
On scheduling for minimizing end-to-end buffer usage over multihop

wireless networks

V.J. Venkataramanan and Xiaojun Lin

Department of ECE

Purdue University

Email: {vvenkat,linx}@purdue.edu

Lei Ying

Department of ECE

Iowa State University

Email: leiying@iastate.edu

Sanjay Shakkottai

Department of ECE

The University of Texas at Austin

Email: shakkott@ece.utexas.edu

Abstract

While there has been much progress in designing backpressure based stabilizing algorithms for multihop
wireless networks, end-to-end performance (e.g., end-to-end buffer usage) results have not been as forthcoming.
In this paper, we study the end-to-end buffer usage (sum of buffer utilization along a flow path) over a network
with general topology and with fixed, loop-free routes using a large-deviations approach. We first derive
bounds on the best performance that any scheduling algorithm can achieve. Based on the intuition from the
bounds, we propose a class of (backpressure-like) scheduling algorithms called αβ-algorithms. We show that
the parameters α and β can be chosen such that the system under the αβ-algorithm performs arbitrarily
closely to the best possible scheduler (formally the decay rate function for end-to-end buffer overflow is shown
to be arbitrarily close to optimal in the large-buffer regime). We also develop variants which have the same
asymptotic optimality property, and also provide good performance in the small-buffer regime. Our results
are substantiated using both analysis and simulation.

1 Introduction

Scheduling is one of the most critical challenges in multihop wireless network design due to channel fading and
wireless interference. A major breakthrough in this area is the back-pressure algorithm proposed in [1], which
is throughput optimal, i.e., it can stabilize any traffic flows that can be stabilized by some other algorithms.
Significant progress has been made in designing backpressure based algorithms to maximize the network through-
put or network utility as a function of the throughput [2–7]. While these results provide stabilizing algorithms
with throughput-optimality guarantees, they may not have the desired performance in terms of other end-to-end
performance metrics such as end-to-end delay. For example, results in [8, 9] have demonstrated that the classic
backpressure algorithm could lead to unnecessarily large delays in multihop networks.

Since many emerging applications of wireless networks, such as wireless mesh networks for public safety, wire-
less sensor networks for unmanned surveillance, and vehicular networks for accident warnings, require delay
constrained communication for desired performance, we are interested in scheduling algorithms that not only
guarantee the throughput but also have good delay performance. It has been observed in [10,11] that scheduling
algorithms that do not take queue length information into consideration perform much worse than queue-length-
based algorithms. However, the delay analysis for queue-length-based algorithms is challenging because of the
dependence of the decision process on the queue length process. Existing results in the literature have focused
on order optimality [10], the heavy traffic regimes [12–15] and the large-queue regimes [11, 16–18], but they only
consider single-hop flows. In fact, the coupled arrival/departure processes (the departures from the previous
hop become the arrivals of current hop) of multihop traffic flows have aggravated the difficulty in analyzing the
end-to-end delay performance.

1

In this paper, we consider a multihop wireless network with general topology and with fixed, loop-free routes.
We assume that a node maintains a separate queue for each flow passing through it. To simplify the analysis, we
use the end-to-end buffer usage to approximate the end-to-end delay, and study the probability that the end-to-
end buffer usage exceeds a certain threshold. Let Xagg

k (t) denote the aggregated queue-length along the route of
flow k and λk denote the average rate at which packets arrive at the source node of flow k. Mathematically, we
are interested in characterizing

P

[

max
k

Xagg
k (t)

λk

≥ B

]

. (1)

We call Xagg
k (t) the end-to-end buffer usage of flow k, which is closely related to the end-to-end delay of flow k.

For example, assuming that the packets arrive with a constant rate and all queues are FIFO, then
X

agg
k

(t)

λk
is the

delay experienced by the packet of flow k that departs the system at time t (see [20]). In this case, a scheduling
algorithm resulting in a small value of (1) guarantees that the probability that the end-to-end delays are larger
than B will also be small.

We exploit large-deviations analysis to study this quantity. The main contributions of this paper include:

• We first derive bounds on the best performance that any scheduling algorithm can achieve. In other words,
we obtain a θ̃0 such that

lim inf
B→∞

1

B
logP

[

max
k

Xagg
k (t)

λk
≥ B

]

≥ −θ̃0

holds for any scheduling policy.

• We obtain two fundamental structural properties from this bound: (i) considering a single multihop flow, the
scheduling algorithm should give preference to links that are closer to the destination; and (ii) considering
multiple flows competing for a single multi-access channel (e.g., at the downlink of a single cell in a cellular
network), the scheduling algorithm should give preference to those flows with the largest ratio of aggregate
backlog to arrival rate.

• Based on the structural properties derived from the upper bound, we propose a class of (backpressure-like)
scheduling algorithms called αβ-algorithms. Exploiting the large-deviations analysis, we show that the
parameters α and β can be chosen such that the system under the αβ-algorithm performs arbitrarily closely
to the best possible scheduler (formally the decay rate function for end-to-end buffer overflow probability
is shown to be arbitrarily close to optimal in the large-buffer regime).

• Finally, we develop variants of αβ-algorithms (called hybrid αβ-algorithm) that have the same asymp-
totic optimality property, and also provides good performance in the small-buffer regime. Our simulations
demonstrate that the hybrid αβ-algorithm performs better than the classic back-pressure algorithm.

2 System Model

2.1 Traffic Model

We study a multihop network consisting of N nodes, L links, and K multihop flows. Denote by b(l) and e(l) the
beginning and ending nodes of link l. The route for each flow is fixed and loop-free. Denote by Dk the number of

nodes through which flow k passes, nk(i) the ith node in flow k’s path, lk(i) the ith link in flow k’s path, and Kl

the set of flows that traverse link l. Furthermore, we assume that time is slotted and let Ak(t) denote the amount
of data flow k injects to source node nk(1) at time t. We assume that Ak(t) are identically and independently
distributed (i.i.d.) across time slots and E[Ak(t)] = λk. We assume that the average arrival rates are within the
capacity region of the network (hence the system is stationary and ergodic) and that the arrival processes Ak(t)’s
satisfy a large-deviations principle with rate function Lk(·) as defined in [20].

2

2.2 Channel Model

We consider a multihop wireless network in this paper, where the links experience interference and fading. Assume
that the channel state stays constant over each time-slot, and changes at the beginning of each time slot. We let
C(t) denote the channel state at time-slot t, which is i.i.d. across time slots and takes values from 1, . . . , S with
probabilities p1, . . . , pS .

Now given that C(t) = j, F l
j denotes the units of data that can be transmitted over link l if there is no interfer-

ence from other links, and Aj denotes the collection of subsets of links that do not interfere with each other when
transmitting simultaneously. An element of Aj is called a schedule, which is a length-L binary vector. Consider
a schedule ~a ∈ Aj , then al = 1 indicates that link l transmits under schedule ~a. Note that if (a1, . . . , al, 1, . . . , aL)

is a possible schedule, then so is (a1, . . . , al, 0, . . . , aL). Define the sets Êj = {(a1F
1
j , . . . , aLFL

j) : ~a ∈ Aj} and

Ej = {(γ1F
1
j , . . . , γLFL

j) : 0 ≤ γi ≤ ai for some ~a ∈ Aj}.

2.3 Queueing

Each node maintains a separate queue for each flow. Let Xk
i (t) denote the queue at node i for flow k, and

let Ek
l (C(t), ~X(t)) denote the units of data of flow k transmitted over link l in time-slot t. We also define

El(C(t), ~X(t)) =
∑

k∈Kl
Ek

l (C(t), ~X(t)) to be the net amount of data transmitted over link l. Note that the

vector (E1(j, ~X(t)), . . . , EL(j, ~X(t))) must belong to the set Ej . The queues for flow k evolve as follows:

Xk
nk(1)(t + 1) = Xk

nk(1)(t) + Ak(t) − Ek
lk(1)(C(t), ~X(t))

Xk
nk(i)(t + 1) = Xk

nk(i)(t) + Ek
lk(i−1)(C(t), ~X(t)) −

Ek
lk(i)(C(t), ~X(t))

for i = 2, . . . , Dk − 1

Xk
nk(Dk)(t) = 0 for all time t

Xk
n(t) = 0 for all other nodes n and all time t

Here, we implicitly assume that Ek
l (C(t), ~X(t)) cannot be larger than the available amount of data at the node

b(l).

3 Objective, Main Results and Intuition

3.1 Objective

The goal of a scheduling algorithm is to determine Ek
l (C(t), ~X(t)) subject to fading and interference constraints.

In this paper, we are interested in desiging a scheduling algorithm that minimizes the following queue-overflow
probability:

P



 max
k=1,...,K

∑Dk

i=1 Xk
nk(i)(0)

λk
> B



 , (2)

where Xk
nk(i)(0) denotes the queue-length at the steady state. As we have discussed in the introduction, the

quantity in (2) is closely related to the end-to-end delays.
Since it is very difficult to precisely characterize the probability of queue overflow (2) for the general network

model that we consider, we use the large-deviations theory to study its asymptotic decay-rate as B → ∞.
Specifically, define

−I , lim inf
B→∞

1

B
log



P



 max
k=1,...,K

(
∑Dk

i=1 Xk
nk(i)(0))

λk
> B







 ,

−J , lim sup
B→∞

1

B
log



P



 max
k=1,...,K

(
∑Dk

i=1 Xk
nk(i)(0))

λk
> B







 .

3

DestinationSource

λ1

X1
n1(1)

X1
n1(2)

X1
n1(3)

Figure 1: Tandem topology with single flow. The optimal algorithm gives preference to serving links near the
destination. Hence most of the buffering occurs at source node.

The significance of studying these quantities lies in the following approximations:

P[M(~X) > B] ≤ e−JB+o(B)

P[M(~X) > B] ≥ e−IB+o(B),

where M(~X) , maxk=1,...,K

(
∑Dk

i=1 Xk

nk(i)
)

λk , and I and J are upper and lower bounds, respectively, of the asymptotic
decay rates.

3.2 Two Structural Principles and The Class of αβ Algorithms

In section 4.1, we will derive an upper bound on the best decay rate (I). By analyzing this upper bound, we
obtain the two basic structural principles:

• Proposition 2 (in Section 4): Considering a tandem network with a single flow, the optimal algorithm should
schedule links in such a way that links closer to the destination get preference in service. In other words, all
buffering occurs as close to the source node as possible (see Figure 1). This result indicates the following
structural principle:

Principle 1: give preference to scheduling links closer to destination.

• Proposition 3 (in Section 4): Consider a cellular downlink topology where there is a single base station
serving K cellular users. The optimal algorithm should schedule the user with the largest value of scaled
queue backlog (i.e. Xk

nk(1)(t)/λk) (see Figure 2). This result indicates the following structural principle:

Principle 2: give preference to serving users with larger value of scaled aggregated queue-length.

Based on the observations above, we propose a class of scheduling algorithms (parametrized by α and β) called
αβ-algorithms, which is similar to the back-pressure scheduling algorithm [1], but with different ways of defining
link weights.

αβ-scheduling algorithm:

• For each flow k, we define V k(~X) = (
∑Dk

i=1(X
k
nk(i))

(α+1))
1

α+1 , and

W k
l (t) =

(V k(~X(t)))β−α

(λk)β+1

(

(Xk
b(l)(t))

α − (Xk
e(l)(t))

α
)

.

The αβ-algorithm assigns a weight Wl(t) to link l such that

Wl(t) = max
{k∈Kl}

W k
l (t).

• At each time slot, the αβ-scheduling algorithm computes an activation vector ~a∗ ∈ AC(t) such that the

vector ~e∗ , (a∗
1F

1
C(t), . . . , a

∗
LFL

C(t)) satisfies

L
∑

l=1

Wl(t)e
∗
l = max

~e∈ÊC(t)

L
∑

l=1

Wl(t)el.

4

Destination 1

Destination 2

Destination 3

X1
n1(1)

λ1

X2
n2(1)

λ2

λ1

λ2 λ3

X3
n3(1)

λ3

Figure 2: Cellular downlink topology with multiple flows. The optimal algorithm gives preference to serving users
with larger value of scaled aggregated queue-length. In this example users 1 and 3 are preferred over user 2.

• If link a∗
l = 1, the scheduling algorithm activates link l and serves flow k∗

l with a rate min{F l
C(t), X

k∗

l

b(l)(t)},

where the flow k∗
l satisfies

W
k∗

l

l (t) = Wl(t).

Note that the αβ-algorithm minimizes the drift of the Lyapunov function
(

∑K
k=1(

V k(~X)
λk)(β+1)

)
1

β+1

in a fluid

scaled sense (see the proof of Proposition 4). When α = 1 and β = 1, the αβ-algorithm is equivalent to the
back-pressure algorithm [1].

�

The behavior of the αβ-scheduling algorithm:

• Consider a flow k in the network, and compare W k
l (t) over each hop l. Consider first the case when all

Xk
n(t) > 0. Since (V k(~X(t)))β−α/(λk)β+1 is the same for all l, we denote the weight W k

l (t) to be

W k
l (t) = κ

(

(Xk
b(l)(t))

α − (Xk
e(l)(t))

α
)

.

Note that the weight associated with the last-hop link is

W k
lk(Dk−1)(t) = κ(Xk

nk(Dk−1)(t))
α.

In the scheduling step, the link with the larger value of W k
l (t) will have the preference to be activated.

When α → 0, the weight of the last-hop link W k
lk(Dk−1)(t) = κ(Xk

nk(Dk−1)(t))
α will dominate the weights,

W k
l (t), of all other links since

lim
α→0

(

(Xk
b(l)(t))

α − (Xk
e(l)(t))

α
)

= 0,

for all links before the last hop, and
lim
α→0

(Xk
nk(Dk−1)(t))

α = 1.

Hence, for α → 0, whenever the node nk(Dk − 1) has packets to transmit, it will get preference to do so.

Similarly, if Xk
nk(Dk−1) = 0 and Xk

nk(Dk−2) > 0, then the weight W k
lk(Dk−2)(t) will dominate all the weights

associated with other links, and node nk(Dk − 2) will get preference in service.

In summary, links closer to the destination get preference in service, so the αβ-scheduling algorithm satisfies
Principle 1.

• Now, consider a network where single-hop flows compete for a single multiaccess channel l (e.g., in the
downlink of a cell). In this case, the link weight W k

l (t) simplifies to (Xk
nk(1)(t))

β (since the backlog at the

destination node is 0). The user with the largest value of
(Xk

nk(1)
(t))β

(λk)β+1 F
lk(1)
C(t) will be served. Equivalently,

the user with the largest value of
Xk

nk(1)
(t)

(λk)
1+ 1

β

(F
lk(1)
C(t))

1
β will be served. When β is very large, the user with the

largest value of
Xk

nk(1)
(t)

λk among the set of users with F
lk(1)
C(t) > 0 will have the priority to be served.

In other words, the users with larger values of scaled backlogs will get preferences to be served, which
satisfies Principle 2.

5

�

In Section 4, we will exploit large-deviations theory to analyze the performance of the class of αβ-scheduling
algorithms, and show that this class of algorithms yield the optimal decay rate as α → 0 and β → ∞. Letting
Pαβ represent the stationary probability under the αβ-algorithm, and Pπ be the stationary probability under
any scheduling algorithm π, we will prove the following result:
Main Result (Proposition 5): Considering the class of αβ-algorithms, we have

lim
α→0,β→∞

lim sup
B→∞

1

B
log(Pαβ [max

k=1,...,K
(

Dk

∑

i=1

Xk
nk(i)(0)) > B])

≤ lim inf
B→∞

1

B
log(Pπ[max

k=1,...,K
(

Dk

∑

i=1

Xk
nk(i)(0)) > B]),

which implies that by choosing α sufficiently small and β sufficiently large, the decay rate of

P



 max
k=1,...,K

∑Dk

i=1 Xk
nk(i)(0)

λk
> B





for the αβ-algorithm can be made arbitrarily close to the optimal decay rate.

4 Analysis

In this section, we will first derive an upper bound on the decay rate (I) achievable by any scheduling algorithm.
Then, by studying the bound under some specific topologies, we will obtain the two structure principles (Principles
1 and 2) that lead to the αβ-scheduling algorithm. Finally, we will prove that the class of αβ-algorithms is
asymptotically optimal.

4.1 An upper bound on the decay-rate

We consider the optimization problem w̃(~φ, ~f) defined in (3) below. The quantity fk can be interpreted as the
long term average rate at which data arrive for flow k, φj can be interpreted as the long term fraction of time-slots
for which the channel is in state j, the quantity θk

l,j can be interpreted as the long term fraction of time that
service is given to flow k over link l in channel state j, γ~e,j can be interpreted as the long term fraction of time
that the schedule ~e is used when channel state is j, and xk

n is the average rate of growth of the backlog of flow k

6

at node n.

w̃(~φ, ~f) = min
{xk

nk(i)
,θk

lk(i),j
,γ~e,j}

max
k=1,...,K

(

∑Dk

i=1 xk
nk(i)

λk
)

subject to xk
nk(1) = [fk

−

S
∑

j=1

φj

∑

{~e∈Êj}

γ~e,jθ
k
lk(1),jelk(1)]

+

xk
nk(i) = [

S
∑

j=1

φj

∑

{~e∈Êj}

γ~e,jθ
k
lk(i−1),jelk(i−1)

−

S
∑

j=1

φj

∑

{~e∈Êj}

γ~e,jθ
k
lk(i),jelk(i)]

+

for i = 2, . . . , Dk − 1
∑

{~e∈Ej}

γ~e,j = 1,
∑

{k∈Kl}

θk
l,j = 1

γ~e,j ≥ 0 for all ~e, j

θk
l,j ≥ 0 for all k, l, j. (3)

For any given ~φ and ~f , the solution to the optimization problem w̃(~φ, ~f) is the optimal long term scheduling as-

signments θk
l,j and γ~e,j such that the long term average rate of the growth of M(~X) (i.e. maxk=1,...,K(

∑Dk

i=1 xk

nk(i)

λk))

is minimized. Interpreting this in another way, w̃(~φ, ~f) is a lower bound on the average rate of growth of M(~X)
for any algorithm. If there exists an optimal algorithm that can attain this lower bound on the average rate of
growth, then it must use the long-term scheduling assignment that corresponds to the solution of w̃(~φ, ~f). We
will soon use this optimization problem to obtain basic insights about the behavior of this optimal algorithm.

Note that since ~λ is in the capacity region, if φj = pj and fk = λk then the long term average rate of
growth of queue backlogs will be zero for any throughput-optimal scheduling algorithm (such as the back-pressure

algorithm). Hence it will be zero for the optimal algorithm. i.e. w̃(~p,~λ) = 0. Therefore, to make M(~X) exceed

a large value B, the long term average channel probability must be ~φ 6= ~p and/or ~f 6= ~λ. As is typical of large

deviations results, this deviation from the norm is associated with a cost. The cost for ~φ to deviate from ~p per
unit time is given by the relative entropy function H(~φ||~p) =

∑S
j=1 φj log(

φj

pj
). The cost for ~f to deviate from ~λ

per unit time is given by L(~f) ,
∑K

k=1 Lk(fk). Consider a time-scale of length 1

w̃(~φ,~f)
over which the deviation

from the norm is given by ~φ and ~f . Since w̃(~φ, ~f) is the average rate of growth for the optimal algorithm, the
system must overflow after the time period 1

w̃(~φ,~f)
under all algorithms. Hence the corresponding cost, given by

1

w̃(~φ,~f)
[H(~φ||~p)+L(~f)], provides an upper bound on the minimum cost to overflow for any algorithm. Minimizing

this value over ~φ and ~f , we then obtain the tightest upper bound given below. Please refer to [20, Proposition 9]
for a more technical and precise discussion.

Define

θ̃0 = inf
{~φ,~f :w̃(~φ,~f)>0}

1

w̃(~φ, ~f)
[H(~φ||~p) + L(~f)] (4)

Proposition 1 For any scheduling policy π, we have

lim inf
B→∞

1

B
logPπ [max

k=1,...,K
(

Dk

∑

i=1

Xk
nk(i)(0)) ≥ B] ≥ −θ̃0

7

Proof: The proof follows from the proof of Proposition 9 in [20] by setting

V (~x) , max
k=1,...,K

(

∑Dk

i=1 xk
nk(i)

λk
). (5)

The only assumptions made on V (~x) for the proof to hold is that it be continuous and satisfy the following
assumptions:

V (~x) is increasing in each component xi and

V (~x1 + ~x2) ≤ V (~x1) + V (~x2) for any two vectors ~x1 ≥ 0 and ~x2 ≥ 0.

It is easy to verify that these assumptions are true for (5). Q.E.D.

Proposition 1 shows that the decay rate I of any scheduling algorithm is less than θ̃0.

4.2 Insights into the behaviour of optimal algorithm

Let us use a heuristic interpretation of the optimization problem w̃(~φ, ~f) to obtain insights into the behavior of
the optimal algorithm. We will establish the two principles (Proposition 2) and (Proposition 3) by studying a
single flow tandem network and a multiflow single-hop cellular downlink network.

4.2.1 Tandem topology (Figure 1)

Consider a tandem topology with a single flow in the network, i.e., K = 1 and L = D1 − 1. For simplicity,
assume that at most one link can be activated in a time slot. The optimization problem w̃(~φ, ~f) simplifies to

w̃tandem(~φ, ~f) :

w̃tandem(~φ, ~f) = min
{x1

n1(i)
,γ~e,j}

∑D1

i=1 x1
n1(i)

λ1
(6)

subject to x1
n1(1) = [f1 −

S
∑

j=1

φj

∑

{~e∈Êj}

γ~e,jel1(1)]
+

x1
n1(i) = [

S
∑

j=1

φj

∑

{~e∈Êj}

γ~e,jel1(i−1)

−

S
∑

j=1

φj

∑

{~e∈Êj}

γ~e,jel1(i)]
+

for i = 2, . . . , D1 − 1
∑

{~e∈Ej}

γ~e,j = 1

γ~e,j ≥ 0 for all ~e, j.

Proposition 2 One of the optimal solutions to the optimization problem w̃tandem(~φ, ~f) has the following property

x1
n1(i) = 0 for i = 2, . . . , Dk − 1 (7)

x1
n1(1) ≥ 0

Proof: Since only one link can be active in a time slot, we have

Êj = {(0, . . . , F
l1(i)
j , . . . , 0) : i = 1, . . . , Dk − 1}

∪{(0, . . . , 0)}.

8

To prove this proposition, it is sufficient to show that for any feasible assignment x1
n1(i), γ~e,j , there exists another

assignment x̂1
n1(i), γ̂~e,j that satisfies the condition (7) and is such that

∑D1

i=1 x̂1
n1(i) ≤

∑D1

i=1 x1
n1(i) (i.e. its objective

function value (6) is no greater than the original assignment).
To show this, consider any i ≥ 2 such that x1

n1(i) > 0. We can reduce the value of γ
(...,F

l1(i−1)
j ,...),j

and increase

the value of γ(0,...,0),j, i.e., reducing the fraction of time spent on serving link l1(i− 1). This will reduce the value

of
∑S

j=1 φj

∑

{~e∈Êj}
γ~e,jel1(i−1) and

x1
n1(i) = [

S
∑

j=1

φj

∑

{~e∈Êj}

γ~e,jel1(i−1) −

S
∑

j=1

φj

∑

{~e∈Êj}

γ~e,jel1(i)]
+.

On the other hand, x1
n1(i−1) may increase. If x1

n1(i−1) increases, it will increase by at most the same amount by

which x1
n1(i) reduces as long as x1

n1(i) > 0. We can perform this operation until x1
n1(i) = 0. Hence, in this process,

the sum x1
n1(i−1) + x1

n1(i) either stays the same or decreases.

Applying the above procedure starting from the node n1(D1 − 1) and working backward to node n1(2), it is

easy to see that there exists an assignment γ̂~e,j resulting in values x̂1
n1(i); i = 1, . . . , D1 such that

∑D1

i=1 x̂1
n1(i) ≤

∑D1

i=1 x1
n1(i) and x̂1

n1(i) = 0 for i = 2, . . . , D1 − 1, which leads to the proposition. Q.E.D.

The significance of Proposition 2 is that it implies the scheduling algorithm should give preference to scheduling
links that are closer to the destination node, and thus significant buffering occurs only at the source node.

4.2.2 Cellular topology (Figure 2)

Consider a cellular downlink with a single base station and K users. The base station can communicate directly
with the users. In this network, we have L = K and Dk = 2 for k = 1, . . . , K and n1(1) = n2(1) = . . . = nk(1).
Due to wireless interference, we assume that only one user can be served in a timeslot. The optimization problem
w̃(~φ, ~f) simplifies to w̃cellular(

~φ, ~f) :

w̃cellular(
~φ, ~f) = min

{xk

nk(i)
,γ~e,j}

max
k=1,...,K

(
xk

nk(1)

λk
)

subject to xk
nk(1) = [fk

−
S
∑

j=1

φj

∑

{~e∈Êj}

γ~e,jelk(1)]
+

for k = 1, . . . , K
∑

{~e∈Ej}

γ~e,j = 1

γ~e,j ≥ 0 for all ~e, j.

Since only one link can be activated in a time slot, we have

Êj = {(0, . . . , F
lk(1)
j , . . . , 0) : k = 1, . . . , K} ∪ {(0, . . . , 0)}.

Proposition 3 One of the optimal solutions to the optimization problem w̃cellular(
~φ, ~f) has the following prop-

erty: γ
(...,F

lr(1)
j ,...),j

= 0 for any user r such that
xr

nr(1)

λr < maxk=1,...,K(
xk

nk(1)

λk).

Proof: Assume that the optimal solution to w̃cellular(
~φ, ~f) is such that there exists some user r such that

xr
nr(1)

λr < maxk=1,...,K(
xk

nk(1)

λk), γ
(...,F

lr(1)
j ,...),j

> 0.

9

We will show that it is possible to maintain the value of maxk=1,...,K(
xk

nk(1)

λk) while modifying γ~e in such a way

that γ
(...,F

lr(1)
j ,...),j

= 0 for any user r such that
xr

nr(1)

λr < maxk=1,...,K(
xk

nk(1)

λk). To achieve this, we reduce the value

of γ
(...,F

lr(1)
j ,...),j

and increase the value of γ(0,...,0),j. In other words, we reduce the service given to user r, and

increase the time that the scheduler spends idling. Due to this,
xr

nr(1)

λr will increase. This is done till we end up with

either γ
(...,F

lr(1)
j ,...),j

= 0 and
xr

nr(1)

λr < maxk=1,...,K(
xk

nk(1)

λk), or γ
(...,F

lr(1)
j ,...),j

≥ 0 and
xr

nr(1)

λr = maxk=1,...,K(
xk

nk(1)

λk).

Note that the value of maxk=1,...,K(
xk

nk(1)

λk) is not affected by this procedure.
Therefore, there is an optimal solution that satisfies the property that γ

(...,F
lr(1)
j ,...),j

= 0 for any user r with

xr
nr(1)

λr < maxk=1,...,K(
xk

nk(1)

λk). Q.E.D.

The significance of proposition 3 is that it tells us that the optimal value of w̃cellular(
~φ, ~f) is achieved by

serving the users with the largest average rate of growth of end-to-end backlog scaled by the average arrival rate.
In other words, the optimal scheduling algorithm should give preference to those users with the largest ratio of
end-to-end backlog to arrival rate.

4.3 Asymptotic optimality of the class of αβ-algorithms

Based on the two principles above, we propose the class of αβ scheduling algorithms as described in Section 3.2.
We will use the Lyapunov-function-based large deviations approach developed in [20] to show that this class of
algorithms is asymptotically optimal as α → 0 and β → ∞.

Next, we first show that the αβ algorithm is large deviations decay rate optimal for minimizing P[V (~X(0)) > B],
where V (·) is a Lyapunov function defined to be:

V (~X) =

(

K
∑

k=1

(
V k(~X)

λk
)(β+1)

)

1
β+1

. (8)

We can show that the αβ-algorithm minimizes the drift of this Lyapunov function in a fluid-sample-path sense
(see the proof of Proposition 4 in the Appendix).

Since limα→0,β→∞ V (~X) = maxk=1,...,K

(
∑Dk

i=1 Xk

nk(i)
)

λk , the function V (~X) can be viewed as an approximation

of our objective function M(~X) with the parameters α and β controlling the degree of approximation.
Letting Pαβ represent the stationary probability under the αβ-algorithm and Pπ be the stationary probability

under any scheduling algorithm π, we first have the following proposition.

Proposition 4 The quantity

lim
B→∞

1

B
log(Pαβ [V (~X(0)) > B])

exists and for any scheduling policy π,

lim
B→∞

1

B
log(Pαβ [V (~X(0)) > B])

≤ lim inf
B→∞

1

B
log(Pπ [V (~X(0)) > B]).

Please refer to Appendix A for the proof.
Now we proceed to show that the class of αβ-algorithms is asymptotically optimal in terms of the large

deviations decay rate for the stationary probability P[M(~X(0)) > B].

10

Proposition 5 Considering the αβ-scheduling algorithm, we have

lim
α→0,β→∞

lim sup
B→∞

1

B
log(Pαβ [max

k=1,...,K
(

∑Dk

i=1 Xk
nk(i)(0)

λk
) > B])

≤ lim inf
B→∞

1

B
log(Pπ [max

k=1,...,K
(

∑Dk

i=1 Xk
nk(i)(0)

λk
) > B]).

Proof: By an application of Holder’s inequality, we have the following inequality.

1

N
α

α+1

Dk

∑

i=1

Xk
nk(i) < (

Dk

∑

i=1

(Xk
nk(i))

α+1)
1

α+1 = V k(~X)

Also note that the following inequality holds.

max
k=1,...,K

V k(~X(t))

λk
< (

K
∑

k=1

(
V k(~X(t))

λk
)β+1)

1
β+1 = V (~X)

Combining the two inequalities, we have

1

N
α

α+1
max

k=1,...,K

∑Dk

i=1 Xk
nk(i)

λk
< V (~X). (9)

Therefore, for the αβ-algorithm,

1

B
log(Pαβ [max

k=1,...,K

∑Dk

i=1 Xk
nk(i)(0)

λk
> B])

<
1

B
log(Pαβ [V (~X(0)) >

B

N
α

α+1
])

and hence,

lim sup
B→∞

1

B
log(Pαβ [max

k=1,...,K

∑Dk

i=1 Xk
nk(i)(0)

λk
> B]) (10)

≤
1

N
α

α+1
lim

B→∞

1

B
log(Pαβ [V (~X(0)) > B]).

We also have the following inequality

V k(~X(t)) = (

Dk

∑

i=1

(Xk
nk(i))

α+1)
1

α+1 <

Dk

∑

i=1

Xk
nk(i) (11)

and the following inequality

V (~X) = (

K
∑

k=1

(V k(~X))β+1

λk
)

1
β+1 < K

1
β+1 max

k=1,...,K

V k(~X)

λk
. (12)

Using these inequalities, we have, for any scheduling policy π,

K
1

β+1 lim inf
B→∞

1

B
log(Pπ[V (~X(0)) > B]) (13)

≤ lim inf
B→∞

1

B
log(Pπ [max

k=1,...,K

∑Dk

i=1 Xk
nk(i)(0)

λk
> B]).

11

Since by proposition 4, the αβ-algorithm is optimal in terms of decay rate of V (·), we have

lim
B→∞

1

B
log(Pαβ [V (~X(0)) > B]) (14)

≤ lim inf
B→∞

1

B
log(Pπ [V (~X(0)) > B])

Thus combining equations (10),(13) and (14), we have

K
1

β+1 N
α

α+1

× lim sup
B→∞

1

B
log(Pαβ [max

k=1,...,K

∑Dk

i=1 Xk
nk(i)(0)

λk
> B])

≤ lim inf
B→∞

1

B
log(Pπ[max

k=1,...,K

∑Dk

i=1 Xk
nk(i)(0)

λk
> B])

Therefore, the αβ algorithms are asymptotically optimal as α → 0,β → ∞. Q.E.D.

Proposition 6 Consider the αβ-scheduling algorithm. The limit

lim
α→0,β→∞

lim
B→∞

1

B
log(Pαβ [max

k=1,...,K

∑Dk

i=1 Xk
nk(i)(0)

λk
> B])

exists and is equal to −θ̃0.

Remark : This proposition shows that the bound θ̃0 on the decay rate as mentioned in Proposition 1 is tight.
This is because by choosing α sufficiently small and β sufficiently large, the decay rate of the αβ-algorithm,

limB→∞
1
B

log(Pαβ [maxk=1,...,K

∑Dk

i=1 Xk

nk(i)
(0)

λk > B]) can be made arbitrarily close to −θ̃0.

Proof: First, we will estimate maxk=1,...,K

∑Dk

i=1 Xk

nk(i)

λk using V (~X). Using inequalities (9), (11) and (12), we

can sandwich maxk=1,...,K

∑Dk

i=1 Xk

nk(i)

λk by V (~X) in the following way

1

K
1

β+1

V (~X) ≤ max
k=1,...,K

∑Dk

i=1 Xk
nk(i)

λk
≤ N

α
α+1 V (~X) (15)

Therefore, for the αβ-algorithm, we obtain the following relations between the overflow probabilities Pαβ [V (~X(0)) >

B] and Pαβ [maxk=1,...,K

∑Dk

i=1 Xk

nk(i)
(0)

λk > B].

lim sup
B→∞

1

B
log(Pαβ [max

k=1,...,K

∑Dk

i=1 Xk
nk(i)(0)

λk
> B]) (16)

≤
1

N
α

α+1
lim

B→∞

1

B
log(Pαβ [V (~X(0)) > B]).

and

K
1

β+1 lim
B→∞

1

B
log(Pαβ [V (~X(0)) > B]) (17)

≤ lim inf
B→∞

1

B
log(Pαβ [max

k=1,...,K

∑Dk

i=1 Xk
nk(i)(0)

λk
> B]).

12

Taking the limit as α → 0 and β → ∞ on equations (16) and (17), we obtain the following inequalities on the
asymptotic performance:

lim sup
α→0,β→∞

lim sup
B→∞

1

B
log(Pαβ [max

k=1,...,K

∑Dk

i=1 Xk
nk(i)(0)

λk
> B]) (18)

≤ lim sup
α→0,β→∞

lim
B→∞

1

B
log(Pαβ [V (~X(0)) > B]).

and

lim inf
α→0,β→∞

lim
B→∞

1

B
log(Pαβ [V (~X(0)) > B]) (19)

≤ lim inf
α→0,β→∞

lim inf
B→∞

1

B
log(Pαβ [max

k=1,...,K

∑Dk

i=1 Xk
nk(i)(0)

λk
> B]).

Now we will show that the quantity limα→0,β→∞ limB→∞
1
B

log(Pαβ [V (~X(0)) > B]) exists and is equal to −θ̃0.

Similar to w̃(~φ, ~f) defined in (3), define w̃1(~φ, ~f) as

w̃1(~φ, ~f) = min
{xk

nk(i)
,θk

lk(i),j
,γ~e,j}

V (~x)

subject to xk
nk(1) = [fk

−

S
∑

j=1

φj

∑

{~e∈Êj}

γ~e,jθ
k
lk(1),jelk(1)]

+

xk
nk(i) = [

S
∑

j=1

φj

∑

{~e∈Êj}

γ~e,jθ
k
lk(i−1),jelk(i−1)

−

S
∑

j=1

φj

∑

{~e∈Êj}

γ~e,jθ
k
lk(i),jelk(i)]

+

for i = 2, . . . , Dk − 1
∑

{~e∈Ej}

γ~e,j = 1,
∑

{k∈Kl}

θk
l,j = 1

γ~e,j ≥ 0 for all ~e, j

θk
l,j ≥ 0 for all k, l, j.

w̃1(~φ, ~f) is an optimization problem similar to w̃(~φ, ~f), but with a different objective function.

By Proposition 8 of [20], we know that limB→∞
1
B

log(Pαβ [V (~X(0)) > B]) = −θ0 and by the proof of Propo-

sition 8 in [20], we know that θ0 ≥ θ̃1 where θ̃1 is defined as

θ̃1 = inf
{~φ,~f :w̃1(~φ,~f)>0}

1

w̃1(~φ, ~f)
[H(~φ||~p) + L(~f)]

Hence we have

lim
B→∞

1

B
log(Pαβ [V (~X(0)) > B]) ≤ −θ̃1.

Combining this with Proposition 9 of [20], we have

lim
B→∞

1

B
log(Pαβ [V (~X(0)) > B]) = −θ̃1. (20)

13

Source Destination

λ1

n1(1)

l1(1) l1(2)

n1(2)

Figure 3: Three node tandem topology

Note that θ̃0 and θ̃1 are similar except that θ̃0 is defined using w̃(~φ, ~f) and θ̃1 using w̃1(~φ, ~f).

We will show that as α → 0 and β → ∞, w̃1(~φ, ~f) → w̃(~φ, ~f) and hence θ̃1 → θ̃0.
From the inequality (15), it is easy to see that

1

K
1

β+1

w̃1(~φ, ~f) ≤ w̃(~φ, ~f) ≤ N
α

α+1 w̃1(~φ, ~f),

which implies that

K
1

β+1 θ̃1 ≥ θ̃0 ≥
1

N
α

α+1
θ̃1.

Therefore, θ̃0 ≤ lim infα→0,β→∞ θ̃1 ≤ lim supα→0,β→∞ θ̃1 ≤ θ̃0.
Hence, taking the limit as α → 0 and β → ∞ in equation (20), we have

lim
α→0,β→∞

lim
B→∞

1

B
log(Pαβ [V (~X(0)) > B]) = −θ̃0

Applying the above result to equations (18) and (19), we have

−θ̃0 ≤ lim inf
α→0,β→∞

lim inf
B→∞

1

B
log(Pαβ [max

k=1,...,K

∑Dk

i=1 Xk
nk(i)(0)

λk
> B]) ≤

lim sup
α→0,β→∞

lim sup
B→∞

1

B
log(Pαβ [max

k=1,...,K

∑Dk

i=1 Xk
nk(i)(0)

λk
> B]) ≤ −θ̃0

from which we deduce that limα→0,β→∞ limB→∞
1
B

log(Pαβ [maxk=1,...,K

∑Dk

i=1 Xk

nk(i)
(0)

λk > B]) exists and is equal

to −θ̃0 Q.E.D.

5 Practical Scheduling algorithms with good delay performance

So far, we have seen that by choosing α sufficiently small and β sufficiently large, we can make the αβ-algorithm
have a large deviations decay rate that is arbitrarily close to the optimal decay rate (Proposition 5). Note that
large deviations behaviour deals with the regime of large buffer lengths. In this section, we will discuss how to
design a hybrid algorithm that has the same large deviations decay rate performance of an αβ-algorithm while at
the same time having a better performance in the regime of small buffer lengths. To achieve this goal, the hybrid
algorithm emulates the behaviour of 1β-algorithm for small queue backlogs and the behaviour of αβ-algorithm
for large queue backlogs.

Consider a three-node, two-link tandem network with one flow as shown in Fig. 3. Since there is only one flow,
we will simplify some of the notation by not specifying the flow (e.g. we will use Xn(i) instead of Xk

nk(i)). Due to

interference, only one link can be served. The scheduler must decide whether to serve l(1) or l(2). Consider the
αβ-algorithm. The state space (i.e. a plot of Xn(1) vs. Xn(2)) is divided into two regions by the line specified by

((Xn(1))
α − (Xn(2))

α)F
l(1)
C(t) = (Xn(2))

αF
l(2)
C(t) (see Fig. 5). If the state (i.e. the ordered pair (Xn(1), Xn(2))) falls

in the region above the line, link l(2) will be served. If the state falls in the region below the line, l(1) will be

14

Xn(2)

Xn(1)

Serve l(2)

Serve l(1)

γ(1

F
l(1)

C(t)

+ 1

F
l(2)

C(t)

, 1

F
l(2)

C(t)

)

Decision boundary

Figure 4: State space plot for 1β-algorithm. γ is a parameter used to define the decision boundary.

γ((1

F
l(1)
C(t)

+ 1

F
l(2)
C(t)

)1/α, (1

F
l(2)
C(t)

)1/α)

Xn(2)

Serve l(1)

Serve l(2)

Decision boundary

Xn(1)

Figure 5: State space plot for αβ-algorithm. γ is a parameter used to define the decision boundary.

Xn(2)

Xn(1)

Serve l(2)

Serve l(1)

(B1
n1(1)

, B1
n1(2)

)

Decision boundary

Figure 6: State space plot for hybrid algorithm.

15

served. In either case, as a consequence of being served, the state will move towards the decision boundary. For
1β-algorithm, we obtain the state space shown in Fig. 4 . For αβ-algorithm (with small α), we obtain the state
space shown in Fig. 5. In the case of small α, because the decision line moves toward the x-axis, the state of
the system tends to ‘squeeze’ out towards the right. Hence, for the αβ-algorithm (with small α), the state of the
system tends to stay further away from the origin in comparison to the 1β-algorithm. This leads to larger values
of M(~X) = (Xn(1) +Xn(2))/λ (Note that this is not in contradiction to our theoretical result since our theoretical
result is a result on the asymptotic rate of decay at large buffer levels).

To overcome this problem, we can construct a hybrid policy which behaves like 1β-algorithm for small buffer
lengths and then switches to αβ-algorithm when the buffer lengths are larger. The state space for this hybrid
policy is shown in Fig. 6. The decision boundary for the hybrid policy is composed of the decision boundaries
shown in Fig. 4 and 5 with the point (B1

n1(1), B
1
n1(2)) being the point of ‘concatenation’. The details of the hybrid

algorithm are described next.

5.1 Hybrid algorithms

The hybrid algorithm uses the following function to assign weight to the links.

Wl(t) = max
{k∈Kl}

(V k(~X(t)))β−α[Z(Xk
b(l)(t)) − Z(Xk

e(l)(t))],

where for any flow k and ith node in the path of flow k,

Z(Xk
nk(i)) =

{

Xk
nk(i) if Xk

nk(i) < Bk
nk(i)

[(Xk
nk(i) − Bk

nk(i))
α + Bk

nk(i)] otherwise.

Bk
nk(i) are threshold values which are constants.

The motivation behind the function Z(·) is as follows. For now, let us assume that we know the values of Bk
nk(i).

Since we want the hybrid to emulate 1β-algorithm for small values of backlog, we want Z(Xk
nk(i)) = Xk

nk(i) when

Xk
nk(i) is less than a certain threshold Bk

nk(i). Further, since we want to emulate αβ-algorithm with small value of

α when the backlog is large, we want Z(Xk
nk(i)) = (Xk

nk(i))
α when Xk

nk(i) > Bk
nk(i). However, a problem with these

two choices is that the function Z(Xk
nk(i)) is not continuous at Bk

nk(i). Hence we modify the value of Z(Xk
nk(i))

for Xk
nk(i) > Bk

nk(i) to [(Xk
nk(i) − Bk

nk(i))
α + Bk

nk(i)].

Now we look at one way of choosing the values Bk
nk(i). Consider again the single flow tandem network of Fig.

3. From the definition of the hybrid policy, we see that when Xn(1) > B1
n1(1) and Xn(2) > B1

n1(2), the decision
boundary is determined by the line

(

(Xn(1) − B1
n1(1))

α + B1
n1(1)

−(Xn(2) − B1
n1(2))

α − B1
n1(2)

)

F
l(1)
C(t)

=
(

(Xn(2) − B1
n1(2))

α + B1
n1(2)

)

F
l(2)
C(t).

With some algebra, it can be shown that the line can be expressed as

((γ(
1

F
l(1)
C(t)

+
1

F
l(2)
C(t)

) − B1
n1(1))

1
α + B1

n1(1), (21)

(γ(
1

F
l(2)
C(t)

) − B1
n1(2))

1
α + B1

n1(2))

using a parameter γ. Since we want the decision boundary of the hybrid policy to look like figure 6, the line
(21) should be of the form γ̂((1

F
l(1)

C(t)

+ 1

F
l(2)

C(t)

)
1
α , (1

F
l(2)

C(t)

)
1
α) + (K1, K2) ,where γ̂ is a parameter and K1 and K2 are

constants. This provides us with the following solution for (B1
n1(1), B

1
n1(2)).

(B1
n1(1), B

1
n1(2)) = κ(1/F

l(1)
C(t) + 1/F

l(2)
C(t), 1/F

l(2)
C(t))

16

where κ is some constant. Generalizing this idea to a single flow tandem network with D1 nodes, we obtain

(B1
n1(1), B

1
n1(2), . . . , B

1
n1(D1−1))

= κ(

D1−1
∑

i=1

1

F
l1(i)
C(t)

,

D1−1
∑

i=2

1

F
l1(i)
C(t)

, . . . ,
1

F
l1(D1−1)
C(t)

)

Note that the threshold values B1
n1(i) depend on the channel state C(t). We impose an additional constraint

that the sum of the thresholds should be constant, i.e. for any channel state,
∑D1−1

i=1 B1
n1(i) = B∗. This gives us

κ = B∗

∑D1
−1

q=1

∑

D1
−1

p=q
1

F
l1(p)
C(t)

.

Extending this idea to our general system model, we obtain the following expression for Bk
nk(i)

Bk
nk(i) = B∗

∑Dk−1
p=i

1

F
lk(p)

C(t)

∑Dk−1
q=1

∑Dk−1
p=q

1

F
lk(p)

C(t)

where B∗ is a user-defined parameter.
Since the values Bk

nk(i) are constants, the hybrid algorithm has the same large deviations behaviour as the

αβ-algorithm. Formally speaking, we have the following result.

Proposition 7 Let Pαβ

hyb
denote the stationary probability for the hybrid policy with parameters α and β. Then,

lim
α→0,β→∞

lim sup
B→∞

1

B
log(Pαβ

hyb
[max
k=1,...,K

(

Dk

∑

i=1

Xk
nk(i)(0)) > B])

≤ lim inf
B→∞

1

B
log(Pπ [max

k=1,...,K
(

Dk

∑

i=1

Xk
nk(i)(0)) > B]).

Proof: Similar to the proof of Proposition 4, we can show that the hybrid policy with parameters α, β minimizes
the drift of the Lyapunov function V (~X) in a fluid-sample-path sense. This is because the behavior of an algorithm
for fluid-sample-paths is determined by its behavior when queue lengths are large. Since the hybrid algorithm
behaves like the αβ-algorithm when queue lengths are large, it has the same behavior as the αβ-algorithm as far
as fluid-sample paths are concerned.

Then, by using the arguments used in the proof of Proposition 5, we obtain

K
1

β+1 N
α

α+1

× lim sup
B→∞

1

B
log(Pαβ

hyb
[max
k=1,...,K

∑Dk

i=1 Xk
nk(i)(0)

λk
> B])

≤ lim inf
B→∞

1

B
log(Pπ[max

k=1,...,K

∑Dk

i=1 Xk
nk(i)(0)

λk
> B])

and hence the result. Q.E.D.

6 Simulation

For simulations, we consider the network shown in Fig. 7. The network consists of 10 nodes and 9 links. Due to
fading, the capacity of each link takes the value 10 or 0 with a probability of 0.5. The fluctuations of the capacity
are i.i.d over time and across links. In each time slot, due to interference only one link may be active. There

17

2

7

104

1

3 5 6

8

9
Destination 2

Destination 3 & 4

Destination 1

λ2

λ4λ3

λ1

Figure 7: System topology for simulation

50 100 150 200 250 300
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

 B

 P
(M

(X
)>

B
)

 α=1 β=1
 α=1 β=10
 α=0.3 β=10
 α=0.5 β=10

Figure 8: Plot of P[M(~X(0)) > B]) vs. B for αβ-algorithm for various values of α and β.

are 4 flows traversing the network and data arrives at each flow according to a Bernoulli process. In each time
slot, 1 unit of data arrives with a probability of 0.52 and no data arrives otherwise. The arrival process is i.i.d
across flows. Flow 1 passes through nodes 1, 3, 5, 6, 7, 8. Flow 2 passes through nodes 2, 3, 5, 6, 7, 9. Flow 3 passes
through nodes 2, 3, 5, 6, 7, 10 and flow 4 passes through nodes 4, 5, 6, 7, 10. The quantity we are interested in is
the stationary probability P[M(~X(0)) > B]) where M(~X) is given by

1

0.52
max{(X1

1 + X1
3 + X1

5 + X1
6 + X1

7 + X1
8),

(X2
2 + X2

3 + X2
5 + X2

6 + X2
7 + X2

9),

(X2
2 + X2

3 + X2
5 + X2

6 + X2
7 + X2

10),

(X4
4 + X4

5 + X4
6 + X4

7 + X4
10)}

In Fig.8 we present plots of P[M(~X(0)) > B]) vs. B for the αβ-algorithm with four different choices for the pair
of parameters α and β. We see that as expected from theory, α = 1, β = 10 algorithm has a better performance
than the α = 1, β = 1 algorithm. However, as we decrease α, we see that α = 0.5, β = 10 does worse than the
α = 1, β = 10 algorithm (but still marginally better than α = 1, β = 1 algorithm). Further, α = 0.3, β = 10
does much worse (although at much larger values of B (not shown), the decay rate will be better). In Fig.9 we
compare the performance of the α = 1, β = 1 algorithm, α = 1, β = 10 algorithm, hybrid algorithm with α = 0.5,
β = 10, B∗ = 50 and hybrid algorithm with α = 0.3, β = 10, B∗ = 50. The hybrid algorithms perform much
better than either the α = 1, β = 1 or the α = 1, β = 10 algorithm. Also, both hybrid algorithms have similar
performance which suggests that there is no advantage to decrease α further. Note that the α = 1, β = 1
algorithm is the same as the well known back-pressure scheduling algorithm [1]. Hence, our simulation results
show that the hybrid algorithm (for the case of small α and large β) and the αβ-algorithm (for the case of large
β) perform much better than backpressure algorithm.

18

50 100 150 200 250 300
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

 B

 P
(M

(X
)>

B
)

 α=1 β=1
 α=1 β=10

 α=0.3 β=10 B*=50 hybrid

 α=0.5 β=10 B*=50 hybrid

Figure 9: Plot of P[M(~X(0)) > B]) vs. B for αβ-algorithm and hybrid algorithm for various values of α and β.

7 Conclusion

Using a large deviations framework, we obtain insights into the design of optimal algorithms for minimizing the
end-to-end buffer usage in a multiflow multihop wireless network. We propose a class of algorithms (called αβ-
algorithms) and variants (called hybrid αβ-algorithm) that can be made to perform arbitrarily close to optimal
(in a large deviations sense) by reducing α and increasing β. Through simulations, we show that the class of
hybrid algorithms has good performance in the small buffer regime as well. Our result is based on a very general
system model and hence can provide insight in a wide range of scheduling scenarios.

A Proof of proposition 4

The result follows by applying Proposition 8 of [20]. To do this, we only need to verify the Assumptions 1-6
stated in [20]. Before we can verify the assumptions, we need to define a norm || · ||. Define the norm || · || as

|| ~X|| =

(

K
∑

k=1

(
V k

+(~X)

λk
)(β+1)

)

1
β+1

where (22)

V k
+(~X) =





Dk

∑

i=1

(|Xk
nk(i)|)

(α+1)





1
α+1

.

Lemma 8 || · || defined in (22) satisfies the properties of a norm. i.e., ||c ~X|| = |c||| ~X || for any scalar c, || ~X || = 0

if and only if ~X = ~0 and || ~X + ~Y || ≤ || ~X|| + ||~Y || for any two vectors ~X and ~Y .

Proof: It is easy to see that ||c ~X|| = |c||| ~X ||. It is also easy to see that || ~X|| = 0 if and only if ~X = ~0.

Next, the triangle inequality follows from application of Minkowski’s inequality. By definition, || ~X + ~Y || =

19

(
∑K

k=1(
V k
+ (~X+~Y)

λk)(β+1))
1

β+1 . We first show that the triangle inequality holds for V k
+(·).

V k
+(~X + ~Y) = (

Dk

∑

i=1

(|Xk
nk(i) + Y k

nk(i)|)
(α+1))

1
α+1

≤ (

Dk

∑

i=1

(|Xk
nk(i)| + |Y k

nk(i)|)
(α+1))

1
α+1

≤ (

Dk

∑

i=1

(|Xk
nk(i)|)

(α+1))
1

α+1

+(

Dk

∑

i=1

(|Y k
nk(i)|)

(α+1))
1

α+1

= V k
+(~X) + V k

+(~Y)

where the second inequality follows by using the triangle inequality on | · |, and the third follows by using
Minkowski’s inequality.

Using the triangle inequality for V K
+ (·) and Minkowski’s inequality, we have the triangle inequality for || · || as

follows.

|| ~X + ~Y ||

= (

K
∑

k=1

(
V k

+(~X + ~Y)

λk
)(β+1))

1
β+1

≤ (

K
∑

k=1

(
V k

+(~X)

λk
+

V k
+(~Y)

λk
)(β+1))

1
β+1

≤ (

K
∑

k=1

(
V k

+(~X)

λk
)(β+1))

1
β+1 + (

K
∑

k=1

(
V k

+(~Y)

λk
)(β+1))

1
β+1

= || ~X|| + ||~Y ||.

Q.E.D.

The assumptions in [20] use certain concepts (stated in detail in [20]) that we will reintroduce in the following
section.

A.1 Preliminaries

In this section, we summarize some important concepts necessary to understand the exposition that follows. The
following processes play an important role in the large deviations analysis. They are obtained by scaling time
and magnitude by a factor B. This scaling is commonly referred to as fluid scaling.

For a fixed B, define the scaled channel state process as (see equation (1) in [20])

sB
j (t) =

1

B

B(T+t)
∑

τ=0

1{C(τ)=j}

for t = m
B

− T, m = 0, . . . , BT , and by linear interpolation otherwise. Let ~sB = [sB
j , j = 1, . . . , S]. Define the

scaled arrival process as (see equation (4) in [20])

ak,B(t) =
1

B

B(T+t)
∑

τ=0

Ak(τ)

20

for t = m
B

− T, m = 0, . . . , BT , and by linear interpolation otherwise. Let ~aB = [ak,B, k = 1, . . . , K]. Define the
scaled backlog process as (see equation (12) in [20])

xk
n(t) =

1

B
Xk

n(B(T + t))

for t = m
B

− T, m = 0, . . . , BT , and by linear interpolation otherwise. Let ~xB(t) = [xk,B
n (t), n = 1, . . . , N, k =

1, . . . , K].
We reintroduce the concept of fluid-sample-paths (FSP) (see section 3 of [20]). Given any T > 0 and initial

condition ~xB(−T), the scaled channel process ~sB(t) and scaled arrival process ~aB(t) determine the evolution
of the scaled queue backlog process ~xB(t) through the behavior of the scheduling algorithm. Define a triple
(~sB(t),~aB(t), ~xB(t)) to consist of such related processes. Consider B → ∞. Since ~sB(t), ~aB(t) and ~xB(t)
are Lipschitz continuous, for any sequence of triples (~sB(t),~aB(t), ~xB(t)) there must exist a subsequence that
converges to a limiting triple (~s,~a, ~x) uniformly over compact intervals. Any such limiting triple is referred to as
a fluid-sample-path.

In what follows, we will often refer to derivatives d
dt

~s(t), d
dt

~a(t), d
dt

~x(t) and d
dt

V (~x(t)). These derivatives exists
almost everywhere due to the Lipschitz continuity of the processes ~s(t),~a(t), ~x(t) and V (~x(t)). Time t is said to
be regular if the derivatives exist at time t. For convenience, when referring to such derivatives, we implicitly
assume that the derivative is taken at a regular time t. Further, for convenience we consider derivatives to be
right derivatives.

Let us now proceed to verify the six assumptions in [20] with the overflow norm || · || and Lyapunov function
V (·) defined as in (22) and (8), respectively. We list the assumptions here for reference.

A.2 Restatement of assumptions from [20]

Assumption 1 The Lyapunov function V (~x), defined for ~x ≥ 0, satisfies the following:

(a) V (~x) is a continuous function of ~x.

(b) V (~x) ≥ 0 for all ~x and V (~x) = 0 if and only if ~x = 0.

(c) V (~x) → ∞ if ||~x|| → ∞.

(d) min||~x||≥1 V (~x) ≥ 1. Further there exists a number C̃ such that max||~x||≤1 V (~x) ≤ C̃.

(e) For any B > 0, there exists a constant L that may depend on B, such that for any ||~x1|| ≤ B and ||~x2|| ≤ B,

|V (~x1) − V (~x2)| ≤ L||~x1 − ~x2||.

(f) The following holds (for a fixed arrival rate ~λ and a fixed channel state distribution ~p assumed in the system

model): For all fluid limits ~x (i.e. fluid sample path with d
dt

~s(t) = ~p and d
dt

~a(t) = ~λ),

d

dt
V (~x(t)) ,

(

∂V

∂~x

)T
d~x

dt
≤ −ηV γ(~x(t)), (23)

for almost all t, where 0 < γ < 1 and η is a positive constant.

Parts (a)-(c) and (f) of the assumption are typical when using Lyapunov functions to establish stability. Part (f)
in particular states that the Lyapunov function must have negative drift when the system channel process and
arrival process do not deviate from their normal behaviour. Parts (d) and (e), although not standard, can be
made to hold for many Lyapunov functions that have been used for wireless systems, by an appropriate scaling.

Assumption 2 (a) There exists ǫ > 0 such that for all fluid sample paths FSP(~s,~a, ~x)T and for all time t with

|| d
dt

~s(t) − ~p|| ≤ ǫ and || d
dt

~a(t) − ~λ|| ≤ ǫ, the following holds:

d

dt
V (~x(t)) ≤ −

η

2
V γ(~x(t)),

where 0 < γ < 1 and η > 0 are the same constants as in (23).

21

(b) For any δ > 0, there exists M1 ≥ 0 such that for all fluid sample paths FSP(~s,~a, ~x)T and for all time t with

|| d
dt

~s(t) − ~p|| ≥ δ or || d
dt

~a(t) − ~λ|| ≥ δ, the following holds,

d

dt
V (~x(t)) ≤ M1V

γ(~x(t)).

Part (a) of this assumption states that if the channel state process and arrival process deviate from their normal
behaviour slightly, the Lyapunov function still experiences negative drift. Hence the system is still stable. Part
(b) states that even if the channel state process or the arrival process deviates significantly from their normal
behaviour, the rate of growth of the Lyapunov function is still controlled. Hence, the system will not blow-up
immediately.

Assumption 3 The Lyapunov function V (·) is linear in scale, i.e., V (c~x) = cV (~x) for all c ≥ 0.

For any arrival rate vector ~f and channel state vector ~φ, define δk
i (the difference between the rate of arrival and

rate of departure of data at queue Xk
i) as follows. Assume that γ~e is the fraction of time that scheduling vector

~e is used and θk
l,j the fraction of service given to flow k over link l in channel state j immediately after time t.

δk
nk(1) = fk(t) −

S
∑

j=1

φj(t)
∑

{~e∈Êj}

γ~eθ
k
lk(1),jel

δk
nk(i) =

S
∑

j=1

φj(t)
∑

{~e∈Êj}

γ~eθ
k
lk(i−1),jel −

S
∑

j=1

φj(t)
∑

{~e∈Êj}

γ~eθ
k
lk(i),jel for i = 2, . . . , Dk − 1

δk
nk(Dk) = 0

δk
i = 0 for all other nodes i

Define
Ṽ (τ, ~e|~x, ~φ, ~f) , V ([~x + ~δτ]+).

Assumption 4 For any fluid sample path FSP(~s,~a, ~x), the following holds for all t:

d

dt
V (~x(t)) = min

γ~e, θk
l,j

∂

∂τ
Ṽ (τ, ~e|~x(t), ~φ(t), ~f(t))

∣

∣

∣

τ=0
.

where ~φ(t) = d
dt

~s(t), ~f(t) = d
dt

~a(t),
∑

{~e∈Êj}
γ~e = 1 for j = 1, . . . , S and

∑K
k=1 θk

l,j = 1 for l = 1, . . . , L and j = 1, . . . , S.

This assumption states that at any point of the fluid-sample-path (~s(t),~a(t), ~x(t)), the scheduling algorithm
minimizes the drift of the Lyapunov function over all scheduling decisions.

Assumption 5 V (~x) is increasing in each component xi.

Assumption 6 V (~x1 + ~x2) ≤ V (~x1) + V (~x2) for any two vectors ~x1 ≥ 0 and ~x2 ≥ 0,

Assumptions 3 and 6 combined imply that Lyapunov function V (·) behaves almost like a norm except that it
may not be defined when components of ~x are negative.

A.3 Verification of assumptions

We first verify those assumptions that do not involve the derivative of the Lyapunov function. These are assump-
tions 1)a)-1)e), 3), 5) and 6).

A.3.1 Verification of assumptions that do not involve the derivative of V (~X):

It is easy to see that assumptions 1)a)-1)d), 3) and 5) hold. Assumption 1)e) follows from the fact that || · || is a
norm and the fact that ||~x|| = V (~x) for vector ~x ≥ ~0. Assumption 6) follows from the fact that || · || satisfies the
triangle inequality and that ||~x|| = V (~x) for any vector ~x ≥ ~0.

22

A.3.2 Verification of assumptions that involve the derivative of V (~X):

Assumptions involving the derivative of the Lyapunov function are Assumptions 1)f), 2) and 4) which we will
verify after deriving the derivative of V (t).
Derivation of the derivative of V (t):

First, we will show that the drift of the Lyapunov function for fluid-sample-path FSP(~s,~a, ~x) is

d

dt
V (~x(t)) =

[

K
∑

k=1

(
V k(~x(t))

λk
)β+1

]

−β
β+1

×

[

K
∑

k=1

(V k(~x(t)))β−α

(λk)β+1
(xk

nk(1)(t))
α d

dt
ak(t)

−

S
∑

j=1

d

dt
sj(t) max

{~e∈Êj}

L
∑

l=1

max
k∈Kl

{

(V k(~x(t)))β−α

(λk)β+1
(xk

b(l)(t))
α

−
(V k(~x(t)))β−α

(λk)β+1
(xk

e(l)(t))
α

}

el

]

. (24)

To see this, note that the derivative of V (t) is given by the following limit (recall that we will consider right
derivatives for simplicity (Section A.1) and that the queue backlog at the destination node of a flow k, xk

nk(Dk)(t)

is 0 for all time):

d

dt
V (t) = lim

δ→0+

[

K
∑

k=1

(
V k(~x(t))

λk
)β+1

]

−β
β+1 K

∑

k=1

Dk

∑

i=1

(V k(~x(t)))β−α

(λk)β+1
(xk

nk(i)(t))
α

[xk
nk(i)(t + δ) − xk

nk(i)(t)]

δ
.

where for fixed δ,

[xk
nk(i)(t + δ) − xk

nk(i)(t)]

δ
= lim

B→∞

[xk,B

nk(i)
(t + δ) − xk,B

nk(i)
(t)]

δ
.

Hence, we consider the summation (for δ > 0)

[

K
∑

k=1

(
V k(~x(t))

λk
)β+1

]

−β
β+1 K

∑

k=1

Dk

∑

i=1

(V k(~x(t)))β−α

(λk)β+1
(xk

nk(i)(t))
α[xk,B

nk(i)
(t + δ) − xk,B

nk(i)
(t)] (25)

From the queueing equation (2), we obtain the following expression for the scaled process ~xB(t)

xk,B

nk(1)
(t + δ) − xk,B

nk(1)
(t) =

1

B

⌊B(T+t+δ)⌋−1
∑

τ=⌊B(T+t)⌋

Ak(τ) −
1

B

⌊B(T+t+δ)⌋−1
∑

τ=⌊B(T+t)⌋

S
∑

j=1

1{C(τ)=j}E
k
lk(1)(j,

~X(τ)) + O(
1

B
)

xk,B

nk(i)
(t + δ) − xk,B

nk(i)
(t) =

1

B

⌊B(T+t+δ)⌋−1
∑

τ=⌊B(T+t)⌋

S
∑

j=1

1{C(τ)=j}E
k
lk(i−1)(j,

~X(τ))

−
1

B

⌊B(T+t+δ)⌋−1
∑

τ=⌊B(T+t)⌋

S
∑

j=1

1{C(τ)=j}E
k
lk(i)(j,

~X(τ)) + O(
1

B
)

for i = 2, . . . , Dk − 1.

The O(1
B

) term arises due to the fact that ~x(t) is linearly interpolated.

23

Using this in (25), we obtain the following expression

K
∑

k=1

Dk

∑

i=1

(V k(~x(t)))β−α

(λk)β+1
(xk

nk(i)(t))
α[xk,B

nk(i)
(t + δ) − xk,B

nk(i)
(t)]

=

K
∑

k=1

(V k(~x(t)))β−α

(λk)β+1
(xk

nk(1)(t))
α 1

B

⌊B(T+t+δ)⌋−1
∑

τ=⌊B(T+t)⌋

Ak(τ) (26)

−
1

B

⌊B(T+t+δ)⌋−1
∑

τ=⌊B(T+t)⌋

S
∑

j=1

1{C(τ)=j}

K
∑

k=1

Dk−1
∑

i=1

[

(V k(~x(t)))β−α

(λk)β+1
(xk

nk(i)(t))
α −

(V k(~x(t)))β−α

(λk)β+1
(xk

nk(i+1)(t))
α

]

×Ek
lk(i)(j,

~X(τ)) + O(
1

B
)

Observe that by rearranging the summation, we have

K
∑

k=1

Dk−1
∑

i=1

(V k(~x(t)))β−α

(λk)β+1
[(xk

nk(i)(t))
α − (xk

nk(i+1)(t))
α]Ek

lk(i)(j,
~X(τ)) (27)

=

L
∑

l=1

∑

k∈Kl

(V k(~x(t)))β−α

(λk)β+1
[(xk

b(l)(t))
α − (xk

e(l)(t))
α]Ek

l (j, ~X(τ)).

Now we will use the fact that the convergence of the scaled processes (~sB,~aB, ~xB) to the fluid sample path
(~s,~a, ~x) is uniform over compact intervals and that the queue process and the channel processes are Lipschitz
continuous. We will need the following result.

Lemma 9 Let f(·) be a continous function. Fix δ > 0. Then, f(~xB(s)) → f(~x(s)) uniformly over the set
s ∈ [t, t + δ].

Proof: Since ~xB(s) converges to ~x(s) u.o.c (uniformly over compact intervals), we have sups∈[t,t+δ] |~x
B(s)−~x(s)| →

0 as B → ∞. In other words, for any ǫ1 > 0, there exists B1 such that for any B > B1, sups∈[t,t+δ] |~x
B(s)−~x(s)| <

ǫ1. Since ~x(s) is Lipschitz, it is bounded for s ∈ [t, t + δ]. Hence, there is a set C that is closed, bounded and
contains the set ∪B>B1{~x

B(s) : s ∈ [t, t + δ]} ∪ {~x(s) : s ∈ [t, t + δ]}. The function f(·) is uniformly continous
over C since C is compact. Therefore, for any ǫ > 0, there exists ǫ1 > 0 such that |f(~xB(s)) − f(~x(s))| < ǫ
whenever |~xB(s)− ~x(s)| < ǫ1 and ~xB(s), ~x(s) ∈ C. Since |~xB(s)− ~x(s)| < ǫ1 and ~xB(s), ~x(s) ∈ C for B > B1, we
can conclude that for any ǫ > 0, there exists B1 such that for any B > B1, sups∈[t,t+δ] |f(~xB(s)) − f(~x(s))| < ǫ.
Q.E.D.

Lemma 10 Under the αβ-algorithm, there exists B1 > 0 and δ1 > 0 such that for B > B1 and time-slots
τ ∈ [⌊B(T + t)⌋, ⌊B(T + t + δ1)⌋ − 1]

L
∑

l=1

∑

k∈Kl

(V k(~x(t)))β−α

(λk)β+1
[(xk

b(l)(t))
α − (xk

e(l)(t))
α]Ek

l (j, ~X(τ))

=

L
∑

l=1

W̃l(t)El(j, ~X(τ)) (28)

where

W̃l(t) , max
k∈Kl

(V k(~x(t)))β−α

(λk)β+1
[(xk

b(l)(t))
α − (xk

e(l)(t))
α]

Remark: Since the αβ-algorithm chooses one of the users with the largest value of (V k(~x(t)))β−α

(λk)β+1 [(xk
b(l)(t))

α −

(xk
e(l)(t))

α] for service, it is natural to expect that when τ = B(T + t), the above equation must hold. The key

24

result in this lemma is to show that the equation holds even when τ deviates slightly from B(T + t) by belonging
to an interval [⌊B(T + t)⌋, ⌊B(T + t + δ1)⌋ − 1].
Proof: Consider link l. If

(V k̂(~x(t)))β−α

(λk̂)β+1
[(xk̂

b(l)(t))
α − (xk̂

e(l)(t))
α] < max

k∈Kl

(V k(~x(t)))β−α

(λk)β+1
[(xk

b(l)(t))
α − (xk

e(l)(t))
α],

then by continuity of (V k(~x(t)))β−α

(λk)β+1 [(xk
b(l)(t))

α − (xk
e(l)(t))

α], there exists δ1, ǫ1 > 0 such that for s ∈ [t, t + δ1], we

have

(V k̂(~x(s)))β−α

(λk̂)β+1
[(xk̂

b(l)(s))
α − (xk̂

e(l)(s))
α] < max

k∈Kl

(V k(~x(s)))β−α

(λk)β+1
[(xk

b(l)(s))
α − (xk

e(l)(s))
α] − ǫ1.

Now, by Lemma 9, we have that there exists B1 > 0 such that for any B > B1 and s ∈ [t, t + δ1]

(V k̂(~xB(s)))β−α

(λk̂)β+1
[(xk̂,B

b(l) (s))
α − (xk̂,B

e(l) (s))
α] < max

k∈Kl

(V k(~xB(s)))β−α

(λk)β+1
[(xk,B

b(l) (s))
α − (xk,B

e(l) (s))
α].

Therefore, during timeslots τ ∈ [⌊B(T + t)⌋, ⌊B(T + t + δ1)⌋ − 1],

(V k̂(~X(τ)))β−α

(λk̂)β+1
[(X k̂

b(l)(τ))α − (X k̂
e(l)(τ))α] < max

k∈Kl

(V k(~X(τ)))β−α

(λk)β+1
[(Xk

b(l)(τ))α − (Xk
e(l)(τ))α]

and hence flow k̂ will not be activated over link l if link l is scheduled for transmission. Further, one of the flows

in argmaxk∈Kl

(V k(~xB(t)))β−α

(λk)β+1 [(xk,B

b(l) (t))
α − (xk,B

e(l) (t))
α], will be given the complete service El(j, ~X(τ)). Hence we

have

L
∑

l=1

∑

k∈Kl

(V k(~x(t)))β−α

(λk)β+1
[(xk

b(l)(t))
α − (xk

e(l)(t))
α]Ek

l (j, ~X(τ))

=

L
∑

l=1

max
k∈Kl

(V k(~x(t)))β−α

(λk)β+1
[(xk

b(l)(t))
α − (xk

e(l)(t))
α]El(j, ~X(τ))

=

L
∑

l=1

W̃l(t)El(j, ~X(τ))

where (E1(j, ~X(τ)), . . . , EL(j, ~X(τ))) ∈ Ej .
Q.E.D.

Therefore, using (27) and lemma 10, (26) becomes (for B > B1 and δ < δ1)

K
∑

k=1

Dk

∑

i=1

(V k(~x(t)))β−α

(λk)β+1
(xk

nk(i)(t))
α[xk,B

nk(i)
(t + δ) − xk,B

nk(i)
(t)]

=

K
∑

k=1

(V k(~x(t)))β−α

(λk)β+1
(xk

nk(1)(t))
α 1

B

⌊B(T+t+δ)⌋−1
∑

τ=⌊B(T+t)⌋

Ak(τ) (29)

−
1

B

⌊B(T+t+δ)⌋−1
∑

τ=⌊B(T+t)⌋

S
∑

j=1

1{C(τ)=j}

L
∑

l=1

W̃l(t)El(j, ~X(τ)) + O(
1

B
)

Lemma 11 There exists B4 and δ4 such that for B > B4 and τ ∈ [⌊B(T + t)⌋, ⌊B(T + t + δ4)⌋ − 1], we have

L
∑

l=1

W̃l(t)El(j, ~X(τ)) = max
{~e∈Êj}

L
∑

l=1

W̃l(t)el.

25

Remark: Since the αβ-algorithm schedules links (from the set of non-interfering schedules) such that
∑L

l=1 W̃l(t)el

is maximized, it is natural to expect that when τ = B(T + t), the above equation would hold. The result of
the lemma is stronger, stating that the equation holds even when τ deviates slightly, belonging to τ ∈ [⌊B(T +
t)⌋, ⌊B(T + t + δ4)⌋ − 1].

Proof: Define the set Ĺ = {l : W̃l(t) 6= 0}. Choose ǫ2 = min{ |W̃l(t)|
2 : l ∈ Ĺ}. Due to continuity of W̃l(t), there

exists δ2 > 0 such that for s ∈ [t, t+ δ2], the following is true W̃l(s) > ǫ2 if W̃l(t) > 0 or W̃l(s) < −ǫ2 if W̃l(t) < 0.
By application of Lemma 9,

max
k∈Kl

(V k(~xB(s)))β−α

(λk)β+1
[(xk,B

b(l) (s))
α − (xk,B

e(l) (s))
α] → W̃l(s)

uniformly over the set s ∈ [t, t + δ2]. This implies that there exists B2 such that for B > B2, and time-slot
τ ∈ [B(T + t), B(T + t + δ2)],

1

Bβ
max
k∈Kl

(V k(~X(τ)))β−α

(λk)β+1
[(Xk

b(l)(τ))α − (Xk
e(l)(τ))α] > ǫ2 or < −ǫ2

This implies that for B > B2, El(j, ~X(τ)) is either 0 or F l
j for τ ∈ [⌊B(T + t)⌋, ⌊B(T + t + δ2)⌋ − 1] (i.e. there is

enough backlog in queue Xk
b(l) that the entire capacity of link l is utilized in these time-slots).

Our strategy will be to show that if
∑L

l=1 W̃l(t)El(j, ~X(τ)) < max{~e∈Êj}

∑L
l=1 W̃l(t)el then there is a time

slot τ where, in the pre-limit system, we have
∑L

l=1 Wl(τ)El(j, ~X(τ)) < max{~e∈Êj}

∑L
l=1 Wl(τ)el. This is con-

tradictory to the behaviour of the αβ-algorithm during this time-slot τ and hence
∑L

l=1 W̃l(t)El(j, ~X(τ)) <

max{~e∈Êj}

∑L
l=1 W̃l(t)el cannot hold.

Consider B > B2 and τ ∈ [⌊B(T +t)⌋, ⌊B(T +t+δ2)⌋−1]. If
∑L

l=1 W̃l(t)El(j, ~X(τ)) < max{~e∈Êj}

∑L
l=1 W̃l(t)el,

then there exists ǫ3 > 0 (since El(j, ~X(τ)) is either 0 or F l
j for l ∈ Ĺ) such that

L
∑

l=1

W̃l(t)El(j, ~X(τ)) < max
{~e∈Êj}

L
∑

l=1

W̃l(t)el − ǫ3.

Choose ǫ4 < ǫ3
4
∑

L
l=1

∑

S
j=1 F l

j

. Due to continuity of W̃l(t), there exists δ3 > 0 such that for s ∈ [t, t + δ3] and

l ∈ L, |W̃l(s) − W̃l(t)| < ǫ4. Therefore, for B > B2, τ ∈ [⌊B(T + t)⌋, ⌊B(T + t + δ2)⌋ − 1] and s ∈ [t, t + δ3] we
have

L
∑

l=1

W̃l(s)El(j, ~X(τ)) < max
{~e∈Êj}

L
∑

l=1

W̃l(s)el −
ǫ3
2

(30)

Define

W̃B
l (t) , max

k∈Kl

(V k(~xB(t)))β−α

(λk)β+1
[(xk,B

b(l) (t))
α − (xk,B

e(l) (t))
α].

Since W̃l(t) = maxk∈Kl

(V k(~x(t)))β−α

(λk)β+1 [(xk
b(l)(t))

α− (xk
e(l)(t))

α] is a continuous function of ~x(t), by Lemma 9 we have

that for any ǫ5 > 0, there exists B3 such that for any B > B3, for any l ∈ L, sups∈[t,t+δ3] |W̃
B
l (s) − W̃l(s)| < ǫ5.

Therefore, for B > B3 we have
∑L

l=1 W̃B
l (s)El(j, ~X(τ)) ≤

∑L
l=1 W̃l(s)El(j, ~X(τ)) +

∑L
l=1 ǫ5El(j, ~X(τ)).

Hence, by (30), for any B > max{B2, B3}, τ ∈ [⌊B(T + t)⌋, ⌊B(T + t + δ2)⌋ − 1] and s ∈ [t, t + δ3], we have

L
∑

l=1

W̃B
l (s)El(j, ~X(τ)) < max

{~e∈Êj}

L
∑

l=1

W̃l(s)el −
ǫ3
2

+

L
∑

l=1

ǫ5El(j, ~X(τ)).

Further, since for B > B3 we have max{~e∈Êj}

∑L
l=1 W̃l(s)el < max{~e∈Êj}

∑L
l=1 W̃B

l (s)el + max{~e∈Êj}

∑L
l=1 ǫ5el, it

follows that

L
∑

l=1

W̃B
l (s)El(j, ~X(τ)) < max

{~e∈Êj}

L
∑

l=1

W̃B
l (s)el + max

{~e∈Êj}

L
∑

l=1

ǫ5el −
ǫ3
2

+

L
∑

l=1

ǫ5El(j, ~X(τ)).

26

Choose ǫ5 < ǫ3
4
∑

L
l=1

∑

S
j=1 F l

j

. Then, we have

L
∑

l=1

W̃B
l (s)El(j, ~X(τ)) < max

{~e∈Êj}

L
∑

l=1

W̃B
l (s)el.

Hence, we have shown that for B > max{B2, B3}, τ ∈ [⌊B(T + t)⌋, ⌊B(T + t + δ2)⌋ − 1] and s ∈ [t, t + δ3],

if
∑L

l=1 W̃l(t)El(j, ~X(τ)) < max{~e∈Êj}

∑L
l=1 W̃l(t)el, then

∑L
l=1 W̃B

l (s)El(j, ~X(τ)) < max{~e∈Êj}

∑L
l=1 W̃B

l (s)el.

This implies that for τ ∈ [⌊B(T + t)⌋, ⌊B(T + t + min{δ2, δ3})⌋ − 1],

L
∑

l=1

W̃B
l (

τ

B
− T)El(j, ~X(τ)) < max

{~e∈Êj}

L
∑

l=1

W̃B
l (

τ

B
− T)el.

That is,
L
∑

l=1

Wl(τ)El(j, ~X(τ)) < max
{~e∈Êj}

L
∑

l=1

Wl(τ)el.

However, this is contradictory to the behaviour of the scheduling algorithm during timeslot τ .
Hence, it must be that for B > max{B2, B3} and τ ∈ [⌊B(T + t)⌋, ⌊B(T + t + min{δ2, δ3})⌋ − 1]

L
∑

l=1

W̃l(t)El(j, ~X(τ)) = max
{~e∈Êj}

L
∑

l=1

W̃l(t)el.

Q.E.D.

Let B5 = max{B1, B4} and δ5 = min{δ1, δ4}. Combining (27), lemma 10 and lemma 11, we have for B > B5

and τ ∈ [⌊B(T + t)⌋, ⌊B(T + t + δ5)⌋ − 1],

K
∑

k=1

Dk−1
∑

i=1

(V k(~x(t)))β−α

(λk)β+1
[(xk

nk(i)(t))
α − (xk

nk(i+1)(t))
α]Ek

lk(i)(j,
~X(τ))

= max
{~e∈Êj}

L
∑

l=1

W̃l(t)el.

Therefore, for δ < δ5 and B > B5, by (29) we have

K
∑

k=1

Dk

∑

i=1

(V k(~x(t)))β−α

(λk)β+1
(xk

nk(i)(t))
α[xk,B

nk(i)
(t + δ) − xk,B

nk(i)
(t)] (31)

=

K
∑

k=1

(V k(~x(t)))β−α

(λk)β+1
(xk

nk(1)(t))
α 1

B

⌊B(T+t+δ)⌋−1
∑

τ=⌊B(T+t)⌋

Ak(τ)

−
1

B

⌊B(T+t+δ)⌋−1
∑

τ=⌊B(T+t)⌋

S
∑

j=1

1{C(τ)=j} max
{~e∈Êj}

L
∑

l=1

W̃l(t)el + O(
1

B
)

=

K
∑

k=1

(V k(~x(t)))β−α

(λk)β+1
(xk

nk(1)(t))
α[ak,B(t + δ) − ak,B(t)]

−

S
∑

j=1

[sB
j (t + δ) − sB

j (t)] max
{~e∈Êj}

L
∑

l=1

W̃l(t)el + O(
1

B
).

27

Substituting (31) into (25) and letting B → ∞, we get

(

K
∑

k=1

(
V k(~x(t))

λk
)β+1)

−β
β+1

K
∑

k=1

Dk

∑

i=1

(V k(~x(t)))β−α

(λk)β+1
(xk

nk(i)(t))
α[xk

nk(i)(t + δ) − xk
nk(i)(t)]

= (

K
∑

k=1

(
V k(~x(t))

λk
)β+1)

−β
β+1

K
∑

k=1

(V k(~x(t)))β−α

(λk)β+1
(xk

nk(1)(t))
α[ak(t + δ) − ak(t)]

−

S
∑

j=1

[sj(t + δ) − sj(t)] max
{~e∈Êj}

L
∑

l=1

max
k∈Kl

(
(V k(~x(t)))β−α

(λk)β+1
(xk

b(l)(t))
α −

(V k(~x(t)))β−α

(λk)β+1
(xk

e(l)(t))
α)el.

Finally, as δ → 0+, we have

d

dt
V (~x(t)) = (

K
∑

k=1

(
V k(~x(t))

λk
)β+1)

−β
β+1

K
∑

k=1

Dk

∑

i=1

(V k(~x(t)))β−α

(λk)β+1
(xk

nk(i)(t))
α

[

lim
δ→0+

xk
nk(i)(t + δ) − xk

nk(i)(t)

δ

]

= (
K
∑

k=1

(
V k(~x(t))

λk
)β+1)

−β
β+1

[

K
∑

k=1

(V k(~x(t)))β−α

(λk)β+1
(xk

nk(1)(t))
α d

dt
ak(t)

−

S
∑

j=1

d

dt
sj(t) max

{~e∈Êj}

L
∑

l=1

max
k∈Kl

(
(V k(~x(t)))β−α

(λk)β+1
(xk

b(l)(t))
α −

(V k(~x(t)))β−α

(λk)β+1
(xk

e(l)(t))
α)el



 .

Verification of assumption 4:
We have

∂

∂τ
Ṽ (τ, ~e|~x(t), ~φ(t), ~f(t))

=

N
∑

i=1

K
∑

k=1

∂

∂xk
i

(V (~x(t))) [(δk
i)+1{xk

i (t)=0} + δk
i 1{xk

i (t)>0}]

=
K
∑

k=1

Dk

∑

i=1

∂

∂xk
nk(i)

(V (~x(t))) [(δk
nk(i))

+1{xk

nk(i)
(t)=0} + δk

nk(i)1{xk

nk(i)
(t)>0}].

From the definition of V (·) given in (8), we have the following expression for the partial derivative

∂

∂xk
nk(i)

(V (~x(t)))

= (V (~x(t)))−β (V k(~x(t)))β−α

(λk)β+1
(xk

nk(i)(t))
α.

Therefore,

∂

∂τ
Ṽ (τ, ~e|~x(t), ~φ(t), ~f(t)) (32)

= (V (~x(t)))−β

K
∑

k=1

Dk

∑

i=1

(V k(~x(t)))β−α

(λk)β+1
(xk

nk(i)(t))
αδk

nk(i).

Since by definition

δk
nk(1) = fk(t) −

S
∑

j=1

φj(t)
∑

{~e∈Êj}

γ~eθ
k
lk(1),jel

δk
nk(i) =

S
∑

j=1

φj(t)
∑

{~e∈Êj}

γ~eθ
k
lk(i−1),jel −

S
∑

j=1

φj(t)
∑

{~e∈Êj}

γ~eθ
k
lk(i),jel for i = 2, . . . , Dk − 1,

28

the summation
∑K

k=1

∑Dk

i=1
(V k(~x(t)))β−α

(λk)β+1 (xk
nk(i)(t))

αδk
nk(i) simplifies to

K
∑

k=1

Dk

∑

i=1

(V k(~x(t)))β−α

(λk)β+1
(xk

nk(i)(t))
αδk

nk(i)

=
K
∑

k=1

(V k(~x(t)))β−α

(λk)β+1
(xk

nk(1)(t))
αfk(t)

−

K
∑

k=1

Dk−1
∑

i=1

(
(V k(~x(t)))β−α

(λk)β+1
(xk

nk(i)(t))
α −

(V k(~x(t)))β−α

(λk)β+1
(xk

nk(i+1)(t))
α)

S
∑

j=1

φj(t)
∑

{~e∈Êj}

γ~eθ
k
lk(i),jel

=

K
∑

k=1

(V k(~x(t)))β−α

(λk)β+1
(xk

nk(1)(t))
αfk(t)

−

S
∑

j=1

φj(t)
∑

{~e∈Êj}

γ~e

L
∑

l=1

Kl
∑

k=1

θk
l,j(

(V k(~x(t)))β−α

(λk)β+1
(xk

b(l)(t))
α −

(V k(~x(t)))β−α

(λk)β+1
(xk

e(l)(t))
α)el. (33)

Observe that since
∑

{~e∈Ej}
γ~e = 1,

∑

{k∈Kl}
θk

l,j = 1 the following inequality holds.

S
∑

j=1

φj(t)
∑

{~e∈Êj}

γ~e

L
∑

l=1

Kl
∑

k=1

θk
l,j(

(V k(~x(t)))β−α

(λk)β+1
(xk

b(l)(t))
α −

(V k(~x(t)))β−α

(λk)β+1
(xk

e(l)(t))
α)el (34)

≤

S
∑

j=1

φj(t) max
{~e∈Êj}

L
∑

l=1

max
k∈Kl

(
(V k(~x(t)))β−α

(λk)β+1
(xk

b(l)(t))
α −

(V k(~x(t)))β−α

(λk)β+1
(xk

e(l)(t))
α)el.

Using (33) and (34) in (32), we obtain

∂

∂τ
Ṽ (τ, ~e|~x(t), ~φ(t), ~f(t))|τ=0

≥

K
∑

k=1

(V k(~x(t)))β−α

(λk)β+1
(xk

nk(1)(t))
αfk(t)

−

S
∑

j=1

φj(t) max
{~e∈Êj}

L
∑

l=1

max
k∈Kl

(
(V k(~x(t)))β−α

(λk)β+1
(xk

b(l)(t))
α −

(V k(~x(t)))β−α

(λk)β+1
(xk

e(l)(t))
α)el.

The right-hand-side of the above inequality is the drift of the αβ-algorithm (24). Hence the αβ-algorithm

minimizes the quantity ∂
∂τ

Ṽ (τ, ~e|~x(t), ~φ(t), ~f (t))|τ=0 over all choices γ~e, θk
l,j .

Verification of assumptions 1)f) and 2):

We use the following consequence of the assumption that the average arrival rate ~λ belongs to the interior of
the capacity region. We assume that there exists ǫ̃ > 0 and real numbers 1 > γ~e > 0 (fraction of weight given to
service vector ~e), 1 > θk

l,j > 0 (fraction of service given to flow k over link l in state j) such that
∑

{~e∈Ej}
γ~e ≤ 1,

∑K
k=1θ

k
l,j ≤ 1 and

λk −
S
∑

j=1

pj

∑

{~e∈Ej}

γ~eθ
k
lk(1),jel < −ǫ̃

S
∑

j=1

pj

∑

{~e∈Ej}

γ~eθ
k
lk(i−1),jelk(i−1) −

S
∑

j=1

pj

∑

{~e∈Ej}

γ~eθ
k
lk(i),jelk(i) < −ǫ̃ for i = 2, . . . , Dk − 1

.

29

Using the ideas used in verification of Assumption 4), we can show that

d

dt
V (t) ≤

K
∑

k=1

(V k(~x(t)))β−α

(λk)β+1
(xk

nk(1)(t))
α d

dt
ak(t)

−

S
∑

j=1

d

dt
sj(t)

∑

{~e∈Ej}

γ~e

L
∑

l=1

∑

k∈Kl

θk
l,j(

(V k(~x(t)))β−α

(λk)β+1
(xk

b(l)(t))
α −

(V k(~x(t)))β−α

(λk)β+1
(xk

e(l)(t))
α)el

=

K
∑

k=1

(V k(~x(t)))β−α

(λk)β+1

{

(xk
nk(1)(t))

α d

dt
ak(t) −

S
∑

j=1

∑

{~e∈Ej}

(xk
nk(1))

α

[

d

dt
sj(t)γ~eθ

k
lk(1),jelk(1)

]

+

S
∑

j=1

∑

{~e∈Ej}

Dk−1
∑

i=2

(xk
nk(i))

α

[

d

dt
sj(t)γ~eθ

k
lk(i−1),jelk(i−1) −

d

dt
sj(t)γ~eθ

k
lk(i),jelk(i)

]







.

If || d
dt

~s(t) − ~p|| ≤ ǫ and || d
dt

~a(t) − ~λ|| ≤ ǫ, we further have

d

dt
V (t) ≤

K
∑

k=1

(V k(~x(t)))β−α

(λk)β+1







(xk
nk(1)(t))

α
[

(λk + ǫ) −

S
∑

j=1

∑

{~e∈Ej}

pjγ~eθ
k
lk(1),jelk(1) + ǫS

∑

{~e∈Ej}

γ~eθ
k
lk(1),jelk(1)





+

Dk−1
∑

i=2

(xk
nk(i))

α





S
∑

j=1

∑

{~e∈Ej}

pjγ~eθ
k
lk(i−1),jelk(i−1) + ǫS

∑

{~e∈Ej}

γ~eθ
k
lk(i−1),jelk(i−1)

−

S
∑

j=1

∑

{~e∈Ej}

pjγ~eθ
k
lk(i),jelk(i) + ǫS

∑

{~e∈Ej}

γ~eθ
k
lk(i),jelk(i)











. (35)

Choose a real number Γ > 1 such that for all k = 1, . . . , K, i = 1, . . . , Dk − 1, S
∑

{~e∈Ej}
γ~eθ

k
lk(i),jelk(i) < Γ.

Then (35) simplifies to

d

dt
V (t) ≤

K
∑

k=1

(V k(~x(t)))β−α

(λk)β+1







(xk
nk(1)(t))

α
[

λk −

S
∑

j=1

∑

{~e∈Ej}

pjγ~eθ
k
lk(1),jelk(1)





+
Dk−1
∑

i=2

(xk
nk(i))

α





S
∑

j=1

∑

{~e∈Ej}

pjγ~eθ
k
lk(i−1),jelk(i−1)

−
S
∑

j=1

∑

{~e∈Ej}

pjγ~eθ
k
lk(i),jelk(i)



+
Dk−1
∑

i=1

(xk
nk(i))

α2ǫΓ







≤

K
∑

k=1

(V k(~x(t)))β−α

(λk)β+1

Dk−1
∑

i=1

(xk
nk(i))

α(−ǫ̃ + 2ǫΓ). (36)

To simplify (36), we will use the following inequality

Dk

∑

i=1

(xk
nk(i))

α ≥ max
{i=1,...,Dk}

(xk
nk(i))

α ≥
1

(Dk)
α

α+1
(

Dk

∑

i=1

(xk
nk(i))

α+1)
α

α+1 ≥
1

N
α

α+1
(V k(~x(t)))α. (37)

We will also use the following inequality

K
∑

k=1

(
V k(~x(t))

λk

)β ≥
1

K
β

β+1

(

K
∑

k=1

(
V k(~x(t))

λk

)β+1)
β

β+1 =
1

K
β

β+1

(V (~x(t)))β . (38)

30

Combining (37) and (38), we obtain

K
∑

k=1

(V k(~x(t)))β−α

(λk)β+1

Dk−1
∑

i=1

(xk
nk(i))

α ≥
1

N
α

α+1

K
∑

k=1

(V k(~x(t)))β

(λk)β+1
≥

1

N
α

α+1 K
β

β+1 max{k=1,...,K} λk
(V (~x(t)))β . (39)

Now, applying (39) in (36), we obtain

d

dt
V (t) ≤ (V (~x(t)))β −ǫ̃ + 2ǫΓ

N
α

α+1 K
β

β+1 max{k=1,...,K} λk
.

To verify Assumption 1)f), set ǫ = 0. We have

d

dt
V (t) ≤ (V (~x(t)))β −ǫ̃

N
α

α+1 K
β

β+1 max{k=1,...,K} λk
.

To verify Assumption 2), set ǫ = ǫ̃
4Γ , we have

d

dt
V (t) ≤ (V (~x(t)))β −ǫ̃/2

N
α

α+1 K
β

β+1 max{k=1,...,K} λk
.

Now that we have verified that V (·) satisfies all Assumptions 1) to 6), we can invoke Proposition 8 of [20] and
conclude that the quantity

lim
B→∞

1

B
log(Pαβ [V (~X(0)) > B])

exists and for any scheduling policy π,

lim
B→∞

1

B
log(Pαβ [V (~X(0)) > B])

≤ lim inf
B→∞

1

B
log(Pπ[V (~X(0)) > B]).

References

[1] L. Tassiulas and A. Ephremides, “Dynamic Server Allocation to Parallel Queues with Randomly Varying
Connectivity,” IEEE Transactions on Information Theory, vol. 39, no. 2, pp. 466–478, March 1993.

[2] ——, “Stability properties of constrained queueing systems and scheduling policies for maximum throughput
in multihop radio networks,” IEEE Trans. Automat. Contr., vol. 4, pp. 1936–1948, December 1992.

[3] ——, “Dynamic server allocation to parallel queues with randomly varying connectivity,” IEEE Trans.
Inform. Theory, vol. 39, pp. 466–478, March 1993.

[4] X. Lin and N. Shroff, “Joint rate control and scheduling in multihop wireless networks,” in Proc. Conf. on
Decision and Control, Paradise Island, Bahamas, December 2004.

[5] A. Eryilmaz and R. Srikant, “Fair resource allocation in wireless networks using queue-length-based schedul-
ing and congestion control,” in Proc. IEEE Infocom., 2005.

[6] A. Stolyar, “Maximizing queueing network utility subject to stability: Greedy primal-dual algorithm,”
Queueing Systems, vol. 50, no. 4, pp. 401–457, August 2005.

[7] M. Neely, E. Modiano, and C. Li, “Fairness and optimal stochastic control for heterogeneous networks,” in
Proc. IEEE Infocom., vol. 3, Miami, FL, March 2005, pp. 1723–1734.

[8] L. Ying, S. Shakkottai, and A. Reddy, “On combining shortest-path and back-pressure routing over multihop
wireless networks,” in Proc. IEEE Infocom., Rio de Janeiro, Brazil, 2009.

31

[9] L. Bui, R. Srikant, and A. L. Stolyar, “Novel architectures and algorithms for delay reduction in back-pressure
scheduling and routing,” Proc. IEEE Infocom. Mini Conf., 2009.

[10] M. J. Neely, “Order Optimal Delay for Opportunistic Scheduling in Multi-User Wireless Uplinks and Down-
links,” IEEE/ACM Transactions on Networking, 2008.

[11] L. Ying, R. Srikant, A. Eryilmaz, and G. E. Dullerud, “A Large Deviations Analysis of Scheduling in Wireless
Networks,” IEEE Transactions on Information Theory, vol. 52, no. 11, November 2006.

[12] A. L. Stolyar, “MaxWeight Scheduling in a Generalized Switch: State Space Collapse and Workload Mini-
mization in Heavy Traffic,” Annals of Applied Probability, vol. 14, no. 1, pp. 1–53, 2004.

[13] S. Shakkottai, R. Srikant, and A. Stolyar, “Pathwise Optimality of the Exponential Scheduling Rule for
Wireless Channels,” Advances in Applied Probability, pp. 1021–1045, December 2004.

[14] D. Shah and D. Wischik, “Optimal Scheduling Algorithms for Input-Queued Switches,” in Proceedings of
IEEE INFOCOM, Barcelona, Spain, April 2006.

[15] S. P. Meyn, “Stability and Asymptotic Optimality of Generalized MaxWeight Policies,” SIAM J. Control
and Optimization, to appear.

[16] S. Shakkottai, “Effective Capacity and QoS for Wireless Scheduling,” IEEE Transactions on Automatic
Control, vol. 53, no. 3, April 2008.

[17] A. L. Stolyar, “Large Deviations of Queues Sharing a Randomly Time-varying Server,” Queueing Systems,
vol. 59, pp. 1–35, 2008.

[18] V. J. Venkataramanan and X. Lin, “On Wireless Scheduling Algorithms for Minimizing the Queue-
Overflow Probability,” submitted to IEEE/ACM Trans. on Networking, 2008. Preprint available at
http://min.ecn.purdue.edu/∼linx/publications.html.

[19] A. Eryilmaz and R. Srikant, “Scheduling with quality of service constraints over Rayleigh fading channels,”
in Proc. Conf. on Decision and Control, vol. 4, December 2004, pp. 3447–3452.

[20] V. J. Venkataramanan and X. Lin, “On the Queue-Overflow Probability of Wireless Systems: A New Ap-
proach Combining Large Deviations with Lyapunov Functions,” submitted to IEEE Trans. on Information
Theory, 2009. Preprint available at http://min.ecn.purdue.edu/∼linx/publications.html.

[21] L. Tassiulas and A. Ephremides, “Stability Properties of Constrained Queueing Systems and Scheduling
Policies for Maximum Throughput in Multihop Radio Networks,” IEEE Transactions on Automatic Control,
vol. 37, no. 12, pp. 1936–1948, December 1992.

32

