otherwise, we

have L0 = L′
0 = 0 and x is the solution of g′(x) = 0. In all three cases, we can find the values of

L0, L′
0 and x =

J(i)
∑

j=1

xij easily. Once these values are found, we can solve the resource allocation

xij on all paths via (57), i.e.,

xij =

{

f ′

i(x)+Qij−L0+L′

0

ci
if j ≤ J

0 if j > J
. (58)

We have just shown that, once the number J is know, the routing probabilities xij can be

easily computed. It remains to find the correct value of J . We use a linear search for finding

J . We start the search by assuming J = J(i). We then verify whether the current value of J is

correct by solving xij via the procedure described earlier. If the values of xij are all non-negative,

then J is correct. In fact, since the solution for xij computed in (58) is decreasing in j, we only

need to ensure that xi,J is non-negative. On the other hand, if the verification fails, we reduce

J by 1, and verify again; until either a correct value of J is found, or J = 0 and hence all xij

should be zero.

We summarize below the algorithm for solving the subproblem (9):

1. Sort the index j such that Qij is in decreasing order.

2. Let J = J(i) and Q =
∑J(i)

j=1 Qij.

3. If Jf ′
i(Mi) − ciMi + Q ≥ 0, then let x = Mi, L′

0 = 0 and

L0 =
Jf ′

i(Mi) − ciMi + Q

J
.

Otherwise, if Jf ′
i(mi) − cimi + Q ≤ 0, then let x = mi, L0 = 0 and

L′
0 = −

Jf ′
i(mi) − cimi + Q

J
.

Otherwise, let L0 = L′
0 = 0 and solve

Jf ′
i(x) − cix + Q = 0. (59)

for x∗.

4. Compute

xi,J =
f ′

i(x) + Qi,J − L0 + L′
0

ci

.

∗With the choice of the utility function in Section 6, the solution of (59) can be written explicitly.
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(a) If xi,J ≥ 0, then the correct value of J is found. Compute xij as

xij =

{

f ′

i(x)+Qij−L0+L′

0

ci
if j ≤ J

0 if j > J
,

and the algorithm terminates.

(b) Otherwise, let J ⇐ J − 1 and let Q ⇐ Q − Qi,J+1. If J ≥ 1, go to step 3. If J = 0,

set xi,0 = mi and xij = 0 for all j ≥ 1 and terminate.

We now summarize the complexity of the above algorithm. All steps except Step 1 and

Step 4(a) are O(1), and they may need to be executed J(i) times in the worst case. The

Step 4(a) is O(J(1)) but it only needs to be executed once. Sorting Qi,j in Step 1 can be

executed in O(J(i) log J(i)) time using an efficient sorting algorithm such as quicksort. Hence,

the overall complexity is at most O(J(i) log J(i)).

B Proof of Lemma 3

We need to use the fact that f(~x) is of the form
I

∑

i=1

fi(
J(i)
∑

j=1

xij), and that the Lagrangian L(~x, ~q, ~y)

is given by (7). The maximization of the Lagrangian (in (8)) is taken over ~xi ∈ Ci for all i. Since

Ci is of the form in (4), we can incorporate the constraint
J(i)
∑

j=1

xij ∈ [mi,Mi] into the definition of

the function fi by setting fi(x) = −∞ when x /∈ [mi,Mi]. Then the function fi is still concave,

and the maximization of the Lagrangian L(~x, ~q, ~y) can be taken over all ~x ≥ 0. Given ~y and ~q, we

associate a Lagrange multiplier L0
ij for each constraint xij ≥ 0 in the maximization of L(~x, ~q, ~y),

and let ~x0 = argmax~x≥0 L(~x, ~q, ~y). Using the Karush-Kuhn-Tucker condition, we can conclude

that, for each i, there must exist a subgradient ∂fi(
J(i)
∑

j=1

xij,0) of fi at
J(i)
∑

j=1

xij,0 such that, for all j,

∂fi(

J(i)
∑

j=1

xij,0) −
L

∑

l=1

El
ijq

l − ci(xij,0 − yij) + L0
ij = 0, and L0

ijxij,0 = 0. (60)

Similarly, let (~y∗, ~q∗) denote a stationary point of algorithm A. Then ~y∗ = argmax~x≥0 L(~x, ~q∗, ~y∗).

Associate a Lagrange multiplier L∗
ij for each constraint xij ≥ 0 in the maximization of L(~x, ~q∗, ~y∗).

Then, for all i, j,

∂fi(

J(i)
∑

j=1

y∗
ij) −

L
∑

l=1

El
ijq

l,∗ + L∗
ij = 0, and L∗

ijy
∗
ij = 0. (61)
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Comparing (60) and (61) with (22) and (23), we see that

[∇f( ~x0)]ij = ∂fi(

J(i)
∑

j=1

xij,0) + L0
ij for all i, j,

and

[∇f(~y∗)]ij = ∂fi(

J(i)
∑

j=1

y∗
ij) + L∗

ij for all i, j,

where [·]ij is the element in [·] that corresponds to xij.

We can now proceed with the proof of Lemma 3. Let ~x1 = argmax~x≥0 L(~x, ~q1, ~y) and ~x2 =

argmax~x≥0 L(~x, ~q2, ~y). Analogously to L0
ij and ∂fi(

J(i)
∑

j=1

xij,0), define Lij,1, ∂fi(
J(i)
∑

j=1

xij,1) and Lij,2,

∂fi(
J(i)
∑

j=1

xij,2) for the case when the implicit cost vectors are ~q1 and ~q2, respectively. Then,

[

∇f(~x1) −∇f(~y∗)
]T

(~x2 − ~y∗)

=
I

∑

i=1



∂fi(

J(i)
∑

j=1

xij,1) − ∂fi(

J(i)
∑

j=1

y∗
ij)



 (

J(i)
∑

j=1

xij,2 −

J(i)
∑

j=1

y∗
ij) (62)

+
I

∑

i=1

J(i)
∑

j=1

(Lij,1 − L∗
ij)(xij,2 − y∗

ij). (63)

Lemma 3 will follow if we can show that both of the two terms (62) and (63) are bounded by

1
4ci

I
∑

i=1

J(i)
∑

j=1

[

L
∑

l=1

El
ij(q

l
2 − ql

1)

]2

. We will first bound the term (62). Apply equation (60) for ~q1 and

~q2, respectively, and take difference. We have, for each i, j,

L
∑

l=1

El
ij(q

l
2 − ql

1) =



∂fi(

J(i)
∑

j=1

xij,2) − ∂fi(

J(i)
∑

j=1

xij,1)



 − ci(xij,2 − xij,1) + Lij,2 − Lij,1. (64)

Now fix i. Let Ji denote the set {j : xij,2 > 0 or xij,1 > 0}. Note that if xij,2 > 0 and xij,1 = 0,

then Lij,2 = 0 and Lij,1 ≥ 0. Hence, xij,2 − xij,1 > 0 and Lij,2 − Lij,1 ≤ 0. Let

γij , −
Lij,2 − Lij,1

ci(xij,2 − xij,1)
≥ 0,

then,

L
∑

l=1

El
ij(q

l
2 − ql

1) =



∂fi(

J(i)
∑

j=1

xij,2) − ∂fi(

J(i)
∑

j=1

xij,1)



 − (1 + γij)ci(xij,2 − xij,1). (65)
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Similarly, we can show that (65) holds for any j ∈ Ji with some appropriate choice of γij ≥ 0.

Multiplying (65) by 1/(1 + γij) and summing over all j ∈ Ji, we have, for all i,

∑

j∈Ji

[

1

1 + γij

L
∑

l=1

El
ij(q

l
2 − ql

1)

]

=
1

γ0
i



∂fi(

J(i)
∑

j=1

xij,2) − ∂fi(

J(i)
∑

j=1

xij,1)



 − ci(

J(i)
∑

j=1

xij,2 −

J(i)
∑

j=1

xij,1),

(66)

where γ0
i , 1

∑

j∈Ji

1
1+γij

, and we have used the fact that xij,2 = xij,1 = 0 for j /∈ Ji.

Let

a1 = ∂fi(

J(i)
∑

j=1

xij,1) − ∂fi(

J(i)
∑

j=1

y∗
ij), a2 = ∂fi(

J(i)
∑

j=1

xij,2) − ∂fi(

J(i)
∑

j=1

y∗
ij),

b1 =

J(i)
∑

j=1

xij,1 −

J(i)
∑

j=1

y∗
ij, b2 =

J(i)
∑

j=1

xij,2 −

J(i)
∑

j=1

y∗
ij.

Since the function fi is concave, we have a1b1 ≤ 0 and a2b2 ≤ 0. Let γi , −
ciγ

0
i b1

a1
≥ 0. (The

term (62) will be bounded by 1
4ci

I
∑

i=1

J(i)
∑

j=1

[

L
∑

l=1

El
ij(q

l
2 − ql

1)

]2

trivially if a1 = 0.) Then

(1 + γi)a1b2 = (a1 − ciγ
0
i b1)b2

= [(a1 − a2) − ciγ
0
i (b1 − b2)]b2 + (a2 − ciγ

0
i b2)]b2

≤ γ0
i

∑

j∈Ji

[

1

1 + γij

L
∑

l=1

El
ij(q

l
2 − ql

1)

]

b2 (by (66))

−ciγ
0
i b

2
2 (by a2b2 ≤ 0)

≤
γ0

i

4ci

{

∑

j∈Ji

[

1

1 + γij

L
∑

l=1

El
ij(q

l
2 − ql

1)

]}2

(by completing the square)

≤
γ0

i

4ci

{

∑

j∈Ji

(
1

1 + γij

)2

}







∑

j∈Ji

[

L
∑

l=1

El
ij(q

l
2 − ql

1)

]2






(by Cauchy-Schwarz)

≤
1

4ci

J(i)
∑

j=1

[

L
∑

l=1

El
ij(q

l
2 − ql

1)

]2

,

where in the last inequality we have used

γ0
i

{

∑

j∈Ji

(
1

1 + γij

)2

}

=

∑

j∈Ji
( 1

1+γij
)2

∑

j∈Ji

1
1+γij

≤ 1.

Since 1 + γi ≥ 1, the term (62) (i.e., a1b2) is then bounded by 1
4ci

I
∑

i=1

J(i)
∑

j=1

[

L
∑

l=1

El
ij(q

l
2 − ql

1)

]2

.
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To bound the term (63), note that xij,2 ≥ 0, Lij,1 ≥ 0, L∗
ij ≥ 0 and L∗

ijy
∗
ij = Lij,2xij,2 =

Lij,1xij,1 = 0. Therefore,

(Lij,1 − L∗
ij)(xij,2 − y∗

ij) ≤ xij,2Lij,1 ≤ xij,1Lij,2 + xij,2Lij,1

= −(Lij,2 − Lij,1)(xij,2 − xij,1).

We thus have,

J(i)
∑

j=1

(Lij,1 − L∗
ij)(xij,2 − y∗

ij)

≤ −

J(i)
∑

j=1

(Lij,2 − Lij,1)(xij,2 − xij,1)

≤ −

J(i)
∑

j=1



∂fi(

J(i)
∑

j=1

xij,2) − ∂fi(

J(i)
∑

j=1

xij,1) + Lij,2 − Lij,1



 (xij,2 − xij,1) (by the concavity of ∂fi)

≤ −

J(i)
∑

j=1

[

L
∑

l=1

El
ij(q

l
2 − ql

1) + ci(xij,2 − xij,1)

]

(xij,2 − xij,1) (by (64))

≤
1

4ci

J(i)
∑

j=1

[

L
∑

l=1

El
ij(q

l
2 − ql

1)

]2

(by completing the square).

The result of Lemma 3 then follows. Q.E.D.

C Proof of Proposition 4 for K = ∞ or 1 < K < ∞

The following lemma will be quite convenient later on.

Lemma 7 If

max
l

αl <
a

SL
min

i
ci for some positive number a,

then

aV > ET AE and aA−1 > EV −1ET .

Proof: To show the first part, let ~x be any vector,

~xT ET AE~x =
L

∑

l=1

αl





I
∑

i=1

J(i)
∑

j=1

El
ijxij





2
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≤
L

∑

l=1

αl(
I

∑

i=1

J(i)
∑

j=1

El
ij)





I
∑

i=1

J(i)
∑

j=1

El
ijx

2
ij



 ≤ S
I

∑

i=1

J(i)
∑

j=1

[

L
∑

l=1

αlEl
ij

]

x2
ij

≤ SLmax
l

αl

I
∑

i=1

J(i)
∑

j=1

x2
ij.

Hence a sufficient condition for aV − ET AE to be positive definite is

max
l

αl <
a

SL
min

i
ci.

The second part can be shown analogously. Q.E.D.

Now we can proceed with the proof of Proposition 4 for K = ∞ or 1 < K < ∞.

C.1 K = ∞

We only need to show that the step A1 converges. The convergence of the entire algorithm A

then follows the standard results on Proximal Optimization Algorithms [16, p233]. Fix ~y(t). Let

~q0 denote a stationary point of (11) in step A1. Let ~x0 be the corresponding prime variables.

~x0 is unique and ~x0 = argmax~x L(~x, ~q0, ~y(t)). Further, using the property of projection mapping

[16, Proposition 3.2(c), p211], we have

||~q(t, k + 1) − ~q0||A

= ||
[

~q(t, k) + A(E~x(t, k) − R)
]+

−
[

~q0 + A(E ~x0 − R)
]+

||A

≤ ||
[

~q(t, k) + A(E~x(t, k) − R)
]

−
[

~q0 + A(E ~x0 − R)
]

||A

= || [~q(t, k) − ~q0] + AE(~x(t, k) − ~x0)||A

= ||~q(t, k) − ~q0||A + (~x(t, k) − ~x0)T ET AE(~x(t, k) − ~x0)

+2(~q(t, k) − ~q0)
T E(~x(t, k) − ~x0).

By Lemma 1, part 1,

(~q(t, k) − ~q0)
T E(~x(t, k) − ~x0) ≤ −(~x(t, k) − ~x0)T V (~x(t, k) − ~x0).

Hence, if we can ensure that

C0 = 2V − ET AE

is positive definite, then

||~q(t, k + 1) − ~q0||A ≤ ||~q(t, k) − ~q0||A − (~x(t, k) − ~x0)T C0(~x(t, k) − ~x0) (67)

≤ ||~q(t, k) − ~q0||A.
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Therefore, ||~q(t, k)− ~q0||A, k = 1, 2, ... is a nonnegative and decreasing sequence, and hence must

have a limit. Then by (67), ~x(t, k) → ~x0 as k → ∞. By Lemma 7, a sufficient condition for C0

to be positive definite is

max
l

αl <
2

SL
min

i
ci.

C.2 K > 1

Let (~y∗, ~q∗) be any stationary point of algorithm A. We only need to show that the following

inequality holds: for sufficiently small step-sizes αl, l = 1, ..., L,

||~q(t + 1) − ~q∗||A + K||~y(t + 1) − ~y∗||BV − (||~q(t) − ~q∗||A + K||~y(t) − ~y∗||BV )

≤ −(~q(t + 1) − ~q(t))T C2(~q(t + 1) − ~q(t)) − ||~y(t) − ~x(t)||V (68)

for some positive definite matrix C2. This corresponds to the inequality (45) for the case when

K = 1. The proof then follows along the same line as the case when K = 1.

To show (68), we start from (36). For each k = 0, 1, ...K,

||~q(t, k + 1) − ~q∗||A − ||~q(t, k) − ~q∗||A

≤ −||~q(t, k + 1) − ~q(t, k)||A + 2(~q(t, k + 1) − ~q∗)T (E~x(t, k) − R). (69)

Since for any k ≤ K − 2,

~q(t, k + 1) − ~q∗ = ~q(t,K) − ~q∗ − (~q(t,K) − ~q(t, k + 1))

= ~q(t,K) − ~q∗ −
K−1
∑

m=k+1

γmA(E~x(t,m) − R),

where γm reflects the “truncation” when the implicit costs are projected to R+ and 0 ≤ γm ≤ 1.

Hence,

2(~q(t, k + 1) − ~q∗)T (E~x(t, k) − R) (70)

= 2(~q(t,K) − ~q∗)T (E~x(t, k) − R) − 2
K−1
∑

m=k+1

γm(E~x(t,m) − R)T A(E~x(t, k) − R).

If we choose αl such that

max
l

αl <
1

KSL
min

i
ci, (71)

then by Lemma 7, ET AE < 1
K

V. Hence,

−2
K−1
∑

m=k+1

γm(E~x(t,m) − R)T A(E~x(t, k) − R)
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≤
1

2

K−1
∑

m=k+1

γm(~x(t,m) − ~x(t, k))T ET AE(~x(t,m) − ~x(t, k))

≤
1

2K

K−1
∑

m=k+1

||~x(t,m) − ~x(t, k)||V

≤
1

2K

K−1
∑

m=k+1

(~q(t,m) − ~q(t, k))T EV −1E(~q(t,m) − ~q(t, k)), (72)

where in the last step we have used the result in part 2 of Lemma 1. Further, since ( ~y∗, ~q∗) is a

stationary point of algorithm A, E ~y∗ − R ≤ 0 and ~q∗
T
(E ~y∗ − R) = 0. Combining this, (70) and

(72) into (69), we have,

||~q(t, k + 1) − ~q∗||A − ||~q(t, k) − ~q∗||A

≤ −||~q(t, k + 1) − ~q(t, k)||A + 2(~q(t,K) − ~q∗)T E(~x(t, k) − ~y∗)

+
1

2K

K−1
∑

m=k+1

(~q(t,m) − ~q(t, k))T EV −1E(~q(t,m) − ~q(t, k)).

Summing over all k = 0, 1, ...K − 1, we have

||~q(t,K) − ~q∗||A − ||~q(t, 0) − ~q∗||A

≤ −
K−1
∑

k=0

||~q(t, k + 1) − ~q(t, k)||A + 2
K−1
∑

k=0

(~q(t,K) − ~q∗)T E(~x(t, k) − ~y∗)

+
1

2K

K−2
∑

k=0

K−1
∑

m=k+1

(~q(t,m) − ~q(t, k))T EV −1ET (~q(t,m) − ~q(t, k)).

Therefore, using (38) and (41), we have,

||~q(t,K) − ~q∗||A − ||~q(t, 0) − ~q∗||A + K(||~y(t + 1) − ~y∗||BV − ||~y(t) − ~y∗||BV )

≤ −
K−1
∑

k=0

||~q(t, k + 1) − ~q(t, k)||A

+

{

K||~z(t) − ~y∗)||V − K||~y(t) − ~y∗||V − 2
K−1
∑

k=0

(~z(t) − ~y(t))T V (~x(t, k) − ~y∗)

}

(73)

+2
K−1
∑

k=0

(∇f(~z(t) −∇f(~y∗))T (~x(t, k) − ~y∗) (74)

+
1

2K

K−2
∑

k=0

K−1
∑

m=k+1

(~q(t,m) − ~q(t, k))T EV −1ET (~q(t,m) − ~q(t, k)).
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The second term (73) on the right hand side can be bounded by

K||~z(t) − ~y∗)||V − K||~y(t) − ~y∗||V − 2
K−1
∑

k=0

(~z(t) − ~y(t))T V (~x(t, k) − ~y∗)

= −
K−1
∑

k=0

||~x(t, k) − ~y(t)||V +
K−1
∑

k=0

||~z(t) − ~x(t, k)||V

≤ −
K−1
∑

k=0

||~x(t, k) − ~y(t)||V +
K−1
∑

k=0

(~q(t,K) − ~q(t, k))T EV −1ET (~q(t,K) − ~q(t, k)),

where in the last step we have used the result in part 2 of Lemma 1. For the third term (74), by

Lemma 3,

2
K−1
∑

k=0

(∇f(~z(t) −∇f(~y∗))T (~x(t, k) − ~y∗)

≤
K−1
∑

k=0

(~q(t, k) − ~q(t,K))T EV −1ET (~q(t, k) − ~q(t,K)).

Substituting them back to (73) and (74), we have

||~q(t,K) − ~q∗||A − ||~q(t, 0) − ~q∗||A + K(||~y(t + 1) − ~y∗||BV − ||~y(t) − ~y∗||BV )

≤ −
K−1
∑

k=0

||~q(t, k + 1) − ~q(t, k)||A −
K−1
∑

k=0

||~x(t, k) − ~y(t)||V

+2
K−1
∑

k=0

(~q(t, k) − ~q(t,K))T EV −1ET (~q(t, k) − ~q(t,K)) (75)

+
1

2K

K−2
∑

k=0

K−1
∑

m=k+1

(~q(t,m) − ~q(t, k))T EV −1ET (~q(t,m) − ~q(t, k)). (76)

Note that

~q(t,K) − ~q(t, k) =
K−1
∑

m=k

~q(t,m + 1) − ~q(t,m).

Using the Cauchy-Schwarz inequality, we can show that the term in (75) is equal to

2
K−1
∑

k=0

(~q(t, k) − ~q(t,K))T EV −1ET (~q(t, k) − ~q(t,K))

≤ 2
K−1
∑

k=0

(K − k)
K−1
∑

m=k

(~q(t,m + 1) − ~q(t,m))T EV −1ET (~q(t,m + 1) − ~q(t,m))

= 2
K−1
∑

m=0

[

m
∑

k=0

(K − k)

]

(~q(t,m + 1) − ~q(t,m))T EV −1ET (~q(t,m + 1) − ~q(t,m))
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≤ K(K + 1)
K−1
∑

m=0

(~q(t,m + 1) − ~q(t,m))T EV −1ET (~q(t,m + 1) − ~q(t,m)).

Similarly, the term in (76) is equal to

1

2K

K−2
∑

k=0

K−1
∑

m=k+1

(~q(t,m) − ~q(t, k))T EV −1ET (~q(t,m) − ~q(t, k))

≤
1

2K

K−2
∑

k=0

K−1
∑

m=k+1

(m − k)
m−1
∑

n=k

(~q(t, n + 1) − ~q(t, n))T EV −1E(~q(t, n + 1) − ~q(t, n))

=
1

2K

K−2
∑

k=0

K−2
∑

n=k

[

K−1
∑

m=n+1

(m − k)

]

(~q(t, n + 1) − ~q(t, n))T EV −1ET (~q(t, n + 1) − ~q(t, n))

≤
1

2K

K−2
∑

n=0

n
∑

k=0

K(K − 1)

2
(~q(t, n + 1) − ~q(t, n))T EV −1ET (~q(t, n + 1) − ~q(t, n))

≤
K(K + 1)

4

K−2
∑

n=0

(~q(t, n + 1) − ~q(t, n))T EV −1ET (~q(t, n + 1) − ~q(t, n)).

Hence,

||~q(t,K) − ~q∗||A − ||~q(t, 0) − ~q∗||A + K(||~y(t + 1) − ~y∗||BV − ||~y(t) − ~y∗||BV )

≤ −
K−1
∑

k=0

||~q(t, k + 1) − ~q(t, k)||A −
K−1
∑

k=0

||~x(t, k) − ~y(t)||V

+
5K(K + 1)

4

K−1
∑

m=0

(~q(t,m + 1) − ~q(t,m))T EV −1ET (~q(t,m + 1) − ~q(t,m)).

Therefore, in order to have

||~q(t,K) − ~q∗||A − ||~q(t, 0) − ~q∗||A + K(||~y(t + 1) − ~y∗||BV − ||~y(t) − ~y∗||BV ) ≤ 0,

it is sufficient to let

C2 = A−1 −
5K(K + 1)

4
EV −1ET

be positive definite and to satisfy (71). By Lemma 7, a sufficient condition is

max
l

αl <
4

5K(K + 1)SL
min

i
ci,

which also satisfies (71) automatically.
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D Proof of Proposition 5

For the sake of brevity, we will drop the subscripts and write matrices A,B instead of A0, B0.

We will follow the line of proof of Proposition 4 as in Section 4. Since (11) is replaced by (49),

the inequality (35) should also be replaced by

(~q(t + 1) − ~q∗)T A−1(~q(t + 1) − [~q(t) + ηtA(E~x(t) − R + N(t))]) ≤ 0.

Hence, following the techniques in the proof of Proposition 4, we have,

||~q(t + 1) − ~q∗||A = ||~q(t) − ~q∗||A − ||~q(t + 1) − ~q(t)||A + 2(~q(t + 1) − ~q∗)T A−1(~q(t + 1) − ~q(t))

≤ ||~q(t) − ~q∗||A − ||~q(t + 1) − ~q(t)||A + 2ηt(~q(t + 1) − ~q∗)T (E~x(t) − R)

+2ηt(~q(t + 1) − ~q∗)T N(t)

≤ ||~q(t) − ~q∗||A − ||~q(t + 1) − ~q(t)||A + 2ηt(~q(t + 1) − ~q∗)T E(~x(t) − ~y∗)

+2ηt(~q(t + 1) − ~q∗)T N(t). (77)

Let Ft be the σ-algebra generated by ~x(s), ~y(s) and ~q(s) for all s ≤ t. Then

E[(ql(t + 1) − ql,∗)nl(t)|Ft]

= E











[

ql(t) + ηtα
l(

I
∑

i=1

J(i)
∑

j=1

El
ijxij(t) − Rl)

]+

− ql,∗







nl(t)|Ft





+E











[

ql(t) + ηtα
l(

I
∑

i=1

J(i)
∑

j=1

El
ijxij(t) − Rl) + ηtα

lnl(t)
]+

−
[

ql(t) + ηtα
l(

I
∑

i=1

J(i)
∑

j=1

El
ijxij(t) − Rl)

]+







nl(t)|Ft



 .

By (50), the first expectation is zero. Hence,

E[(ql(t + 1) − ql,∗)nl(t)|Ft] ≤ E[ηtα
l(nl(t))2|Ft].

Combining (38-44) and (77), we have,

E[||~q(t + 1) − ~q∗||A + ||~y(t + 1) − ~y∗||BV |Ft]

≤ E
[

||~q(t) − ~q∗||A + ||~y(t) − ~y∗||BV

−(~q(t + 1) − ~q(t))T (A−1 − 2ηtEV −1ET )(~q(t + 1) − ~q(t))

−ηt||~y(t) − ~x(t)||V + ηt(~q(t + 1) − ~q∗)T N(t)|Ft

]

.
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Without loss of generality, we can assume that ηt is small enough such that A−1 − 2ηtEV −1ET

is positive definite. Therefore,

E[||~q(t + 1) − ~q∗||A + ||~y(t + 1) − ~y∗||BV |Ft]

≤ ||~q(t) − ~q∗||A + ||~y(t) − ~y∗||BV + ηt
2E[N(t)T AN(t)|Ft].

By condition (51),
∑

t

ηt
2E[N(t)T AN(t)] < ∞.

Hence, by [21, Lemma 1.10, p9], there exists a non-negative number V0 < ∞ such that

||~q(t) − ~q∗||A + ||~y(t) − ~y∗||BV → V0, (78)

as t → ∞.

It remains to show that V0 = 0 for some choice of the stationary point ( ~y∗, ~q∗). Analogous

to the proof of Proposition 4 in Section 4, we need to show that there exists a limit point of

(~y(t), ~q(t)) that is also a stationary point of the algorithm. The existence of such a limit point is

unfortunately harder to establish than in Proposition 4. The reason is that, when A in (47) is

replaced by ηtA, the properties in (48) no longer necessarily hold. To circumvent this difficulty,

we use the techniques of [20] to find such a limit point. Let st =
∑t−1

m=0 ηm, and define the

functions ~y 0(s) and ~q 0(s) by

~y 0(s) = ~y(t) and ~q 0(s) = ~q(t) if s = st ,

and by linear interpolation for all other value of s. Define the left-shifted process (~y t(s), ~q t(s))

by

~y t(s) = ~y 0(s + st) and ~y t(s) = ~y 0(s + st).

Then (~y t(s), ~q t(s)) defines a sequence of continuous functions of s. Following [20], we can show

that there exists a subsequence (~y th(s), ~q th(s)) that converges uniformly on finite intervals to

a continuous function (~̃y(s), ~̃q(s)), which satisfies the ordinary differential equations (15) and

(16). By Proposition 2, (~̃y(s), ~̃q(s)) converges to a stationary point of the algorithm as s →

∞. Let (~y0, ~q0) denote this stationary point. Then the fact that (~y th(s), ~q th(s)) converges to

(~̃y(s), ~̃q(s)) uniformly on finite intervals implies that (~y0, ~q0) is also a limit point of the sequence

(~y(t), ~q(t)), t = 1, 2, ... We can then replace ( ~y∗, ~q∗) by (~y0, ~q0) in (78) and obtain

||~q(t) − ~q0||A + ||~y(t) − ~y0||BV → 0.

The result then follows. Q.E.D.
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E The Transfer Function from N(t) to ~x(t)

Without loss of generality, assume that xij(t) > 0 for all i, j, and ql(t) > 0 for all l. Since

~xi(t) = argmax
~xi







fi(

J(i)
∑

j=1

xij) −

J(i)
∑

j=1

xijqij(t) −

J(i)
∑

j=1

ci

2
(xij − yij(t))

2







,

we have,

f ′
i(

J(i)
∑

j=1

xij(t)) − qij(t) − ci(xij(t) − yij(t)) = 0 for all i, j. (79)

Assume that the problem (1) has a unique solution. Linearize the system around this stationary

point, i.e.,

xij(t) = y∗
ij + x̃ij(t),

yij(t) = y∗
ij + ỹij(t),

ql(t) = ql,∗ + q̃l(t), and

qij(t) = q∗ij + q̃ij(t) =
I

∑

i=1

J(i)
∑

j=1

El
ijq

l,∗ +
I

∑

i=1

J(i)
∑

j=1

El
ij q̃

l(t).

We obtain,

f ′′
i (

J(i)
∑

j=1

y∗
ij)

J(i)
∑

j=1

x̃ij(t) − q̃ij(t) − ci(x̃ij(t) − ỹij(t)) = 0.

Summing over all j, we have,

J(i)f ′′
i (

J(i)
∑

j=1

y∗
ij)

J(i)
∑

j=1

x̃ij(t) −

J(i)
∑

j=1

q̃ij(t) − ci(

J(i)
∑

j=1

x̃ij(t) −

J(i)
∑

j=1

ỹij(t)) = 0.

Therefore,

J(i)
∑

j=1

x̃ij(t) =

J(i)
∑

j=1

q̃ij(t) − ci

J(i)
∑

j=1

ỹij(t)

J(i)f ′′
i (

J(i)
∑

j=1

y∗
ij) − ci

.

We can then solve for each x̃ij(t) by

x̃ij(t) = ỹij(t) +
1

ci



f ′′
i (

J(i)
∑

j=1

y∗
ij)

J(i)
∑

j=1

x̃ij(t) − q̃ij(t)





= ỹij(t) +
1

ci











f ′′
i (

J(i)
∑

j=1

y∗
ij)

J(i)f ′′
i (

J(i)
∑

j=1

y∗
ij) − ci)





J(i)
∑

j=1

q̃ij(t) − ci

J(i)
∑

j=1

ỹij(t)



 − q̃ij(t)











. (80)
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When there is measurement noise nl(t) at each link l, we can get the linearization of (15) and

(16) as

d

dt
q̃l(t) = α̂l





I
∑

i=1

J(i)
∑

j=1

El
ijx̃ij(t) + nl(t)



 (81)

d

dt
ỹij(t) = β̂i(x̃ij(t) − ỹij(t). (82)

Let Q(s),Y(s),X (s),N (s) denote the Laplace transforms of the perturbation of ~q(t), ~y(t), ~x(t),

and the noise N(t), respectively. Taking Laplace transform of (80-82), and using the fact that

q̃ij(t) =
I

∑

i=1

J(i)
∑

j=1

El
ij q̃

l(t), we have,

sQ(s) = Â(EX (s) + N (s))

sY(s) = B̂(X (s) − Y(s))

X (s) = Y(s) + V −1
[

G(ETQ− V Y) − ETQ
]

,

where G = diag{Gi, i = 1, ..., I}, and each Gi is a J(i) × J(i) matrix whose terms are all

gi =

f ′′
i (

J(i)
∑

j=1

y∗
ij)

J(i)f ′′
i (

J(i)
∑

j=1

y∗
ij) − ci

.

From the above set of equations, we can solve for X (s) as

X (s) = H(s)N (s)

with

H(s) = −

{

B̂−1sI + G + V −1(I − G)
ET ÂE

s
B̂−1(sI + B̂)

}−1

B̂−1(sI + B̂)V −1(I − G)
ET Â

s
,

where I is the
I

∑

i=1

J(i) ×
I

∑

i=1

J(i) identity matrix.
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