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Abstract

There has been recent interest within the networking research community to understand

how mobility can improve the capacity of mobile ad hoc networks. Of particular interest is

the achievable capacity under delay constraints. In this paper, we establish the following

upper bound on the optimal capacity-delay tradeoff in mobile ad hoc networks for an i.i.d.

mobility model. For a mobile ad hoc network with n nodes, if the per-bit-averaged mean

delay is bounded by D̄, then the per-node capacity λ is upper bounded by λ3 ≤ O( D̄
n log3 n).

By studying the condition under which the upper bound is tight, we are able to identify the

optimal values of several key scheduling parameters. We then develop a new scheme that

can achieve a capacity-delay tradeoff close to the upper bound up to a logarithmic factor.

Our new scheme achieves a larger per-node capacity than the schemes reported in previous

works. In particular, when the delay is bounded by a constant, our scheme achieves a per-

node capacity of Θ(n−1/3/ log n). This indicates that, for the i.i.d. mobility model, mobility

∗This work has been partially supported by the NSF grants ANI-0207728, EIA-0130599 and the Indiana 21st

Century Fund for Wireless Networks.
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results in a larger capacity than that of static networks even with constant delays. Finally,

the insight drawn from the upper bound allows us to identify limiting factors in existing

schemes. These results present a relatively complete picture of the achievable capacity-delay

tradeoffs under different settings.

1 Introduction

Since the seminal paper by Gupta and Kumar [1], there has been tremendous interest in the

networking research community to understand the fundamental achievable capacity in wireless

ad hoc networks. For a static network (where nodes do not move), Gupta and Kumar show that

the per-node capacity decreases as O(1/
√

n log n)∗ as the number of nodes n increases [1]. The

capacity of wireless ad hoc networks can be improved when mobility is taken into account. When

the nodes are mobile, Grossglauser and Tse show that per-node capacity of Θ(1) is achievable

[2], which is much better than that of static networks. This capacity improvement is achieved at

the cost of excessive packet delays. In fact, it has been pointed out in [2] that the packet delay

of the proposed scheme could be unbounded.

There have been several recent studies that attempt to address the relationship between the

achievable capacity and the packet delay in mobile ad hoc networks. In the work by Neely

and Modiano [3], it was shown that the maximum achievable per-node capacity of a mobile ad

hoc network is bounded by O(1). Under an i.i.d. mobility model, the authors of [3] present a

∗We use the following notation throughout:

f(n) = o(g(n)) ↔ lim
n→∞

f(n)

g(n)
= 0,

f(n) = O(g(n)) ↔ lim sup
n→∞

f(n)

g(n)
< ∞,

f(n) = ω(g(n)) ↔ g(n) = o(f(n)),

f(n) = Θ(g(n)) ↔ f(n) = O(g(n)) and g(n) = O(f(n)).
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scheme that can achieve Θ(1) per-node capacity and incur Θ(n) delay, provided that the load is

strictly less than the capacity. Further, they show that it is possible to reduce packet delay if one

is willing to sacrifice capacity. In [3], the authors formulate and prove a fundamental tradeoff

between the capacity and delay. Let the average end-to-end delay be bounded by D. For D

between Θ(1) and Θ(n), [3] shows that the maximum per-node capacity λ is upper bounded by

λ ≤ O(
D

n
). (1)

The authors of [3] develop schemes that can achieve Θ(1), Θ(1/
√

n), and Θ(1/(n log n)) per-node

capacity, when the delay constraint is on the order of Θ(n), Θ(
√

n), and Θ(log n), respectively.

Inequality (1) leads to the pessimistic conclusion that a mobile ad hoc network can sustain at

most O(1/n) per-node capacity with a constant delay bound. This capacity is even worse than

that of static networks. It turns out that this pessimistic conclusion is due to certain restrictive

assumptions that are implicit in the work in [3] (we will elaborate on these assumptions in

Section 6). In fact, Toumpis and Goldsmith [4] present a scheme that can achieve a per-node

capacity of Θ(n(d−1)/2/ log5/2 n) when the delay is bounded by O(nd). The result of [4] has

incorporated the effect of fading. If we remove fading, the per-node capacity will be of the order

Θ(n(d−1)/2/ log3/2 n). Ignoring the logarithmic term, we find that in [4] the following capacity-

delay tradeoff is achievable:

λ2 = Θ(
D

n
). (2)

This is better than (1). In particular, the authors of [4] present a scheme that can achieve

Θ(1/(
√

n log3/2 n)) per-node capacity with a constant delay bound. (The capacity will be

Θ(1/(
√

n log n)) with no fading.) This capacity is now comparable to that of the static ad

hoc networks.

An open question that still remains is: what is the optimal capacity-delay tradeoff in mobile

ad hoc networks? Inequality (1) is clearly not optimal. The methodology of [4] is constructive in

nature. Hence, inequality (2) is only a lower bound. The search for the optimal capacity-delay

tradeoff is important for two reasons. First, it will allow us to see where the fundamental limits
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Figure 1: The achievable capacity-delay tradeoffs of existing schemes compared with the upper

bound (ignoring the logarithmic terms). The top line corresponds to our upper bound (achievable

by the scheme outlined in Section 5 up to a logarithmic factor). The middle line is achieved by

the scheme in [4], and the bottom one is achieved by the scheme in [3].

(i.e., upper bounds) are, and how far existing schemes could possibly be improved. Secondly,

as has happened in previous works [1, 3], a careful study of the upper bound is usually able to

reveal the delicate tradeoffs inherent to the problem. A complete understanding of these tradeoffs

will help us identify the possible points of inefficiency in existing schemes and provide directions

for further improvement. The ultimate goal is to find a scheme that can achieve the optimal

capacity-delay tradeoff.

This paper accomplishes these two goals. Under the i.i.d. mobility model studied in [3],

we will first establish an upper bound on the optimal capacity-delay tradeoff in mobile ad hoc

networks. We will show that, if the per-bit-averaged mean delay is bounded by D̄, then the

per-node capacity λ is upper bounded by

λ3 ≤ O(
D̄

n
log3 n). (3)

In Fig. 1, we draw this upper bound alongside the capacity-delay tradeoffs achieved by the

schemes in [3] and [4]. There is obviously a gap between the upper bound and what can be

achieved by existing schemes.

4



Further, in the process of proving the upper bound, we are able to identify the optimal choices

for several key parameters of the scheduling policy. We then develop a new scheme that achieves

the upper bound on the capacity-delay tradeoff upto a logarithmic factor, which suggests that

our upper bound is fairly tight. Our new scheme achieves a larger per-node capacity than the

ones in [3] and [4]. In particular, our scheme can achieve Θ(n−1/3/log n) per-node capacity with

constant delay. Unlike previous works, this result shows that, even for a constant delay bound,

the per-node capacity of mobile ad hoc networks can be larger than that of the static networks!

Finally, the insight drawn from the upper bound allows us to identify the limiting factors of the

schemes in [3] and [4].

The rest of the paper is organized as follows. In Section 2, we outline the network and mobility

model. In Section 3, we prove several key properties that capture various tradeoffs inherent in

mobile ad hoc networks. We establish the upper bound on the optimal capacity-delay tradeoff

in Section 4 and present a scheme in Section 5 that achieves a capacity-delay tradeoff close to

the upper bound. In Section 6, we discuss the existing schemes described in [3] and [4]. Then

we conclude.

2 Network and Mobility Model

We consider a mobile ad hoc network with n nodes moving within a unit square†. We assume

that time is divided into slots of unit length. We assume the following i.i.d. mobility model

proposed in [3]. At each time slot, the positions of each node are i.i.d. and uniformly distributed

within the unit square. Between time slots, the distributions of the positions of the nodes are

independent. Although the assumption on an i.i.d. mobility model is somewhat restrictive, its

mathematical tractability allows us to gain important insights into the structure of the problem.

We will comment on some extensions to the i.i.d. mobility model in the conclusion.

†Note that changing the shape of the area from a square to a circle or other topologies will not affect our main

results.
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For simplicity, we assume the following traffic model similar to the models in [3, 4]. We assume

that the number of nodes n is even and the nodes can be labeled in such a way that node 2i− 1

communicates with node 2i, and node 2i communicates with node 2i − 1, i = 1, 2, ..., n/2. The

communication between any source-destination pairs can go through multiple other nodes as

relays. That is, the source can either send a message directly to the destination; or, it can send

the message to one or more relay nodes; the relay nodes can further forward the message to other

relay nodes (possibly after moving to another position); and finally some relay node forwards the

message to the destination.

We assume the following Protocol Model from [1] that governs direct radio transmissions

between nodes. Let W be the bandwidth of the system. Let Xi denote the position of node i,

i = 1, ..., n. Let |Xi − Xj| be the Euclidean distance between nodes i and j. At each time slot,

node i can communicate directly with another node j at W bits per second if and only if the

following interference constraint is satisfied [1]:

|Xj − Xk| ≥ (1 + ∆)|Xi − Xj|

for every other node k 6= i, j that is simultaneously transmitting. Here, ∆ is some positive

number. Note that an alternative model for direct radio transmission is the Physical Model

[1, 4]. In the Physical Model, a node can communicate with another node if the signal-to-

interference ratio is above a given threshold. It has been shown that, under certain conditions,

the Physical Model can be reduced to the Protocol Model with an appropriate choice of ∆ [1].

Hence, we will not consider the Physical Model any further in this paper. We also assume that

no nodes can transmit and receive over the same frequency at the same time. We further assume

the following separation of time scale, i.e., radio transmission can be scheduled at a time scale

much faster than that of node mobility. This is usually a reasonable assumption in real networks.

Hence, a message may be divided into multiple bits and each bit can be forwarded multiple hops

separately within a single time slot.

We assume a uniform traffic pattern, that is, all source nodes communicate with their des-
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tination nodes at the same rate λ. let D̄ be the mean delay averaged over all messages and

all source-destination pairs. Both λ and D̄ will depend on how the transmissions between mo-

bile nodes are scheduled. We are interested in capturing the fundamental tradeoff between the

achievable capacity λ and the delay D̄. That is, over all possible ways of scheduling the radio

transmissions, what is the maximum per-node capacity λ given certain constraint on the delay D̄.

3 Properties of the Scheduling Policies

In this section, we will prove several key results that capture the various tradeoffs inherent in

mobile ad hoc networks. We will first define the class of scheduling policies that we will consider.

Because we are interested in the fundamental achievable capacity for a given delay, we will assume

that there exists a scheduler that has all the information about the current and past status of

the network, and can schedule any radio transmission in the current and future time slots. At

each time slot t, for each bit b that has not been delivered to its destination yet, the scheduler

needs to perform the following two functions:

• Capture: The scheduler needs to decide whether to deliver the bit b to the destination

within the current time slot. If yes, the scheduler then needs to choose one relay node

(possibly the source) that has a copy of the bit b at the beginning of the time slot t, and

schedule radio transmissions to forward this bit to the destination within the same time

slot, using possibly multi-hop transmissions. When this happens successfully, we say that

the chosen relay node has successfully captured the destination of bit b. It is important to

forward the bit to the destination within a single time slot. Otherwise, since the chosen

relay node may move far away from the destination in the next time slot, the nodes that

received the bit b in the current time slot will only count as new relay nodes for the bit b,

and they have to capture again in the next time slot.

• Duplication: If capture does not occur for bit b, the scheduler needs to decide whether to
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duplicate bit b to other nodes that do not have the bit at the beginning of the time slot

t. The scheduler also needs to decide which nodes to relay from and relay to, and how to

schedule radio transmissions to forward the bit to these new relay nodes.

In this paper, we will consider the class of causal scheduling policies that perform the above

two functions at each time slot. The causality assumption essentially requires that, when the

scheduler makes the capture decision and the duplication decision, it can only use information

about the current and the past status of the network. In particular, at any time slot t, the

scheduler cannot use information about the future positions of the nodes at any time slot s > t.

This class of scheduling policies is clearly very general, and encompasses nearly any practical

scheduling scheme we can think of. (Note that even predictive scheduling schemes have to rely on

current and past information only.) Some remarks on the capture process is in order. Although

we do allow for other less intuitive alternatives, in a typical scheduling policy a successful capture

usually occurs when some relay nodes are within an area close to the destination node, so that

fewer resources will be needed to forward the information to the destination. For example, a

relay node could enter a disk of a certain radius around the destination, or a relay node could

enter the same cell as the destination. We call such an area a capture neighborhood. The relay

nodes that has the bit b at the beginning of the time slot t are called mobile relays for bit b. The

mobile relay that is chosen to forward the bit b to the destination is called the last mobile relay

for bit b.

The following examples are illustrative of the possible scheduling policies within this broad

class. The schemes in previous works [3, 4] are all special cases or variants of these examples.

Example A: The number of mobile relays R is fixed and the capture neighborhood is chosen

to be a disk with a fixed radius ρ around the destination. Once a bit b enters the system, it

is immediately broadcast to the nearest R − 1 neighboring nodes. When any of the R mobile

relays (including the source node) move within distance ρ from the destination, the bit b is then

forwarded from the nearest mobile relay to the destination.
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Example B: The unit area is divided into a number of cells. Once a bit b enters the system, it

is immediately broadcast to all other nodes in the same cell. The number of mobile relays for the

bit b then stay unchanged. Note that the actual number of mobile relays depends on the number

of nodes that reside in the same cell as the source (at the time slot when the bit b enters the

system), and is thus a random variable. When one of the mobile relays moves into the same cell

as the destination, the bit b is then forwarded from the nearest mobile relay to the destination.

Example C: In the above two schemes, no duplication for bit b is carried out except at the

first time slot when the bit enters the system. A more sophisticated strategy is to use an

“opportunistic duplication scheme” such as the example below. The unit area is divided into a

number of cells. After a bit b enters the system, at each time slot t, if one of the mobile relays

moves into the same cell as the destination, bit b is then forwarded from the nearest mobile

relay to the destination. Otherwise, the source node (or, alternatively, the current mobile relays)

broadcasts the bit to all other nodes that reside at the same cell. Hence, duplication may occur

at each time slot until bit b is delivered to its destination.

In the sequel, we will prove several key inequalities that capture the various tradeoffs inherent

in this broad class of scheduling policies. Intuitively, the larger the number of mobile relays

and the larger the capture neighborhood, the smaller the delay. On the other hand, in order to

improve capacity, we need to consume fewer radio resources, which implies a smaller number of

mobile relays and a shorter distance from the last mobile relay to the destination. As we will see

later, these tradeoffs will determine the fundamental relationship between achievable capacity

and delay in mobile ad hoc networks.

3.1 Notations

Let (Ω,F , P ) be the probability space on which the random mobility of the mobile nodes is

defined. Let X(i, t) be the random variable that denotes the position of node i at time slot t.

Let b denote a bit that needs to be communicated from a source node S(b) to destination node
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D(b). Let t0(b) be the time slot when bit b first enters the system. Let Ib(i, t) be an indicator

function, where Ib(i, t) = 1 if node i has a copy of bit b at the beginning of time slot t, Ib(i, t) = 0

otherwise. By definition, Ib(S(b), t0(b)) = 1, and Ib(i, t) = 0 for all i and t < t0(b). Let Ft

be the σ-algebra generated by the random variables X(i, s) and Ib(i, s) for all s ≤ t. Hence

{Ft, t = 0, 1, ...} is a filtration [5, p231] and Ft captures all information about the “history” up

to time slot t.

Fix any scheduling policy and fix a bit b that enters the system at time slot t0(b). For any

time slot t ≥ t0(b), let Cb(t) = 1 if the scheduler decides that a successful capture occurs at this

time slot. Cb(t) = 0, otherwise. If Cb(t) = 1, the scheduler then picks one mobile relay that has

a copy of the bit b at the beginning of the time slot to forward the bit towards the destination

within the same time slot t, using possibly multi-hop transmissions. Let l̃b(t) be the distance

from the chosen mobile relay to the destination of the bit b. Let l̃b(t) = ∞ if Cb(t) = 0. Finally,

let rb(t+1) denote the number of mobile relays holding the bit b at the end of the time slot t, i.e.,

rb(t + 1) is the cardinality of the set {i : Ib(i, t + 1) = 1}. Since the random variables Cb(t), l̃b(t)

and rb(t + 1) are all outcomes of the scheduling policy, the causality assumption implies that

they are all Ft-measurable‡.

Let

sb , min{t : t ≥ t0(b) and Cb(t) = 1}

be the first time when a successful capture for bit b occurs. Thus sb is a stopping time [5, p234]

with respect to the filtration {Ft, t = 0, 1, ...}. Let Rb , rb(sb) denote the number of mobile

relays holding the bit b at the time of capture. Let Db , sb − t0(b) denote the number of time

slots from the time bit b enters the system to the time of capture. Let lb , l̃b(sb) denote the

distance from the chosen last mobile relay node to the destination. The quantities Rb, Db, and lb

are essential for the tradeoffs that follow. Note that Db includes possible queueing delay at the

‡Here we have excluded probablistic scheduling policies. Otherwise, Ft should be augmented with a σ-algebra

that is independent of node mobility in future time slots.
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source node or at the relay nodes.

3.2 Tradeoff I : Db versus Rb and lb

Proposition 1 Under the i.i.d. mobility model, the following inequality holds for any causal

scheduling policy when n ≥ 3,

c1 log nE[Db] ≥
1

(E[lb] + 1
n2 )2E[Rb]

for all bits b, (4)

where c1 is a positive constant.

The proof is available in Appendix A. This novel result is one of the cornerstones for deriving

the optimal capacity-delay tradeoff in mobile ad hoc networks. It captures the following tradeoff:

the smaller the number Rb of mobile relays the bit b is duplicated to, and the shorter the targeted

distance lb from the last mobile relay to the destination, the longer it takes to capture the

destination. This seemingly odd relationship is actually motivated by some simple examples.

Consider Example A at the beginning of Section 3. When Rb and the area of the capture

neighborhood Ab are constants, then 1− (1−Ab)
Rb is the probability that any one out of the Rb

nodes can capture the destination in one time slot. It is easy to show that, the average number

of time slots needed before a successful capture occurs, is,

E[Db] =
1

1 − (1 − Ab)Rb
≥ 1

AbRb

.

If, as in Example B, Rb and possibly Ab are random but fixed after the first time slot t0(b), then

E[Db|Rb, Ab] ≥
1

AbRb

.

By Hőlder’s Inequality [5, p15],

E2[
1√
Ab

] ≤ E[Rb]E[
1

AbRb

].

Hence,

E[Db] ≥ E[
1

AbRb

] ≥ E2[
1√
Ab

]
1

E[Rb]

≥ 1

E2[
√

Ab]E[Rb]
,
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where in the last step we have applied Jensen’s Inequality [5, p14]. Note that on average lb is on

the order of
√

Ab. Hence,

E[Db] ≥
c′1

E2[lb]E[Rb]
for all bits b, (5)

where c′1 is a positive constant. It may appear that, when an “opportunistic duplication scheme”

such as the one in Example C is employed, such a scheme might achieve a better tradeoff than (5)

by starting off with fewer mobile relays and a smaller capture neighborhood, if the node positions

at the early time slots after the bit’s arrival turns out to be favorable. However, Proposition 1

shows that no scheduling policy can improve the tradeoff by more than a log n factor. For details,

please refer to Appendix A.

3.3 Tradeoff II : Multihop

Once a successful capture occurs, the chosen mobile relay (i.e., the last mobile relay) will start

transmitting the bit to the destination within a single time slot, using possibly other nodes as

relays. We will refer to these latter relay nodes as static relays. The static relays are only used

for forwarding the bit to the destination after a successful capture occurs. Let hb be the number

of hops it takes from the last mobile relay to the destination. Let Sh
b denote the transmission

range of each hop h = 1, .., hb. The following relationship is trivial.

Proposition 2 The sum of the transmission ranges of the hb hops must be no smaller than the

straight-line distance from the last mobile relay to the destination, i.e.,

hb
∑

h=1

Sh
b ≥ lb. (6)

3.4 Tradeoff III : Radio Resources

It consumes radio resources to duplicate each bit to mobile relays and to forward the bit to the

destination. Proposition 3 below captures the following tradeoff: the larger the number of mobile

relays Rb and the further the multi-hop transmissions towards the destination have to traverse,
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the smaller the achievable capacity. Consider a large enough time interval T . The total number

of bits communicated end-to-end between all source-destination pairs is λnT .

Proposition 3 Assume that there exist positive numbers c2 and N0 such that Db ≤ c2n
2 for

n ≥ N0. If the positions of the nodes within a time slot are i.i.d. and uniformly distributed

within the unit square, then there exist positive numbers N1 and c3 that only depend on c2, N0

and ∆, such that the following inequality holds for any causal scheduling policy when n ≥ N1,

λnT
∑

b=1

∆2

4

E[Rb] − 1

n
+ E[

λnT
∑

b=1

hb
∑

h=1

π∆2

4
(Sh

b )2] ≤ c3WT log n. (7)

The assumption that Db ≤ c2n
2 for large n is not as restrictive as it appears. It has been shown

in [3] that the maximal achievable per-node capacity is Θ(1) and this capacity can be achieved

with Θ(n) delay. Hence, we are most interested in the case when the delay is not much larger

than the order O(n). Further, Proposition 3 only requires that the stationary distribution of the

positions of the nodes within a time slot is i.i.d. It does not require the distribution between

time slots to be independent.

We briefly outline the motivation behind the inequality (7). The details of the proof are quite

technical and available in Appendix B. Consider nodes i, j that directly transmit to nodes k

and l, respectively, at the same time. Then, according to the interference constraint:

|Xj − Xk| ≥ (1 + ∆)|Xi − Xk]

|Xi − Xl| ≥ (1 + ∆)|Xj − Xl].

Hence,

|Xj − Xi| ≥ |Xj − Xk| − |Xi − Xk|

≥ ∆|Xi − Xk|.

Similarly,

|Xi − Xj| ≥ ∆|Xj − Xl|.

13



Therefore,

|Xi − Xj| ≥
∆

2
(|Xi − Xk| + |Xj − Xl|).

That is, disks of radius ∆
2

times the transmission range centered at the transmitter are disjoint

from each other§. This property can be generalized to broadcast as well. We only need to

define the transmission range of a broadcast as the distance from the transmitter to the furthest

node that can successfully receive the bit. The above property motivates us to measure the

radio resources each transmission consumes by the areas of these disjoint disks [1]. For unicast

transmissions from the last mobile relay to the destination, the area consumed by each hop

is π∆2

4
(Sh

b )2. For duplication to other nodes, broadcast is more beneficial since it consumes

fewer resources. Assume that each transmitter chooses the transmission range of the broadcast

independently of the positions of its neighboring nodes. If the transmission range is s, then

on average no greater than πs2

n
nodes can receive the broadcast, and a disk of radius ∆

2
s (i.e.,

area π∆2

4
s2) centered at the transmitter will be disjoint from other disks. Therefore, we can use

∆2

4
E[Rb]−1

n
as a lower bound on the expected area consumed by duplicating the bit to Rb−1 mobile

relays (excluding the source node). This lower bound will hold even if the duplication process

is carried out over multiple time slots, because the average number of new mobile relays each

broadcast can cover is at most proportional to the area consumed by the broadcast. Therefore,

inspired by [1], the amount of radio resources consumed must satisfy

λnT
∑

b=1

∆2

4

E[Rb] − 1

n
+ E[

λnT
∑

b=1

hb
∑

h=1

π∆2

4
(Sh

b )2] ≤ c′3WT, (8)

where c′3 is a positive constant.

However, ∆2

4
E[Rb]−1

n
may fail to be a lower bound on the expected area consumed by duplicating

to Rb − 1 mobile relays if the following opportunistic broadcast scheme is used. The source may

choose to broadcast only when there are a larger number of nodes close by. If the source can

afford to wait for these “good opportunities”, an opportunistic broadcast scheme may consume

less radio resources than a non-opportunistic scheme to duplicate the bit to the same number

§A similar observation is used in [1] except that they take a receiver point of view.
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of mobile relays. Nonetheless, Proposition 3 shows that no scheduling policies can improve the

tradeoff by more than a log n factor. For details, please refer to Appendix B.

3.5 Tradeoff IV : Half Duplex

Finally, since we assume that no node can transmit and receive over the same frequency at the

same time (a practically necessary assumption for most wireless devices), the following property

can be shown as in [1].

Proposition 4 The following inequality holds,

λnT
∑

b=1

hb
∑

h=1

1 ≤ WT

2
n. (9)

4 The Upper Bound on the Capacity-Delay Tradeoff

Our first main result is to derive, from the above four tradeoffs, the upper bound on the optimal

capacity-delay tradeoff of mobile ad hoc networks under the i.i.d. mobility model. Since the

maximal achievable per-node capacity is Θ(1) and this capacity can be achieved with Θ(n) delay

by the scheme of [3], we are only interested in the case when the mean delay is o(n).

Proposition 5 Let D̄ be the mean delay averaged over all bits and all source-destination pairs,

and let λ be the throughput of each source-destination pair. If D̄ = O(nd), 0 ≤ d < 1, the

following upper bound holds for any causal scheduling policy,

λ3 ≤ O(
D̄

n
log3 n).

Proof: Using the Cauchy-Schwartz inequality, we have

(

λnT
∑

b=1

hb
∑

h=1

Sh
b

)2

≤
(

λnT
∑

b=1

hb
∑

h=1

1

)(

λnT
∑

b=1

hb
∑

h=1

(Sh
b )2

)

≤ WTn

2

λnT
∑

b=1

hb
∑

h=1

(Sh
b )2, (10)
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where in the last step we have used Tradeoff IV (9). Equality holds in (10) when inequality (9)

is tight and when Sh
b is equal for all b and h. We thus have,

E[
λnT
∑

b=1

hb
∑

h=1

(Sh
b )2] ≥ 2

WTn
E[

(

λnT
∑

b=1

hb
∑

h=1

Sh
b

)2

]

≥ 2

WTn

(

E[
λnT
∑

b=1

hb
∑

h=1

Sh
b ]

)2

(11)

≥ 2

WTn

(

λnT
∑

b=1

E[lb]

)2

, (12)

where in the last two steps we have used Jensen’s Inequality and the Tradeoff II (6), respectively.

Inequality (11) is tight when
λnT
∑

b=1

hb
∑

h=1

Sh
b is almost surely a constant, and (12) is tight when (6) is

tight.

From Tradeoff I (4), we have

λnT
∑

b=1

E[Rb] ≥
λnT
∑

b=1

1

c1 log n

1

(E[lb] + 1
n2 )2E[Db]

. (13)

Let

D̄ =

λnT
∑

b=1

E[Db]

λnT
∑

b=1

1

=

λnT
∑

b=1

E[Db]

λnT
.

Using Jensen’s Inequality and Hőlder’s Inequality, we have,

1




λnT
P

b=1
(E[lb]+

1
n2 )

λnT
P

b=1
1





2 ≤











λnT
∑

b=1

1
(E[lb]+

1
n2 )

λnT
∑

b=1

1











2

≤

λnT
∑

b=1

1
(E[lb]+

1
n2 )2E[Db]

λnT
∑

b=1

1

λnT
∑

b=1

E[Db]

λnT
∑

b=1

1

. (14)
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Equality holds when E[lb] is the same for all b and E[Db] = D̄ for all b. Substituting (14) in (13),

we have

λnT
∑

b=1

E[Rb] ≥ 1

c1 log n

(

λnT
∑

b=1

1

)3

D̄

(

λnT
∑

b=1

(E[lb] + 1
n2 )

)2 . (15)

Substituting (12) and (15) into Inequality (7), we have

4c3WT log n

∆2
≥

λnT
∑

b=1

E[Rb] − 1

n
+ πE[

λnT
∑

b=1

hb
∑

h=1

(Sh
b )2]

≥ 1

c1n log n

(λnT )3

D̄

(

λnT
∑

b=1

(E[lb] + 1
n2 )

)2

+
2π

WTn

(

λnT
∑

b=1

E[lb]

)2

− λT.

There are two cases that we need to consider.

Case 1: If
λnT
∑

b=1

E[lb] ≤ λT
n

, then

4c3WT log n

∆2
≥ 1

c1n log n

(λnT )3

D̄
(

2λT
n

)2 − λT

=
1

4c1 log n

λTn4

D̄
− λT.

When D̄ = O(nd), d < 1, the first term dominates when n is large. Hence, for n large enough,

4c3WT log n

∆2
≥ 1

8c1 log n

λTn4

D̄

λ ≤ 32c1c3W

∆2

D̄ log2 n

n4
. (16)

Case 2: If
λnT
∑

b=1

E[lb] ≥ λT
n

, then

4c3WT log n

∆2
≥ 1

c1n log n

(λnT )3

D̄

(

2
λnT
∑

b=1

E[lb]

)2

+
2π

WTn

(

λnT
∑

b=1

E[lb]

)2

− λT (17)
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≥ 2

√

1

c1 log n

2π

WTn2

(λnT )3

4D̄
− λT (18)

= 2

√

π

2c1 log n

λ3nT 2

D̄W
− λT. (19)

Therefore, either

λ ≤ O(
D̄ log n

n
), (20)

or, if λ = ω( D̄ log n
n

), then the first term in (19) dominates when n is large. In the latter case, for

n large enough,

4c3WT log n

∆2
≥

√

π

2c1 log n

λ3nT 2

D̄W

λ3 ≤ 32c1c
2
3W

3

π∆4

D̄ log3 n

n
. (21)

Finally, we compare the three inequalities we have obtained, i.e., (16), (20) and (21). Since

D̄ = o(nd), d < 1, inequality (21) will eventually be the loosest for large n. Hence, the optimal

capacity-delay tradeoff is upper bounded by

λ3 ≤ O(
D̄

n
log3 n).

Q.E.D.

5 An Achievable Lower Bound on the Capacity-Delay

Tradeoff

The capacity-delay tradeoff in Proposition 5 is better than those reported in [3] and [4]. Assuming

that the delay bound is Θ(nd), 0 ≤ d < 1, the achievable per-node capacity is O(n−(1−d)) by

the scheme in [3], and O(n−(1−d)/2) by the scheme in [4]. Our upper bound, however, implies a

per-node capacity of O(n−(1−d)/3) (we have ignored all log n factors). Since d < 1, there is clearly

room to substantially improve existing schemes (see Fig. 1).
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In this section, we will show how the study of the upper bound also helps us to develop a new

scheme that can achieve a capacity-delay tradeoff that is close to the upper bound. Precisely,

we met several inequalities (10)-(18) during the derivation of the upper bound. By studying the

conditions under which these inequalities are tight, we will be able to identify the optimal choices

of various key parameters of the scheduling policy. In the end, the knowledge of the optimal

choices of the parameters will help us develop a new scheme that is superior to existing ones.

5.1 Choosing the Optimal Values of the Key Parameters

Assume that the mean delay is bounded by nd, d < 1. By Proposition 5, we have,

λ ≤ Θ(
3

√

D̄

n
log3 n) = Θ(n

d−1
3 log n).

In order to achieve the maximum capacity on the right hand side, all inequalities (10)-(18)

should hold with equality. By checking the conditions when (10)-(14) are tight, we can infer

that the parameters (such as Sh
b ,E[lb],E[Db]) of each bit b should be about the same and should

concentrate on their respective average values. This implies that the scheduling policy should

use the same parameters for all bits. From now on, we will assume that all key parameters (such

as Rb, lb, etc.) are indeed the same for all bits.

The inequality (18) is essential for deriving the optimal values of these parameters. Note that

equality holds in (18) if and only if

1

4c1n log n

(λnT )3

D̄(
λnT
∑

b=1

E[lb])2

=
2π

WTn
(
λnT
∑

b=1

E[lb])
2.

Substituting
λnT
∑

b=1

E[lb] = λnT lb, we can solve for lb,

1

4c1n log n

λnT

D̄l2b
=

2π

WTn
(λnT )2l2b

l4b =
1

8πc1

W

D̄λn log n
.
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Substituting λ = Θ(n(d−1)/3 log n) and D̄ = nd, we obtain the optimal value of lb,

lb = Θ(n− 1+2d
6 log− 1

2 n)

A reasonable choice for the area of capture neighborhood, Ab, is then,

Ab = l2b = Θ(n− 1+2d
3 / log n).

By setting (9) of Tradeoff IV to equality, we have

λnThb =
WTn

2

hb =
W

2λ
= Θ(n

1−d
3 / log n).

By setting (6) of Tradeoff II to equality, we have

Sh
b =

lb
hb

= Θ(

√

log n

n
).

From (4) of Tradeoff I , equality is attained when

Rb = Θ(
1

c1 log n

1

l2bD̄
) = Θ(n

1−d
3 ).

The optimal values of these parameters are summarized in Table 1.

Several remarks are in order. Since it is sufficient to control all parameters around these optimal

values, simple cell-based schemes such as the one in Example B of Section 3 suffice. Secondly,

the optimal values for Rb and lb can provide guidelines on how to choose the cell partitioning.

Thirdly, the optimal value for Sh
b is roughly the average distance between neighboring nodes

when n nodes are uniformly distributed in a unit square. Hence, it is desirable to use multi-hop

transmission over neighboring nodes to forward the information from the last mobile relay to the

destination. These guidelines have sketched a blueprint of the optimal scheduling scheme for us.

We next present schemes that can achieve capacity-delay tradeoffs that are close to the upper

bound up to a logarithmic factor.
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Table 1: The order of the optimal values of the parameters when the mean delay is bounded by

nd.

Rb: # of Duplicates Θ(n(1−d)/3)

lb: Distance to Destination Θ(n−(1+2d)/6/ log1/2 n)

hb: # of Hops Θ(n(1−d)/3/ log n)

Sh
b : Transmission Range of Each Hop Θ(

√

log n
n

)

5.2 Achievable Capacity with Θ(1) Delay

We first focus on the case when the mean delay is bounded by a constant, i.e., the exponent

d = 0. By Proposition 5, the per-node throughput is bounded by O(n−1/3 log n). We now

present a scheme that can achieve Θ(n−1/3/ log n) capacity with Θ(1) delay for large n. This is

an encouraging result for mobile networks because we know that the per-node capacity of static

networks is O(1/
√

n log n) [1]. Hence, mobility increases the capacity even with constant delay.

We will need the following Lemma before stating the main scheduling scheme. We will re-

peatedly use the following type of cell-partitioning. Let m be a positive integer. Divide the unit

square into m × m cells (in m rows and m columns, see Fig. 2). Each cell is a square of area

1/m2. As in [4], we call two cells neighbors if they share a common boundary, and we call two

nodes neighbors if they lie in the same or neighboring cells. We say that a group of cells can be

active at the same time when one node in each cell can successfully transmit to or receive from

a neighboring node, subject to the interference from other cells that are active at the same time.

Let bxc be the largest integer smaller than or equal to x. The proof of the following Lemma is

available in Appendix C.

Lemma 6 There exists a scheduling policy such that each cell can be active for at least 1/c4

amount of time, where c4 is a constant independent of m.

The capacity achieving scheme is as follows.

21



(2     + 3)/m∆

(2     + 6)/m∆

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

2/m

1/m

Figure 2: Cells that are b2∆ + 6c/m apart (i.e., the shaded cells in the figure) can be active

together.

Capacity Achieving Scheme:

1) At each odd time slot, we schedule transmissions from the sources to the relays. We divide

the unit square into g1(n) = b
(

n2/3

8 log n

) 1
2 c2 cells. Each cell is a square of area 1/g1(n). We refer

to each cell in the odd time slot as a sending cell. By Lemma 6, each cell can be active for

1
c4

amount of time. When a cell is scheduled to be active, each node in the cell broadcasts a

new message to all other nodes in the same cell for 1
32c4n1/3 log n

amount of time (Fig. 3). These

other nodes then serve as mobile relays for the message. The nodes within the same sending cell

coordinate themselves to broadcast sequentially. If any sending cell has more than 32n1/3 log n

nodes, we refer to it as a Type-I error [4]. Unless a Type-I error occurs, each source can broadcast

a message of length W
32c4n1/3 log n

to all other nodes in the same sending cell.

2) At each even time slot, we schedule transmissions from the mobile relays to the destination

nodes. Note that the positions of the mobile relays have changed and are now independent of

their positions in the previous time slot. We divide the unit square into g2(n) = b
(

n1/3
)

1
2 c2 cells.

Each cell is a square of area 1/g2(n). We refer to each cell in the even time slot as the receiving

cell. For any receiving cell i = 1, ..., g2(n) and any sending cell j = 1, ..., g1(n), pick a node Yij

that is in the receiving cell i in the current time slot and that was in the sending cell j in the
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g_1(n) columns

g_1(n) rows

Source

Relay

move

Figure 3: Transmission schedule in the odd time slot. g1(n) = b
(

n2/3

log n

) 1
2 c2.

previous time slot. We refer to this node Yij as the designated mobile relay in receiving cell i

and for sending cell j. If there is no such node Yij for any i or j, we refer to it as a Type-II

error. There may be multiple nodes that can serve as the designated mobile relay for some i, j.

In this case we only pick one. Unless a Type-II error occurs, each receiving cell will contain one

designated mobile relay from every sending cell. Therefore, each destination node can now find

a designated mobile relay that holds the message intended for the destination node and that

resides in the same receiving cell (see Fig. 4). We then schedule multi-hop transmissions in the

following fashion to forward each message from the designated mobile relay to its destination

in the same receiving cell. We further divide each receiving cell i into g3(n) = b
(

n2/3

4 log n

) 1
2 c2

mini-cells (in
√

g3(n) rows and
√

g3(n) columns, see Fig. 5). Each mini-cell is a square of area

1/(g2(n)g3(n)). By Lemma 6, there exists a scheduling scheme where each mini-cell can be

active for 1
c4

amount of time. When each mini-cell is active, it forwards a message (or a part of

a message) to one other node in the neighboring mini-cell. If the destination of the message is

in the neighboring cell, the message is forwarded directly to the destination node. The messages

from each designated mobile relay are first forwarded towards neighboring cells along the X-axis,

then to their destination nodes along the Y-axis (see Fig. 5). In this fashion, a successful schedule
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g_2(n) columns

g_2(n) rows

Receiver

moved

Relay

Figure 4: Transmission schedule in the even time slot. g2(n) = b
(

n1/3
)

1
2 c2.

will allow each destination node to receive a message of length W
32c4n1/3 log n

from its respective

designated mobile relay residing in the same receiving cell. For details on constructing such a

schedule, see Appendix D. If no such schedule exists, we refer to it as a Type-III error. At the

end of each even time slot, if there are any packets that cannot be delivered to the destination

nodes due to Type-II or Type-III errors, they are dropped.

We can show that, as n → ∞, the probabilities of errors of all types will go to zero. The proof

is available in Appendix D.

Proposition 7 With probability approaching one, as n → ∞, the above scheme allows each

source to send a message of length W
32c4n1/3 log n

to its respective destination node within two time

slots.

Remark: Our scheme uses different cell-partitioning in the odd time slots than that in the even

time slots. Note that in previous works [3, 4], the cell structure remains the same over all time

slots. Our judicious choice of the cell-structures is the key to our tighter lower bound for the

capacity. In particular, the size of the sending cell is chosen such that the average number of

nodes in each cell, n/g1(n) = Θ(n1/3 log n), is close to the optimal value of Rb in Section 5.1

(with d = 0). The size of the receiving cell is chosen such that its area, 1/g2(n) = Θ(n1/3), is
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g_3(n) columns

g_3(n) rows

Relay

Receiver

A Receiving Cell

Figure 5: Multi-hop transmissions within a receiving cell.

close to the optimal value of l2b . Finally, the size of the mini-cell is chosen such that each hop

to the neighboring cell is of length 1/
√

g2(n)g3(n) = Θ(
√

log n/n), which is close to the optimal

value of Sh
b .

5.3 The Effect of Queueing

When we defined the delay Db of each bit b in Section 3, it includes the possible queueing delay at

the source node and at the relay nodes. The upper bound on the capacity-delay tradeoff (Propo-

sition 5) thus holds regardless of the queueing discipline used in the system, and D̄ also includes

the queueing delay. We now show how to analyze the queueing delay of the capacity-achieving

scheme in Section 5.2. This scheme attempts to deliver one message of length W
32c4n1/3 log n

for

each source-destination pair every two time slots. Let pe be the probability that a message

is successfully delivered to the destination at the end of the even time slot. (Note that pe is

the same for all source-destination pairs due to symmetry, and by Proposition 7, pe → 1 as

n → ∞.) Assume that, if such delivery is unsuccessful, messages that have not been delivered

to the destinations at the end of each even time slot are discarded and have to be retransmitted

at the source nodes. Further, assume that packets of length W
32c4n1/3 log n

arrive at each source
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according to certain stochastic process. Then packets may get enqueued at the source nodes. If

we observe the system at the end of each even time slot, the number of packets queued for each

source-destination pair will evolve as that of a discrete-time queue with geometric service time

distributions [6], and the queues for each source-destination pair can be studied independently.

If we know the packet arrival process, we can then compute the queueing delay. For example, if

the arrival process is Bernoulli, i.e., one new packet for each source-destination pair arrives at

the source every two time slots with probability Λ, then using standard results for discrete time

M/M/1 queues [6, p82], we can compute the queueing delay as,

D = 2
1 − Λ

pe − Λ
.

As n → ∞, pe → 1. Hence,

D → 2, as n → ∞.

On the other hand, if the arrival process is Poisson with rate Λ, then the number of packets

arriving at a source-destination pair every two time slots is a Poisson random variable with

mean 2Λ. Hence, using results for discrete time M an/M/1 queues [6, p89], we can compute the

queueing delay as

D = 2
1 − Λ

pe − 2Λ
.

Assume 2Λ ≤ 1 − ε, where 0 < ε < 1. As n → ∞, pe → 1. Hence,

D → 2
1 − Λ

ε
, as n → ∞.

Note that in both cases, the queueing delay is at most a constant multiple of 2 (time slots)

provided that ε (i.e., the difference between the arrival rate and the capacity) is positive and

bounded away from zero as n → ∞. Hence, the capacity-achieving scheme in Section 5.2 can

sustain Θ(n−1/3/ log n) throughput (in bits per time slot) with O(1) queueing delay.
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5.4 The Capacity Achieving Scheme for Arbitrary Delay Bound

The above scheme can be generalized to arbitrary delay bounds. Let the mean delay be bounded

by D̄ = Θ(nd), 0 ≤ d < 1. We can group every bndc + 1 time slots into a super-frame. In

each odd super-frame, we schedule transmissions from the sources to the relays. We divide the

unit square into g1(n) = Θ(n(2+d)/3/ log n) sending cells of equal area. Within each sending cell,

each source broadcasts a new message to all other nodes within the same cell for a duration of

Θ( 1
n(1−d)/3 log2 n

) every time slot.

In each even super-frame, we schedule transmissions from the relays to the destination nodes.

We divide the unit square into g2(n) = Θ(n(1+2d)/3) receiving cells of equal area. In every time

slot, some mobile relays will have messages intended for some other destination nodes in the

same receiving cell. We then schedule multi-hop transmissions to deliver the messages from the

mobile relays to the destination nodes in the same receiving cell.

Using similar techniques as the one in [4] and the one in Appendix D, we can show that,

with probability approaching one as n → ∞, each source can send bndc + 1 messages of length

Θ(n−(1−d)/3/ log2 n) to its destination within 2(bndc + 1) time slots. The queueing delay can

also be studied in a similar fashion as in Section 5.3. The details are omitted because of space

constraints.

6 The Limiting Factors in Existing Schemes

In Section 5, we have shown that choosing the optimal values of the scheduling parameters is the

key to achieve the optimal capacity-delay tradeoff. In this section, we will show that deviating

from these optimal values will lead to suboptimal capacity-delay tradeoffs. In particular, we

will identify the limiting factors in the existing schemes in [3] and [4] by comparing the optimal

values of scheduling parameters in Section 5.1 with those used by the existing schemes. Our

model in Section 4 can be extended to study the upper bounds on the capacity-delay tradeoff
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when one imposes additional restrictive assumptions that correspond to these limiting factors.

We will see that these new upper bounds are inferior to the capacity-delay tradeoff reported in

Sections 4 and 5. The existing schemes of [3] and [4] in fact achieve capacity-delay tradeoffs

that are close to the respective upper bounds. These results will give us new insights on which

schemes to use under different conditions.

6.1 The Limiting Factor in the Scheme of [3]

The scheme by Neely and Modiano [3] divides the unit square into n cells each of area 1/n. A

mobile relay will forward messages to the destination only when they both reside in the same

cell. Hence, the distance from the last mobile relay to the destination, lb, is on average on the

order of O(1/
√

n), regardless of the delay constraints. However, we have shown in Section 5.1

that the optimal choice for lb should be on the order of Θ(n−(1+2d)/6 log−1/2 n), when the mean

delay is bounded by Θ(nd). The next Proposition shows that the restrictive choice of lb is indeed

the limiting factor of the scheme in [3]. The proof is available in Appendix E

Proposition 8 Let D̄ be the mean delay averaged over all bits and all source-destination pairs,

and let λ be the throughput of each source-destination pair. If D̄ = O(nd), 0 ≤ d < 1 and

E[lb] = O(1/
√

n), then for any causal scheduling policy,

λ ≤ O(
D̄

n
log2 n).

Remark: The scheme of [3] achieves the above upper bound up to a logarithmic factor.

6.2 The Limiting Factor in the Scheme of [4]

In the scheme by Toumpis and Goldsmith [4], a mobile relay will always use single-hop transmis-

sion to forward the messages directly to the destination. That is, the number of hops from the

last mobile relay to the destination node, hb, is always 1. However, we have shown in Section 5.1

that the optimal value of hb is Θ(n(1−d)/3/ log n) when the mean delay is bounded by Θ(nd). The
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next Proposition shows that the restriction on hb is indeed the limiting factor of the scheme in

[4]. The proof is available in Appendix F.

Proposition 9 Let D̄ be the mean delay averaged over all bits and all source-destination pairs,

and let λ be the throughput of each source-destination pair. If D̄ = O(nd), 0 ≤ d < 1 and

hb = O(1), then for any causal scheduling policy,

λ2 ≤ O(
D̄

n
log3 n).

Remark: The scheme of [4] achieves the above upper bound up to a logarithmic factor.

Propositions 5, 8 and 9 present three different upper bounds on the capacity-delay tradeoff of

mobile ad hoc networks under different assumptions. Assume that the mean delay is bounded

by nd, 0 ≤ d < 1. When the capacity is the main concern, Proposition 5 shows that the

per-node throughput is at most O(n−(1−d)/3 log n). The capacity-achieving scheme reported in

Section 5 can achieve close to this upper bound up to a logarithmic factor. However, this

capacity-achieving scheme requires sophisticated coordination among the mobile nodes. Hence,

it may not be suitable when simplicity is the main concern. On the other hand, the scheme of

[3] only requires coordination among nodes that are within a cell of area 1/n. Note that the

average number of nodes in such a cell is Θ(1). Proposition 8 then shows that, when coordination

among a large number of nodes is prohibited, the scheme of [3] is close to optimal. Similarly, the

scheme of [4] only requires single-hop transmissions from the mobile relays to the destinations.

Proposition 9 shows that, when multi-hop transmissions are undesirable, the scheme of [4] is close

to optimal. Therefore, the results reported in this paper present a relatively complete picture of

the achievable capacity-delay tradeoffs under different conditions.

An interesting open problem for future work is to investigate whether these insights apply to

the capacity-delay tradeoff under mobility models other than the i.i.d. model. For example, [7]

and [8] have studied the capacity-delay tradeoff under the Brownian Motion mobility model. In

these works, the authors also have implicit restrictions on the scheduling policy. In particular,
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the scheme in [7] uses at most one mobile relay at any time (i.e., Rb = 1), and the scheme in

[8] schedules a transmission from the mobile relay to the destination only when they are at a

distance of O(1/
√

n) away (i.e., lb = O(1/
√

n)). As we have shown in this paper, under the i.i.d.

mobility model, the optimal capacity-delay tradeoff can only be achieved when Rb, lb and hb all

vary as functions of the delay exponent d. Putting restrictions on any one of these variables will

lead to suboptimal capacity for a given delay constraint. For our future work, we plan to study

whether these kind of restrictions will also limit the capacity-delay tradeoff obtained in existing

works under other mobility models.

7 Conclusion and Future Work

In this paper, we have studied the fundamental capacity-delay tradeoff in mobile ad hoc networks

under the i.i.d. mobility model. Our contributions are three-fold. We have established the upper

bound on the optimal capacity-delay tradeoff over all causal scheduling policies. The upper

bound not only provides the fundamental limits of capacity and delay, but also helps to identify

the optimal values of the key scheduling parameters in order to achieve the optimal capacity-

delay tradeoff. Our second contribution is to develop a new scheduling scheme that can achieve a

capacity-delay tradeoff that differs from the upper bound only by a logarithmic factor, which also

implies that our upper bound is fairly tight. The capacity achievable by our new scheme is larger

than that of the existing schemes in [3] and [4]. In particular, when the delay is bounded by a

constant, our scheme achieves a per-node capacity of Θ(n−1/3/ log n). This indicates that, under

the i.i.d. mobility model, mobility increases the capacity even with constant delays. Our third

contribution is to use the insight drawn from the upper bound to identify the limiting factors

in the existing schemes. These results present a relatively complete picture of the achievable

capacity-delay tradeoffs under different considerations.

In this paper, we have assumed an i.i.d. mobility model. For future work, we plan to study

the optimal capacity-delay tradeoff for mobile ad hoc networks under other mobility models.
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Among the properties that we proved in Section 3, we expect that the Tradeoffs II to IV will

be relatively invariant to the choice of mobility models, while Tradeoff I is likely to depend on a

specific model. Hence, future work will concentrate on how to tailor Tradeoff I for other mobility

models. Some immediate extensions to the i.i.d. mobility model are possible. For example, at

each time slot, each node may independently choose to stay in its old position with probability

p, and to move to a new random position with probability 1 − p. This model may approximate

scenarios where nodes move at a fast speed and then stay for a relatively long period of time.

Tradeoff I will hold for this extension of the i.i.d. mobility model, and hence our main results

will hold as well. An extension of our methodology to the random way-point model [8, 9] is

included in Appendix G. Other mobility models that we plan to investigate are, the Brownian

motion mobility model [7, 8], and the linear mobility model [10], etc.

Other aspects to consider are how the upper bound will be impacted by the use of diversity

coding [11], effect of fading [4], and the use of information-theoretic approaches [12, 13].

Appendix

A Proof of Proposition 1

We will need the following lemma on the minimum distance from the mobile relays to the

destination at any time slot. Fix a bit b that enters into the system at time slot t0(b). At each

time slot t ≥ t0(b), recall that rb(t) is the number of mobile relays holding the bit b at the

beginning of the time slot. Among these rb(t) mobile relays, there is one mobile relay whose

distance to the destination of bit b is the smallest. Let L̃b(t) denote this minimum distance, and

let

Lb(t) = max{ 1

n2
, L̃b(t)}.
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It is easy to verify that

l̃b(t) ≥ L̃b(t) ≥ Lb(t) −
1

n2
.

Lemma 10 Under the i.i.d. mobility model, if n ≥ 3, then

E

[

1

L2
b(t)rb(t)

|Ft−1

]

≤ 8π log n for all t ≥ t0(b).

Proof: Let IA be the indicator function on the set A. By the definition of Lb(t), we have,

E

[

1

L2
b(t)

|Ft−1

]

= E
[

n4I{L̃b(t)≤ 1
n2 }|Ft−1

]

+E

[

1

L̃2
b(t)

I{L̃b(t)>
1

n2 }|Ft−1

]

.

Since the nodes move on a unit square, L̃b(t) ≤
√

2. Hence,

E

[

1

L̃2
b(t)

I{L̃b(t)>
1

n2 }|Ft−1

]

=

∫

√
2

1
n2

1

u2
dP[L̃b(t) ≤ u|Ft−1]

=
1

u2
P[L̃b(t) ≤ u|Ft−1]|

√
2

1
n2

−
∫

√
2

1
n2

P[L̃b(t) ≤ u|Ft−1]d
1

u2

=
1

2
− n4P[L̃b(t) ≤

1

n2
|Ft−1] +

∫

√
2

1
n2

2

u3
P[L̃b(t) ≤ u|Ft−1]du.

Hence,

E

[

1

L2
b(t)

|Ft−1

]

=
1

2
+

∫

√
2

1
n2

2

u3
P[L̃b(t) ≤ u|Ft−1]du.

Let ρb be the distance from any one mobile node to the destination of the bit b. Then, due to

the i.i.d. mobility model, we have,

P[ρb ≤ u|Ft−1] ≤ πu2,

and,

P[L̃b(t) ≤ u|Ft−1] ≤ 1 − (1 − πu2)rb(t)

≤ πrb(t)u
2.
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Therefore,

E

[

1

L2
b(t)

|Ft−1

]

=
1

2
+

∫

√
2

1
n2

2

u3
P[L̃b(t) ≤ u|Ft−1]du

≤ 1

2
+

∫

√
2

1
n2

πrb(t)
2

u
du

=
1

2
+ 2πrb(t) log u|

√
2

1
n2

=
1

2
+ 2πrb(t)(log

√
2 + 2 log n)

≤ 8πrb(t) log n,

when n ≥ 3. Finally, since rb(t) is Ft−1-measurable, we have

E

[

1

L2
b(t)rb(t)

|Ft−1

]

=
1

rb(t)
E

[

1

L2
b(t)

|Ft−1

]

≤ 8π log n.

Q.E.D.

Proof of Proposition 1 : Let

Vt = 8π log n [t − t0(b)] −
t
∑

s=t0(b)+1

1

L2
b(t)rb(t)

I{Cb(t)=1},

Then for all t ≥ t0(b), Vt is also Ft-measurable and Vt0(b) = 0. By Lemma 10, we have

E[Vt − Vt−1|Ft−1]

= 8π log n − E

[

1

L2
b(t)rb(t)

I{Cb(t)=1}|Ft−1

]

≥ 8π log n − E

[

1

L2
b(t)rb(t)

|Ft−1

]

≥ 0.

Hence,

E[Vt|Ft−1] ≥ Vt−1,
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i.e., Vt is a sub-martingale. Recall that sb = min{t : t ≥ t0(b) and Cb(t) = 1}. Since sb is a

stopping time, by appropriately invoking the Optional Stopping Theorem [5, p249, Theorem 4.1],

we have,

E[Vsb
] ≥ 0.

Hence,

8π log nE[Db] ≥ E

[

1

L2
b(sb)Rb

]

.

Using Hőlder’s Inequality [5, p15]

E2[
1

Lb(sb)
] ≤ E[Rb]E[

1

L2
b(sb)Rb

],

we have,

8π log nE[Db] ≥ E2[
1

Lb(sb)
]

1

E[Rb]

≥ 1

E2[Lb(sb)]E[Rb]
.

Finally, by definition,

lb = l̃b(sb) ≥ Lb(sb) −
1

n2
,

therefore,

8π log nE[Db] ≥
1

(E[lb] + 1
n2 )2E[Rb]

.

Q.E.D.

B Proof of Proposition 3

The next Lemma will be used frequently in the proof of Propositions 3 and 7. Consider an

experiment where we randomly throw n balls into m ≤ n urns. The probability that each ball

j enters urn i is p
m

and is independent of the position of other balls. Thus, p ≤ 1 is the success
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probability that the ball is thrown into any one of the urns. Let Bi, i = 1, ...m be the number

of balls in urn i after n balls are thrown. It is obvious that E[Bi] = np
m

. The following Lemma

shows that, when n is large, with high probability all Bi will concentrate on its mean.

Lemma 11 As n → ∞,

1. If np
m

= c, where c is a positive constant, then

P[Bi ≥
np

m
log n for any i] = O(

1

n
).

2. If np
m

≥ c log n and c ≥ 8, then

P[Bi ≥ 2
np

m
for any i] ≤ 1

n
.

3. If np
m

≥ cnα, where c > 0 and α > 0, then

P[Bi ≥ 2
np

m
for any i] = O(

1

n
).

4. If np
m

≥ c log n and c ≥ 4, then

P[Bi = 0 for any i] = O(
1

n
).

5. If np
m

≥ c log n and c ≥ 16, then

P[Bi ≥ 2
np

m
for any i] ≤ 1

n3
.

Proof: By known results on the characteristic function of Bernoulli random variables, we have,

for any θ > 0,

E[eθBi ] =
[

eθ p

m
+ (1 − p

m
)
]n

=
[

1 + (eθ − 1)
p

m

]n

≤ exp
[np

m
(eθ − 1)

]

for all urn i,
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where in the last step we have used the inequality that

(1 + x)
1
x ≤ e for x > 0.

Using the Markov Inequality [5, p15], for any y > 0,

P[Bi ≥ y] ≤ E[eθBi ]

eθy

≤ exp
[np

m
(eθ − 1) − θy

]

.

Hence, by the union bound

P[Bi ≥ y for any i] ≤ n exp
[np

m
(eθ − 1) − θy

]

.

To prove part 1, let np
m

= c and y = np
m

log n, then

P[Bi ≥ y for any i] ≤ n exp
[np

m
(eθ − 1) − θy

]

= n exp
[

c(eθ − 1) − θc log n
]

.

Let θ = 2/c, then

P[Bi ≥ y for any i] ≤ n
1

n2
exp

[

c(e2/c − 1)
]

= O(
1

n
).

To prove part 2, let y = 2np
m

, hence

P[Bi ≥ y for any i] ≤ n exp
[np

m
(eθ − 1) − θy

]

= n exp
[np

m
(eθ − 1 − 2θ)

]

. (22)

Let θ = log 2, then

eθ − 1 − 2θ = −(2 log 2 − 1) = −0.386 ≤ −1

4
.

Hence, when np
m

≥ c log n and c ≥ 8, we have

P[Bi ≥ y for any i] ≤ n exp
[

− c

4
log n

]

≤ n
1

n2
= O(

1

n
).
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To prove part 3, substituting θ = log 2 and np
m

≥ cnα into (22), we have,

P[Bi ≥ y for any i] ≤ n exp
[

− c

4
nα
]

≤ O(
1

n
).

To prove part 4, note that for any i,

P[Bi = 0] =
[

1 − p

m

]n

≤
[

1 − 4 log n

n

]n

=

[

1 − 4 log n

n

] n
4 log n

4 log n

.

Since limx→0(1 − x)1/x = 1/e, we have

[

1 − 4 log n

n

] n
4 log n

≤ 1√
e

for large n.

Hence, for large n,

P[Bi = 0] ≤
[

1√
e

]4 log n

=
1

n2
.

Therefore,

P[Bi = 0 for any i ] ≤ n
1

n2
= O(

1

n
).

Part 5 can be shown analogously as part 2. Q.E.D.

Proof of Proposition 3 : At each time slot t, an opportunistic broadcast scheme has to

determine how to duplicate each bit b to a larger number of mobile nodes. Some of the mobile

nodes that already have the bit b have to be selected to transmit the bit b, and some of the other

mobile nodes have to be selected to receive the bit.

Let vb(t, i) be the distance from a node i that is chosen to transmit the bit b at time slot t, to

the furthest node that is chosen to receive the bit (vb(t, i) = 0 if node i is not chosen to transmit
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the bit or if the bit b has cleared the system). Let ub(t, i) be the number of mobile nodes that

are chosen to receive the bit b from node i and that do not have the bit b prior to time slot t

(ub(t, i) = 0 if vb(t, i) = 0). Then ub(t, i) is bounded from above by the number of nodes covered

by a disk of radius vb(t, i) centered at node i. It is easy to verify that

Rb − 1 =
T
∑

t=1

n
∑

i=1

ub(t, i).

Fix a time slot t. We next bound the number of nodes that is covered by each disk of radius

vb(t, i) centered at node i. We divide the unit square into g4(n) = b
(

n
16 log n

) 1
2 c2 cells (in

√

g4(n)

rows and
√

g4(n) columns). Each cell is a square of area 1/g4(n). Let Bi be the number of nodes

in cell i, i = 1, ..., g4(n). Then E[Bi] = n
g4(n)

. When n is large, we have

16 log n ≤ n

g4(n)
≤ 32 log n.

Let A be the event that

Bi ≤
2n

g4(n)
for all i = 1, ..., g4(n).

By part 5 of Lemma 11, P[Ac] ≤ 1/n3, Now consider each disk of radius vb(t, i). We need at

most
[

2vb(t, i)
√

g4(n) + 2
]2

cells to completely cover the disk. Hence, if event A occurs, the number of nodes in the disk of

radius vb(t, i) will be bounded from above by

[

2vb(t, i)
√

g4(n) + 2
]2 2n

g4(n)

≤ 16nv2
b (t, i) +

16n

g4(n)

≤ 16nv2
b (t, i) + 512 log n

Note that the above relationship holds for all b and i. Let c7 = 16/π, and c8 = 512. Since ub(t, i)

is no greater than the number of nodes covered by the disk of radius vb(t, i), we have,

P

[

ub(t, i)

n
> c7πv2

b (t, i) + c8
log n

n
for any b, i

]

≤ P[Ac] ≤ 1

n3
.
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Fix a bit b. Let B be the event that

ub(t, i)

n
≤ c7πv2

b (t, i) + c8
log n

n
for all i and t = t0(b), ..., t0(b) + c2n

2.

Then,

P[Bc] ≤ 1

n3
c2n

2 =
c2

n
.

Since ub(t, i) ≤ n, we have

E

[

ub(t, i)

n

]

= E

[

ub(t, i)

n
I{B}

]

+ E

[

ub(t, i)

n
I{Bc}

]

≤ E

[

c7πv2
b (t, i) + c8

log n

n

]

+ P[Bc]

≤ c7πE[v2
b (t, i)] + c8

log n

n
+

c2

n

≤ c7πE[v2
b (t, i)] + (c8 + 1)

log n

n

when n ≥ max{N0, exp(c2)},

We now use the idea in Section 3 that disks of radius ∆
2

times the transmission range centered at

the transmitter are disjoint from each other. For each unicast transmission (i.e., the transmission

over each hop Sh
b ), the transmission range is just Sh

b . For broadcast, the transmission range is

the distance from the transmitter to the furthest node that can successfully receive the bit, i.e.

vb(t, i). By counting the area covered by all the disks, we have

λnT
∑

b=1

T
∑

t=1

n
∑

i=1

π
∆2

4
v2

b (t, i) +
λnT
∑

b=1

hb
∑

h=1

π∆2

4
(Sh

b )2 ≤ WT. (23)

Since there are at most n nodes that can serve as transmitters at any time, we have

λnT
∑

b=1

T
∑

t=1

n
∑

i=1

I{vb(t,i)>0} ≤ WTn.

Hence,

λnT
∑

b=1

E[Rb] − 1

n

= E

[

λnT
∑

b=1

T
∑

t=1

n
∑

i=1

ub(t, i)

n

]
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≤ c7πE

[

λnT
∑

b=1

T
∑

t=1

n
∑

i=1

v2
b (t, i)

]

+(c8 + 1)E

[

λnT
∑

b=1

T
∑

t=1

n
∑

i=1

log n

n
I{vb(t,i)>0}

]

≤ c7πE

[

λnT
∑

b=1

T
∑

t=1

n
∑

i=1

v2
b (t, i)

]

+ (c8 + 1)WT log n. (24)

Substituting (24) into (23), we have

λnT
∑

b=1

∆2

4

E[Rb] − 1

n
+

λnT
∑

b=1

hb
∑

h=1

π∆2

4
E[(Sh

b )2]

≤
{

c7E

[

λnT
∑

b=1

T
∑

t=1

n
∑

i=1

π
∆2

4
v2

b (t, i)

]

+
λnT
∑

b=1

hb
∑

h=1

π∆2

4
E[(Sh

b )2]

}

+
(c8 + 1)∆2

4
WT log n

≤ c7WT +
(c8 + 1)∆2

4
WT log n

≤ (c8 + 2)∆2

4
WT log n

when n ≥ max{N0, exp(c2), exp(4c7
∆2 )}. Q.E.D.

C Proof of Lemma 6

We can group all cells into c4 = b2∆ + 6c2 lattices. Each lattice consists of nodes that are

b2∆ + 6c/m apart along the X-axis or the Y-axis (see Fig.2). The cells of each lattice can be

active at the same time since

• the transmission range from a node to a neighboring node is at most 2/m, and

• any interfering transmitters are at least (2∆ + 2)/m distance away from the receiver.

We can schedule the c4 lattices in a round-robin fashion and each lattice is active for 1/c4 amount

of time.
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D Proof of Proposition 7

We only need to show that the probabilities of errors of all types will go to zero as n → ∞.

Let xj be the number of nodes in sending cell j = 1, ..., g1(n). Let pI be the probability of the

Type-I error, i.e., xj ≥ 32n1/3 log n for any j. Equivalently, we can consider the experiment that

we throw n balls into g1(n) urns with success probability p = 1. It is easy to show that

n2/3

16 log n
≤ g1(n) ≤ n2/3

8 log n
when n is large.

The average number of nodes in each sending cell is then

n

g1(n)
= Θ(n1/3 log n).

Hence, by part 3 of Lemma 11,

pI = P[xj ≥ 32n1/3 log n for any j]

≤ P[xj ≥
2n

g1(n)
for any j]

= O(1/n).

Let pII be the probability of the Type-II error. For each receiving cell i and sending cell j,

let yij be the number of nodes that are in the receiving cell i in the even time slot and in the

sending cell j in the previous odd time slot. Equivalently, we can consider the experiment that

we throw n balls to g1(n)g2(n) urns with success probability p = 1. Since

E[yij] =
n

g1(n)g2(n)
≥ 8 log n,

by part 4 of Lemma 11,

pII = P[yij = 0 for any i, j] = O(
1

n
).

Hence, with probability (1 − pI − pII) approaching one as n → ∞, each destination node can

now find a designated mobile relay that holds the message intended for the destination node

and that resides in the same receiving cell. Next we study pIII, the probability of the Type-III
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error. We need to specify how to schedule the hop-by-hop transmissions from the designated

mobile relays to the destination nodes within each receiving cell. We divide each receiving cell

i into g3(n) = b
(

n2/3

4 log n

) 1
2 c2 mini-cells (in

√

g3(n) rows and
√

g3(n) columns, see Fig. 5). Each

mini-cell is a square of area 1/(g2(n)g3(n)). By Lemma 6, there exists a scheduling scheme where

each mini-cell can be active for 1
c4

amount of time. When each mini-cell is active, it forwards a

message (or a part of a message) to one other node in the neighboring mini-cell. If the destination

of the message is in the neighboring cell, the message is forwarded directly to the destination

node. The messages from each designated mobile relay are first forwarded towards neighboring

cells along the X-axis, then to their destination nodes along the Y-axis (see Fig. 5).

Note that there are totally n messages of length W
32c4n1/3 log n

that need to be scheduled. The

above scheduling scheme can successfully forward all messages from the designated mobile relays

to the destinations provided that:

• Each mini-cell contains at least one node. Hence, each node can always find some node in

the neighboring cell to serve as static relays.

• The number of messages that go through any mini-cell is bounded by 32n1/3 log n. Because

each message is of length W
32c4n1/3 log n

, each mini-cell then only needs to be active for at

most 1
c4

amount of time, which is always possible by Lemma 6¶.

In order to show that pIII goes to zero as n → ∞, we only need to show that both of the above

conditions will hold with probability approaching one. First note that the average number of

nodes in a mini-cell is

n

g2(n)g3(n)
≥ 4 log n.

¶An assumption we have used here is the separation of time scale, i.e., we assume that radio transmissions can

be scheduled at a time scale much faster than that of node mobility. Hence, each message can be divided into

many smaller pieces and the transmissions of different pieces can be pipelined to achieve maximum throughput

[1]. We also assume that the overhead of dividing a message into many smaller pieces is negligible.

42



Let pa
III be the probability that any of the g2(n)g3(n) mini-cells are empty. Equivalently, we

can consider the experiment that we throw n balls into g2(n)g3(n) urns with success probability

p = 1. Then, by part 4 of Lemma 11,

pa
III = O(1/n).

Next we group the nodes in each receiving cell by the positions of their corresponding source

nodes in the previous time slot. Let Yij be the set of nodes in the receiving cell i that are the

destination nodes for some source nodes in the sending cell j (in the previous time slot). Let pb
III

be the probability that any set Yij, i = 1, ..., g2(n), j = 1, ..., g1(n), has more than 32 log n nodes.

Equivalently, we can consider the experiment that we throw n balls into m = g1(n)g2(n) urns

with success probability p = 1. Since

16 log n ≥ np

m
=

n

g1(n)g2(n)
≥ 8 log n for large n,

by part 2 of Lemma 11,

pb
III = P[|Yij| ≥ 32 log n, for any i, j]

≤ P[|Yij| ≥ 2
np

m
for any i, j]

= O(
1

n
).

Hence, with high probability, each designated mobile relay will serve no more than 32 log n

destination nodes in the same receiving cell. As presented earlier, the message will first be

forwarded along the X-axis, then along the Y-axis. We next bound the number of messages

that go through any mini-cell along the X-axis. Within a given receiving cell i, fix any mini-cell

k = 1, ..., g3(n). Let Zx
i,k be the number of designated mobile relays in receiving cell i that reside

at the same row with the mini-cell k. Note that there are at most g1(n) designated mobile

relays and
√

g3(n) rows of mini-cells in a given receiving cell i. Let pc
III(i) be the probability

that Zx
i,k ≥ 1

2

√

2n2/3

log n
for any mini-cell k in a given receiving cell i. Equivalently, we can consider

the experiment that we throw g1(n) balls into
√

g3(n) urns with success probability p = 1. The
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average number of balls per urn is g1(n)/
√

g3(n), and

1

4

√

2n2/3

log n
≥ g1(n)
√

g3(n)
≥ 1

8

√

n2/3

log n
for large n.

By part 3 of Lemma 11,

pc
III(i) = P[Zx

i,k ≥ 1

2

√

2n2/3

log n
for any k]

≤ P[Zx
i,k ≥ 2

g1(n)
√

g3(n)
for any k]

= O(
1

g1(n)
) = O(n− 2

3 log n).

Let pc
III be the probability that Zx

i,k ≥ 1
2

√

2n2/3

log n
for any mini-cell in any receiving cell. Since there

are Θ(n1/3) receiving cells, by the union bound,

pc
III ≤

g2(n)
∑

i=1

pc
III(i)

≤ n
1
3 O(n− 2

3 log n)

= O(n− 1
3 log n).

Therefore, with high probability, there will be at most 1
2

√

2n2/3

log n
designated mobile relays that

reside at the same row as any mini-cell, and each of them is the origin of at most 32 log n messages.

Hence, with probability approaching one as n → ∞, the number of messages that have to go

through any mini-cell along the X-axis is less than

16
√

2n2/3 log n.

Similarly, let Zy
i,k be the number of nodes in the receiving cell i that reside at the same column

as the mini-cell k. Let pd
III(i) be the probability that Zy

i,k ≥ 8n1/3
√

2 log n for any mini-cell k

in a given receiving cell i. Equivalently, we can consider the experiment that we throw n balls

into
√

g3(n) urns with success probability p = 1/g2(n). This experiment is independent of the

previous one, because the X-coordinates of the nodes are independent of their Y-coordinates.
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The average number of balls per urn is n/(g2(n)
√

g3(n)), and

4n1/3
√

2 log n ≥ n

g2(n)
√

g3(n)
≥ 2n1/3

√

log n for large n.

Hence, by part 3 of Lemma 11,

pd
III(i) = P[Zy

i,k ≥ 8n1/3
√

2 log n for any k ]

≤ P[Zy
i,k ≥ 2

n

g2(n)
√

g3(n)
for any k ]

= O(
1

n
).

Let pd
III be the probability that Zy

i,k ≥ 8n1/3
√

2 log n for any mini-cell in any receiving cell. By

the union bound,

pd
III ≤

g2(n)
∑

i=1

pd
III(i)

= n1/3O(
1

n
) = O(n−2/3).

Therefore, with probability approaching one as n → ∞, the number of messages that have to go

through any mini-cell along the Y-axis is less than

8n1/3
√

2 log n.

Combining all of the above results, with probability no greater than

pIII = pa
III + pb

III + pc
III + pd

III = O(n−1/3 log n),

the number of messages that have to go through any mini-cell k = 1, ...g3(n) in any receiving cell

i is less than

24n1/3
√

2 log n ≤ 32n1/3 log n for large n.

Proposition 7 then follows. Q.E.D.
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E Proof of Proposition 8

We start from inequality (17). Since E[lb] ≤
√

c5n
−1/2 for some positive constant ct, we have,

1

c1n log n

(λnT )3

D̄(2
λnT
∑

b=1

E[lb])2

≥ 1

4c1n log n

(λnT )3

D̄(λnT )2c5n−1

=
1

4c1c5 log n

λnT

D̄
,

and,

2π

WTn
(
λnT
∑

b=1

E[lb])
2 ≤ 2π

WTn
(λnT )2c5n

−1

=
2πc5

W
λ2T.

Substitute the above two inequalities into (17). Note that when D̄ = o(n), the first term of (17)

dominates the rest for large n. Hence

4c3

∆2
WT log n ≥ 1

2

1

c1n log n

(λnT )3

D̄(2
λnT
∑

b=1

E[lb])2

≥ 1

8c1c5 log n

λnT

D̄
.

We can then solve for λ,

λ ≤ D̄ log2 n

n

32c1c3c5W

∆2
.

Q.E.D.

F Proof of Proposition 9

Since hb ≤ c6 for some positive number c6, we have,
(

λnT
∑

b=1

hb
∑

h=1

Sh
b

)2

≤
(

λnT
∑

b=1

hb
∑

h=1

1

)(

λnT
∑

b=1

hb
∑

h=1

(Sh
b )2

)

≤ λnTc6

λnT
∑

b=1

hb
∑

h=1

(Sh
b )2.
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Hence,

E[
λnT
∑

b=1

hb
∑

h=1

(Sh
b )2] ≥ 1

c6λnT
E[

(

λnT
∑

b=1

hb
∑

h=1

Sh
b

)2

]

≥ 1

c6λnT

(

E[
λnT
∑

b=1

hb
∑

h=1

Sh
b ]

)2

≥ 1

c6λnT

(

λnT
∑

b=1

E[lb]

)2

. (25)

Substitute (15) and (25) into (7), we have,

4c3

∆2
WT log n ≥

λnT
∑

b=1

E[Rb] − 1

n
+ πE[

λnT
∑

b=1

hb
∑

h=1

(Sh
b )2]

≥ 1

c1n log n

(
λnT
∑

b=1

1)3

D̄

(

λnT
∑

b=1

(E[lb] + 1
n2 )

)2

+
π

c6λnT
(
λnT
∑

b=1

E[lb])
2 − λT

As in the proof of Proposition 5, the case with
λnT
∑

b=1

E[lb] ≥ λT/n will again prevail. Hence,

4c3

∆2
WT log n ≥ 1

c1n log n

(
λnT
∑

b=1

1)3

D̄

(

2
λnT
∑

b=1

E[lb]

)2

+
π

c6λnT
(
λnT
∑

b=1

E[lb])
2 − λT

≥ 2

[

π

4c1c6n log nD̄
(λnT )2

]1/2

− λT

= 2

√

π

4c1c6

λ2nT 2

D̄ log n
− λT.

When D̄ = o(n), the first term dominates for large n. Hence,

4c3

∆2
WT log n ≥

√

π

4c1c6

λ2nT 2

D̄ log n

λ2 ≤ D̄ log3 n

n

64c1c
2
3c6W

2

π∆4
.
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Q.E.D.

G The Random Way-point Mobility Model

The analyses in the previous sections have focused on the i.i.d. mobility model. In this section,

we will extend our methodology to the random way-point (RWP) mobility model.

G.1 The Random Way-point (RWP) Mobility Model

In the random way-point (RWP) mobility model, we assume that the unit square is a torus,

i.e., a node can move out of the unit square from an edge and immediately move into the unit

square from the opposite edge.‖ The initial positions of the nodes at time t = 0 are i.i.d. and

uniformly distributed within the unit square. Each node then moves independently in trips :

for each trip, the node picks a target position uniformly distributed within the unit square, and

moves towards the target position along the shortest path at a constant speed v. (Note that since

the unit square is a torus, the shortest path may not always be the straight line.) When the node

reaches the target position, it immediately starts another trip by picking a new target position

randomly. Unlike [9], we assume that, when a node is picked as the relay node for a message,

the information about the future motion of the relay node is not available to the scheduler. (On

the other hand, the scheduling scheme in [9] has exploited this knowledge to obtain a different

capacity-delay tradeoff than ours under a somewhat similar uniform mobility model.) Following

the convention in related studies [8], we assume that the speed v scales as v(n) = Θ(1/
√

n) when

the number of nodes n increases.∗∗

‖The assumption of a torus could be removed. It is included here for mathematical convenience so that we do

not need to deal with the edge effects.
∗∗It is also possible to extend out methodology to the case when the speed is randomly distributed between

[v(n), cv(n)] for some c > 1, and to the case when nodes pause between trips.
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G.2 Inherent Tradeoffs under the Random Way-point Mobility Model

We will refer to the capacity-achieving schemes in Section 5 as cell-based schemes. In previous

sections, we have shown that, at least for the i.i.d. mobility model, there is not a significant loss

of generality by using a cell-based scheme. Indeed, by choosing the appropriate cell-partitioning

(i.e., g1(n) sending cells and g2(n) receiving cells), the cell-based scheme in Section 5 can asymp-

totically achieve the maximum capacity under given delay constraints. Hence, in this section, we

will restrict our attention to cell-based schemes only, and our focus will be to find the optimal

cell-partitioning (i.e., the values of g1(n) and g2(n)) for the RWP mobility model. However, in

the RWP mobility model, the nodes move continuously instead of in time slots. Hence, we need

to modify the cell-based scheme as follows. We still divide the time into slots of unit length.

After a bit b enters the system, it is broadcast to all other nodes in the same sending cell by

the end of the next time slot. Let Rb be the number of mobile relays that receive the bit b.

After certain delay Db, one of the mobile relays (i.e., the last mobile relay) moves into the same

receiving cell (of area Ab) as the destination node of bit b. The bit b is then forwarded from

the last mobile relay to the destination by the end of the next time slot. Since the velocity of

the nodes is v(n) = Θ(1/
√

n), the distance any node can move within one time slot is of order

Θ(1/
√

n), which is small compared to the sizes of the sending cells and the receiving cells that

we will choose later. Hence, the mobility of the nodes will not interfere much with both the

duplication of the bit at the very beginning and the multi-hop forwarding after capture. Let hb

be the number of hops that bit b takes from the last mobile relay to the destination.

With the above modification of the cell-based scheme, the Tradeoffs II, III, and IV can be

readily extended to the RWP mobility model. However, the exact counterpart to Tradeoff I is

quite difficult to obtain analytically. We instead use numerical methods to study the likely form

of Tradeoff I under the RWP mobility model. In the cell-based scheme, the number of mobile

relays for each bit b is determined at the beginning of the duplication process, and all of these

mobile relays were close to the source node of bit b when they received bit b. hence, we can use
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the following simple simulation model to study the tradeoff between Db, Rb and Ab. At time

t = 0, we put one (destination) node at a random position uniformly distributed within the unit

square. We put Rb mobile relays at another random position. Let the size of the receiving cell

be Ab = 1/g2(n). We then let these nodes move according to the RWP mobility model and

record the mean delay E[Db] (averaged over simulation runs) before any one of the Rb mobile

relays moves within the same receiving cell as the destination node. Varying Rb and Ab, we

can thus obtain the relationship between E[Db], Rb and Ab. However, note that we are only

interested in the relationship when n is large. In order to extract the most useful information,

we let Rb = nd1 , 0 < d1 < 1, and Ab = n−d2 , 0 < d2 < 1. With any fixed d1 and d2, we observe

from our simulations that, when n is large, log E[Db]
log n

will converge to a number d, i.e., the delay is

approximately nd. In Fig. 6, we plot the relationship between d, d1, and d2 for the RWP mobility

model. It is instructive to compare with the same plot obtained under the i.i.d. mobility model

(Fig. 7). Note that each line in Fig. 7 can be expressed as

d = d2 − d1, for d ≥ 0,

which is consistent with (4) noting that lb = Θ(
√

Ab). On the other hand, each line in Fig. 6 can

be expressed as

d =
1 + d2

2
− d1, for 0.5 < d < 1,

which corresponds to

E[Db] ≈ Θ(
n

1
2

E[lb]E[Rb]
). (26)

This relationship between Db, lb and Rb under the RWP mobility model is consistent with the

findings in [8]. When lb and Rb are fixed, it has been shown in [8] that a given mobile relay can

move within a distance lb from the destination node during a single trip with probability Θ(lb).

Since odd trips are independent from each other, the expected number of trips for any of the

Rb mobile relays to move within distance lb from the destination node is Θ( 1
lbRb

). Finally, as

v(n) = Θ(1/
√

n), each trip will take Θ(
√

n) amount of time. We then obtain (26). However,
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Figure 6: Delay exponent d versus d1 and d2 for the random way-point mobility model.
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Figure 7: Delay exponent d versus d1 and d2 for the i.i.d. mobility model.

this relationship only holds when d ≥ 0.5. In fact, it has been shown in [8] that, in order to

take advantage of mobility, the minimum amount of delay under the RWP mobility model is

Θ(
√

n). Hence, schemes for constant delay constraints (such as the one in Section 5.2) will not

work under the RWP mobility model.

G.3 Upper Bound on the Capacity-Delay Tradeoff

Combining relationship (26) with Tradeoffs II, III and IV, we can compute the upper bound on

the maximum capacity under given delay constraints as in Proposition 5. We can in fact assume

a more general version of the estimate (26):

E[Db] ≥
c1n

1
2
−ε

E[lb]E[Rb]
, (27)
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where c1 > 0 and ε is a positive number close to 0. We then have

λnT
∑

b=1

E[Rb] ≥ c1n
1
2
−ε

λnT
∑

b=1

1

E[lb]E[Db]
. (28)

Let

D̄ =

λnT
∑

b=1

E[Db]

λnT
∑

b=1

1

=

λnT
∑

b=1

E[Db]

λnT
.

Using Jensen’s Inequality and Hőlder’s Inequality, we have,

1




λnT
P

b=1
E[lb]

λnT
P

b=1

1





≤











λnT
∑

b=1

1√
E[lb]

λnT
∑

b=1

1











2

≤

λnT
∑

b=1

1
E[lb]E[Db]

λnT
∑

b=1

1

λnT
∑

b=1

E[Db]

λnT
∑

b=1

1

. (29)

Equality holds when E[lb] is the same for all b and E[Db] = D̄ for all b. Substituting (29) in (28),

we have

λnT
∑

b=1

E[Rb] ≥ c1n
1
2
−ε

(

λnT
∑

b=1

1

)2

D̄
λnT
∑

b=1

E[lb]

. (30)

Substituting (12) and (30) into Tradeoff III (7), we have

4c3WT log n

∆2
≥

λnT
∑

b=1

E[Rb] − 1

n
+ πE[

λnT
∑

b=1

hb
∑

h=1

(Sh
b )2]

≥ c1n
− 1

2
−ε (λnT )2

D̄
λnT
∑

b=1

E[lb]

+
2π

WTn

(

λnT
∑

b=1

E[lb]

)2

− λT.

Using the inequality

a + b + c ≥ 3
3
√

abc,
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we have,

4c3WT log n

∆2
≥ 3

3

√

√

√

√

√

√

√

√











c1

2
n− 1

2
−ε (λnT )2

D̄
λnT
∑

b=1

E[lb]











2

2π

WTn

(

λnT
∑

b=1

E[lb]

)2

− λT (31)

= 3
3

√

c2
1π

2

λ4n2−2εT 3

D̄2W
− λT. (32)

Therefore, either

λ ≤ O(
D̄2

n2−2ε
), (33)

or, if λ = ω( D̄2

n2−2ε ), then the first term in (32) dominates when n is large. In the latter case, for

n large enough,

4c3WT log n

∆2
≥ 3

2

3

√

c2
1π

2

λ4n2−2εT 3

D̄2W
64c3

3W
3T 3 log3 n

∆6
≥ 27

8

c2
1π

2

λ4n2−2εT 3

D̄2W

λ2 ≤
√

1024c3
3W

4

27πc2
1∆

6

D̄

n1−ε
log

3
2 n. (34)

Compare (33) and (34). Since D̄ = o(nd), d < 1, inequality (34) will eventually be the loosest

for large n. Hence, the optimal capacity-delay tradeoff is upper bounded by

λ2 ≤ O(
D̄

n1−ε
log

3
2 n).

We can now take ε → 0 and obtain

λ2 ≤ O(
D̄

n
log

3
2 n).

G.4 Optimal Values of the Key Scheduling Parameters

To obtain the optimal value of the key scheduling parameters, we can infer as in Section 5.1 again

that the scheduling policy should use the same parameters for all bits. Hence, we will assume

that all key parameters (such as Rb, lb, etc.) are indeed the same for all bits. Assume that the

53



mean delay is bounded by nd, d < 1. By earlier derivations, we have,

λ ≤ Θ(n
d−1+ε

2 log
3
4 n).

Note that equality holds in (31) if and only if

c1

2
n− 1

2
−ε (λnT )2

D̄
λnT
∑

b=1

E[lb]

=
2π

WTn
(
λnT
∑

b=1

E[lb])
2.

Substituting
λnT
∑

b=1

E[lb] = λnT lb, we can solve for lb,

c1

2
n− 1

2
−ε λnT

D̄lb
=

2π

WTn
(λnT )2l2b

l3b =
c1

4π

W

D̄λn
1
2
+ε

.

Substituting λ = Θ(n(d−1+ε)/2 log3/4 n) and D̄ = nd, we obtain the optimal value of lb,

lb = Θ(n− d+ε
2 log− 1

4 n).

A reasonable choice for the area of capture neighborhood, Ab, is then,

Ab = l2b = Θ(n−d−ε/
√

log n).

By setting (9) of Tradeoff IV to equality, we have

λnThb =
WTn

2

hb =
W

2λ
= Θ(n

1−d−ε
2 / log

3
4 n).

By setting (6) of Tradeoff II to equality, we have

Sh
b =

lb
hb

= Θ(

√

log n

n
).

From (27), equality is attained when

Rb = Θ(
c1n

1
2
−ε

lbD̄
) = Θ(n

1−d−ε
2 log

1
4 n).

54



Taking ε → 0, we summarize the optimal values of the scheduling parameters below when the

delay constraint is Db = O(nd):

Rb = Θ(n
1−d
2 log

1
4 n), lb = Θ(n− d

2 / log
1
4 n),

hb = Θ(n
1−d
2 / log

3
4 n), and Sh

b = Θ(

√

log n

n
).

Hence, to use the cell-based capacity-achieving scheme as in Section 5, the number of sending

cells and receiving cells should be g1(n) = Θ(n
1+d
2

log n
) and g2(n) = Θ(nd), respectively. We have

simulated this cell-based scheme under the RWP mobility model and find it to achieve the

following capacity tradeoff

λ2 ≥ Θ(
D̄

n
/ log2 n) when 0.5 < d < 1.

Note that this capacity-delay tradeoff is better than the tradeoff reported in earlier studies [8].

Analogous to Section 6, we can show that a restrictive choice of the receiving cell size is again

the performance limiting factor of the scheme in [8].
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