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Abstract

We study task assignment in online service platforms where un-labeled clients arrive according to a
stochastic process and each client brings a random number of tasks. As tasks are assigned to servers,
they produce client/server-dependent random payoffs. The goal of the system operator is to maximize the
expected payoff per unit time subject to the servers’ capacity constraints. However, both the statistics of
the dynamic client population and the client-specific payoff vectors are unknown to the operator. Thus,
the operator must design task-assignment policies that integrate adaptive control (of the queueing system)
with online learning (of the clients’ payoff vectors). A key challenge in such integration is how to account
for the non-trivial closed-loop interactions between the queueing process and the learning process, which
may significantly degrade system performance. We propose a new utility-guided online learning and
task assignment algorithm that seamlessly integrates learning with control to address such difficulty. Our
analysis shows that, compared to an oracle that knows all client dynamics and payoff vectors beforehand,
the gap of the expected payoff per unit time of our proposed algorithm in a finite T horizon is bounded by
β1/V +β2

√
logN/N +β3N(V +1)/T , where V is a tuning parameter of the algorithm, and β1, β2, β3

only depend on arrival/service rates and the number of client classes/servers. Through simulations,
we show that our proposed algorithm significantly outperforms a myopic matching policy and a standard
queue-length based policy that does not explicitly address the closed-loop interactions between queueing
and learning.

1 Introduction

Thanks to advances in communication and computing, new generations of online service platforms have
transformed the business models in many domains, from online labor market of freelance work (e.g.,
Upwork [Upw]), online hotel rental (e.g., Airbnb [Air]), online education (e.g., Coursera [Cou]), crowd-
sourcing (e.g., Amazon Mechanical Turk [Ipe10]), to online advertising (e.g., AdWords [AdW]) and many
more. By bringing unprecedented number of clients and service providers together, these online service
platforms greatly increase access to service, lower the barrier-to-entry for competition, improve resource
utilization, reduce cost and delay, and thus enhance the overall well-being of society and our daily life.

Motivated by these online service platforms, in this paper we are interested in learning and control
problems in queueing systems with uncertain agent dynamics and uncertain payoffs. Note that a key control
decision in operating such online service platforms is how to assign clients to servers to attain the maximum
system benefit. Such decisions are challenging because there often exist significant uncertainty in both agent
payoffs and agent dynamics. First, there is significant uncertainty in the quality, i.e., payoff, of a particular
assignment between a client (needing service) and a server (providing service). For example, in online ad
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platforms, when an ad from a particular ad campaign is displayed in response to a search request for a
given keyword, the click-throughput rate is unknown in advance [CJS15]. Similarly, in crowd-sourcing, the
efficiency of completing a particular task by a given worker is unknown a priori [KOS11a, KOS13, KOS11b,
KO16]. Second, the population of agents (i.e., clients or servers) is often highly dynamic. For example, ad
campaigns arrive and depart constantly in online ad platforms [TS12]; so do requestors in crowd-sourcing.
The statistics of such arrivals and departures are often unknown beforehand, resulting in uncertain queueing
dynamics. Therefore, the operator of these platforms must not only continuously learn the payoffs associated
with each new agent, but also adaptively control the assignment and resource allocation in response to the
uncertain arrival/departure dynamics. Thus, it is imperative to study both online learning (of uncertain
payoffs) and adaptive control (of uncertain queueing dynamics) in a unified framework to achieve optimal
performance in such a dynamic and uncertain environment.

Prior Work That Studies Learning and Queueing Seperately: Prior studies on online service plat-
forms often treat the optimal learning problem and the adaptive control problem separately, and as a result
may produce significantly sub-optimal results when there is uncertainty in both agent dynamics and agent
payoffs. From the learning side, multi-armed bandits (MAB) [LR85, ACBF02, GGW11, BCB+12] have
been extensively used to model online decision problems with uncertain payoffs. In a classical MAB formu-
lation, a client has a sequence of jobs that need to be assigned, one at a time, to servers with uncertain payoffs
(corresponding to “arms” in the MAB literature). The key question is how to balance exploitation (using the
currently-known best server) and exploration (finding out which server is the best). However, these studies
usually focus on a static setting, without considering the uncertainty in queueing dynamics. For example,
most stochastic bandit [LR85, ACBF02], Markovian bandit [Git79, Whi88] and adversarial bandit problems
[ACBFS02] assume only one client. Although bandits with dynamic arms (e.g., the open-bandit processes)
[LY88, WZ13, Whi81] allow the number of servers/arms to follow a Markov process, the statistics of the
Markov chain must be known in advance. Similarly, although contextual bandits (as in the studies of online
ad [CJS15, JS13, PO07, BLS14, LZ08] and crowd-sourcing [JNN14, TTSRJ14]) may be interpreted as al-
lowing arriving jobs of multiple types, the label (i.e., context) of each job must be known in advance. Thus,
they cannot be used when there is a dynamic population of clients with unknown labels. More recently, the
work in [KNJ14, NKJ16, GKJ12, AMTS11, LEGJP11, LPT13, CP15, LCS15, SRJ17, BTZ15] considers a
more-general multi-player setting and combines learning (of agent features) with matching, combinatorial
optimization, and/or consensus decisions. However, such results still assume a static setting with a fixed
number of agents, and thus do not account for the queueing dynamics due to agent arrivals and departures
in practical online service platforms. In this sense, they can at best be viewed as a myopic solution for a
snapshot of the system in time. As we will elaborate in Section 3, using such a myopic solution from a static
setting could lead to substantially lower levels of system performance when the agent dynamics are taken
into account.

At the other end of the spectrum, the operation of online service platforms has been studied as a stochas-
tic or adversarial matching/queueing problem. Adaptive control policies under uncertain dynamics have
been provided, e.g., for online ad [TS12, FKM+09, CZL08, AHL13, ZCXL13] and/or queueing networks
in general [TE92, NML05, Chi04, ES05, LS05, LSS06, LSS08], to maintain system stability, maximize
payoff, and/or minimize cost and delay. However, these studies usually assume that the payoff vectors of the
clients are known. In practice, the payoff vectors of new clients are often unknown. These adaptive control
policies will break down without this crucial piece of information. Recently, there have been studies that
combine the notion of learning with queueing [HLH14, HZCL16]. However, the focus of these studies is in
learning the arrival rates. Thus, they have not considered uncertain payoffs.

Our Contributions: The main contribution of this paper is therefore to develop new schemes that
integrate online learning with adaptive control to address uncertainty in both payoff parameters and client
dynamics. We propose a new utility-guided online learning and task assignment algorithm that can achieve
near-optimal system payoff even compared to an “oracle” that knows the statistics of client dynamics and all

2



clients’ payoff vectors beforehand. Specifically, we show that the gap between the expected payoff per unit
time achieved by our proposed algorithm and that achieved by the “oracle” in a finite T horizon is at most
the sum of three terms: the first one is of the order 1/V where V is a parameter of the proposed algorithm
that can be taken to a large value; the second one is of the order

√
logN/N where N is the average number

of tasks per client; the third one is of the order N(V + 1)/T which decreases as the time T increases. These
three terms have the following natural physical interpretations. The first 1/V term is due to the uncertainty
in client arrival process; the second

√
logN/N term is because of learning from noisy payoff feedback; the

third N(V + 1)/T term characterizes the payoff loss incurred by the backlogged clients.
Our proof builds upon the standard Lyapunov drift technique [NML05, LSS08, DLK01, BM01] and

finite-time regret analysis [ACBF02]; however, we make two major innovations, which could be of indepen-
dent interest. First, to obtain

√
logN/N loss in payoff learning, we combine a martingale argument and a

comparison argument to capture both the impact of the payoff estimation errors on the queueing dynamics,
and the impact of congestion on the rate of payoff learning. Second, to derive the NV/T loss in finite time
horizon, we upper bound the mean number of backlogged clients in the system by establishing a coupling
between the current system and a Geom/Geom/m queue.

There are a few recent studies in the literature that also attempt to integrate learning and queueing
[JKK16, MX16, JKK17, BM15, SGMV17]. Compared to these related studies, our work makes a number
of new contributions. First, note that a key challenge in integrating learning with queueing is the non-trivial
closed-loop interactions between the queueing process and the learning process. Specifically, excessive
queueing, which can be caused by both agent arrivals/departures and task assignments/completion, leads
to both delay in observing the payoff feedback and a slow-down of the learning process of the uncertain
payoffs. Ineffective learning, in turn, leads to suboptimal assignment decisions based on inaccurate payoff
estimates, which increases queueing delay and lowers system payoff under uncertain agent dynamics. Such
closed-loop interactions, if not properly managed, can produce a vicious cycle that severely degrades the
overall system performance (see further discussions in Section 3). Second, while prior work in [JKK16,
MX16, JKK17] attempts to deal with this closed-loop interactions, their policies explicitly divide exploration
(where learning occurs) and exploitation (where queueing and control occur) into two stages, by assuming
perfect knowledge of various uncertainty, such as the class-dependent payoff vectors, the number of tasks
per client, and/or the “shadow prices” (which in turn require knowledge of the statistics of the client arrival
dynamics). On the contrary, our algorithm requires no such prior knowledge and seamlessly integrates
exploration, exploitation, and dynamic assignment at all times. Third, the analyses in [JKK16, JKK17] focus
exclusively on the stationary setting. In contrast, our work carefully characterizes the transient behavior of
the system and obtains a payoff gap which holds for any finite time horizon, providing important design
insight when real systems either operate at early phases or experience recent changes of statistics. Finally,
our proposed algorithm can scale to large systems with many clients and servers, which is in sharp contrast
to the previous work in both [BM15] (which only deals with two types of clients) and [SGMV17] (which
uses an exponential number of virtual queues).

The rest of the paper is organized as follows. The system model is defined in Section 2, and related
approaches are discussed in Section 3. We then present our new algorithm and main analytical results in
Section 4. Simulation results are shown in Section 5, and key proofs are presented in Section 6. Finally, we
conclude and discuss possible future directions.

2 System Model

We model an online service platform as a multi-server queueing system that can process tasks from a dy-
namic population of clients, as shown in Fig. 1. Time is slotted and the system is empty at time 0. At the
beginning of each time-slot t ≥ 1, a new client arrives with probability λ/N < 1, independently of other
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Figure 1: Uncertain client dynamics and payoffs.

time-slots. Upon arrival, the client carries a random number of tasks that is geometrically distributed with
mean N . Note that in this way the total rate of arriving tasks is λ. A client leaves the system once all of her
tasks have been served. We assume that each client must belong to one of I classes. There is a probability
distribution [ρi, i = 1, ..., I] with

∑I
i=1 ρi = 1, such that a newly-arriving client belongs to class i with

probability ρi, independently of other clients. Let S = {1, 2, . . . , J} denote the fixed set of servers. Each
server j ∈ S can serve exactly µj tasks in a time-slot. Let µ =

∑J
j=1 µj .

Each class i is associated with a payoff vector [C∗ij , j = 1, ..., J ], where C∗ij ∈ [0, 1] is the expected
payoff when a task from a class-i client is served by server j. Note that all tasks associated with a client
have the same payoff vector. However, the arrival rate λ, the class distribution ρi, the expected number N
of tasks per client, the class label of a new client, her total number of tasks, and her payoff vector are all
unknown to the system. The system does know the identity of the servers and their service rates µj . Another
important quantity that the system can learn from is that, after a task from a client is served by server j, the
system can observe a noisy payoff of the task. Conditioned on the task being from a class-i client, this noisy
payoff is assumed to be a Bernoulli random variable with mean C∗ij , (conditionally) independently of other
tasks and servers.

The goal of the system is then to use the noisy payoff feedback to learn the payoff vectors of the clients
and to assign their tasks to servers in order to maximize the total system payoff. Such decisions must be
adaptively made without knowing the statistics of the client arrivals and departures. At each time-slot t, let
n(t) be the total number of clients in the system (including any new arrival at the beginning of the time-slot).
(Note that n(0) = 0.) Let plj(t) be the expected number of tasks from the l-th client that are assigned to
server j in this time-slot, l = 1, ..., n(t). Then, the decision at time t of a policy Π maps from the current
state of the system (including all payoff feedback observed before time t) to the quantities plj(t). Such
decisions lead to the evolution of the following two types of queues. First, let qj(t) denote the number of
tasks waiting to be served at server j at the beginning of time-slot t. Let Y l

j (t) be the actual number of tasks
from the l-th client that are assigned to server j at time-slot t, with mean given by plj(t). The dynamics of
the task-queue qj(t) can then be described as

qj(t+ 1) = max

qj(t) +

n(t)∑
l=1

Y l
j (t)− µj , 0

 . (1)

Second, let ni(t) be the number of class-i clients in the system at the beginning of time t. (We caution that,
while the operator sees n(t), ni(t) cannot be directly observed because the class labels of the clients are
unknown.) The dynamics of the client-queue ni(t) can be described as

ni(t+ 1) = ni(t) + Ui(t+ 1)−Di(t), (2)

where Ui(t+ 1) is the number of client arrivals of class i at the beginning of time t+ 1 and is Bernoulli with
mean λi/N , and Di(t) is the number of client departures of class i at time-slot t. Because the total number
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of tasks per client is assumed to be geometrically distributed, conditional on [Y l
j (t)] and [ni(t), i ∈ I], the

departure [Di(t), i ∈ I] is independent of everything else.
The expected payoff per unit time of such a policy Π for a given time horizon T is defined as:

RT (Π) =
1

T

T∑
t=1

J∑
j=1

E

n(t)∑
l=1

plj(t)C
∗
i(l),j

 , (3)

where i(l) denotes the underlying (but unknown) class of the l-th client. In contrast, if an “oracle” knew in
advance the statistics of the arrival and departure dynamics (i.e., λ, ρi and N ), as well as the class label and
payoff vector of each client, one can formulate the following linear program:

R∗ = max
[pij ]≥0

λ
I∑
i=1

ρi

J∑
j=1

pijC
∗
ij (4)

subject to λ

I∑
i=1

ρipij ≤ µj for all servers j, (5)

J∑
j=1

pij = 1 for all classes i, (6)

where pij is the probability that a task from a class-i client is assigned to server j. It is not difficult to
show that R∗ provides an upper bound for the expected payoff per unit time RT (Π) under any policy Π
[JKK16, JKK17]. Thus, our goal is to achieve a provably small gap R∗ −RT (Π) for any given time T .

3 Related Approaches in the Literature and Their Weakness

Before we present our solution to this problem, we briefly overview approaches to related problems in
the literature and discuss why they cannot be used to solve the problem that we introduced in Section 2.
First, the work in [JKK16, JKK17] also studies how to maximize the average payoff for a system with
unknown client types. (The notion of “type” in [JKK16, JKK17] is comparable to “class” in this paper,
while “worker” is comparable to “client” in this paper.) However, there are a number of crucial differences.
In [JKK16, JKK17], the expected payoff vector of each type is assumed to be known in advance. Further,
the theoretical results in [JKK16, JKK17] assume that the policy knows the “shadow prices,” which in turn
requires that the statistics of the client dynamics (i.e., λ, ρi and N ) are known in advance. Moreover, the
policies in [JKK16, JKK17] explicitly divide exploration (where learning occurs) and exploitation (where
queueing and control occur) into two stages. In order to control the length of the exploration stage, these
policies require prior knowledge of the total number of tasks for each client. In contrast, in our model neither
the payoff vector for each type (i.e., each “class” in this paper) nor the client arrival/departure statistics are
known to the system. As a result, the theoretic policies in [JKK16, JKK17] are not applicable in our setting.
Although [JKK17] also provides a heuristic policy that uses queue length to replace the shadow price, no
theoretical performance guarantee is proved. Moreover, this heuristic policy requires that the unused service
of the servers can be queued and utilized later. Since our model does not allow such queueing of unused
service, we cannot use this heuristic policy either. One could argue that, after the system has been operated
in a stationary setting for a long time, the operator may eventually be able to learn the arrival/departure
statistics and the class-dependent payoff vectors, in which case the theoretic policies in [JKK16, JKK17]
could then be used (although acquiring such knowledge would require highly non-trivial learning procedures
for estimating both the clients’ payoff vectors and their underlying classes.) Still, the setting studied in this
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Figure 2: Myopic matching is suboptimal.

paper, as well as the adaptive algorithm that we will develop, will be important both for the early phase
of the system operation, and when the class composition or arrival/departure statistics experience recent
changes. Finally, note that the work in [MX16] also assumes the knowledge of the payoff vectors for all
types in advance and divides exploration and exploitation into distinct stages, although [MX16] does not
aim to maximize the system payoff as in this paper.

Myopic Matching: A second line of related work is the multi-player MAB formulation in [KNJ14,
NKJ16, GKJ12, AMTS11, LEGJP11, LPT13, CP15, SRJ17, BTZ15], which is also a common way in the
literature to study online learning in a two-sided system, where clients and servers with unknown payoffs
need to be matched to maximize the system payoff. However, this class of work assumes that both the client
population and the server population are fixed. In contrast, in our model the client population is constantly
changing. Thus, the multi-player MAB solution can at best be viewed as a myopic solution for a snapshot of
our system in time. It is not difficult to envision that such a myopic matching strategy (for each snapshot in
time) is sub-optimal in the long run with client dynamics. Indeed, as illustrated below, this sub-optimality
exists even when the payoffs vectors are known in advance!

Example (Myopic matching is suboptimal): Assume two servers, each of service rate µj = 1 as shown
in Fig. 2. There are two classes, and a new client belongs to one of the two classes with equal probability
0.5. The payoff vectors of the two classes are [0.9 0.1] and [0.9 0.3], respectively. Assume N = 100 and
λ/N = 1.2/N . It is easy to see that the optimal solution should assign all class-1 tasks to server 1, 2/3
of class-2 tasks to server 1, and the rest 1/3 of class-2 tasks to server 2. The resulting optimal payoff is
0.6 ∗ 0.9 + 0 ∗ 0.1 + 0.4 ∗ 0.9 + 0.2 ∗ 0.3 = 0.96. However, if a myopic matching strategy is used, with
close-to-1 probability two tasks will be assigned at each time, one of which will have to be assigned to server
2. Thus, the overall payoff is approximately upper-bounded by 1.2 ∗ (0.9 + 0.3)/2 = 0.72. As we can see,
the myopic matching strategy focuses too much on maximizing the current payoff, and as a result sacrifices
future payoff opportunities. Naturally, if the class labels and payoff vectors are unknown and need to be
learned, a similar inefficiency will incur.

Queue-Length Based Control: The above example clearly illustrates the need to cater to uncertain client
dynamics in the system. In the literature, a third line of related work uses queue-length based contol to
balance current payoff with long-term payoff in the presence of uncertain arrival/departure dynamics [TE92,
NML05, Chi04, ES05, LSS06]. This line of work usually assumes that each client’s payoff vector is known.
By building up queues of unserved tasks at the servers, one can use the queue length qj at server j as
a “shadow price” that captures the congestion level at the server. The system operator then adjusts each
client’s payoff parameter C∗ij to C∗ij − qj/V with a proper choice of V , and assigns the next task to the
server with the highest adjusted payoff. When the payoff vector of each client is known in advance, this
type of queue-length based control can be shown to attain near-optimal system payoff when the parameter
V is large [TS12], although the length of the server-side queues also grows with V .

However, when the payoff vector of each client is unknown, such a queue-length based control leads to
complicated closed-loop interactions between queueing and learning. In one direction, queueing degrades
learning in at least two ways. First, because the operator only learns the noisy payoff of a task after the task
is served, excessive server-side queues (esp. when V is large) not only delay the service of the tasks, but also
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delay the payoff feedback. As a result, the learning of the clients’ uncertain payoff vectors is also delayed.
(We will refer to this effect as the “learning delay.”) Second, because all clients compete for the limited
server capacity, the learning process of some clients will inevitably be slowed down, which also results in
poor estimate of their payoff vectors. (We will refer to this second effect as the “learning slow-down.”) Then,
in the opposite direction, ineffective learning in turn affects queueing because assignment decisions have to
be made based on delayed or inaccurate payoff estimates. Such sub-optimal decisions not only lower system
payoff, but also increase queueing delay. Together, the above closed-loop interactions between queueing and
learning will produce complex system dynamics which, if not designed and controlled properly, can severely
degrade system performance. Indeed, as we will demonstrate in Section 5, a straightforward version of such
queue-length based control will lead to lower system payoff when combined with online learning.

Online Matching: There is a fourth line of related work on online matching that also aims to address
uncertainty in future client dynamics (albeit in an adversarial setting) [AHL13, CZL08, FKM+09, ZCXL13].
However, similar to queue-length based control, such studies typically do not deal with payoff uncertainty
either.

Finally, although [BM15] and [SGMV17] also study the integration of learning and control, they either
allow only a small system with two types of clients and two servers [BM15], or have to use an exponential
number of virtual queues to approach optimality [SGMV17]. In contrast, in this work we aim to develop
computationally-efficient algorithms that can be implemented even for large systems.

In summary, it remains an open question how to seamlessly integrate online learning with adaptive
control when there is uncertainty in both client dynamics and payoff vectors, and how to account for the
complex closed-loop interactions between queueing and learning. Below, we will propose our new algorithm
and analytical techniques that address these difficulties.

4 Dynamic Assignment with Online Learning under Uncertainties

In this section, we present a new algorithm that seamlessly integrates online learning with dynamic task
assignment to address the aforementioned closed-loop interactions. Unlike classical queue-length based
control policies that rely on the task-queues as the “shadow prices,” we instead eliminate the task-queues
at the servers, and thus eliminate the “payoff-feedback delay” altogether. This is achieved by controlling
the number of tasks assigned to each server j at each time-slot to be always no greater than its service
rate µj . Therefore, the length of the server-side task-queue qj(t) given by (1) is trivially zero at all times.
However, without the server-side task-queues or “shadow prices”, we need another congestion indicator
to guide us in the dynamic assignment of tasks. Here, we propose to rely on the number of backlogged
clients in the system. Specifically, we use the solution to a utility-maximization problem (that is based
on the current number of backlogged clients in the system) to help us trade-off between the current and
future payoffs. The parameters of the utility-maximization problem are carefully chosen to also control
the learning slow-down of all clients in a fair manner. We remark that while the structure of our proposed
utility-guided algorithm bears some similarity to that of flow-level congestion control in communication
networks [LSS08, DLK01, BM01], the focus therein was only on the system stability (but not the system
payoff), and there was no online learning of uncertain parameters. To the best of our knowledge, our work
is the first in the literature that uses utility-guided adaptive control policies with online learning to optimize
system payoff.

4.1 Utility-Guided Dynamic Assignment with Online Learning

We present our algorithm in Algorithm 1. At each time-slot t, the algorithm operates in three steps. Step 1
generates an estimate [C lj(t)] of the payoff vector for each client l based on previous payoff feedback (Lines
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Algorithm 1: Utility-Guided Dynamic Assignment with Online Learning

1 For every time slot t:
2 Update the total number of clients n(t) (including newly arriving clients)
3 Step 1: Form truncated UCB payoff estimates
4 for l = 1 : n(t) do
5 for j = 1 : J do
6 if hlj(t− 1) = 0 or client l is new then C lj(t)← 1; hlj(t)← 0;
7 else Set C lj(t) according to (9) ;

8 Step 2: Solve [plj(t)] for the optimization problem
9

max
[plj ]≥0

n(t)∑
l=1

{
1

V
log

 J∑
j=1

plj

+
J∑
j=1

plj(C
l
j(t)− γ)

}
(7)

sub to
n(t)∑
l=1

plj ≤ µj , for all servers j ∈ S. (8)

10 Step 3: Assign tasks and obtain noisy payoff feedback
11 Initialize to zero the number of tasks from client l to be assigned to server j, i.e., Y l

j (t) = 0.
12 for j = 1 : J do
13 for ν = 1 : µj do
14 Choose a client l∗ randomly such that the probability of choosing client l is equal to plj(t)/µj .

Assign one task from client l∗ to server j and let Y l∗
j (t)← Y l∗

j (t) + 1 ;

15 for l = 1 : n(t) do
16 for j = 1 : J do
17 Observe Y l

j (t) number of Bernoulli noisy payoffs

X l
j(t, 1), . . . , X l

j

(
t, Y l

j (t)
)

i.i.d.∼ Bern
(
C∗i(l),j

)
;

18 Update hlj(t) and C lj(t) according to Y l
j (t) and X l

j(t, ·);

19 hl(t) =
∑J

j=1 h
l
j(t) ;

20 Clients with no remaining tasks leave the system.

4-7). Note that n(t) is the current number of clients in the system, including any newly-arriving client. For
each client l = 1, ..., n(t), if no task of this client has been assigned to server j yet, we set C lj(t) = 1 (Line
6); otherwise, we use a truncated Upper-Confidence-Bound (UCB) estimate [ACBF02] to generate C lj(t)
(Line 7):

C lj(t) = min

{
C
l
j(t− 1) +

√
2 log hl(t− 1)

hlj(t− 1)
, 1

}
, (9)

where hlj(t − 1) is the number of tasks from client l that have previously been assigned to server j before

the end of the (t − 1)-th time-slot and hl(t − 1) =
∑J

j=1 h
l
j(t − 1); C lj(t − 1) is the empirical average

payoff of client l based on the received noisy payoff feedback for server j until the end of the (t − 1)-th
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time-slot. Since the true payoffs C∗ij’s are within [0, 1], we truncate the UCB estimate at threshold 1 in (9).
Then, Step 2 solves a maximization problem (Line 9), subject to the capacity constraint of each server, to
obtain the values of plj(t), which corresponds to the expected number of new tasks of client l to be assigned
to server j in time-slot t. The objective (7) can be viewed as the sum of some utility functions over all
clients. The parameter γ in (7) is chosen to be strictly larger than 1, and V is a positive parameter. Finally,
Step 3 determines the exact number Y l

j (t) of tasks from client l that are assigned to server j (Lines 12-14).
The values of Y l

j (t) are randomly chosen in such a way that (i) each server j receives at most µj tasks, i.e.,∑n(t)
l=1 Y

l
j (t) ≤ µj ; and (ii) the expected value of Y l

j (t) is equal to plj(t). The tasks are then sent to the
servers and new noisy payoffs are received (Lines 15-19).

Before we present our analytical results, we make several remarks on the design of our proposed algo-
rithm.

Seamless Integration of Learning and Control: First, recall that the policies in [JKK16, MX16, JKK17]
separate exploration and exploitation into distinct stages by assuming perfect knowledge of class-dependent
payoff vectors, the total number of tasks per client, and/or “shadow prices.” In contrast, our algorithm does
not require such prior knowledge at all and seamlessly integrates exploration, exploitation, and dynamic
assignment at all times.

Zero Payoff-Feedback Delay: Second, note that by Step 3 of the algorithm, the number of assigned tasks
to each server j is no more than the service rate µj . Since server j can serve exactly µj tasks per time-slot,
there is no longer any “payoff-feedback delay,” i.e., all payoff feedback will be immediately revealed at the
end of the time-slot.

The Importance of Fairness: Third, if we removed the logarithmic term in (7) and set γ = 0, then
the maximization problem in (7) would have become a myopic matching policy that maximizes the to-
tal payoff in time-slot t based on the current payoff estimates. However, such a myopic matching policy
focuses too much on the current payoff, and as a result underperforms in terms of the long-term average
payoff. Instead, the logarithmic term in (7) serves as a concave utility function that promotes fairness
[LSS08, DLK01, BM01], so that even clients with low payoff estimates can still receive some service (i.e.,∑J

j=1 p
l
j(t) is always strictly positive). This fairness property is desirable in two ways. First, it has an eye

for the future (which is somewhat related to the fact that fair congestion-control ensures long-term system
stability [BM01]), so that we can strike the right balance between current and future payoffs. Second, it also
controls the learning slow-down of all clients in a fair manner. Specifically, thanks to this fairness property,
we can show that the “learning rate” of each client based on imprecise payoff estimates will not be too far
off from the “learning rate" of the client based on its true payoff vector, which constitutes a crucial step in
our analysis (see Section 6.3).

Parameter Choice: Fourth, the choice γ > 1 in (7) and the truncation of the UCB estimates in (9) also
play a crucial role in achieving near-optimal system payoff. If γ = 0, then every client l will have the
incentive to increase

∑J
j=1 p

l
j(t) by utilizing as many available servers as possible, even when the server

payoff is very close to zero. Such an aggressive approach typically leads to suboptimal performance because
in many settings the optimal policy must restrict some clients to only use the high-payoff servers. Instead,
by choosing γ > 1 ≥ C lj(t), the second term inside the summation in (7) becomes negative. As a result,
the operator assigns clients to low-payoff servers only if the derivative of the logarithmic term, which is
equal to 1/[V

∑J
j=1 p

l
j(t)], is sufficiently large. This feature leads to an inherent “conservativeness” of our

algorithm in choosing low-payoff servers. As the parameter V increases, our algorithm becomes more and
more conservative in choosing low-payoff servers, which benefits the long-term payoff. On the other hand,
it also increases the number of clients backlogged in the system, leading to extra payoff loss for a finite time
horizon T . Our theoretical results below will capture this tradeoff.

Complexity: Last but not least, the maximization problem in Step 2 is a convex program and can be
effectively solved. Thus, our proposed algorithm can scale to large systems with many clients and servers,
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which is in contrast to the work in both [BM15] (which only deals with two types of clients) and [SGMV17]
(which uses an exponential number of virtual queues).

4.2 Main Results

We now present our main results for the performance guarantees of the proposed algorithm. For simplicity,
we denote λi = λρi, and hence λ =

∑I
i=1 λi. Recall that µ =

∑J
j=1 µj and n(0) =

∑I
i=1 ni(0) = 0. The

first results gives an upper bound to the mean number of backlogged clients in the system at any time t.

Theorem 1. Suppose that the arrival rate λ is strictly less than the total service capacity, i.e., λ < µ. Then
for any time t,

E [n(t)] ≤ 2µ

µ− λ

(
1 +

µ2γ

γ − 1

)
+ µγV. (10)

Theorem 1 immediately implies the system is stable in the mean [KM95]. i.e.,

lim
T→∞

1

T

T∑
t=1

E[n(t)] <∞.

The upper bound in (10) characterizes the effect of V . As V increases, our algorithm becomes more conser-
vative in choosing low-payoff servers, leading to more clients backlogged in the system.

Departing from the standard Lyapunov technique in proving system stability [LSS08, DLK01, BM01],
our proof of Theorem 1 relies on a careful coupling between n(t) and a Geom/Geom/µ queue with
Bernoulli arrivals and Binomial departures (details in Appendix A.6).

The second result below further characterizes the payoff gap of the proposed algorithm compared to the
oracle.

Theorem 2. Suppose N logN ≥ 1. The gap between the upper bound (4) and the expected payoff of
Algorithm 1 at any time horizon T is bounded by:

I∑
i=1

J∑
j=1

λip
∗
ijC
∗
ij −

1

T

T∑
t=1

J∑
j=1

E

n(t)∑
l=1

plj(t)C
∗
i(l),j


≤ β1

V
+ β2

√
logN

N
+ β3

N(V + 1)

T
, (11)

where [p∗ij ] is the optimal solution to (4), and

β1 =
I

2
+
µ2

2

(
1 +

γ2

(γ − 1)2

) I∑
i=1

1

λi
,

β2 = 4
√

2λ(J + µ) + 3λ

(
1 +

Jγ2

(1− γ)2

)
µ,

β3 =
2µγ

µ− λ
+

2µ3γ2

(µ− λ)(γ − 1)
+ µγ2. (12)

To the best of our knowledge, this is the first result in the literature that characterizes the payoff gap for
this type of utility-guided adaptive controllers under payoff uncertainty. The above result is quite appealing
as it separately captures the impact of the uncertainty in client dynamics and the impact of the uncertainty
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Figure 5: With V =√
N/ logN , the payoff gap

of Algorithm 1 scales as
Θ(
√

logN/N).

in payoffs for any finite time horizon T . In (11), the first term on the right-hand-side is of the order 1/V ,
capturing the impact of the uncertainty in client dynamics (e.g., we do not know what are the values of
λi and N ). The second term in (11) is of the order

√
logN/N and related to the notion of “regret” in

typical MAB problems. It captures the payoff loss due to the uncertainty in payoffs as a function of the total
number of tasks per client, i.e, the tradeoff between exploration and exploitation [LR85, ACBF02]. The
third term in (11) is of the order N(V + 1)/T , characterizing the payoff loss incurred by clients backlogged
in the system. Given T , the first term and the third term reveal an interesting tradeoff as V increases. On
the one hand, the first term will approach zero at the speed of 1/V , indicating that the policy adapts to
the unknown client dynamics; on the other hand, the third term will increase linearly with V due to the
payoff loss incurred by clients backlogged in the system. If N and T are known in advance, we can tune
V to be min{T/N,

√
T/N}, so that the payoff-gap upper-bound is minimized and becomes of the order

max{N/T,
√
N/T} +

√
logN/N . As a consequence, as T increases, the payoff gap first decreases at a

rate of T−1 for T ≤ N and then at a rate of T−1/2 for N ≤ T ≤ N2/ logN and finally gets saturated at√
logN/N for T ≥ N2/ logN.

The
√

logN/N regret here may seem inferior compared to the logN/N regret in [JKK16, JKK17].
However, the regret in [JKK16, JKK17] only holds under the stationary setting T → ∞ and assuming
knowledge of various uncertainty, such as the class-dependent payoff vectors, the number of tasks per client,
and/or “shadow prices” (which in turn require knowledge of the statistics of the client arrival dynamics). In
contrast, our payoff gap characterizes the transient behavior of the system and holds for any finite time T
and finite N ≥ 2 without any such prior knowledge. It remains open whether our

√
logN/N regret can be

further reduced to logN/N .
Our proof of Theorem 2 builds upon the standard Lyapunov drift technique [NML05, LSS08, DLK01,

BM01] and finite-time regret analysis [ACBF02]; however, our proof employs new techniques to carefully
account for the closed-loop interactions between the queueing dynamics and the learning processes (see
Section 6).

5 Numerical Results

We consider the same setup as described in the counter example in Section 3 and illustrated in Fig. 2. In
particular, there are two servers and two classes of clients. Define the key parameters as follows: µj = 1 for
each server j = 1, 2; λi = 0.6 for each class i = 1, 2, and hence λ = λ1 + λ2 = 1.2. The expected number
of tasks per client is initially set to be N = 100, but we will vary the value later. The true payoff vectors
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for class 1 and class 2 are given by [0.9 0.1] and [0.9 0.3], respectively, although they are unknown to the
operator. Note that server 1 has larger expected payoff for both class 1 and class 2. However, its service rate
is insufficient to support all clients. Hence, this contention must be carefully controlled when the system
aims to maximize the payoff. For a given policy Π and simulation time T , we report the average system
payoff RT (Π) per unit time.

5.1 Two Other Policies for Comparison

We compare our proposed Algorithm 1 with the myopic matching policy and a queue-length based policy.
These two policies also use UCB to estimate unknown payoff vectors. The myopic matching policy aims
at maximizing the total payoff for the current time-slot. Specifically, at each time slot t, the policy solves a
modified maximization problem of the form (7)–(8), but with the logarithmic term removed and with γ = 0.
Then, based on the solution to this modified maximization problem, the tasks are assigned to each server
in the same way as described in Step 3 in Algorithm 1. We expect that the myopic matching policy incurs
relatively large payoff loss because it does not look at the future.

The queue-length based policy maintains a queue of tasks at each server j, and uses the length of
this task-queue qj(t) at time-slot t to indicate the congestion level at server j. At each time-slot t and
for each client l, the operator finds the server j∗(l) with the highest queue-adjusted payoff, i.e., j∗(l) =
arg maxj{C lj(t)− qj(t)/V }. The operator then adds one task from each client l to the end of the task queue
at the server j∗(l). Every server j then processes µj = 1 task from the head of its own queue and observes
the random payoff generated. As discussed in Section 3, one weakness of such a queue-length based policy
is that, when tasks are waiting in the queues, the system cannot observe their payoff feedback right away.
Hence, there is significant payoff feedback delay, which in turn leads to suboptimal assignment decisions
for subsequent tasks.

5.2 Performance Comparisons

We fix γ = 1.1 for our proposed Algorithm 1 in all experiements, but we may vary N and V . The first set
of experiements give a general feel of the dynamics of different policies. In Fig. 3, we fix N = 100 and
plot the evolution of the time-averaged system payoff up to time T under the three policies (with different
V ), as the simulation time T advances. We can see that, even when N is not very large (N = 100), the
system payoff under our proposed Algorithm 1 with V = 21 (the solid curve with marker N) approaches
the upper bound (4) (the horizontal dashed line). Further, comparing V = 2 (marker N, dashed curve) with
V = 21 (marker N, solid curve), we observe significantly higher system payoff under Algorithm 1 when V
increases. In comparison, the payoff achieved by the myopic matching policy (the lowest dotted curve) is
significantly lower. The performance of the queue-length based policy (the two curves with marker H) also
exhibits a noticable gap from that of the proposed Algorithm 1. Further, even when V increases from V = 2
(marker H, dashed curve) to V = 100 (marker H, solid curve), the improvement of the queue-length based
policy is quite limited. This result suggests that, due to the increase in payoff-feedback delay, controlling V
is not effective in improving the performance of the queue-length based policy.

In Fig. 4, we fix N = 100, increase V and plot the payoff gap (compared to the upper bound (4)) of
our proposed Algorithm 1 over T = 7× 105 time slots. Each plotted data point represents the average of 5
independent runs. We can observe that initially the payoff gap decreases significantly with V , but eventually
it saturates at V ≥ 50. This is because the regret due to small N , i.e., the second term of (11), eventually
dominates the payoff gap when V is large. A similar figure with increasingN but fixed V (not shown) shows
a similar saturation behavior whenN is large. Such saturation makes it difficult to assess whether the scaling
reported in (11) is accurate. To answer this question, we next set V =

√
N/ logN . In this way, both the

first and second terms in (11) are of the order Θ(
√

logN/N). We then increase N (and V simultaneously)
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Table 1: List of Notations
Symbol Meaning

Ckij(t) UCB estimate for server j by client k of class i
C lj(t) UCB estimate for server j by client l
C∗ij True expected payoff for server j and class i

C
k
ij(t), C

l
j(t) Empirical payoff average

γ > 1 Parameter in (7) and (14)
p∗ij Solution to upper bounds (4) or (17)
pkij(t), plj(t) Solution to (7) or (14) using UCB payoff estimates
p̂kij(t) Solution to (14) with Ckij(t) replaced by C∗ij

and show in Fig. 5 how the payoff gap of our Algorithm 1 decreases with N on a log-log scale. The result
indeed matches well with a Θ(

√
logN/N) scaling. Note that there is a noticable difference in slope from

the Θ(logN/N) scaling. The difference remains even if we set V to be larger at V = N/ logN . Thus, the
results suggest that the performance bound in (11) for our proposed Algorithm 1 may be tight.

6 Proofs

The rest of the paper is devoted to proving our main results. In this section, we will focus on the proof of
Theorem 2 to highlight how to deal with the main difficulties due to the interactions between the queueing
dynamics and the learning process. The proof for Theorem 1 is provided in Appendix A.6.

6.1 Equivalent Reformulation

We will use a Lyapunov-drift analysis with special modifications to account for the learning of uncertain
payoffs. Note that for the purpose of this drift analysis, we can use the underlying class label of each client
to keep track of the system dynamics, even though our algorithm does not know this underlying class label.
Thus, we re-label the n(t) clients at time-slot t as follows. Let ni(t) be the number of clients at time-slot
t whose underlying class is i and I(t) = {i : ni(t) ≥ 1}. We have

∑
i∈I(t) ni(t) = n(t). For each

class i ∈ I(t), we use k = 1, ..., ni(t) to index the clients of this class at time t. Similar to the notations
C∗i(l),j , C

l
j(t) andC lj(t), we denoteC∗ij , C

k
ij(t) andCkij(t) as the true value, empirical average of past payoffs

at time t, and the UCB estimate at time t, respectively, for the payoff of server j serving a task from the
k-th client of the underlying class i. We also define hkij(t), hki (t) =

∑J
j=1 h

k
ij(t), and pkij(t) analogously to

hlj(t), hl(t) and plj(t). Thus, the UCB estimate (9) in Step 1 of our proposed Algorithm 1 is equivalent to

Ckij(t)← min

{
C
k
ij(t− 1) +

√
2 log hki (t− 1)

hkij(t− 1)
, 1

}
, (13)

and the maximization problem (7) in Step 2 of our proposed Algorithm 1 is equivalent to:

max
[pkij ]≥0

∑
i∈I(t)

ni(t)∑
k=1

 1

V
log

 J∑
j=1

pkij

+

J∑
j=1

pkij

(
Ckij(t)− γ

) (14)

s.t.
∑
i∈I(t)

ni(t)∑
k=1

pkij ≤ µj , for all j ∈ S. (15)
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Our proof below will use these equivalent forms of the proposed Algorithm 1. In the rest of the analysis, we
will use boldface variables (e.g., n, p, and C) to denote vectors, and use regular-font variables (e.g., ni, pkij ,
and Ckij) to denote scalars. A list of notations is provided in Table 1.

6.2 Handling Uncertain Client Dynamics

Recall that λi = λρi, λ =
∑I

i=1 λi and µ =
∑J

j=1 µj . Define the vector n(t) = [ni(t), i = 1, . . . , I]

and p(t) = [pkij(t), i ∈ I(t), j = 1, . . . , J, k = 1, . . . , ni(t)]. With the above re-indexing of the clients, we
choose the Lyapunov function L(n(t)) as

L(n(t)) =
1

2

I∑
i=1

n2
i (t)

λi
. (16)

Let [p∗ij ] be the optimal solution of the upper bound in (4). Note that if we replace each C∗ij in (4) by
C∗ij−γ, this will result in the same optimal solution. Thus, [p∗ij ] is also the optimal solution to the following
optimization problem:

max
[pij ]≥0

I∑
i=1

λi

J∑
j=1

pij(C
∗
ij − γ), subject to (5) and (6). (17)

Next, we will add a properly-scaled version of the following term to the drift of the Lyapunov function
L(n(t+ 1))− L(n(t)):

∆(t) =

I∑
i=1

J∑
j=1

λip
∗
ij(C

∗
ij − γ)−

∑
i∈I(t)

ni(t)∑
k=1

J∑
j=1

pkij(t)(C
∗
ij − γ). (18)

The value of ∆(t) captures the gap between the achieved payoff and the upper bound in (17), both adjusted
by γ. The following lemma is the first step towards bounding the Lyapunov drift plus this payoff gap.

Lemma 3. The expected drift plus payoff gap is bounded by

E
[
L(n(t+ 1))− L(n(t)) +

V

N
∆(t) | n(t),p(t)

]
≤ 1

N
A1(t) +

V

N

∑
i/∈I(t)

J∑
j=1

λip
∗
ij(C

∗
ij − γ) +

c1 + c2

N
, (19)

where c1 = I
2 , c2 = µ2

2

(
1 + γ2

(γ−1)2

)∑I
i=1

1
λi

, and

A1(t) ,
∑
i∈I(t)

ni(t)∑
k=1

J∑
j=1

(
ni(t)

λi
+ V (C∗ij − γ)

)(
λip
∗
ij

ni(t)
− pkij(t)

)
.

Proof. We first note that
ni(t+ 1) = ni(t) + Ui(t+ 1)−Di(t),

where Ui(t+ 1) and Di(t) are the number of client arrivals at the beginning of time t+ 1 and the number of
departures at the end of time t, respectively, of class i. Note that Ui(t) is a Bernoulli random variable with
mean λi/N . For i /∈ I(t), i.e., ni(t) = 0, we have Di(t) = 0 and ni(t+ 1) = Ui(t+ 1). It follows that

E[n2
i (t+ 1)− n2

i (t) | ni(t) = 0] = E
[
U2
i (t+ 1)

]
=
λi
N
. (20)
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For i ∈ I(t), the expected time-difference of n2
i (t) is bounded by

E[n2
i (t+ 1)− n2

i (t) | n(t),p(t)]

= E
[
2ni(t) (Ui(t+ 1)−Di(t)) + (Ui(t+ 1)−Di(t))

2 | n(t),p(t)
]

≤ 2ni(t)

(
λi
N
− E [Di(t)|n(t),p(t)]

)
+
λi
N

+ E
[
D2
i (t)|n(t),p(t)

]
≤ 2ni(t)

N

λi − ni(t)∑
k=1

J∑
j=1

pkij(t)

+
λi
N

+
µ2

N

(
1 +

γ2

(γ − 1)2N

)
, (21)

where in the last step we have used the following bounds shown in Lemma 8 in Appendix A.1:

E [Di(t)|n(t),p(t)] ≥ 1

N

ni(t)∑
k=1

J∑
j=1

pkij(t)−
γ2µ2

2(γ − 1)2ni(t)N2
, (22)

and E
[
D2
i (t) | n(t),p(t)

]
≤ µ2

N . Combining (20) and (21), the expected Lyapunov drift is then bounded by

E [L((n(t+ 1)))− L(n(t)) | n(t),p(t)]

≤ 1

N

∑
i∈I(t)

ni(t)

λi

λi − ni(t)∑
k=1

J∑
j=1

pkij(t)

+
c1 + c2

N

=
1

N

∑
i∈I(t)

ni(t)

λi

ni(t)∑
k=1

J∑
j=1

(
λip
∗
ij

ni(t)
− pkij(t)

)
+
c1 + c2

N
, (23)

where c1 and c2 are defined in the lemma, and we use N ≥ 1 in the inequality. Adding V
N∆(t) in (18), the

result then follows. Note that we need to single out the first term of (18) corresponding to ni(t) = 0, which
produces the second term of (19).

Proof of Theorem 2. Recall that in Step 2 of our proposed algorithm, we have chosen γ > 1 ≥ C∗ij . Hence,
the second term on the right-hand-side of (19) is always less than 0. Then, taking expectations of (19) over
n(t) and p(t), summing over 0 ≤ t ≤ T − 1, and divided by T , we have

1

T
E [L(n(T ))− L(n(0))] +

V

TN

T−1∑
t=0

E [∆(t)]

≤ 1

NT

T−1∑
t=0

E [A1(t)] +
c1 + c2

N
.

Since the system at time t = 0 is empty, i.e., n(t) = 0, it follows thatL(n(0)) = 0. In view ofL(n(T )) ≥ 0,
the last displayed equation gives

1

T

T−1∑
t=0

E [∆(t)] ≤ 1

TV

T−1∑
t=0

E [A1(t)] +
c1 + c2

V
. (24)
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Let RT denote the expected payoff per unit time achieved by Algorithm 1 for a given time T as defined
in (3). By definitions of ∆(t), RT , and R∗, we get that

1

T

T−1∑
t=0

E [∆(t)]

= R∗ −RT − γλ+
γ

T

T−1∑
t=0

J∑
j=1

E

∑
i∈I(t)

ni(t)∑
k=1

pkij(t)

 . (25)

We show in Appendix A.1 that the total number D(t) of departures at time t satisfies

E [D(t) | n(t),p(t)] ≤ 1

N

∑
i∈I(t)

J∑
j=1

ni(t)∑
k=1

pkij(t).

It follows that

λ− 1

T

T−1∑
t=0

J∑
j=1

E

∑
i∈I(t)

ni(t)∑
k=1

pkij(t)


≤ λ− N

T

T−1∑
t=0

E [D(t)]

=
N

T

T−1∑
t=0

E [U(t+ 1)−D(t)]

=
N

T
E [n(T )] ≤ β3N(V + 1)

γT
,

where U(t) denotes the total number of arrivals at time t, and the last inequality holds in view of Theorem
1 and the definition of β3 in (12). By combining the last displayed equation with (25) and (24), we get that

R∗ −RT ≤
β3N(V + 1)

T
+

1

TV

T∑
t=1

E [A1(t)] +
c1 + c2

V
. (26)

In the rest of this section, we show that for all T ,

1

TV

T∑
t=1

E [A1(t)]

≤ λ

N

[
4J
√

2N logN + µ
(
4
√

2 logN + 3 +
3Jγ2

(1− γ)2

)]
. (27)

Substituting (27) into (26) and invoking the assumption N logN ≥ 1, the result of Theorem 2 readily
follows.

The remainder of the section will prove (27).
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6.3 Bounding A1(t): Handling Payoff Uncertainty

As we will see soon, if there were no errors in the payoff estimates [Ckij(t)], we would have obtainedA1(t) ≤
0 (see discussions after (31)). Thus, the key in bounding A1(t) is to account for the impact of the errors of
the payoff estimates. In the rest of this subsection, we fix n = n(t). Recall that I(t) = {i|ni(t) ≥ 1}, and
p(t) = [pkij(t)] is the solution to the optimization problem (14). Denote vectors W = [W k

ij , i ∈ I(t), j =

1, ..., J, k = 1, ..., ni(t)] and π = [πkij , i ∈ I(t), j = 1, ..., J, k = 1, ..., ni(t)]. We define the function

f(π|n,W) ,
∑
i∈I(t)

ni(t)∑
k=1

log

 J∑
j=1

πkij

+ V
J∑
j=1

(W k
ij − γ)πkij

 . (28)

Note that when W = [Ckij(t)], the value of this function at π = p(t) is precisely the objective function of

(14) multiplied by V . Now, let p̃(t) denote the vector [p̃kij(t)] such that p̃kij(t) =
λip
∗
ij

ni(t)
for all i ∈ I(t),

j = 1, ..., J and k = 1, ..., ni(t). Using the concavity of the function f and the fact that ni(t)λi
+V (W k

ij − γ)
is the partial derivative of f at p̃(t), the following lemma can be easily shown (see Appendix A.2 for details).

Lemma 4. For any W = [W k
ij ] and π = [πkij ], it holds that

∑
i∈I(t)

J∑
j=1

ni(t)∑
k=1

(
ni(t)

λi
+ V (W k

ij − γ)

)(
λip
∗
ij

ni(t)
− πkij

)
≤ f(p̃(t)|n,W)− f(π|n,W). (29)

The significance of this lemma is as follows. Let C∗ denote the vector [W k
ij ] such that W k

ij = C∗ij for all
i ∈ I(t), j = 1, ..., J and k = 1, ..., ni(t). If we choose W = C∗ and π = p(t) in Lemma 4, then A1(t) is
simply the left-hand-side of (29). Applying Lemma 4, we then have

A1(t) ≤ f(p̃(t)|n,C∗)− f(p(t)|n,C∗). (30)

Next, denote p̂(t) =
[
p̂kij(t)

]
as the maximizer of f(π|n,C∗) over the constraint (15). Since p̃(t) also

satisfies the constraint (15), we have f(p̃(t)|n,C∗) ≤ f(p̂(t)|n,C∗). Combining with (30), we get

A1(t) ≤ f(p̂(t)|n,C∗)− f(p(t)|n,C∗). (31)

To appreciate the difference between the two terms, recall that p̂(t) maximizes f(π|n,C∗), while p(t)
maximizes f(π|n,C(t)), where we have denoted C(t) = [Ckij(t)]. Clearly, if there were no errors in the
payoff estimates C(t), i.e., if C(t) = C∗, we would have obtained p(t) = p̂(t) and A1(t) ≤ 0 trivially. In
order to bound the difference when C(t) 6= C∗, we use

f(p̂(t)|n,C∗) = f(p̂(t)|n,C(t)) +A3(t)

≤ f(p(t)|n,C(t)) +A3(t) (by the optimality of p(t))

= [f(p(t)|n,C∗) +A2(t)] +A3(t), (32)

where the two equalities follow directly from the definition of f and that of A2(t) and A3(t) below:

A2(t) = V
∑
i∈I(t)

ni(t)∑
k=1

J∑
j=1

(
Ckij(t)− C∗ij

)
pkij(t),

A3(t) = V
∑
i∈I(t)

ni(t)∑
k=1

J∑
j=1

(
C∗ij − Ckij(t)

)
p̂kij(t).
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Combining (31) and (32), we thus have

A1(t) ≤ A2(t) +A3(t). (33)

6.4 Bounding A2(t)

In this subsection, we wish to bound 1
T

∑T
t=1 E[A2(t)] for a given T. We define Λ as a particular realization

of the sequence of client arrival-times up to time slot T . We use EΛ to denote the conditional expectation
given Λ. Given Λ, we slightly abuse notation and use the index k now to denote the k-th client of class i
that arrives to the system. Let t1(k) denote the arrival time of this client, and t2(k) denote the minimum
of her departure time and T . The following lemma is useful to bound the contribution of this client to∑T

t=1 E[A2(t)]. Since the proof of this lemma is along similar lines as that of Lemma 7 in Section 6.5, we
move it to Appendix A.4.

Lemma 5. Suppose that the k-th arriving client of the underlying class i brings a total number ak of tasks
into the system. For all 1 ≤ j ≤ J , it holds that

EΛ

 t2(k)∑
s=t1(k)

(Ckij(s)− C∗ij)pkij(s)


≤ 4
√

2ak log ak + 4µj
√

2 log ak + 3µj . (34)

Remark: The result of the lemma can be interpreted as follows. Suppose that pkij(s) = 1 for all time
s. Then, after s time-slots, the gap Ckij(s) − C∗ij is within the order of Θ(

√
log s/s) with high probability

by the Chernoff-Hoeffding bound (see Lemma 9 in Appendix A.3). Summing over all 1 ≤ s ≤ ak, we
get an expression on the order of the first term in (34). Of course, under our algorithm pkij(t) is random.
Fortunately, here the loss given by the left-hand-side of (34) accumulates at the same rate as the probability
pkij(t) of choosing a server (which will not be the case in Section 6.5). Thus, we may view the time as
being slowed down at the rate of

∑J
j=1 p

k
ij(t), and expect the bound in (34) to hold. However, the tricky

part is that the value of pkij(t) also depends on previous values of Ckij(s), s < t. Our proof uses a delicate
martingale argument to take care of such dependency. We also note that this lemma is the main reason that
we get Θ(

√
logN/N) regret in the second-term of (11). In the classical MAB problem in [ACBF02], there

is a non-zero gap δ between the best arm and the second-best arm. Thus, once the estimation error is within
δ, which takes Θ(logN) time, learning can stop. As a result, the regret is on the order of Θ(logN/N).
In contrast, in our problem the notion of “best/second-best arms” is more fluid because they depend on the
number of clients in the system. As a result, we do not have such a fixed gap δ, which is why we have a
larger Θ(

√
logN/N) loss due to learning.

Now, we are ready to bound E [A2(t)]. First, given a sequence of arrival times Λ, by re-indexing the
clients in the order of their arrival times, we have

T∑
t=1

A2(t) = V

I∑
i=1

mi(T )∑
k=1

t2(k)∑
t=t1(k)

J∑
j=1

(
Ckij(t)− C∗ij

)
pkij(t),

where mi(T ) is the total number of arrivals of class i up to time slot T. Since Lemma 5 holds for any client
k and any server j, we have

T∑
t=1

EΛ [A2(t)] ≤ V
I∑
i=1

mi(T )∑
k=1

(
4J
√

2ak log ak +
(

4
√

2 log ak + 3
)
µ
)
.
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Note that ak has meanN , and further both
√
x log x and

√
log x are concave functions. Moreover, E [mi(T )] =

λiT/N . Taking the expectation of ak and then Λ over both sides of the last displayed equation and applying
Jensen’s inequality, we get

1

TV

T∑
t=1

E [A2(t)] ≤ λ

N

(
4J
√

2N logN +
(

4
√

2 logN + 3
)
µ
)
. (35)

6.5 Bounding A3(t)

We now bound the contribution to 1
T

∑T
t=1 E[A3(t)] by the k-th arriving client of class i, using similar ideas

as in Section 6.4. Here, however, we face a major new difficulty related to the issue of “learning slow-
down” discussed in Section 3. Note that the rate with which tasks of this client are assigned to the servers
at time t is given by

∑J
j=1 p

k
ij(t), which may decrease as there are more clients in the system. We thus

refer to this value as the “learning rate,” since it determines how quickly (or slowly) the system can receive
payoff feedback for this client and improve her payoff estimate. However, the loss inA3(t) accumulates at a
different rate p̂kij(t). We therefore refer to

∑J
j=1 p̂

k
ij(t) as the “loss-accummulation rate.” If the learning rate

is small and the loss-accummulation rate is large, it is possible that the total loss may grow unboundedly
because the system does not learn as quickly as it incurs losses. The following lemma thus becomes crucial.
It shows that, thanks to our choice in Algorithm 1 that all the UCB estimates are no greater than 1 and γ > 1,
the learning rate for any client will be at most a constant factor away from the loss-accummulation rate. We
will then use this lemma to show that 1

T

∑T
t=1 E[A3(t)] must then be upper-bounded by a constant.

Lemma 6. At any time t, suppose that [p̂kij(t)] and [pkij(t)] are the maximizers of f(π|n(t),C∗) and
f(π|n(t),C(t)) defined in (28), respectively, subject to the constraint (15). Then, for all clients k of all
classes i, the following holds ∑J

j=1 p̂
k
ij(t)∑J

j=1 p
k
ij(t)

≤
(

γ

γ − 1

)2

.

The proof is available in Appendix A.5. The main idea is as follows. Note that for any W, the maximizer
of f(π|n(t),W) subject to server capacity constraint (15) must satisfy the KKT condition:

J∑
j=1

πkij(t) =
1

V minj{qj(t) + γ −W k
ij}
,

where qj(t) ≥ 0 is the optimal dual variable corresponding to server j’s capacity constraint. For either
W = C∗ or W = C(t), the value of W k

ij cannot differ by more than 1. Hence, the value of qj(t) +γ−W k
ij

cannot differ by more than a factor γ
γ−1 . This implies that the value of

∑J
j=1 p

k
ij(t) or

∑J
j=1 p̂

k
ij(t) across

different clients cannot differ much either. The result of the lemma can then be readily shown.

Lemma 7. Suppose that the k-th arriving client of class i arrives at time t1(k), and let t2(k) be the minimum
of T and her departure time. Then, the following holds,

EΛ

 J∑
j=1

t2(k)∑
s=t1(k)

(
C∗ij − Ckij(s)

)
p̂kij(s)

 ≤ 3J

(
γ

γ − 1

)2

µ. (36)

We give the intuition behind this lemma before the proof. Recall that hkij(t − 1) is the number of tasks
from this particular client that have been assigned to server j by the end of time t − 1, and hki (t − 1) =
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∑J
j=1 h

k
ij(t − 1). Further, let hkij(0) = hki (0) = 0. For each time-slot s and 1 ≤ j ≤ J , define the “good”

event

Gj(s) =

{
hkij(s− 1) ≥ 1, C∗ij − C

k
ij(s− 1) ≤

√
2 log hki (s− 1)

hkij(s− 1)

}
∪
{
hkij(s− 1) = 0

}
,

where Ckij(s− 1) is the empirical average of the received payoffs at the end of time slot s− 1. Let G(s) =

∩Jj=1Gj(s). Note that on the event G(s), the UCB estimates satisfy Ckij(s) ≥ C∗ij and thus the terms(
C∗ij − Ckij(s)

)
p̂kij(s) on the left hand side of (36) are negative. Hence, to prove the lemma, it suffices

to bound the sum due to the probability of the “bad” event Gc(s) (i.e., the complement of G(s)), which
accumulates at the rate of

∑J
j=1 p̂

k
ij(s). Thanks to Lemma 6, this loss-accumulation rate is upper bounded

by a constant multiplied by the learning rate
∑J

j=1 p
k
ij(s). Finally, using concentration bounds and a delicate

martingale argument, we can show that the probability of the bad event Gc(s) decreases polynomially fast
as the learning rate accumulates, resulting to the bound in (36).

Proof. Without loss of generality, we take t1(k) = 1, i.e., we label the first time-slot as the time-slot when
this particular client arrives to the system. Let cγ = γ2/(γ − 1)2. Let 1G(s) denote the indicator variable
which is 1 if G(s) holds and 0 otherwise. Then

t2(k)∑
s=1

(
C∗ij − Ckij(s)

)
p̂kij(s)

=

t2(k)∑
s=1

(
C∗ij − Ckij(s)

)
p̂kij(s)1G(s) +

t2(k)∑
s=1

(
C∗ij − Ckij(s)

)
p̂kij(s)1Gc(s)

≤
t2(k)∑
s=1

p̂kij(s)1Gc(s),

where the last inequality holds because C∗ij ≤ 1 and C∗ij ≤ Ckij(s) on the event G(s). Summing over all
server j, we obtain

J∑
j=1

t2(k)∑
s=1

(
C∗ij − Ckij(s)

)
p̂kij(s) ≤

J∑
j=1

t2(k)∑
s=1

p̂kij(s)1Gc(s)

≤ cγ
t2(k)∑
s=1

1Gc(s)

J∑
j=1

pkij(s),

where the last inequality holds because 1Gc(s) does not depend on the index j, and in view of Lemma 6.
Taking the conditional expectation given Λ (i.e., the realization of arriving times) over both sides of the last
displayed equation, we obtain

EΛ

 J∑
j=1

t2(k)∑
s=1

(
C∗ij − Ckij(s)

)
p̂kij(s)

 ≤ cγEΛ

t2(k)∑
s=1

1Gc(s)

J∑
j=1

pkij(s)

 . (37)
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Similar to Y j
l (t) in Section 4, denote Y k

ij(t) as the actual number of tasks from client k of class i served
by server j at time slot t. We now show that

EΛ

t2(k)∑
s=1

1Gc(s)

J∑
j=1

pkij(s)

 = EΛ

t2(k)∑
s=1

1Gc(s)

J∑
j=1

Y k
ij(s)

 . (38)

To see this, let Ft denote the filtration (which contains all the system information) up to the end of time-
slot t. In particular, Y k

ij(s) and 1Gc(s+1) are measurable with respect to Ft for all s ≤ t. Let Mt ,∑t
s=1 1Gc(s)

∑J
j=1

(
Y k
ij(s)− pkij(s)

)
. Since EΛ[Y k

ij(s + 1) − pkij(s + 1)|Fs] = 0, it follows that Mt is

martingale. Further, note that t2(k) is the minimum between T and the first time that hki (t) exceeds ak.
Hence, t2(k) is a stopping time with respect to the filtration Ft and is upper bounded by T. Invoking the
Optional Stopping Theorem [Haj15, Section 10.4], we then have E[Mt2(k)] = 0, which is precisely (38). In
view of (37) and (38), to prove the lemma it suffices to show that

EΛ

t2(k)∑
s=1

1Gc(s)

J∑
j=1

Y k
ij(s)

 ≤ 3Jµ. (39)

Towards this end, for each integer a = 0, 1, ..., ak, define

τa = min
{
T + 1, inf

{
s ≥ 1 | hki (s− 1) ≥ a

}}
.

In other words, τa is the first time-slot s such that the number of client k’s tasks already assigned to servers
at the end of the previous time-slot s − 1 is at least a. Note that 1 = τ0 ≤ τ1 ≤ · · · ≤ τak = t2(k) + 1.
Then, we have

t2(k)∑
s=1

1Gc(s)

J∑
j=1

Y k
ij(s) =

∑
a∈[0,ak−1]:τa+1>τa

τa+1−1∑
s=τa

1Gc(s)

J∑
j=1

Y k
ij(s)

=
∑

a∈[0,ak−1]:τa+1>τa

1Gc(τa+1−1)

J∑
j=1

Y k
ij(τa+1 − 1)

≤ µ+ µ
∑

a∈[1,ak−1]:τa+1>τa

1Gc(τa+1−1), (40)

where the second equality holds because across all s ∈ [τa, τa+1− 1], the value of
∑J

j=1 Y
k
ij(s) can be non-

zero only at the last time-slot τa+1−1 (otherwise, hki (s) will be at least a+1 before τa+1−1, contradicting
the definition of τa+1); and the last inequality holds because

∑J
j=1 Y

k
ij(s) ≤ µ and it can also be non-zero

at most once across all s ∈ [τ0, τ1 − 1].
Now, fix an integer a such that τa+1 > τa. It follows that the number hki (τa − 1) of tasks assigned by

the end of time-slot τa − 1 must be exactly equal to a. Note that τa − 1 ≤ τa+1 − 2 < τa+1 − 1. Hence, we
must also have hki (τa+1 − 2) = a. By the union bound,

PΛ {Gc(τa+1 − 1)} ≤
J∑
j=1

PΛ

{
Gcj(τa+1 − 1)

}
. (41)

Fix a 1 ≤ j ≤ J . When hkij(τa+1 − 2) ≥ 1, the empirical average Ckij(τa+1 − 2) is the average of
hkij(τa+1 − 2) i.i.d. Bernoulli random variables X(1), X(2), . . . with mean C∗ij . Although hkij(τa+1 − 2) is
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random, it holds that hkij(τa+1 − 2) ≤ hki (τa+1 − 2) = a. Therefore,

PΛ

{
Gcj(τa+1 − 1)

}
≤ PΛ

{
∀1 ≤ r ≤ a :

1

r

r∑
u=1

X(u)− C∗ij < −
√

2 log a

r

}

≤
a∑
r=1

P

{
1

r

r∑
u=1

X(u)− C∗ij < −
√

2 log a

r

}
≤

a∑
r=1

1

a4
≤ 1

a3
, (42)

where the second inequality is due to the Chernoff-Hoeffding Bound (see Lemma 9 in Appendix A.3).
Combining (40)-(42) yields

EΛ

t2(k)∑
s=1

1Gc(s)

J∑
j=1

Y k
ij(s)

 ≤ µ+ µJ
∞∑
a=1

1

a3
≤ µ+ 3µJ/2 ≤ 3µJ,

which is exactly (39). The result of the lemma then follows.

Using Lemma 7 and following the same steps at the end of Section 6.4, we then get

1

TV

T∑
t=1

E[A3(t)] ≤ 3λµJ

N

(
γ

1− γ

)2

. (43)

Finally, the desired (27) follows by combining (33), (35), and (43).

7 Conclusion

In this paper, we propose a new utility-guided task assignment algorithm for queueing systems with uncer-
tain payoffs. Our algorithm seamlessly integrates online learning and adaptive control, without relying on
any prior knowledge of the statistics of the client dynamics or the payoff vectors. We show that, compared to
an oracle that knows all client dynamics and payoff vectors beforehand, the gap of the expected payoff per
unit time of our proposed algorithm at any finite time T is on the order of 1/V +

√
logN/N+N(V +1)/T,

where V is a parameter controlling the weight of a logarithmic utility function, andN is the average number
of tasks per client. Our analysis carefully accounts for the closed-loop interactions between the queue-
ing and learning processes. Numerical results indicate that the proposed algorithm outperforms a myopic
matching policy and a standard queue-length based policy that does not explicitly address such closed-loop
interactions.

There are a number of future research directions. First, a straightforward lower bound on the payoff
loss is O(logN/N) [ACBF02]. Thus, it would be interesting to study whether the proposed algorithm can
be further improved to reduce the second regret term of (11) to O(logN/N). Second, in order to limit
the payoff-feedback delay, our algorithm assumes that the service of each server is deterministic. We plan
to generalize to the case with random service or even unknown service rates. Finally, although our model
does not assume any prior knowledge of the class-dependent payoff vectors, it would be interesting to study
whether the idea from this paper can be used to improve the policies in [JKK16, MX16, JKK17] when such
knowledge is available.
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A Appendix

A.1 Bounds on the Expected Number of Client Departures

Lemma 8. Given n(t) = [ni(t)], let p(t) = [pkij(t)] denote the vector of assignment probabilities computed
in Step 2 of the proposed Algorithm 1 at time-slot t. Fix a class i with ni(t) ≥ 1. Let Di(t) denote the
number of client departures of class i at time-slot t. Conditioned on n(t) and p(t), the expectation of Di(t)
satisfies the following bounds:

E [Di(t)|n(t),p(t)] ≥ 1

N

ni(t)∑
k=1

J∑
j=1

pkij(t)−
γ2µ2

2(γ − 1)2ni(t)N2
, (44)
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E [Di(t)|n(t),p(t)] ≤ 1

N

ni(t)∑
k=1

J∑
j=1

pkij(t) ≤
µ

N
, (45)

and

E
[
D2
i (t) | n(t),p(t)

]
≤ µ2

N
, (46)

where µ =
∑J

j=1 µj .

The intuition behind this lemma is as follows. Note that in Step 3 of the proposed Algorithm 1, each unit
service of server j has

∑ni(t)
k=1 p

k
ij(t)/µj probability to pick a client from class i. Hence, if all units of the µj

service rate of all servers j were fully used, the expected number of departures of class i would have been
1
N

∑ni(t)
k=1

∑J
j=1 p

k
ij(t), which appears in both (44) and (45). However, note that if a client of class i already

runs out of tasks after she is picked by one server, there will be no additional departure when a subsequent
server picks this client again. The additional term γ2µ2

2(γ−1)2ni(t)N2 in the lower bound (44) accounts for such
descrepancy. We also note that this additional term decreases with N and ni(t), which is true because the
larger the values of N and ni(t), the smaller the departure probability

∑J
j=1 p

k
ij(t)/(Nµj) of a particular

client, and hence the smaller the discrepancy.

Proof. Denote Eki (t) as the event that client k of class i remains in the system at the end of time t, k =
1, ..., ni(t). Recall that in Step 3 of our proposed Algorithm 1, each unit service of server j has pkij(t)/µj
probability of picking client k of class i, independently of other units of service of the same or other servers.
Thus, if this client has not run out of tasks yet, it has pkij(t)/(Nµj) probability to leave the system. We then
have

P[Eki (t)|n(t),p(t)] =
J∏
j=1

(
1−

pkij(t)

Nµj

)µj
,

and

E[Di(t)|n(t),p(t)] =

ni(t)∑
k=1

(
1− P[Eki (t)]

)
. (47)

Next, we derive the desired lower and upper bounds. In order to derive a lower bound, we use the inequality
1− x ≤ e−x ≤ 1− x+ x2/2 for x ≥ 0. We have

1− P[Eki (t)|n(t),p(t)] ≥ 1− exp

− J∑
j=1

pkij(t)

N


≥ 1

N

J∑
j=1

pkij(t)−
1

2N2

 J∑
j=1

pkij(t)

2

.

Hence,

E[Di(t)|n(t),p(t)] ≥ 1

N

ni(t)∑
k=1

J∑
j=1

pkij(t)−
1

2N2

ni(t)∑
k=1

 J∑
j=1

pkij(t)

2

. (48)
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To bound the second term of (48), we now show that, for all k = 1, ..., ni(t),

J∑
j=1

pkij(t) ≤
γµ

(γ − 1)n(t)
≤ γµ

(γ − 1)ni(t)
. (49)

To see this, recall that p(t) solves the maximization problem (14) subject to the capacity constraint (15).
Let qj(t) ≥ 0 be the optimal dual variable corresponding to server j’s capacity constraint in (15). Then,
consider any two different clients: client k of class i and client k′ of class i′, (i′, k′) 6= (i, k). We have

qj(t) + γ − Ckij(t) ≥ qj(t) + γ − 1 ≥ γ − 1

γ

(
qj(t) + γ − Ck′i′j

)
,

where we have used Ckij(t) ≤ 1 and Ck
′
i′j ≥ 0. Hence, by the KKT condition, we have,

J∑
j=1

pkij(t) =
1

V minj{qj(t) + γ − Ckij(t)}

≤ γ/(γ − 1)

V minj{qj(t) + γ − Ck′i′j}
=

γ

γ − 1

J∑
j=1

pk
′
i′j(t).

By the capacity constraint (15), we have

∑
i∈I(t)

ni(t)∑
k=1

pkij(t) ≤ µj .

Thus, summing over all j, we have

µ =

J∑
j=1

µj ≥
∑
i∈I(t)

ni(t)∑
k=1

J∑
j=1

pkij(t)

≥
J∑
j=1

pkij(t) +
∑

i′∈I(t),k′=1,...,ni′ (t)
(i′,k′)6=(i,k)

J∑
j=1

pk
′
i′j(t)

≥ (γ − 1)n(t)

γ

J∑
j=1

pkij(t).

The inequality (49) then follows. Substituting (49) into (48), we then have,

E[Di(t)|n(t),p(t)] ≥ 1

N

ni(t)∑
k=1

J∑
j=1

pkij(t)−
γ2µ2

2(γ − 1)2ni(t)N2
.

This proves (44).
On the other hand, in order to obtain an upper bound on (47), we iteratively apply the relationship

(1− x)(1− y) ≥ 1− (x+ y) for all x, y ≥ 0. We then obtain

P[Eki (t)|n(t),p(t)] ≥ 1−
J∑
j=1

µj
pkij
Nµj

= 1− 1

N

J∑
j=1

pkij .
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Substituting into (47), the inequality (45) then follows.
Finally, to show (46), we use Di(t) ≤

∑J
j=1 µj = µ. Combining with (45), we then have

E
[
D2
i (t) | n(t),p(t)

]
≤ E [Di(t) | n(t),p(t)]µ ≤ µ2

N
.

A.2 Proof of Lemma 4

Proof. For any given n and W = [W k
ij ], the gradient of f(π|n,W) (defined in (28)) with respect to π is

given by∇f(π|n,W) =

[
∂f

∂πkij

]
with

∂f

∂πkij
=

1∑J
j=1 π

k
ij

+ V (W k
ij − γ). (50)

Since the function f is concave in πkij , we thus have, for any p̃,

f(π|n,W)− f(p̃|n,W) ≤ [∇f(p̃|n,W)]′(π − p̃). (51)

Using the value of p̃(t) given in the lemma, the partial derivative of f at p̃(t) is equal to

∂f

∂πkij

∣∣∣∣
πkij=

λip
∗
ij

ni(t)

=
ni(t)

λi
+ V (W k

ij − γ). (52)

Therefore, for any π, we have,

f(π|n,W)− f(p̃(t)|n,W)

≤
∑
i∈I(t)

ni(t)∑
k=1

J∑
j=1

(
ni(t)

λi
+ V (W k

ij − γ)

)(
πkij −

λip
∗
ij

ni(t)

)
.

The result of the lemma then follows.

A.3 Chernoff-Hoeffding Bound

We cite the following lemma from Fact 1 in [ACBF02], which is simply the Chernoff-Hoeffding bound.

Lemma 9. Let X(s), s = 1, 2, ... be a sequence of i.i.d. Bernoulli random variables with mean C∗ij . For
any given positive integer a and any real number t ≥ 1, the followings hold:

P

{∑a
s=1X(s)

a
− C∗ij ≥

√
2 log t

a

}
≤ 1

t4
,

and

P

{∑a
s=1X(s)

a
− C∗ij ≤ −

√
2 log t

a

}
≤ 1

t4
.
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A.4 Proof of Lemma 5

Fix k, i and j. Without loss of generality, we can take t1(k) = 1, i.e., we label the first time-slot as the
time-slot when this particular client arrives to the system. Recall that hkij(t) is the number of tasks from this
particular client that have been assigned to server j by the end of time t, and hki (t) =

∑J
j=1 h

k
ij(t). For

t = 0, we take hkij(0) = hki (0) = 0. In the definition of the event Fj(t) below, in order to avoid the difficulty
of division by zero, we further define ĥkij(t) = max{hkij(t), 1} and ĥki (t) = max{hki (t), 1}. Then, define
the event

Fj(t) =

Ckij(t− 1)− C∗ij ≤

√√√√2 log ĥki (t− 1)

ĥkij(t− 1)

 ,

where Ckij(t − 1) is the empirical average of the received payoffs at the end of time slot t − 1. We let
Qkij(t) = Ckij(t)− C∗ij ≤ 1. Then

t2(k)∑
s=1

Qkij(s)p
k
ij(s) ≤

t2(k)∑
s=1

Qkij(s)p
k
ij(s)1Fj(s) +

t2(k)∑
s=1

pkij(s)1F cj (s). (53)

We first bound the expectation of the first term in (53). By the definition of the event Fj(t) and the
definition of the UCB estimate Ckij(t),

t2(k)∑
s=1

Qkij(s)p
k
ij(s)1Fj(s) ≤

t2(k)∑
s=1

2

√√√√2 log ĥki (s− 1)

ĥkij(s− 1)
pkij(s)

≤ 2
√

2 log ak

t2(k)∑
s=1

√
1

ĥkij(s− 1)
pkij(s). (54)

Recall that Y k
ij(t) is the actual number of tasks served by server j at time slot t. We now show that

EΛ

t2(k)∑
s=1

√
1

ĥkij(s− 1)
Y k
ij(s)

 = EΛ

t2(k)∑
s=1

√
1

ĥkij(s− 1)
pkij(s)

 . (55)

To see this, let Ft denote the filtration (which contains all the system information) up to the end of time-slot
t. In particular, Y k

ij(s) and pkij(s) are measurable with respect to Ft for all s ≤ t. Let

Mt ,
t∑

s=t1(k)

√
1

ĥkij(s− 1)
(Y k
ij(s)− pkij(s)).

Since EΛ[Y k
ij(s+1)|pkij(s+1)] = pkij(s+1), we have EΛ[Y k

ij(s+1)−pkij(s+1)|Fs] = 0. It then follows that
Mt is martingale. Further, note that t2(k) is the minimum between T and the first time that hki (t) exceeds
ak. Hence, t2(k) is a stopping time with respect to the filtration Ft and is upper bounded by T. Invoking the
Optional Stopping Theorem [Haj15, Section 10.4], we then have E[Mt2(k)] = 0, which is precisely (55).
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By definition, Y k
ij(t) = hkij(t)− hkij(t− 1). It follows that

t2(k)∑
s=1

√
1

ĥkij(s− 1)
Y k
ij(s) =

t2(k)∑
s=1

√
1

ĥkij(s− 1)

(
hkij(s)− hkij(s− 1)

)
≤ 2µj +

∫ ak−1

1

1√
x

dx

≤ 2µj + 2
√
ak,

where the second-to-last step follows because whenever hkij(t) = 0, we must have hkij(t)− hkij(t− 1) = 0

and we always have hkij(t) − hkij(t − 1) ≤ µj . Combining the last displayed equation with (54) and (55),
we have

EΛ

t2(k)∑
s=1

Qkij(s)p
k
ij(s)1Fj(s)

 ≤ 4
√

2ak log ak + 4µj
√

2 log ak. (56)

To bound the expected value of the second term in (53), we first note that

EΛ

t2(k)∑
s=1

Y k
ij(s)1F cj (s)

 = EΛ

t2(k)∑
s=1

pkij(s)1F cj (s)

 , (57)

which can be derived similarly to (55). For each integer 0 ≤ a ≤ ak, define

τa = min
{
T + 1, inf

{
s ≥ 1 | hkij(s− 1) ≥ a

}}
.

Note that 1 = τ0 ≤ τ1 ≤ · · · ≤ τak = t2(k) + 1. Then,

t2(k)∑
s=1

Y k
ij(s)1F cj (s) =

∑
a∈[0,ak−1]:τa+1>τa

τa+1−1∑
s=τa

Y k
ij(s)1F cj (s)

=
∑

a∈[0,ak−1]:τa+1>τa

Y k
ij(τa+1 − 1)1F cj (τa+1−1)

≤ µj + µj
∑

a∈[1,ak−1]:τa+1>τa

1F cj (τa+1−1), (58)

where the second equality holds because across all s ∈ [τa, τa+1 − 1], the value of Y k
ij(s) can be non-zero

only at τa+1 − 1 (otherwise, hkij(s) will be at least a + 1 before τa+1 − 1, contradicting the definition of
τa+1). Combining (57) and (58) yields that

EΛ

t2(k)∑
s=1

pkij(s)1F cj (s)


≤ µj + µj

∑
a∈[1,ak−1]:τa+1>τa

PΛ

{
F cj (τa+1 − 1)

}
. (59)

Fix an integer a such that τa+1 > τa. It follows that the number hkij(τa − 1) of tasks assigned to server j by
the end of time-slot τa − 1 must be exactly equal to a. Note that τa − 1 ≤ τa+1 − 2 < τa+1 − 1. Hence, we

31



must also have hkij(τa+1 − 2) = a and thus the empirical average Ckij(τa+1 − 2) is the average of exactly
a i.i.d. Bernoulli random variables X(1), . . . , X(a) with mean C∗ij . Moreover, a ≤ hki (τa+1 − 2) ≤ ak.
Therefore,

F cj (τa+1 − 1) ⊂ ∪akη=a

{
1

a

a∑
u=1

X(u)− C∗ij >
√

2 log η

a

}
.

By the union bound,

PΛ

{
F cj (τa+1 − 1)

}
≤

ak∑
η=a

P

{∑a
u=1X(u)

a
− C∗ij >

√
2 log η

a

}

≤
ak∑
η=a

1

η4
≤ 1

a4
+

∫ ∞
a

1

η4
dη ≤ 4

3a3
,

where the second inequality is due to Lemma 9. Substituting it into (59), we then have

EΛ

t2(k)∑
s=1

pkij(s)1F cj (s)

 ≤ µj + µj

∞∑
a=1

4

3a3
= 3µj . (60)

The final result follows by combining (56) and (60) with (53).

A.5 Proof of Lemma 6

Fix t and client k of class i. Let n = n(t) and recall that Ckij(t) ≤ 1. First, consider [p̂kij(t)], which is the
maximizer of f(p|n,C∗)) over the constraint (15). Let qj(t) ≥ 0 be the optimal dual variable corresponding
to server j’s capacity constraint in (15). By the KKT condition, for any client k of any class i, we have

J∑
j=1

p̂kij(t) =
1

V minj{qj(t) + γ − C∗ij}
≤ 1

V (γ − 1)
, (61)

where the inequality holds because qj(t) ≥ 0 and C∗ij ≤ 1. We now compare the pair (i, k) with another
pair (i′, k′) 6= (i, k). Note that for any c, c′ ∈ [0, 1], we have

qj(t) + γ − c ≥ qj(t) + γ − 1 ≥ γ − 1

γ

(
qj(t) + γ − c′

)
. (62)

Applying this relationship to the KKT condition (61), we have

J∑
j=1

p̂kij(t) =
1

V minj{qj(t) + γ − C∗ij}

≤ γ/(γ − 1)

V minj{qj(t) + γ − C∗i′j}
=

γ

γ − 1

J∑
j=1

p̂k
′
i′j(t).

By the capacity constraint (15),

J∑
j=1

p̂kij(t) +
∑

(i′,k′)6=(i,k)

J∑
j=1

p̂k
′
i′j(t) ≤ µ,
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where µ ,
∑J

j=1 µj . Combining the above two inequalities, we have

J∑
j=1

p̂kij(t) ≤
µ

1 + (n(t)− 1)(γ − 1)/γ
≤ γµ

(γ − 1)n(t)
, PA,

where n(t) =
∑I

i=1 ni(t). Combining the last displayed equation with (61), we have

J∑
j=1

p̂kij(t) ≤ min

{
PA,

1

V (γ − 1)

}
. (63)

Next, we consider [pkij(t)], which is the maximizer of f(p|n,C(t))) over the constraint (15). Let qj(t)
now denote the optimal dual variable for this optimization problem. Using the KKT condition again, we
have

J∑
j=1

pkij(t) =
1

V minj{qj(t) + γ − Ckij(t)}
.

Combining the last displayed equation with (62) again, we have that for any pairs (i, k) and (i′, k′),

J∑
j=1

pkij(t) ≥
(γ − 1)/γ

V γminj{qj(t) + γ − Ck′i′j(t)}
=
γ − 1

γ

J∑
j=1

pk
′
i′j(t).

Now, consider the following two sub-cases. In sub-case 1, suppose that qj(t) > 0 for all j, which means
that all servers are fully utilized. Then, we get

J∑
j=1

µj =
J∑
j=1

pkij(t) +
∑

(i′,k′) 6=(i,k)

J∑
j=1

pk
′
i′j(t).

Hence, it follows from the last two displayed equations that

J∑
j=1

pkij(t) ≥
µ

1 + γ(n(t)− 1)/(γ − 1)
≥ (γ − 1)µ

γn(t)
, PB.

In sub-case 2, suppose that there is some server j0 such that qj0(t) = 0. Then

J∑
j=1

pkij(t) =
1

V minj{qj(t) + γ − Ckij(t)}

≥ 1

V (qj0(t) + γ − Cki,j0)
≥ 1

V γ
.

Combining these two sub-cases together, we have

J∑
j=1

pkij(t) ≥ min

{
PB,

1

V γ

}
. (64)

Combining (63) and (64), we have∑J
j=1 p̂

k
ij(t)∑J

j=1 p
k
ij(t)

≤
min{PA, 1

V (γ−1)}
min{PB, 1/(V γ)}

≤
(

γ

γ − 1

)2

.
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A.6 Proof of Theorem 1: Upper-Bound on the Expected Number of Clients in the System

To prove Theorem 1, we first show that when the number of users in the system is large enough, all the
servers must be busy (Lemma 10). Then, we show that when the number of users in the system is sufficiently
large, the total number of departures will first-order stochastically dominate a Binomial random variable with
mean (µ+λ)/(2N) (Lemma 11). Finally, we construct a coupling between the system and a Geom/Geom/µ
queue to bound n(t) and obtain the final result (Lemma 12 and Lemma 13).

Lemma 10. If n(t) ≥ µV γ, then for every server j,

∑
i∈I(t)

ni(t)∑
k=1

pkij(t) = µj .

Proof. We prove it by contradiction. Suppose that the conclusion does not hold. Then there must exist a
server j0 such that qj0(t) = 0. Since [pkij(t)] solves (14), it follows from the KKT condition that for every
user k of class i,

J∑
j=1

pkij(t) =
1

V minj{qj(t) + γ − Ckij(t)}
≥ 1

V γ
.

Hence, we have ∑
i∈I(t)

ni(t)∑
k=1

J∑
j=1

pkij(t) ≥
n(t)

V γ
≥ µ =

J∑
j=1

µj ,

where the second inequality holds due to the assumption that n(t) ≥ µV γ. On the other hand, due to the
server capacity constraint, ∑

i∈I(t)

ni(t)∑
k=1

pkij(t) ≤ µj .

Combining the last two displayed equations yields that

∑
i∈I(t)

ni(t)∑
k=1

pkij(t) = µj

for all j, which leads to a contradiction.

Next, let

τ∗ = µγmax

{
V,

2µ2

(µ− λ)(γ − 1)

}
. (65)

We present the following lemma which is the key to bound Theorem 1.

Lemma 11. When the number of clients in the system is sufficiently large, i.e., if

n(t) ≥ τ∗, (66)

then the number of total departures at time t, D(t), first-order stochastically dominates W , where

W ∼ Binom

(
µ,
µ+ λ

2Nµ

)
,

i.e., P {D(t) ≥ x} ≥ P {W ≥ x} for all x ≥ 0.
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Proof. According to Algorithm 1 (lines 11 to 14), each server has µj capacity and thus makes µj indepen-
dent selections of users to serve. In total, there are µ such selections at every time-slot. Let us index these
selections by 1, 2, . . . , µ. Note that different selections may select the same user. Let S` denote the set of
users (i, k) who has been selected before the `-th selection. Let X` = 1 if the `-th selected user is not in S`,
and X` = 0, otherwise. Suppose that server j makes the `-th selection. Then, conditional on S`, X`(t) is a
Bernoulli random variable with mean

P {X`(t) = 1|S`} =
1

µj

∑
i∈I(t)

ni(t)∑
k=1

pkij(t)1{(i,k)/∈S`}

= 1− 1

µj

∑
i∈I(t)

ni(t)∑
k=1

pkij(t)1{(i,k)∈S`}

≥ 1− µ max
i∈I(t)

max
1≤k≤ni(t)

pkij(t),

where the second equality holds due to Lemma 10, and the last inequality holds because µj ≥ 1 and
|S`| ≤ µ. Using (49) in the proof of Lemma 8, we have

J∑
j=1

pkij(t) ≤
γµ

(γ − 1)n(t)
, ∀(i, k).

Combining the last two displayed equations yields that

P {X`(t) = 1|S`} ≥ 1− γµ2

(γ − 1)n(t)

≥ µ+ λ

2µ
, (67)

where the last inequality holds due to the assumption (66). Let

Y`
i.i.d.∼ Bern

(
µ+ λ

2µ

)
, ` = 1, . . . , µ. (68)

Then we can couple X` and Y` such that X` ≥ Y` for all 1 ≤ ` ≤ µ in the following way by starting from
` = 1.

If X` = 1, i.e., a user (i, k) /∈ S` is chosen at the `-th selection, then independently of everything else
generate Y` = 1 with probability

µ+ λ

2µP {X` = 1|S`}
(67)

≤ 1

and Y` = 0 otherwise. If X` = 0, i.e., a user (i, k) ∈ S` is chosen at the `-th selection, then let Y` = 0. Note
that by construction,

P {Y` = 1|S`} = P {X` = 1|S`}
µ+ λ

2µP {X` = 1|S`}
=
µ+ λ

2µ
.

Hence, Y` is independent of S`. As a consequence,

P {Y` = 1|Y1, . . . , Y`−1, Y`+1, Yµ}
= ES` [P {Y` = 1|S`, Y1, . . . , Y`−1, Y`+1, Yµ}]

= ES` [P {Y` = 1|S`}] =
µ+ λ

2µ
.
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Thus, Y`’s are independently and identically distributed as specified in (68). Moreover, Y` ≤ X`. Let
Z`

i.i.d.∼ Bern(1/N), which are independent of Y`’s. For each ` such that Y` = 1 or X` = 1, the user selected
at the `-th selection has not been selected before. Thus, it runs out of tasks and leaves the system immediately
with probability equal to 1/N , independently of everything else. Thus, we can further construct a coupling
such that the `-th selected user leaves the system immediately after the `-th selection if and only if Z` = 1.
Hence, the total number of departures D(t) satisfies that

D(t) ≥
µ∑
`=1

Y`Z`.

The proof is complete by letting

W ,
µ∑
`=1

Y`Z` ∼ Binom

(
µ,
µ+ λ

2Nµ

)
.

To complete the proof of Theorem 1, we first establish a coupling between n(t) and m(t), which is a
Geom/Geom/µ queue with dynamics given by

m(t+ 1) =
[
m(t) + U(t+ 1)−D′(t)

]
+
, (69)

where [x]+ = max{x, 0} and

D′(t) ∼ Binom

(
µ,
µ+ λ

2µN

)
.

Then, we prove that E [m(t)] is bounded and E [n(t)] ≤ E [m(t)] + τ∗ + 1 for all t in Lemma 12 and
Lemma 13, respectively.

Lemma 12. The queue m(t) following (69) is stable and satisfies that

E [m(t)] ≤ E [m(∞)] ≤ λ+ µ

µ− λ
.

where E [m(∞)] denotes the mean queue length in steady state.

Proof. We first show that m(t) is stable and bound E [m(∞)] from the above. Let

bj = P
{
D′(t) = j

}
, ∀j ≥ 0.

and b = E [D′(t)]. Note that m(t) is a discrete-time Markov chain with transition matrix given by

P =


1− a a
c1 d1 d0

c2 d2 d1 d0

c3 d3 d2 d1 d0
...

...
...

...
...

. . .

 ,
where

a = λ/N, d0 = ab0, dj = abj + (1− a)bj−1, j ≥ 1

cj = 1−
j∑

k=0

dk, j ≥ 1.
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Since a < b, it is shown in [Neu81] (also cf. [Alf16, Section 4.8.1]) that P is positive recurrent and the
steady-state distribution is given by

π0 =
b0(1− r)

b0(1− r) + r
, πk =

rk(1− r)
b0(1− r) + r

, ∀k ≥ 1,

where r is the unique solution in (0, 1) of

∞∑
k=0

dkr
k−1 = 1.

Plugging in the expression of dk, we find that

∞∑
k=0

dkr
k−1 =

(
1 + a

1− r
r

)
E
[
rD
′(t)
]

=

(
1 + a

1− r
r

)(
1− b(1− r)

µ

)µ
,

where the last equality holds in view of the moment generating function of Binomial distribution. Combining
the last two displayed equation gives that(

1 + a
1− r
r

)(
1− b(1− r)

µ

)µ
= 1.

Using the expression 1 + x ≤ ex for all x ∈ R, we get that

ea(1−r)/r−b(1−r) ≥ 1,

which further implies that r ≤ a/b. Hence, the mean queue length in steady state satisfies

E [m(∞)] =
∑
k≥1

kπk

=
r

(b0(1− r) + r)(1− r)

≤ 1

1− r

≤ b

b− a
=
λ+ µ

µ− λ
.

Finally, we complete the proof by showing that E [m(t)] is non-decreasing in t. Let Z(t − 1) = U(t) −
D′(t− 1). By recursively applying the Lindely’s recursion [GOW04, Lemma1.1]:

m(t) = [m(t− 1) + Z(t− 1)]+ ,

we get that

m(t) =

[
t−1∑
s=0

Z(s),
t−1∑
s=1

Z(s), . . . , Z(t− 1)

]
+

.
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Let X(0) = 0 and X(s) = Z(0) + . . .+ Z(s− 1). Since Z(t) are i.i.d. across t,

m(t)
d
= [Z(0), Z(0) + z(1), . . . , Z(0) + . . .+ Z(t− 1)]+

(d)
= max

0≤s≤t
{X(s)},

where d
= means “equal in distribution.” Thus,

m(t+ 1)
(d)
= max

0≤s≤t+1
{X(s)}

first-order stochastically dominates m(t). As a consequence, E [m(t+ 1)] ≥ E [m(t)] .

Next, we construct the coupling between n(t) and m(t) and show that n(t) is upper bounded by m(t)
plus a constant. Recall that

n(t+ 1) = n(t) + U(t+ 1)−D(t),

where U(t) ∼ Bern(λ/N). In view of Lemma 11, when n(t) ≥ τ∗, we can couple D(t) and D′(t) such
that D(t) ≥ D′(t). We than have the following lemma.

Lemma 13. For any time t, the total number of users n(t) in the system is bounded by

n(t) ≤ m(t) + τ∗ + 1, (70)

where m(t) is the Geom/Geom/µ queue defined in (69).

Proof. We prove this by induction. When t = 0, (70) holds trivially. Suppose (70) holds for t, we prove
that it also holds for t+ 1. In particular, if n(t) ≤ τ∗, since U(t+ 1) ≤ 1, it holds that n(t+ 1) ≤ τ∗ + 1
and thus (70) holds. If n(t) ≥ τ∗, since D′(t) ≤ D(t), it follows that

n(t+ 1) = n(t) + U(t+ 1)−D(t)

≤ n(t) + U(t+ 1)−D′(t)
≤ m(t) + U(t+ 1)−D′(t) + τ∗ + 1

≤ m(t+ 1) + τ∗ + 1.

Therefore, (70) holds for t+ 1 in all cases.

It immediately follows from Lemma 13 and Lemma 12 that

E [n(t)] ≤ E [m(t)] + τ∗ + 1

≤ λ+ µ

µ− λ
+ τ∗ + 1

=
2µ

µ− λ

(
1 +

µ2γ

γ − 1

)
+ µγV,

where the last equality follows from (65).
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