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Abstract— o o of the optimaldynamic pricing schemehen the number of
In this paper we show that significant simplicity can be ex- ysers and the network capacity become very large. Note that

ploited for pricing-based control of large networks. We first con- 5 qynamic pricing schemés one where the network provider
sider a general loss network with Poisson arrivals and arbitrary ’

holding time distributions. In dynamic pricing schemes, the net- F:an charge different _prlc_es to the user acc_ordln_g to _the vary-
work provider can charge different prices to the user according to  ing levels of congestion in the network, whilestatic pricing

the current utilization level of the network and also other factors. schemeés one where the price only depends on the average lev-
We show that, when the system becomes large, the performance (inels of congestion in the network (and is hence invariant to the

terms of expected revenue) of an appropriately chosen static pric- ;,q1antaneous levels of congestion). The result is obtained un-
ing scheme, whose price is independent of the current network uti-

lization, will approach that of the optimal dynamic pricing scheme. der t_he ;_assumptlon OT Poisson flow amvals’ eXponer_]t'al flow
Further, we show that under certain conditions, this static price is holding times, and a single resource (single node). This elegant
independent of the route that the flows take. This indicates that result is an example of the type of simplicity that one can ob-
we can use the static scheme, which has a much simpler structure tain when the system becomes large. In this paper, we find that

than the optimal dynamic scheme, to control large communication ; ; : :
networks. We then extend the result to the case of dynamic rout- simple static network control can also approach the optimal dy

ing, and show that the performance of an appropriately chosen nar_nic network control under more general assumptions and a
static pricing scheme with bifurcation probability determined by ~ variety of other network problems.

average parameters can also approach that of the optimal dynamic  For simplicity of exposition, we structure the paper as fol-
routing scheme when the system is large. Finally, we study the con- |qys:

trol of elastic flows and show that there exist schemes with static . . .

parameters whose performance can approach that of the optimal We first extend the rgsult of [6] from the S!ngle—_llnk ca_se toa
dynamic resource allocation scheme (in the large system limit). We generalloss network with arbitrary holding time distributichs.

also identify the applications of our results for QoS routing and Note that while the assumption of Poisson arrivals for flows in

rate control for real-time streaming. the network is usually considered reasonable, the assumption of
exponential holding time distribution is not. For example, much
l. INTRODUCTION of the traffic generated on the Internet is expected to occur from

ngge file transfers which do not conform to exponential model-

. . . . ng. By weakening the exponential service time assumption we
ling a network to achieve certain performance objectives. Tﬁgqn y 9 b P

erformance obiectives can be modeled by some revenue o extend our results to more realistic systems. We show that a
pt'l't functions JS é\r/] o framework has recey od si n'fycanl{['s-%tic pricing scheme is still asymptotically optimal, and that the
Liiity=inetons. Su W vea signift "Forrect static price depends on the service time distribution only

:e;eftr:n th(:hllt;ari?]tu\:\tlah(e;.%r.{ s:?e [1]r’ Elzl(]j [31 [4], (55] 6:::? Ith?hrough its mean. A nice observation that stems from this result
eferences therein) wherein price provides a good contro S|€ that under certain conditions, the static price depends only

Lse the current price of & resoLrce 25 & feecback Sgnal o S Price elastcty ofthe user,and ot on the specifc route
erce the users into modifying their actions (e.g., changing t Pdistance. Thls |nd|cates., for exa_mple, that the flat pricing

R S€heme used in the domestic long distance telephone service in
rate or route). the US may be a sufficiently good pricing mechanism.

In [6], Paschalidis and Tsitsiklis have shown that the perfor-W then i tigate wheth histicated sch
mance (in terms of expected revenue or welfare) of an appropri- € (nen investigaté whether more sophisticated schemes can

ately choserstatic pricing schemapproaches the performancérmorove network performance (e.g., schemes that have prior

In this work, we use pricing as the mechanism of contro

This work has been partially supported by the National Science Foundatior Independently, in [7], Pachalidis and Liu have extended the work in [6] from
through the NSF award ANI-0099137, and the Indiana 21st Century Reseaackingle-link case to a Markovian loss network. But the authors still have the
and Technology Award 1220000634. exponential holding time assumption.



knowledge of the duration of individual flows, schemes thaket 7 = {n,n»,...,nr} denote the state of the system, where
predict the future congestion levels, etc.). We find that thg is the number of flows of classcurrently in the network.
performance gains using such schemes become increasinglyassume that each flow of clasequires a fixed amount of
marginal as the system size grows. bandwidthr;. The fixed routing and fixed bandwidth assump-

We then weaken the assumptions of fixed routing and fixéidn will be weakened in Sections Ill and 1V, respectively.
bandwidth flows. In our dynamic routing model, flows can Flows of class arrive to the network according to a Poisson
choose among several alternative routes based on the curggotess with raté\;(u;). The rateX;(u;) is a function of the
network congestion level. In our elastic flow model, users afgice u; charged to users of clags Herew; is defined as the
allowed to modify their rates when facing different prices, sinprice per unit time of connection. We assume thatu;) is
ilar to the way in which TCP and some elastic multimedia trak non-increasing function af;. Therefore);(u;) represents
fic react to changing network conditions. In these more genetiag price-elasticityof classi. We also assume that for each
models, when the system is large, we show that the invariangessi, there is a “maximal pricefiyay,; such that\;(u;) = 0
result still holds, i.e., there still exists a static pricing schem@henu; > unmax,i. Therefore by setting a high enough price
whose performance can approach that of the optimal dynargicthe network can prevent users of classom entering the
scheme. network. Once admitted, a flow of claswill hold r; amount of

In networks of today and in the future, the capacity will beesource in the network and pay a costipper unit time, until
very large, and the network will be able to support a large nurit-completes service, wheng is the price set by the network
ber of users. The work reported in this paper demonstratgisthe time of the flow arrival. The service times are i.i.d. with
under general assumptions and different network problem seteanl/u;. The service time distribution is general.
tings that, when a network is large, significant simplicity can The bandwidth requirement determines the set of feasible
be exploited for pricing based network control. Our result alsgtates? = {7 : > n;r;C! < R VI}. Aflow will be blocked
shows the importance @iverage informationvhen the system if the system becomes infeasible after accommodating it. Other
is large, since the parameters of the static schemes are detgin this feasibility constraint, the network provider can charge
mined by average conditions rather than instantaneous conglidifferent price to each flow, and by doing so, the network
tions. These results will help us develop more efficient angtovider strives to maximize the revenue collected from the
realistic algorithms for controlling large networks. We hav@sers. The way price is determined can range from the sim-
identified the applications of our results in QoS routing and raggeststatic pricing scheme® more complicatedynamic pric-
control for real-time streaming. ing schemeslIn a dynamic pricing schemehe price at time

Our work also has similarities to the work in [8], [9], and thean depend on many factors at the momersuch as the cur-
reference therein. However, in their work, the price is fixedent congestion level of the network, etc. On the other hand, in
and the focus is on how to admit and route each flow. Our wogkstatic pricing schemethe price is fixed over all time, and
(as well as [6]) explicitly models the users’ price-elasticity, andoes not depend on these factors. Intuitively, the more factors
consider the optimality of the pricing schemes. Our model afpricing scheme can be based on, the more information it can
elastic flows is also similar to the optimization flow controkxploit, and hence the higher the performance (i.e., revenue) it
model in [3], [10], [4], [5]. However, their models assume thatan achieve.
the number of users in the system is fixed. Hence their op-The dynamic pricing scheme we study in this section is more
timization is done for a snapshot in time, while we explicitlsophisticated than the one in [6Firstly, we allow the network
consider thedynamicsof the network by taking into accountprovider to exploit the knowledge of the immediate past history

the flow arrivals and departures. of states up to lengtil. Note that when the exponential holding
Due to space limitations, we leave out most of the proofgme assumption is removed, the system is no longer Marko-
Details of these proofs are available online in [11]. vian. There will typically be correlations between the past and

the future given the current state. In order to achieve a higher
II. PRICING IN A GENERAL MULTI-CLASS L 0SS revenue, we can potentially take advantage of this correlation,
NETWORK i.e., we can use the past to predict the future, and use such pre-
diction to determine the price.
A. Model Secondly we allow the network provider to exploit prior
The basic model that we consider in this section is that &howledge of the parameters of the incoming flows. In particu-
a multi-class loss network with Poisson arrivals and arbitralgr, the network knows the holding time of the incoming flows,
service time distributions. There afelinks in the network. and can charge a different price accordingly. In order to achieve
Each linkl € {1,..., L} has capacity?!. There arel classes a higher revenue, the network can thus use pricing to control the
of users. We assume that flows generated by users from eacmposition of flows entering the network, for example, short
class have a fixed route through the network. The routes dl@vs may be favored under certain network conditions, while
characterized by a matrC!,i = 1,...,I,1 = 1,..., L}, where long flows are favored under others. We assume that the price-
C! = 1ifthe route of class traverses link, C! = 0 otherwise. elasticity of flows is independent of these parameters.



For convenience of exposition, we restrict ourselves to tleists and equals to the right hand side due to stationarity and
case when the range of the service time can be partitioned istgodicity. Note that the right hand side is independent of
a series of disjoint segments, and the price is the same for floffrem stationarity).
that are from the same class and whose service times fall intal'herefore, the performance of tbptimaldynamic policy is
the same segment. In particular, fet,},k = 1,2,... be an
increasing series of positive numbers, ikt a; < as < ... J* 2 > ~
and letay = 0. We assume that at any timefor all flows of = max Z Z E [/\i(“ik(t))“ik (t)Tikpik]'
classi whose service times; fall into segmenfay,_1, ay,), we =1 k=l
charge the same prieg, (t), i.e. we do not care about the exact When the exponential holding time assumption is removed,

value ofT; as long adl; € [ax—1, ax). _ we can no longer use the MDP approach as in [6] to find the
The dynamic pricing scheme can thus be written as optimal dynamic pricing scheme. We will instead study the be-
wt,T) = win(t) = gi(@(s), s € [t — d, 1]), haviour of the dynamic pricing scheme and its relationship with

the static pricing scheme when the system is large. In particu-
lar, we will establish an upper bound for the performance of
wherefi(s), s € [t — d, t] reflects the immediate past history ofdynamic pricing schemes and show that the performance of an
lengthd, T; is the holding time of the incoming flow of clags appropriately chosen static pricing scheme can approach this
andg;, are functions fronf2l~%.% to the set of real numbeR. upper bound as the system is large. We will then conclude
By incorporating the past history in the functiops, we can that, when the system is large, the performance of an appro-
study the effect of prediction on the performance of the dynamitately chosen static pricing scheme can approach that of the
pricing scheme without specifying the details of how to prediaptimaldynamic pricing scheme. Further, we show that the per-
Letg = {giw,i=1,....1,k=1,2,...}. formance gains of schemes that use such sophisticated mecha-
The system under such a dynamic pricing scheme can iems as prediction and charging based on prior knowledge of
shown to be stationary and ergodic under very general contlie holding times are minimal when the system is large.
tions. For example, when the arrival rategu) are bounded
above by some constaig, one can construct a so-called “reg  ap Upper Bound
generative event” (due to the Poisson nature of the arrivals)
which is the event that the system is empty in the time |nter— per bound for our case. Latuei = Ai(0) be the maxi-

val [t — d,t]. One can show that such an event is a stational’ L value of;. For convenience, we write; as a function of
event and occurs with positive probability. This ensures thata
v urs With positive probabiity. 111s ensu Y Let Fi(A;) = Aus(Ai), Ai € [0, Amax.i]. Further, let/y,

stochastic process that is only a function of the system stat fsthe ontimal value of the followina nonlinear orogrammin
asymptotically stationary and the stationary version is ergodbc P 9 prog 9

forT; € [ak_l, ak),

We find that the upper bound of the form in [6] is also an

For details, please see [11], [12]. blem:
We are now ready to define the performance objective func- 1
tion. For each class, let Ty, = E{T;|T; € [ax_1,ax)} be \ pax ZFi(Ai)E 1)
the mean service time for flows of classvhose service time i
T; falls into segmenfa;_1,ar). The expectation is taken subject to Z ﬁn(/’f» <R foralll, )

with respect to the service time distribution of class Let
pi = P{T; € [ax—1,ar)} be the probability that the ser-
vice timeT; of an incoming flow of class falls into segment wherel/u;, r; are the mean holding time and the bandwidth re-
[ak71, ak)- We can decompose the original arrivals of eacqq\uirement, respectively, for flows from cla‘ssﬁf» is the routing
class into a spectrum of substreams. Substréash classi Matrix andR! is the capacity of link.

has service time ifiax_1, ax). Its arrival is thus Poisson with ~ Proposition 1: If the function F; is concave in(0, Amax,;)
rate); (u)pix, Since we assume that the price-elasticity of flow®r all ¢, then.J* < .J,,.

i

is independent df;. Proof: Details of this proof are available online in [118
For any dynamic pricing schemg the expected revenue The maximizer of the upper bound (1) induces a set of opti-
achieved per unit time is given by mal pricesu; = u;(A;). Itis interesting to note that although
the dynamic pricing scheme can use prediction and exploit prior
hm / Z i (win () war (8) Toepi dt knowledge of the parameters of the incoming flows, the upper
c—>oo o i bound (1) and its induced optimal prices are indifferent to these
I additional mechanisms.
= Z Z E [/\i (wik (t))wik (t)Tikpik] )
i=1 k=1 C. Static Policy

where the expectation is taken with respect to the steady stat®/e now consider the static pricing scheme. In this scheme,
distribution. The limit on the left hand side as the tighey co  the price for each class is fixed, i.e., it does not depend on the



current state of the network, nor does it depend on the individ-  Proof: SinceJ? < J*¢ < J¢ = cJyu, We only need to
ual holding time of the flow. Let:; be the static price for classshow thatlim J¢/¢ > Jys.
i. Let@ = [uy, ...,us]. Under this static pricing schemg the U

st U Now consider.J¢. For every static pricei = [uq, ...uj]
expected revenue per unit time is:

falling into the constraint of,, i.e.,

I
1 " i (ui)riC!
o= 3 Ml (1 = Progg o[, 3 QG g forallt, @3)
i=1 Hi i i
whereP,,s ;[u] is the blocking probability for class There- let .J$ denote the revenue under this static price. Since (3)
fore the performance of th@ptimalstatic policy is guarantees that the condition of Lemma 2 is met, we have
s Pioss,i[t] = 0, asc — oo. Therefore
1
Jo 2max Y (i) — (1 — Piogs,ilil]). Je 1
q 4 i ’ im 22 — (u s —(1 — T3
z B = > MG (1 = P )
By definition .J; < J*. 1
Throughout this paper we will focus on large systems with = Z Ai (“i)“iz' (4)
many small users. To be specific, we consider the following '
scaling(S):

If we take the optimal price induced by the upper bound as
ur static price, then the right hand side of (4) is exactly the
upper bound. Therefore,

(S) Letc > 1 be a scaling factor. We consider a series of
systems scaled hy The scaled system has capadity® =
cR! at each linkl, and the arrivals of each classhas rate

Af(u) = cAi(u). LetJ*e, J¢ and JS, be the dynamic revenue, . JS o/
static revenue, and upper bound, respectively, fordisealed Cll,r{}o o 2 611{20 o > Jup
system.
We are interested in the performance of the dynamic pricifgd the result follows. u

scheme and the static pricing scheme whehnoo, i.e., when Proposition 3 can be seen as a network version (with also
both the capacity and the number of users in the system 8&neral holding times) of Theorem 6 in [6]. It tells us that
come very large. We first note théaie normalized upper boundextending the result of [6] from a single link to a network of
Jsb/c is fixed over alle, Sincejib is obtained by maximizing links and from eXponential hOldlng time distributions to arbi-
S, ehiui(\;) /i, subject to the constrainfs); c\;r;C!/p; < trary holding time distributions does not change the invariance
cR!, for all I. Therefore the optimal price induced by the uppdgsult. In other words, there still exists static pricing schemes

bound is also independent af whose performance can approach that of the optimal dynamic
The following lemma illustrates the behaviour of the blockPricing scheme when the system is large. Further, even though
ing probabilityP;,, ; asc — oo under scalindS). the dynamic pricing scheme can use prediction and exploit prior

Lemma 2:Let ); be the arrival rate of flows from clagand knowledge of the parameters of the incoming flows, the upper
let 1/y; be the mean holding time. Under the assumptions Bpund (1) turns out to be indifferent to these additional mecha-
Poisson arrivals and general holding time distributions, if tHiSms. This shows that these extra mechanisms have a minimal

load at each resource is less than or equal to 1, i.e., effect on the long term revenue when the system is large.
The static schemes are much easier to implement because
Z Ai ! they do not require the collection of instantaneous load infor-
—r;C; < R'forall(, g
b mation. Instead, they only depend on some average parame-

’ ters, such as the average load, etc. The static schemes are also
then under scalingS), asc — oo, the blocking probability of much easier to obtain because of their simple structure. Hence,
each class goes to 0, and the speed of convergence is at [t introduce less communication and computation overhead
1/+/c. and they are insensitive to feedback delays. In future work we

Proof: The proof of this lemma is analogous to the proof ahtend to develop efficient distributed algorithms that can find
Proposition 3 in [12]. Details of this proof are available onlinéhese static prices. We will discuss this briefly in Section V.
in [11]. [ ] Here we report a few numerical results. Consider the network
We will use this lemma to show the following main result: in Fig. 1. There are 4 classes of flows. Their routes are shown
Proposition 3: If the function F; is concave in(0, \max,;)  in the figure. Their arrivals are Poisson. The functig(u) for
for all 4, then each clasg is of the form

1 1 1 +
lim ~J¢ = lim ~J*° = lim =JS, = Ju. Ai(u) = i/\max’i <1 U >i ,

c—o00 ¢ c—o00 ¢ c—00 C Umax.i
,



TABLE Il
SOLUTION OF THE UPPER BOUND(1) WHEN THE CAPACITY OFLINK 3155
BANDWIDTH UNITS. THE UPPER BOUND ISJ,,;, = 127.5

5 Class1| Class2| Class 3| Class 4
L2 " Class 3 -8B w 9.00 | 500 | 12.00 | 10.00
- Ai(ug) 0.00100( 0.00500| 0.00800| 0.00500
Fig. 1. The network topology i (u;)/ i 0.500 5.00 4.00 5.00
TABLE | 130
TRAFFIC AND PRICE PARAMETERS ORFCLASSES b
125
Class 1] Class 2[ Class 3] Class 4 120
Amax,i 0.01 0.01 0.02 0.01 ’ 115
U, 10 10 20 20 e
Service Ratei; | 0.002 | 0.001 | 0.002 | 0.001
Bandwidthr; 2 1 1 2 105
100
95 . .
i.e., A;(0) = Amax,i andA;(umax,;) = 0 for some constants ! 1°C: sca”ngloo 1000

Amax,; @Ndumax ;. The price elasticity is then

_ )\; (u) _ ]-/umax,i
Ai(w) 1 —u/Umax,i

The functionF; is thus

Fig. 2. The static pricing policy compared with the upper bound: when the
capacity of link 3 is 5 bandwidth units. The dotted line is the upper bound.

,for0 < u < Umax,i-

For example, when = 10, which corresponds to the case when
\; the link capacity can accommodate around 100 flows, the per-
Fi(h) =M1 - —— formance gap between the static policy and the upper bound is
e less thar7%. The gap decreases hg,/c.
which is concave iff0, Amax,;). The holding time is exponen- We now change the capacity of link 3 from 5 bandwidth
tial with meanl/p;. The parameterimax i, Umax,i» S€rvice units to 15 bandwidth units. The solution of the upper bound
ratesu;, and bandwidth requiremenytfor each class are shownis shown in Table Ill. The upper bound & = 137.5. The
in Table I. simulation result (Fig. 3) confirms again that the performance
First, we consider a base system where the 5 links have cfthe static policy approaches the upper bound when the sys-
pacity 10, 10, 5, 15, and 15 respectively. The solution of them is large. At = 10, the performance gap between the static
upper bound (1) is shown in Table Il. The upper bound igolicy and the upper bound is arouti%. Note that in this
Ju = 127.5. We then use simulations to verify how tightlatter example, the static price is the same for users with the
this upper bound is and how close the performance of the stagame price-elasticity even if they traverse different routes. For
pricing policy can approach this upper bound when the systexample, classes 1 & 2 and classes 3 & 4 have different routes
is large. We use the price induced by the upper bound calduit have the same price (and price-elasticity). In gendfral,
lated above as our static price. We first simulate the case whbare is no significant constraint of resources, the maximizing
the holding time distributions are exponential. We simutate price structure will be independent of the route of the connec-
scaled versions of the base network wheranges from 1 to tion. (A network has no significant constraint of resources if
1000. For each scaled system, we simulate the static pricihg unconstrainednaximizer of) ", F;();) satisfies the con-
scheme, and report the revenue generated. In Fig. 2 we ststimint (2).) To see this, we go back to the formulation of the
the normalized revenu®/c as a function ot. upper bound (1). If thenconstrainednaximizer of) . Fj(\;)
As we can see, when the system grows large, the differersagisfies the constraint, then it is also the maximizer otthre
in performance between the static pricing scheme and the upgieained problem. In this case the price only depends on the
bound decreases. Although we do not know what the optinfaihction F;, which is determined by the price elasticity of the
dynamic scheme is, its normalized reverig¢c must lie some- users. Readers can verify that, in our second example, when
where between that of the static scheme and the upper bouhé.capacity of link 3 is 15 bandwidth units. if we lift the con-
Therefore the difference in performance between the static pritraints in (2), and solve the upper bound again, we will get
ing scheme and the optimal dynamic scheme is further reductitk same result. Therefore in our examphee optimal price

)umax,ia



TABLE 1l 130
SOLUTION OF THE UPPER BOUND WHEN THE CAPACITY OR.INK 31515 125*77777 T T
BANDWIDTH UNITS. THE UPPER BOUND ISJ,;, = 137.5
120
Class1| Class 2| Class 3| Class4 Jolc 115
u; 5.00 5.00 10.00 | 10.00 110
i (u;) 0.00500( 0.00500| 0.0100| 0.00500 105
Ai(ug) /i 2.50 5.00 5.00 5.00
100
95 ‘
140 . . 1 10 100 1000
777777777777777777777777777777777 c: scaling
130 Fig. 4. The static pricing policy compared with the upper bound: when the ca-
pacity of link 3 is 5 bandwidth units and the service time distribution is Pareto.
Jo/c
120
delay, etc.) on a regular basis. Then, when a request for a new
110 flow arrives, the QoS routing algorithms are invoked to find a
route that can accommodate the flow. When there are multiple
100 ‘ ‘ routes that can satisfy the request, certain heuristics are used to
1 10 C'Scalingloo 1000 pick one of the routes. However, such “greedy” schemes may

be sub-optimal system wide, because a greedy selection may re-
Fig. 3. The static pricing policy compared with the upper bound: when trf&ult in an unfavorable configuration such that more future flows
capacity of link 3 is 15 bandwidth units. The dotted line is the upper bound. gre plocked. Further, an obstacle to the implementation of these
dynamic schemes is that it consumes a significant amount of re-
sources to propagate link states throughout the network. Propa-
will only depend on the price elasticity of each class and not gjation delay and stale information will also degrade the perfor-
the specific routeSince class 1 has the same price elasticity @sance of the dynamic routing schemes.
class 2, its price is also the same as that of class 2, even thougfy, this section, we will formulate a dynamic routing prob-
it traverses a longer route through the netwdkkis result per- |em that directly optimizes the total system revenue. Although
haps justifies the use of flat pricing in inter-state long distangur model is simplified, it reveals important insight on the per-
telephone service in the United States. formance tradeoff among different dynamic routing schemes.
We also simulate the case when the holding time distributige will establish an upper bound on the performancéhef
is deterministic. The result is the same as that of the exa@ynamic schemeand show that the performance of an appro-
nential holding time distribution. The simulation result withpriate chosestatic pricing schemavhich selects routes based
heavy tail holding time distribution also shows the same treggh some pre-determined probabilities, can approach the perfor-
except that the sample path convergence (i.e., convergenceniince othe optimal dynamic scheraghen the system is large.
time) becomes very slow, especially when the system is largge static scheme only requires some average parameters. It
For example, Fig. 4 is obtained when the holding time dignrnsumes less communication and computation resources, and
tribution is Pareto, i.e., the cumulative distribution function ifs jnsensitive to network delay. Thus the static scheme is an
1—1/z¢, with a = 1.5. We use the same set of parameters agtractive alternative for control of routing in large networks.
the constrained case above, and let the Pareto distribution havepe network model is the same as in the last section, except

the same mean as that of the exponential distribution. NQigyt now a user of classhasd(i) alternative routes that are rep-
that this distribution has finite mean but infinite variance. Thigsented by matrifH!.} such thafl!. = 1, if route; of classi
ij ij '

demonstrates that our result is indeed invariant of the holdilageS resourckand !, = 0, otherwise. The dynamic schemes
(%) ! )

time distribution. we consider have the followingealizedproperties: the routes
of existing flows can be changed during their connection; and
lIl. DYNAMIC ROUTING the traffic of a given flow can be transmitted on multiple routes
We next consider a system with dynamic routing. Many rext the same time. Thus our model captures the packet-level dy-
sults in the QoS routing literature focus on finding the “bestiamic routing capability in the current Internet. These idealized
route for each individual flow based on the instantaneous ne&pabilities allow the dynamic schemes to “pack” more flows
work conditions. When these QoS routing algorithms are usado the system. Yet, we will show that an appropriately chosen
in a dynamic routing setting, the network is typically requiredtatic routing scheme will have comparable performance to the
to first collect link information (such as available bandwidthgptimal dynamic scheme.



Letn; be the number of flows of claggurrently in the net- subject to Z ﬁH!-r» <R VL.

work. Consider thé-th flow of classi, k = 1,...,n;. Let P} = W=

denote the proportion of traffic of flow assigned to routg, We next construct our static routing policy as follows: The
j = 1,..0(i). Then, statei = {ni,...,ns} is feasible if and network charges a static price to all incoming flows, and the
only if incoming flows are directed to alternative routes based on

pre-determined probabilitiedNote that the static policy does
not have the idealized capabilities prescribed for the dynamic
(5) schemes, i.e., all traffic of a flow has to follow the same path,
and rearrangement of routes of existing flows is not allowed.
Let {uf, P} denote such a static policy, wheig is the price

. . . - j i : : ) .
The set of feasible states@ = {7 such that (5) is satisfidd  for classi, andP}; is the bifurcation probability that an incom-

A dynamic scheme can charge prices based on the currgfg flow from class is directed to routg.
state of the network, or a finite amount of past history, i.e., Then the optimal static policy can be found by solving:
prediction based on past history. (For simplicity we consider 1
pricing schemes that are insensitive to the individual holding j, £ max Z /\i(uf)UfPfj—
— i
j

There existsP/; such thaty_ Pl =1,Vi,k,
J

andy_r;H}; 1;1 Pl <R' foralll.

4,3

. . . . . . . s ps . [1_PLoss7ij]a 8
times.) An incoming flow will be admitted if the resulting uf P30 Py=1
state is in2. Once the flow is admitted, its route (i.el?i’;.) . . . .
is assigned based on (5), involving (in an idealized dynanfiinereP Loss,q; iS the blocking probability experienced by users

scheme) possible rearrangement of routes of all existing flof{ classi routed toj. o .

We assume that such rearrangement can be carried out instalwe consider a spema! static pqllpy derlve;)d. from the .SOIU'
taneously. Thus a dynamic pricing scheme can be modeled!{® ©f the upper bound in Proposition 4. Xf" is the maxi-
ui(t) = gi(7i(s),s € [t — d,t]), whereg; is a function from mal solution to the upper bound, we et = u;(3_; ij”), and

ub

Q- toR. Letg = {91, 91} Py = ZAZ';"”' The revenue with this static policy differs from
The performance objective is again the expected revenue @]e? i i

unit time generated by the incoming flows admitted into the sys.c YPPEr bound only by the terfd — Pros,,i7), and this rev-

: : : enue will be less thad,;. However, under scalin¢f), we can
tem. The performance of thaptimal dynamic routing scheme 5 ! ’
P y 9 show that, ag — oo, Pjess,:; — 0. Therefore, we have our

is given by: . .
9 y invariance result (stated next).
N 1 Proposition 5: In the dynamic routing model, if the function
= m?XE{Z Ai(ui(t))ua (1) ui} ©) F; is concave in0, Amax,;) for all i, then
subject to (5). lim J/c= lim J*¢/c= lim JS/c = Ju
c—00 c—00 c—00 L. .

The expectation is taken with respect to the steady state distri- Proof: Analogous to that of Proposition 3. Details are
bution. Note that (6) is independentidhecause of stationarity available online at [11]. _ _ u
and ergodicity. When the routing is fixed, by replacing; with X;, andHf].

The set of dynamic schemes we have described may reqith C!, we recover Propositions 1 and 3 from the results in this
complex capabilities (e.g., rearrangements of routes and trafgction. When there are multiple available routes, the upper
mitting traffic of a single flow over multiple routes) and hencéound in Proposition 4 is typically larger than that of Proposi-
may not be suitable for actual implementation. We make clei#®n 1. Therefore one can indeed improve revenue by employ-
here that we are not advocating implementing such schemesibgtdynamic routing. However, Proposition 5 shows that, when
instead advocate implementing static schemes. In fact, we Wfle System is large, most of the performance gain can also be
show that, as the system scales, our static scheme will appro@@tfined by simpler static schemes that routes incoming flows
the performance of the optimal idealized dynamic scheme. Thased on pre-determined probabilities. Further, what we learn
static schemes do not require the afore-mentioned complex isathat for large systems the capability to rearrange routes and
pabilities and could be an attractive alternative for network rode transmit traffic of a single flow on multiple routes does not
ing. lead to significant performance gains.

Let u; = ui(X\;) and F3(\;) = wu;(M\:)X;. Analogous to  Not only can the static schemes be asymptotically optimal,
Proposition 1, we can derive the following upper bound on titgey also have a very simple structure. Their parameters are de-
optimal revenue in (6). Details are available online in [11]. termined by average conditions rather than instantaneous con-

Proposition 4: If the function F; is concave in(0, \max,;)  ditions. Collecting average information introduces less com-
forall i, thenJ* < .J,;, whereJ,; is defined as the solution for munication and processing overhead, and it is also insensitive
the following optimization problem: to network delay. Hence the static schemes are much easier to

implement in practice.
Jup £ max Z Fi(z ,\ij)l (7) The optimal static scheme also reveals the macroscopic struc-
i i 3 Hi ture of the optimal dynamic routing scheme. For example,



the static priceu? shows the preference of some classes thamd obtain the optimal assignmen(t). Over time, this policy

the others, and the static bifurcation probabifit§ reveals the will optimize the total utility.

preference on certain routes than the other. While a “greedy’Remark: in the optimal assignment (9), each flow of class

routing scheme tries to accommodate each individual flow, thevill consume same amount of resoutce This is a conse-

optimal static scheme may reveal that one should indeed pgerence of the concavity @f;. For details, see [11].

vent some flows from entering the network, or prevent somein the past (e.qg., [3], [4], [10]) this model has been used to

routes from being used. For our future work we plan to studgtudy the behavior of TCP congestion contwdien the num-

efficient distributed algorithms to derive these optimal static pber of flows in the system is fixeld has been shown that there

rameters. exist distributed algorithms that can drive the flows to the op-

timal resource assignment. The notion of “price” arises natu-

IV. ELASTIC FLOWS rally as Lagrange multipliers for the constraints. Some exam-

les of such distributed algorithms resemble the control of TCP

In previous segtions we .have restricted ourselv.es tothe c W he Internet. Therefore, TCP congestion control can be seen
when the bandwidth requirements of flows are fixed. In th maximize the total utility of a group of users with concave

section we will extend the model to the case when users Catri]ity functions. Our model is different from theirs because we

. . ) . u
C?.igg?:;?igsbsg?g'dtg;ﬁgg'reén::stsricect%r:t'?get%t.zeozlljrrc?:%tnsider thedynamics caused by the arrivals and departures
Folute. for each clas{sx'IRhel rlout;vs are ; ain re resentled b ythe lows. We are interested in finding alternative forms of re-

. . ! : 9 ep Y Murce assignment schemes that can also achieve near optimal
matrix {C;} as in Section Il. Flows of classenter the net-

. ) ) .~ total utility when the system is large. These schemes can then
work according to a Poisson process with rate The service y y g

. o X . be used in cases when TCP does not work as well.

times of flows of class are i.i.d. with mearl/u;. The service u : w W w

time distribution is general. Ld¥;(x;) be the utility function

for each class, wherez; is the amount of resource assigne®. An Upper Bound

to a class flow along its route. We assume that is a con- Let E[n] be the stationary mean ofi(¢), i.e., E[n;] =

tinuous differentiable and strictly concave functionagf and o .
. ) . i . Ai/pi. We formulate another optimization problem:
U;(0) = 0. This model is appropriate for real-time streammg’//“tZ P P

applications that can change the transmission rate according to

I
the network congestion level. For example, the utility function Jup £ maXZ E[n;|U;(x;) (10)
U;(x;) can be taken as the index of reception quality when the R
real-time stream is transmitting at rate I
The network tries to allocate resources to the flows so that subject toz E[n;]z;C! < R
the total utility of all flows supported by the network is max- i=1

imized. For each flow, the resource allocation may vary over " - )
time. In this section, we will first establish the optimal dy- Proposition 6: The expected total utility of the optimal dy-
namic scheme. We will then show, as before, that there exist82[Mic scheme is upper bounded By, i.e. E[J*] < Ju,
static scheme whose performance will approach that of the ;r};iere the expectation is taken with respect to the steady state
timal dynamic scheme when the system is large. Surprisingfystribution ofn;(t).
this near-optimal solution is in a “fixed-bandwidth” and “loss-  Proof: Note thatJ* is a function ofi(t) = {n;(t),i =
network” form as in Section I 1,..I}. ThenJy, = J*(E[7]).

To show thatE[.7*(77)] < J*(E[i]), it is sufficient to show
that.J*(7) is a concave function af, which is a consequence

A. The Optimal Dynamic Scheme of the concavity olU;(z;). For details, please refer to [11]H

Let n;(¢) be the number of flows from clagghat are in the
network at timet. Let7i(t) = {ni(t),n2(t),...,ns(¢t)}. The _ _
optimal resource assignment is then given by the solution to tire Static Policy

following problem: Let2® = {z9,29,...,29} be the corresponding maximizing
; parameter of (10). Now consider the following control algo-
w (=) A , . rithm with a static rate assignment: when a new flow from class
T ) = T z;n’(t)U (:) © i arrives to the network, it will be assigned a rafgif there
P

I is enough capacity available along its route, otherwise it will
Z ni(t)z;CL < R, either be bloclfed, or, equ!valently, be assigned a rate 0. There-
- fore, the flow is still elastic except that the rate is chosen ac-
cording tothe average conditioas in (10) rather thathe in-
where J*(7i(t)) can be interpreted as the maximal total utilitystantaneous conditioas in (9). The flow will hold the same
achieved by the system at time For eacht we can solve (9) amount of resource! until it leaves the system.

subject to

i=1



In such a system, the expected total utility will be timet is given by the following optimization problem:

I I
N Z irr (0 . . TCP A Z TCP .
Js - t EUZ(xz)(]' Ploss,z); J - H;E’X gt ni (t)Uz(xz)a (11)
. . oyt D I I
whereP,,,, ; is the blocking probability of class Under scal- subject to Z niTCP(t):rin <R — Z nBT (8)z;C!.

ing (S), we have the following proposition.
Proposition 7: In the elastic flow model,

i=1 i=1

The expected total utility achieved by both the real-time flows

lim 1J° = lim SB[ = lim 272, = Ju. EndJ the TdCbP fIO\éIvSa]?T + k;E[IJTCP], iST Eou?ded tf)rOfFT: above
c—o00 C c—00 C c—00 C _
Proof: Analogous to that of Proposition 3. Details aref.y wp and bounded from below by, Therefore, by Proposi
. : ion 7,
available online at [11]. |
An application of this result is on the rate control of real- . JRTe L B[JTCP.e] ) <
time flows (e.g. audio and video streaming) on the Internet. CIH{}O c = Clg{}o e Jub

A central question in congestion control of streaming traffic
is its fairess with respect to TCP. When real-time flows amhere JRT¢, JTCF.c and J¢, are the respective utility when
TCP flows coexist in the same network, they should consurtie system is scaled lay Now by Lemma 2,

comparable bandwidth, and neither flows should be starved by ) RT

the other. Among the existing congestion control schemes for Clg{}o Pigesi = 0.

real-time flows, some use the same AIMD (Additive Increase

Multiplicative Decrease) idea as TCP [13]. They are usualljherefore

fair with TCP if timeouts occur infrequently. However, these lim T = aJu,
schemes typically produce a TCP-like saw-tooth type of tra- c7eo €

jectory, which leads to rapid changes in reception quality. Sushd we conclude that

rapid changes in quality are disconcerting for the viewer of mul- E[JTCP.]

timedia flows [14]. Equation-based congestion control does not C131010 - = (1 —a)Jyp-

use AIMD and produces smoother rates at small time-scales.

However, simulation results show that at time-scales aroun@te that by Proposition 71 — ) J,, is also the limit of the
10 seconds, the fluctuation is still quite significant [15]. Thefigormalized expected total utility achieved by the TCP flows as
are yet other schemes, such as some binomial algorithms [16].; oo, when the remaining portion of the flows are also
which change the rate slower than TCP. However they are algp flows This shows that when the same utility functions
slower in adapting to changing network conditions. are used for both the real-time flows and TCP flows, assigning
Note that fairess objectives are very closely related to thig fixed bandwidth:? to real-time flows does not degrade the
utility maximization objectives. For example, proportional fairperformance of the TCP flows when the system is large.
ness is equivalent to maximizing the total utility of a group of |t s interesting to compare existing congestion-control
users with log-utility functions. If we adopt utility maximiza-schemes with our scheme above. In existing schemes, flows
tion as a substitute for the fairness requirement, we can use gt from an arbitrary initial condition, and congestion control
result above to obtain a new class of congestion-control algg-exercisediuring the connection. In our scheme, congestion
rithms for real-time traffic. For example, consider the SpeCiébntr0| is exercisedt the beginning)f the connection. The
case when portion of the flows are real-time flows, and the:ongestion controller reacts to changing network condition by
rest are TCP flows. To be precise, #gt" (1) andn“"(t) de- choosing the correct initial bandwidth assignment for incoming
note the number of real-time flows and TCP flows, respectivefgys. Although our scheme does not modify the bandwidth
at timet¢. Then their stationary means a#n;""] = aE[n;]  assignment for on-going flows, the difference between the total
andE[n] "] = (1-a)E[n;]. Let us assign the fixed bandwidthyility of our scheme and the optimal utility is minimal (when
z to real-time flows, and allow them to use the same amoufe system is large). Therefore, in the long run, the real-time
of bandwidth throughout the connection. Such fixed bandWidﬂa)Ws and TCP flows will receive fair share of the bandwidth.
allocation is beneficial to streaming applications because it R-future work we plan to investigate the problem of efficiently

sures a stable reception quality for the viewer. Therefore thstributing our congestion controller over the network.
expected total utility achieved by real-time flows is given by

JRT — E[nf{T]Uz(x?)(l _ PRT ) — aJub(l _ PRT )’ V. CONCLUSION AND FUTURE WORK

loss,i loss,i
In this work we study pricing as a mechanism to control large
where PET  is the blocking probability experienced by thenetworks. We show under very general settings that an appro-

loss,i

real-time flows. The total utility achieved by TCP flows apriately chosen static pricing scheme is asymptotically optimal



when the system is large. We have established these resthitscomputation and propagation of the implicit cggtsan be

for admission control, dynamic routing, and control of elastimuch slower than the evolution of the network state. Once the

flows. distributed algorithm converges, the prieagg(and the implicit
The above results have important implications in the netostsp') stay unchanged until the network topology or the load

works of today and in the future. Compared with dynamic pri¢onditionF; change.

ing schemes, static pricing schemes have some desirable prop-
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