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Abstract—We consider the downlink of an OFDM system for
supporting a large number of delay-sensitive users. The OFDM
scheduling problem can be modeled as a discrete-time multi-
source multi-server queuing system with time-varying connec-
tivity. For such a system, the Max-Weight policy is known to
be throughput-optimal and the Server-Side Greedy (SSG) policy
has been recently shown to achieve small queue lengths for i.i.d.
arrival processes. However, there is often significant difference
between queue-length optimality and delay optimality, andthere
exist arrival patterns such that algorithms with small queue
backlog can still lead to large delay. In this work, we propose a
new OFDM scheduling algorithm that gives preference to packets
with large delay. Assuming ON-OFF channels, we calculate upper
and lower bounds for the delay violation probability for a
large class of arrival processes. We discuss the cases wherethe
proposed algorithm is rate-function delay-optimal, and wealso
show that these bounds can be used to construct an admission
control sceme. We substantiate the result via both analysisand
simulation.

I. I NTRODUCTION

Next generation OFDM-based wireless cellular systems
(e.g. WiMax and LTE) are envisioned to provide much higher
data rate and larger system capacity. It is conceivable thatin
the future, both voice, data, and video traffic can be carried
on a single packet-based OFDM system, eliminating the need
to maintain separate voice networks. An important problem
in the realization of this goal is the design of scheduling
algorithms that provide low-delay guarantees to delay sensitive
voice/video users. In a typical OFDM system, the bandwidth
available to the base-station is partitioned into hundredsof
orthogonal carriers. A given user can be served by multi-
ple frequency carriers simultaneously, and the allocationof
carriers to users can change over every time-slot. How user
transmissions should be scheduled over frequency and time
will have a significant impact on the delay performance of the
system. Morevoer, an efficient admission control algorithmis
needed to ensure that the network capacity is fully utilized
while meeting the delay requirement of the users. Both of
these problems need to be carefully studied.

In this paper, we focus on the down-link OFDM scheduling
and admission control problem in a single cell. Arriving
packets get queued in the buffer at the base-station before they
are transmitted to the users. For the scheduling problem the
goal is to minimize the amount of time that any packet spends

in the buffer at the base-station. In the literature, it is well-
known that the Max-Weight algorithm is throughput optimal
under such a setting, in the sense that it can stabilize the system
under the largest set of offered loads. However, it has been
observed in [1] [2] [3] that the Max-Weight algorithm can
lead to large delays for users. Specifically, although a system
can be stabilized by the Max-Weight algorithm, the queue
length can be very large. [1] [2] [3] proposed a number of
new scheduling algorithms that are efficient in maintaininglow
queue lengths for all users. They keep queue length small by
serving the queues with higher weighted sum and at the same
time balancing queues in each time-slot. The authors of [1] [2]
[3] use large-deviation tools to study the asymptotic decay-rate
of the probability that the queue-length of any user exceed a
given threshold, as the number of users and the number of
frequency carriers both increase. They show that for Bernoulli
arrivals that are i.i.d. across time, the proposed algorithm is
rate-function queue-length optimal i.e., they achieve thelargest
decay-rate for the above queue overflow probability. For more
general arrival processes, the algorithms are shown to achieve
strictly positive decay-rates for the queue overflow probability

However, simply maintaining low queue-lengths is insuffi-
cient for guaranteeing low waiting-time. When the number of
arrival packets is constant over time, one may map the decay
rate of the queue-overflow probability to that of the delay-
violation probability [4]. For general arrival processes,there
may not exist such mappings. The discrepancy can be quite
large especially when the arrivals are correlated over time. For
example, a packet that is present in a queue with low queue-
length may have to wait for a long time to get served if few
packets are offered to this queue for several time-slots.

In this paper, we directly study the packet delay of OFDM
down-link scheduling algorithms under an ON-OFF fading
model. We use large-deviations tools and study the asymptot-
ical decay-rate of the probability that the delay of any packet
exceeds a threshold, as the number of users and the number of
channels both increases. (The precise definition of the above
delay-violation probability is given in Section II.) We provide
a new OFDM scheduling algorithm and derive a lower bound
on the rate-function of the delay-violation probability attained
by this algorithm. We also obtain an upper-bound on the rate-
function of the delay-violation probability for any scheduling



policy. From these bounds, we can identify the cases where
the proposed algorithm is rate-function delay-optimal. Unlike
[1], [2], [3], our result holds for a large class of general arrival
processes, which may be correlated across time. We further use
these bounds to derive a simple threshold policy for admission
control. To the best of our knowledge, this is the first work
that deals directly with the design and analysis of rate-function
delay-optimal scheduling and admission control policies in
OFDM wireless cellular systems.

When a large number of users are served by a single-
server queue with fixed capacity, it is easy to see that the
delay-optimal policy should serve packets in a First-come
First-serve manner. Previously, many-source large-deviations
tools have been used to study the delay performance of First-
come First-serve (FCFS) scheduling policy in such single
server queues [5] [6]. Somewhat surprisingly, our analysis
indicates that, when the number of users and the number of
carriers are large, an OFDM system under ON-OFF fading
behaves quite closely to a single-server queue with intermittent
connectivity, provided that some conditions on the per-user
transmission requirements are satisfied (see Lemma 6 in
Section IV). Unfortunately, the FCFS policy no longer satisfies
these conditions. Specifically, due to the random connectivity
between queues and servers, we may not always be able to
serve the set of packets with the highest delay in every time-
slot. Hence, we must design a new policy, called DWM (delay-
weighted matching), that respects the conditions on the per-
user transmission requirement.

In summary, the main contributions of this work are,

• We develop a scheduling algorithm, called DWM (delay-
weighted matching), and obtain a lower bound on the
asymptotic decay-rate of its delay-violation probability.
By comparing with a related upper bound on the rate-
function for any scheduling policy, we identify cases
when the proposed DWM algorithm is rate-function
delay-optimal. Our analysis holds for a large class of
arrivals processes that may be correlated across time.
Further, we develop a simple admission control policy
based on the decay rate attained by the DWM algorithm.

• The key insight that emerges from our work is that OFDM
systems with a large number of users and channels may
be approximately modeled as a single-server queue with
intermittent connectivity. While this insight considerably
simplifies the analysis and design, its application requires
careful consideration of the restrictions imposed by the
random nature of channel capacity in a wireless OFDM
system. We provide the analytical techniques that suc-
cessfully address these issues.

II. SYSTEM MODEL

We model the down-link of a single cell in an OFDM sys-
tem as a discrete-time multi-source multi-server system with
stochastic connectivity. There aren frequency sub-carriers
each of which is represented by a server. There arem = φn
users and the base-station maintains a queue for each user. For
most of the analysis we will fixφ and study the delay violation

probability asm and n increase (defined below). Then, in
section VIII when we study the admission control problem,
we will vary φ and study the largest value ofφ that can meet
a given delay constraint. The arrival process to each queue is
assumed to be stationary and ergodic, and i.i.d. across queues.
However, arrivals may correlate across time. We assume that
time is slotted. Letau(i) denote the number of packets that
arrive to queueu at time i, and letau(i, j) =

∑j
k=i au(k)

denote the total arrivals to queueu from time i to j. We
use ā to denoteE[au(·)]. Let A(i) =

∑m
u=1 au(i) denote the

cumulative arrivals at timei andA(i, j) =
∑j

k=i A(k) denote
the cumulative arrivals to all queues from timei to j. To model
channel fading, the queue-server connectivity in time-slot i is
given by the matrixC(i) = [cu,s(i)]m×n. We assume an ON-
OFF model. Whencu,s(i) = 1 we say that the queueu is
connected to the servers at time i. When cu,s(i) = 0 we
say that the queueu is disconnected from servers at time
i. At every time-slot the resource manager or the scheduler
at the base station allocates queues to servers. If a connected
servers is allocated to a queueu in time-slot i, then one
packet fromu can be served by the end of the time-slot by
servers. In a time-slot, multiple servers may be assigned to
a single queue, but each server can be assigned only to one
queue. For concreteness we assume that all arrivals occur atthe
beginning of a time-slot followed by any possible service. We
also assume that the average arrival rateā falls into the interior
of the maximum stability region of the system [7], and hence
the system can be made stationary and ergodic under some
scheduling algorithm. Further, we assume that each queue has
infinite buffer capacity so that no packets are ever dropped.
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Fig. 1. System Model

Fix a queueu at a time-sloti. Over all packets that are
present in queueu at time i, let Du(i) denote the maximum
delay starting from timei until all packets in this set are
served, Note that if the packets of each queueu are served in
a First-come First-serve (FCFS) manner and there is at least
one packet that arrives to queueu at time i, thenDu(i) is
the maximum delay of all packets that arrive to queueu at
time i. Further, this definition allowsDu(i) to be well-defined
even when there is no packet arriving to queueu at time i.
Let D(i) = maxu{Du(i)}. Hence,D(i) > d if and only
if there exists a packet that arrived on or before timei and
that has not been served till timei + d. In this paper, we are
interested in the delay performance in the large-system regime.
Specifically, consider a sequence of systems with a fixedφ, but
with both the number of usersm and the number of serversn



increasing proportionally to infinity. Assuming that the system
is stationary and ergodic, let

I(d) = lim
n→∞

−
1

n
logP

(

D(0) > d
)

,

whenever the limit exists.I(d) is called the rate-function for
delay thresholdd, which captures the asymptotic decay-rate
(as the system size increases) of the probability thatD(i)
exceeds the thresholdd. One can imagine that a larger value
of rate-function would imply a lower probability of packets
getting delayed byd time-slots. In fact, for largen we can
estimateP

(

D(0) > d
)

≈ e−nI(d), and the estimate becomes
better for increasing values ofn. Our goal is then to design
scheduling algorithms that achieve large values of the delay
rate-functionI(d). A policy is said to be rate-function delay-
optimal if it achieves the maximum value ofI(d) that any
scheduling algorithm can achieve. Note that the above large-
n, fixed-d asymptotics are meaningful for the OFDM systems
with a large number of users and carriers but requiring small
delay.

Before we continue with the system model, we state a
technical result that is often referred to in the rest of the paper.

Lemma 1: Let Xi, i = 1, 2, ... be a sequence of binary
random variables such that for alli,

P

(

Xi = 1
∣

∣

∣
Xi′ , i

′ 6= i
)

< c(n)e−nb,

regardless of the values of other random variablesXi′ , i
′ 6= i,

wherec(n) is a polynomial inn of finite degree. LetN1 be
such thatc(n) < e

nb
2 for all n > N1. Then, for any0 < a < 1,

P

(

t
∑

i=1

Xi > at
)

< e−
tnab

3

for all n > N := max{ 12ab , N1}.
Proof: Please refer to Appendix A.

A. Technical Assumptions

Additionally, we make the following technical assumptions
about the arrival process and the channel states. Recall that
m = φn for a fixedφ.

Assumption 1: Arrivals are bounded. There existsL <∞
such thatau(i) ≤ L for any i andu.

Assumption 2: Given anyε > 0 and δ > 0, there exists
T > 0, N > 0, and a positive functionIB(ε, δ) independent
of n and t such that

P

(

∑t
i=1 1{|A(i)−ām|>εm}

t
> δ

)

< e−mtIB(ε,δ), (1)

for all t > T and n > N . For eachε > 0 and δ > 0, let
TB(ε, δ) andNB(ε, δ) be one corresponding set of values for
suchT andN , respectively.

Assumption 3: We assume that the channel process isi.i.d.,
i.e.,

cu,s(i) =

{

1 with probability q,

0 with probability 1− q,

independently acrossi, u, s.
Remark: Assumption 1 is mild and it states that the arrivals

in every time-slot must be bounded above by a finite number
L. Assumption 3 has been used in previous work [1] [2] [3]
[8]. Although the i.i.d. ON-OFF channel model is a simpli-
fication, we believe that the insights will also be useful for
more general channel models. For instance, in Section VII we
will also provide simulation results for Markovian channels.
Assumption 2 is very general and captures a large class of
arrival processes. The intuition behind Assumption 2 is a
statistical multiplexing effect when a large number of sources
are multiplexed. The basic tenet of the assumption is that
the arrivals to different queues are independent of each other.
Recall that the arrivals to every queue may vary around the
mean valuēa. In some time-slots, the arrivals to one queue
may be higher or lower than̄a. However, when considering a
large number of such independent sources, one would expect
that the sources with large arrivals would balance the sources
with small arrivals so that the sum is close toāφn. Hence,
the chance that the sum is far away from the meanāφn
is low, especially whenn is large. Further, as long as the
temporal correlation of arrivals is short-ranged, the chance
that the total arrival over a large interval is far away from
the mean also diminishes as the length of the time interval
increases. Such intuitive properties are captured in Assumption
2. Specifically, the probability bound on the right hand side
of (1) can be made arbitrarily small for sufficiently largen
and t. The assumption can be mathematically verified for a
large class of arrival processes. We provide here the proof for
two special classes, i.e., i.i.d. arrivals and arrivals driven by
two-state Markov chains.

Lemma 2: Let a(·) be a packet arrival process such that in
every time-slot,

a(i) =

{

r with probability p,

0 with probability 1− p.
.

Note that in this casēa = pr. Then, given anyε > 0, and
δ > 0, there existT > 0, N > 0, and a positive function
IB(ε, δ) independent ofn and t such that

P

(

∑t
i=1 1{|A(i)−ām|>εm}

t
> δ

)

< e−mtIB(ε,δ)

for all t > T andn > N .
Proof: Let ε2 = ε

r . Then, it is clear that, if at any
time i the fraction of queues that receiver arrivals belongs
to the interval(p − ε2, p + ε2), then |A(i) − ām| < εm.
Moreover, the probability of this event is no smaller than
1−2e−mmin{DKL(p+ε2||p),DKL(p−ε2||p)}, whereDKL(x||y) =
x log x

y + (1− x) log 1−x
1−y , is the Kullback-Leibler divergence

[9]. We defineS(i) to be a sequence of random variables such
that S(i) = 1 if |A(i) − ām| > εm andS(i) = 0 otherwise.
Then, from Lemma 1 we know that there existsN > 0 such
that

P

(

∑t
i=1 S(i)

t
> δ

)

< e−mt
δ min{DKL(p+ε2||p),DKL(p−ε2||p)}

3



for all n > N and t > 0. The result then follows.
The next lemma shows that Assumption 2 also holds for an

arrival process driven by a two-state Markov chain.
Lemma 3: Let a(·) be a packet arrival process driven by a

Markov chain with two states 1 and 2. Assume that whenever
the Markov chain is in statei, ri packets are generated in
each time-slot. State transitions occur at the end of time-slots.
Suppose that the transition probability of the chain is given

by the matrix,

[

1− p1 p1
p2 1− p2

]

. Note that in this casēa =

p2

p1+p2
r1 +

p1

p1+p2
r2.

Then, givenε > 0, andδ > 0, there existsT , N and a positive
function IB(ε, δ) independent ofn and t such that

P

(

∑t
i=1 1{|A(i)−ām|>εm}

t
> δ

)

< e−mtIB(ε,δ)

for all t > T andn > N .
Proof: Please refer to Appendix B.

B. Chernoff Bound and Cramer’s Theorem

In the rest of the paper, we will frequently use the following
standard results from Probability Theory in our proofs. Let
Xi, 1 ≤ i ≤ n be a sequence of i.i.d. random variables. For
any x > E[Xi], the Chernoff bound states that

P

(

n
∑

i=1

Xi ≥ nx
)

≤ e−n[θx−λX1(θ)],

for any real numberθ > 0, (2)

whereλXi
(θ) = logE[eθXi ] is the cumulant-generating func-

tion of Xi. The best bound is obtained by choosing the real
numberθ = θ∗ that maximizesθx−λX1 (θ), assuming thatθ∗

exists. Cramer’s Theorem states that the upper bound of (2)
is tight in the exponent [9, Chapter 2], i.e.

lim
n→∞

−
1

n
logP

(

n
∑

i=1

Xi ≥ nx
)

= θ∗x− λX1(θ
∗).

Note that the cumulative arrivals in our system in any time
interval−t+1 to 0, i.e.A(−t+1, 0) =

∑m
u=1 au(−t+1, 0),

is just the sum ofm = φn i.i.d. random variables. Hence,
using Cramer’s Theorem we have, for anyx ≥ 0,

lim
n→∞

−
1

n
logP

(

A(−t+ 1, 0) ≥ n(t+ x)
)

= lim
m→∞

−
φ

m
P

(

A(−t+ 1, 0) ≥
m

φ
(t+ x)

)

= φ sup
θ

[

θ
( t+ x

φ

)

− λau(−t+1,0)(θ)

]

.

whereλau(−t+1,0)(θ) = logE[eθau(−t+1,0)] is the cumulant-
generating function ofau(−t+1, 0). For a fixedφ, we define
the quantity

IA(t, x) := φ sup
θ

[

θ
( t+ x

φ

)

− λau(−t+1,0)(θ)

]

.

This quantity is the rate function for the probability that in t
time-slots, the total number of arrivals isgreater than or equal

to nx + nt. The minimum ofIA(t, x) taken over all positive
integer values oft is defined as

IA(x) := inf
t>0

IA(t, x).

In our analysis, we will also use another quantity that is
closely related toIA(x). Define

I+A (t, x) = lim
y→x+

IA(t, y).

and
I+A (x) := inf

t>0
I+A (t, x).

Roughly speaking,I+A (t, x) can be interpreted as the rate-
function for the probability that int time-slots, the total
number of arrivals is strictlygreater than nx + nt. Clearly,
for any value ofx whereIA(t, x) is continuous with respect
to x, we must haveI+A (t, x) = IA(t, x). However, there may
be discontinuous points ofx such thatI+A (t, x) 6= IA(t, x).
This potential difference may lead to a gap between the upper
and lower bounds that we derive for the rate-function of the
delay-violation probability. We will provide more detailswhen
we discuss this gap in Section V.

III. A N UPPER-BOUND ON THE RATE FUNCTION

In this section we derive an upper-bound on the rate function
I(d) of the delay asymptote for all scheduling algorithms.

Theorem 1: Given the system model as described in Section
II, under any scheduling algorithm,

lim sup
n→∞

−
1

n
logP

(

D(0) > d
)

≤ I+0 , min{(d+ 1)IX , min
0≤c≤d

{I+A (d− c) + cIX}

whereIX = log( 1
1−q ).

Proof: We consider two eventsE1 andE2 that imply that
D(0) > d.

Event E1: Suppose that there is a packet that is present at
queue 1 at time 0. Further, suppose that from time0 to d
queue 1 is disconnected from all servers. Then, at the end of
time-slotd this packet is still in the buffer, henceD(0) > d.

P

(

E1

)

= (1− q)n(d+1) = e−n(d+1)IX . (3)

Event E2: Consider the following sequence of events. Fix
any ε > 0. Chooset such thatI+A (t, d − c) < I+A (d − c) + ε.
Further, there existsδ > 0 such thatIA(t, d−c+δ) ≤ I+A (t, d−
c) + ε ≤ I+A (d− c) + 2ε. Suppose that from time−t+1 to 0
there are greater than or equal tont+n(d−c+δ) arrivals to the
system. Let the probability of this event bep(d−c). Then from
Cramer’s Theorem, we know thatlimn→∞−

1
n log p(d−c) ≤

IA(t, d − c + δ) ≤ I+A (d − c) + 2ε. The total service at any
time cannot exceedn. Hence, at the end of time 0, there are
at leastn(d− c)+ 1 packets in the buffer (as long asn ≥ 1

δ ).
Moreover, at the end of timed − c the buffer must contain
at least one packet that arrived before time0. Without loss of
generality, assume that this packet is present in queue 1. Now,
assume that queue 1 remains disconnected from all servers in



the nextc time-slots. This occurs with probability(1−q)cn =

e−nc log 1
1−q independently of all past history. Hence, at the

end of timed, there is still a packet that arrived before time 0
and that remains in queue 1. Hence,D(0) > d in this case. In

other words, the probabilityP
(

D(0) > d
)

is no smaller than

p(d−c)e
−ncIX . Since this is true for any0 ≤ c ≤ d, by taking

c that maximizes the above quantity, we have,

P

(

E2

)

≥ max
0≤c≤d

{p(d−c)e
−ncIX}.

Thus,

lim
n→∞

−
1

n
logP

(

E2

)

≤ min
0≤c≤d

{I+A (d− c) + 2ε+ cIX}.

Hence, by picking the more probable event fromE1 andE2 ,
we have

lim
n→∞

−
1

n
logP

(

D(0) > d
)

≤ min{ min
c∈{0,1..d}

{I+A (d− c) + 2ε+ cIX}, (d+ 1)IX}.

As the above equation holds for allε > 0, we have

lim
n→∞

−
1

n
logP

(

D(0) > d
)

≤ I+0 , min{ min
c∈{0,1..d}

{I+A (d− c) + cIX}, (d+ 1)IX}.

IV. V ECTOR MATCHING IN BIPARTITE GRAPHS

In section V, we will propose new scheduling algorithms
that attain close to the above upper boundI+0 for the decay
rate. Towards this end, we first study a snapshot of the system
at a given time, when each queue has some packets that need to
be served. We will study under what conditions an allocation
of servers/carriers to the users/queues can be found such that
all desired packets can be served. As we will see below, this
problem can be viewed as a vector matching problem in a
random bipartite graph.

We first introduce some notations that will be used in this
section. We useG[X ∪ Y,E] to denote a general bipartite
graph, whereX andY are two disjoint sets of vertices and
E is the set of edges such that every edgee ∈ E connects a
vertex inX to a vertex inY . For our OFDM system, the setX
corresponds to the set ofm queues, and the setY corresponds
to the set ofn servers. According to Assumption 3, each edge
between a vertexu in X and a vertexy in Y exists with
probabilityq, independently of other edges. Let∂G(z) denote
the set of neighbors of vertexz in G. Suppose thatV is a set
of vertices ofG. We define∂G(V ) = ∪z∈V ∂G(z). |∂G(V )|
is called the degree ofV and denotes the number of distinct
neighbors of the vertices ofV . If M is a subset of edges of
G, i.e., M ⊂ E, thenG(M) is called the sub-graph induced
by M and consists of all vertices ofG and edges present in
M .

We review the concept of matching in a bipartite graph,
which is well known in Graph Theory [10, Chapter 16]. Given
a bipartite graphG[X ∪ Y,E], a matchingM is a subset of

edges such that in the induced sub-graphG(M) the degree of
every vertex is at most one. A perfect matching is a matching
such that in the induced sub-graph the degree of every vertex
is exactly one. Unfortunately, this concept of matching is not
very useful in our setting because, if a queue has more than
one packets waiting to be served, we would have liked to
allocate more than one servers to the queue.

In order to address the above issue, in this section we
generalize this idea of matching to vector matching. Let
G[X ∪ Y,E] be a bipartite graph where the vertices of set
X are indexed as{x1, x2, .., xm}. Let v be a|X |-dimensional
vector whose elements are non-negative integers. IfV is a
subset ofX , thenv(V ) =

∑

{i:xi∈V } vi. Then, av-matching
M is a sub-setM of edges such that:

|∂G(M)(xi)| ≤ vi, for all 1 ≤ i ≤ |X |, and,

|∂G(M)
(y)| ≤ 1, for all y ∈ Y.

In other words each vertexxi in X is matched to at most
vi vertices inY , but each vertex inY is matched to at most
one vertex inX . Note that a graph may have more than one
v-matchings. Aperfect v-matching is a v-matching (M ) such
that |∂G(M)(xi)| = vi for all xi ∈ X . If G admits a perfect
v-matching, then it is said to be perfectlyv-matched. For our
OFDM system,vi corresponds to the number of packets that
queuexi requests to serve. Thus, a perfectv-matching will
correspond to a schedule of servers to queues that serves the
requested packets from all queues. Since the edges appear
randomly, we will be interested in the probability that a perfect
v-matching can be found. The following two lemmas show
some useful properties for estimating this probability.

Lemma 4: Let G[X ∪ Y,E] be a bipartite graph. Letv be
a |X | dimensional vector whose components are non-negative
integers. ThenG has a perfectv-matching if and only if for
everyV ⊂ X , |∂G(V )| ≥ v(V ).

Remark: If vi = 1 for all i, then the above result is
equivalent to the well known Hall’s Marriage Theorem in
Graph Theory [10]. For a detailed proof of the result please
refer to Appendix C.

Lemma 5: Let G[X ∪Y,E] be a random bipartite graph, in
which for every pair ofx ∈ X and y ∈ Y there is an edge
betweenx and y with probability q, independently of other
edges. Letv andw be vectors of length|X | with non-negative
integer components such that,

1) w1 ≥ w2 + 2;
2) v1 = w1 − 1; v2 = w2 + 1;
3) vi = wi, for 3 ≤ i ≤ |X |.

Then,

P

(

G has a perfectv-matching
)

≥ P

(

G has a perfectw-matching
)

.

Remark: Note thatv andw are the same everywhere except
in the first two components. Moreover,v is more balanced than
w, i.e., v1 + v2 = w1 + w2 but |v1 − v2| < |w1 − w2|. The
above result then states that, if a vector is more balanced, the



probability of perfect vector matching is higher. This basic
result forms the basis of the next Corollary. For a detailed
proof please refer to Appendix D.

In the following results,H is a given positive integer
independent ofn.

Corollary 1: Let G[X ∪ Y,E] be a random bipartite graph
in which for every pair ofx ∈ X and y ∈ Y there is an
edge betweenx and y with probability q, independently of
other edges. Letv andw be two vectors of length|X | with
non-negative integer components such that,

1) maxi[vi] ≤ H ;
2)

∑|X|
i=1 vi ≤

∑|X|
i=1 wi = n−H ;

3) wi =











n− (k + 1)H, if i = 1

H, if 2 ≤ i ≤ k + 1

0, if i > k + 1,

;

wherek =
⌈

n
H

⌉

− 2. Then,

P

(

G has a perfectv-matching
)

≥ P

(

G has a perfectw-matching
)

.

Corollary 1 can be shown by convertingw to v in a sequence
of steps such that in every step the new vector becomes more
balanced (in the sense of Lemma 5). The result then follows
from Lemma 5. For the details of the proof please refer to
Appendix E.

Lemma 6: Let G[X ∪ Y,E] be a random bipartite graph,
in which for every pair ofx ∈ X and y ∈ Y there is an
edge betweenx andy with probabilityq, independently of all
other edges. Let|X | = m and |Y | = n. Let w be a vector
with non-negative integer components with

∑m
i=1 wi ≤ n−H

andmax1≤i≤m wi ≤ H , then for some finite value ofNX ,

P

(

G has a perfectw-matching
)

≥ 1−
( n

1− q

)7H

e−n log 1
1−q

for all n > NX .
Proof: Please refer to Appendix F.

Remark: The decay rate stated in Lemma 6 can not be
further improved. To see this, note that ifw1 = H , then
the probability that the vertexx1 is connected to less than
H vertices inY is at least(1 − q)n−H+1. This event alone
will imply that the decay rate of the probability of prefect
w-matching cannot be larger thanlog 1

1−q .
Let X denote the set ofm source queues,Y denote the set

of n servers, and use an edge betweenu and s if queueu
is connected to servers in the OFDM system. According to
Lemma 6, as long as

∑m
i=1 wi ≤ n−H andmax1≤i≤m wi ≤

H , with high probability an allocation of servers to queues can
be found such that each useri will be able to servewi packets.
Hence, our OFDM system is very similar to a single-server
queue with service raten −H and intermittent connectivity,
provided that the service requirement of each user is bounded
by H . In the sequel, we will use this insight to design
scheduling algorithms with good delay performance. However,
the additional constraintmax1≤i≤m wi ≤ H represents a key
difference between our OFDM system and a single-server

queue. In a single-server queue with service raten−H , even
if one user requestsn−H packets and all other users request
no packets, all packets can be served in one time-slot. In our
OFDM system, however, since each user is connected to only
qn servers on average, there usually exists no feasible schedule
that can serve that above pattern in one time-slot. Hence, we
must impose the additional constraint thatmax1≤i≤m wi ≤ H .
Due to this difference, we will not be able to directly use an
algorithm that is optimal for a single-server queue to serveour
OFDM system. In the following sections, we will introduce
new concepts that address this difficulty.

V. SCHEDULING POLICIES

In this section we propose two scheduling policies that can
attain close to the upper boundI+0 (given in Theorem 1) on
the asymptotic decay rate of the delay violation probability.
We assume that in every time-slot the scheduler has perfect
knowledge of queue-server connectivity, which is represented
by the matrixC(i). Also, it can use the past history of arrival
and channel processes.

A. Intuition behind the Proposed Delay-Based Policies

Motivated by Lemma 6, we consider a single-server queue
with intermittent connectivity. Specifically, in every time-slot

the server is connected with probability1−
(

n
1−q

)7H

e−nIX ,
and disconnected otherwise. Whenever the server is connected
it can serven0 = n − H packets. However, it cannot serve
any packets when disconnected. It is not difficult to see that,
if we serve packets in such a single-server queue in a FCFS
(First-Come First-Serve) manner, then the delay rate-function
is optimal, i.e., it is equal to the upper boundI+0 given in
Theorem 1.

Now from Lemma 6, our OFDM system is in fact quite
similar to the single-server queue in the sense that, under
suitable restrictions, the probability thatn0 packets may be

served in a time-slot is no less than1 −
(

n
1−q

)7H

e−nIX .
However, obviously we cannot use a FCFS policy directly,
because it may violate the condition of Lemma 6, which
translates to the restriction that in a time-slot every usercan
have no more thanH packets to be served.

To circumvent the difficulty, we propose two policies
FBS(h) and DWM. The policy FBS(h) approximates the FCFS
policy, while respecting the restrictions mentioned above. We
will show that there exists a value for the parameterh such
that FBS(h) attains a rate-function close toI+0 . However,
the FBS(h) policy is conservative in nature, and may waste
capacity. Further, it may not be throughput-optimal for a finite-
size system. Therefore, we propose another policy DWM,
which is more aggressive in serving packets and does not waste
capacity. We further show that DWM always serves packets
ahead of FBS(h) for every arrival process and every value ofh,
and hence the delay rate-function for DWM must be no smaller
than the delay rate-function for FBS(h). Thus, policy DWM
can also attain a rate-function close toI+0 when the system
sizen approaches infinity. Further, it will perform much better
in medium-sized systems.



B. Policy FBS(h) (Frame Based Scheduling)

This policy serves packets in units of frames. Suppose that a
positive integerh is given. Recall that no more thanL packets
arrive to any user in a time-slot. Letn0 = n − Lh be the
capacity of each frame. In the policy FBS(h) each frame is
composed of packets that satisfy the following two conditions:

1) The number of packets in the frame is no greater than
n0 (i.e., the capacity of a frame);

2) The difference of arrival times of any two packets in the
frame must be no larger thanh.

As packets arrive in each time-slot, the frames are constructed
by filling in the packets sequentially. Specifically, packets
belonging to queue1 are filled before packets belonging to
queue2, and so on. Further, older packets are added before
newer packets. We fill each frame until the above conditions
cannot be maintained. Then we start a new frame. There might
be a frame that is only partially filled at the end of a time-slot.
In the next time-slot this frame is filled first, before starting a
new frame.

A frame in general may be represented as a vector inZ
m,

where theu-th component of the vector represents the number
of packets of useru in the frame. The policy FBS(h) serves
the frames in the same order as they are constructed. Further,
at most one frame is served in a time-slot. Specifically, let
v(i) denote the vector representing the head-of-line frame at
time i. From the construction of the frame described above
and Assumption 1 on the boundedness of the arrival process,
we havemax1≤u≤m vu(i) < Lh. Moreover,

∑m
u=1 vu(i) ≤

n0 = n − Lh for all i. Note that a frame might contain less
than n0 packets if it is the only frame left or if it was full
because of condition 2 (described earlier).

In each time-sloti the policy FBS(h) tries to schedule
the head-of-line framev(i) for transmission. LetH = hL.
We know from Section IV on vector matching that, with

probability1−
(

n
1−q

)7H

e−nIX , the scheduler can transmit the
whole frame in a given time-slot. If the policy FBS(h) cannot
transfer the whole frame, then no packets are scheduled in this
time-slot and the scheduler will try again in the next time-slot.
Define the random variableXF (i) = 1 if v(i) is successfully
transmitted at timei, andXF (i) = 0, otherwise.

The following theorem shows that there exists a value ofh
such that policy FBS(h) attains a rate-function close toI+0 .

Theorem 2: If the arrival process satisfies Assumptions 1
and 2 and the channel process satisfies Assumptions 3, then,
there exists a value ofh for which the scheduling policy
FBS(h) obtains the following rate-function

lim
n→∞

inf
−1

n
logP

(

D(0) > d
)

≥ I0 , min{ min
c∈{0,1,...d}

IA(d− c) + cIX , (d+ 1)IX}.

Section VI will be devoted to prove Theorem 2. We will
also comment on the potential gap betweenI0 and the upper
boundI+0 shortly in Section V-D.

C. Policy DWM (Delay Weighted Matching)

Although policy FBS(h) attains a rate function close to the
upper boundI+0 in the asymptotic regime when the system
sizen increases to infinity, it is clearly inefficient. Specifically,
policy FBS(h) may not serve any packet in a time-slot, and
may waste up toLh packets in a time-slot even if it serves a
frame. Further, it is not throughput-optimal for any finite-size
system. As a result, policy FBS(h) may perform poorly when
the system size is not very large. In addition, for Theorem 2 to
hold, we need to know the value ofh in advance. Such a value
of h depends on the statistics of the arrivals and channel states,
which may be difficult to predict in practice. Next, we propose
another policy, called DWM (Delay Weighted Matching), that
addresses the above difficulty.

In every time-slot, define the waiting time of every packet
as the time that the packet has spent in the buffer. We assign
a weight to every packet as follows. If a packet has a waiting
time of W and belongs to the queue with indexu, then
its weight is W + u

n+1 . Next, construct a bipartite graph
G[X ∪ Y,E] such that vertices inX correspond to the oldest
n packets of every queue andY is the set of servers. The edge
setE is constructed as follows: ifu is connected tos, then all
vertices that correspond to packets ofu are connected tos. The
packets to transmit are then determined by a maximum-weight
matching algorithm. In the following Lemma we compare
policies DWM and FBS(h).

Lemma 7: For any given sample path and for any value of
h, by the end of time-sloti, Policy DWM has served every
packet that FBS(h) has served.

Proof: Please refer to Appendix G.
By Lemma 7, the rate-function of DWM must be no smaller
than that of FBS(h). Combinging Theorem 2 with Lemma 7,
we conclude that DWM also attains a rate-function close to
I+0 when the system sizen approaches infinity. Further, we
would expect DWM to outperform FBS(h) even if the system
size is not very large. Note that DWM does not require the
value ofh in advance, and hence can be readily used even if
we do not have prior statistical knowledge of the arrivals and
channel states. Finally, the throughput optimality of DWM for
finite system-sizen can be shown analogously to other max-
weight algorithms. We refer to the readers to our more recent
work [11] for details.

D. The Gap between I0 and I+0

For a fixed d ≥ 0, let I+0 (d) (correspondingly,I0(d))
denote the upper bound (correspondingly, lower bound) given
in Theorem 1 (correspondingly, Theorem 2). In other words,

I+0 (d) , min{ min
c∈{0,1,...d}

I+A (d− c) + cIX , (d+ 1)IX}, (4)

I0(d) , min{ min
c∈{0,1,...d}

IA(d− c) + cIX , (d+ 1)IX}. (5)

Clearly, they are virtually of the same form except thatI+0 (d)
is computed fromI+A (·) while I0(d) is computed fromIA(·).



Recall from Section II-B that

IA(x) := inf
t>0

IA(t, x), I
+
A (x) := inf

t>0
I+A (t, x), and

I+A (t, x) = lim
y→x+

IA(t, y).

Thus,I+A (t, x) and IA(t, x) differ only at the pointx where
IA(t, x) is discontinuous with respect tox. Suppose that for
somex0 > 0 there is a non-zero probability that

au(−t+ 1, 0) ≥
t+ x0

φ
.

Then, the rate functionIA(t, x) must be finite, convex and
increasing with respect tox in the range[0, x0], and hence
it must be continuous in[0, x0]. The only possibility of
discontinuity is at the right end-point of an interval[0, x0]
such that

P[au(−t+ 1, 0) ≥
t+ x0

φ
] > 0, and

P[au(−t+ 1, 0) >
t+ x0

φ
] = 0,

in which caseIA(t, x) is finite andI+A (t, x) = +∞. Thus,
we would expect thatI0(d) and I+0 (d) are identical in most
cases. Specifically, suppose that the value ofc0 that attains the
minimum forI0(d) in (5) is such thatIA(d−c0) = IA(t0, d−
c0), and that the functionIA(t0, ·) is continuous atx = d−c0.
Then, we must haveI0(d) = I+0 (d). The following example
illustrates one such case.

Example 1: Consideri.i.d. arrivals with maximum number
of packets that arrive in any time slot equal toL. Suppose that
Lφ > 1 andd < Lφ−1. For anyt ≥ 1 and0 ≤ c ≤ d, let x =
d−c < Lφ−1. Under such a scenario, there exists a non-zero
probability thatau(−t + 1, 0) can reachLt = t+(Lφ−1)t

φ >
t+x
φ . Hence, we must haveIA(t, d− c) = I+A (t, d− c) for all

t andc, and thusI0(d) = I+0 (d).
On the other hand, the following example illustrates a case

when the two bounds do not meet.
Example 2: Consideri.i.d. Bernoulli arrivals such that in

each time-slot either one packet arrives to a queue with proba-
bility ā or no packets arrive to the queue with probability1−ā.
(Note thatL = 1 in this example.) Suppose thatφ = 1 and
d = 0. Then, we haveIA(t, 0) = log 1/ā andI+A (t, 0) = +∞.
We can verify that in this caseI0(1) = min{log 1/ā, IX} and
I+0 (1) = IX .

Even in the case whenI0(d) 6= I+0 (d), the following lemma
shows that they cannot be too far away from each other.

Lemma 8: For anyd ≥ 1, we must haveI0(d) ≥ I+0 (d−1).
Proof: Note that

I+0 (d−1) , min{ min
c∈{0,1,...d−1}

I+A (d−1−c)+cIX, dIX}. (6)

For any t ≥ 1 and c ∈ {0, 1..., d − 1}, since IA(t, x) is
increasing inx, we haveI+A (t, d − 1 − c) ≤ IA(t, d − c).
Taking infimum over allt, we haveI+A (d−1−c) ≤ IA(d−c).

Comparing (5) and (6) term-by-term, we then have

I0(d) ≥ min{ min
c∈{0,1,...,d−1}

IA(d− c) + cIX , dIX}

≥ I0(d− 1).

VI. A NALYSIS OF FBS(h)

In this section, we will prove Theorem 2 for policy FBS(h).
(By Lemma 7, the same conclusion will then also hold for
policy DWM.) We start with a set of equations that capture
the frame dynamics in FBS(h). Define F (i) as the number
of unserved frames in buffer at timei. Then, we can write a
recursive equation forF (i):

F (i) = max{F (i− 1) +

⌈

A(i)−R(i− 1)

n0

⌉

−XF (i), 0}.

Z(i) =











[Z(i− 1) + 1]mod(h), if A(i) < R(i− 1)

1, if A(i) > R(i− 1)

0, if A(i) = R(i− 1).

R(i) = 1{F (i)>0}1{Z(i)>0}[R(i− 1)−A(i)]mod(n0). (7)

To explain this set of equations, recall that after each time-
slot, the end-of-line frame may be only partially filled and
thus can be filled with new arrivals in the next time-slot. We
use R(i) to represent the remaining available space in the
end-of-line partially-filled frame at the end of timei. Hence,
⌈

A(i)−R(i−1)
n0

⌉

represents the number of new frames that are

created at timei. Note that ifA(i) ≤ R(i−1), i.e., the number
of arrivals at timei is less than the remaining available space
in the end-of-line frame at the end of timei − 1, then no
new frame is added.XF (i) represents the number of frames
served in time-sloti. Notice that a maximum of one frame
and hencen0 packets can be transmitted in a time-slot. The
variableZ(i) counts the number of time-slots for which the
end-of-line frame has been open. It starts at 1 when a new
frame is opened, i.e., whenA(i) > R(i − 1). Then it is
incremented by 1 every time when the number of arrivals
A(i) is less thanR(i − 1). If it reachesh, then this frame is
completed and a new frame is started, in which caseZ(i) = 0
andR(i) = 0. Let v be anm-dimensional vector whoseith

component represents the number of packets of queuei in a
frame. The construction of the frames ensures that for every
frame vi ≤ hL = H and

∑m
i=1 vi ≤ n − H = n0. Hence,

from Lemma 6 we have thatXF (i) = 1 with probability no

smaller than1−
(

n
1−q

)7H

e−nIX in every time-slot.

Let R0 = R(i − 1) be the empty space in the end-of-line
frame at the end of timei − 1. Further, letAR0

F (i, k) denote
the number of new frames created from timei to k, including
any partially-filled frame at timek but excluding any partially-
filled frame at timei. We use the notationAF (i, k) to denote
AR0

F (i, k), if R0 = 0. Hence we can write,

F (k) = F (i− 1) +AR0

F (i, k)−XF (i, k),



whereXF (i, k) denotes the total number of frames departing
from the buffer in the time intervali to k. That is,

XF (i, k) =

k
∑

j=i

XF (j)1{F (j)>0}.

In general the equations in (7) are complicated to analyze.
However, if the arrival process satisfies some special condi-
tions in a time interval(i, k), then we can derive some useful
results as follows.

Lemma 9: Let A(·) be an arrival process to the system. Let
R0 be the empty space in the end-of-line frame at the end of
time i− 1. Let the arrivals in the interval fromi to k be such
that

1) The buffer never becomes empty in the interval, i.e.,
F (j) > 0 for all j ∈ {i, i+ 1, ...., k}.

2) For anyh− 1 consecutive time-slots in the interval, the
cumulative arrivals are greater than or equal ton0, i.e.,
∑x+h−2

j=x A(j) ≥ n0, for anyx ∈ {i, i+1, ...., k−h+2}.
Then the following holds for policy FBS(h),

AR0

F (i, k) =

⌈

A(i, k)−R0

n0

⌉

,

R(k) = [R0 −A(i, k)]mod(n0). (8)

Remark: The condition of the Lemma implies that every
frame has exactlyn0 packets. The result then follows. For
details, please refer to Appendix H.

Corollary 2: Let A(·) be an arrival process such that
F (j) > 0 for all i ≤ j ≤ k and letB = {x1, ..., x|B|} be
a sequence of time-slots in increasing order, belonging to the
interval fromi to k, such that in every interval(xi+1, xi+1),
i ∈ {1, 2..., |B|− 1}, the condition 2 of Lemma 9 is satisfied.
Then,

AR0

F (x1 + 1, x|B|) ≤

|B|−1
∑

j=1

⌈

A(xj + 1, xj+1)

n0

⌉

Proof: From Lemma 9 we have that

AR0

F (x1 + 1, x|B|) =

|B|−1
∑

j=1

⌈

A(xj + 1, xj+1)−R(xj)

n0

⌉

.

SinceR(·) ≥ 0, it follows that,

AR0

F (x1 + 1, x|B|) ≤

|B|−1
∑

j=1

⌈

A(xj + 1, xj+1)

n0

⌉

.

We are now ready to prove Theorem 2.
Proof of Theorem 2: We first choose the value ofh

based on the statistics of the arrival process. Let the mean of
the arrival process bēa. We fix δ < 2

3 andε < ā
2 . Then, from

Assumption 2 on the arrival process, there exists a positive
function IB(ε, δ), such that for alln > NB(ε, δ) and t >
TB(ε, δ) we have,

P

(

∑j+t
i=j+1 1{|A(i)−ān|>εn}

t
> δ

)

< e−ntIB(ε,δ),

for any integerj.
Recall thatI0 is defined in the statement of Theorem 2. We

then choose

h = max

{

TB(ε, δ),

⌈

1

φ(ā− ε)(1 − 3δ
2 )

⌉

,

⌈

2I0
φIB(ε, δ)

⌉

}

+ 1.

(9)

The reason for choosing such a value ofh will become clear
later on. Recall thatL is the maximum number of packets that
can arrive to a queue at any time-sloti andH = hL. Thus,H
is the maximum number of packets that can arrive to a queue
in h time-slots.

Let L(0) be the last time−t before0 such that the buffer
was empty, i.e.,D(−t) = 0. Then given thatL(0) = −t, the
eventD(0) > d occurs if and only if the number of frames
that arrive in the time interval from−t+1 to 0 is greater than
the total number of frames that could be served in−t+ 1 to
d. That is,
{

D(0) > d,L(0) = −t
}

=
{

L(0) = −t, AF (−t+ 1, 0)−XF (−t+ 1, d) > 0
}

.

By taking the union over all possible values ofL(0) we get,

P

(

D(0) > d
)

≤

∞
∑

t=1

P

(

L(0) = −t, AF (−t+ 1, 0)−XF (−t+ 1, d) > 0
)

.

We now fix any1 > p̂ > ā. Then define,

t∗ := max

{

TB(p̂− ā,
1− p̂

6(L+ 2)
),

⌈

6

1− p̂

⌉

,

⌈

I0

min{IB(p̂− ā, 1−p̂
6(L+2)), (

1−p̂
9 )IX}

⌉}

(10)

and split the summation as,

P

(

D(0) > d
)

≤

t∗
∑

t=1

P

(

L(0) = −t, AF (−t+ 1, 0)−XF (−t+ 1, d) > 0
)

+

∞
∑

t=t∗

P

(

L(0) = −t, AF (−t+ 1, 0)−XF (−t+ 1, d) > 0
)

.

(11)

We divide the proof into two parts. In Part 1 we prove that
there existsN1 > 0 such that for alln > N1

t∗
∑

t=1

P

(

AF (−t+ 1, 0)−XF (−t+ 1, d) > 0, L(0) = −t
)

< c1t
∗2c2t

∗
( n

1− q

)7H

e−nI0 ,

where c1, c2 are positive constants independent oft and n.
Then, in Part 2 we prove that there existsN2 > 0 such that



for all n > N2

∞
∑

t=t∗

P

(

AF (−t+ 1, 0)−XF (−t+ 1, d) > 0, L(0) = −t
)

≤ 4e−nI0 .

Finally, by substituting both parts into equation (11), we have
that there existsN := max{N1, N2} such that for alln > N ,

∞
∑

t=1

P

(

D(0) > d,L(0) = −t
)

≤ (c1t
∗2c2t

∗
( n

1− q

)7H

+ 4)e−nI0 .

By taking logarithm and limit asn tends to infinity, we get
the desired result.

Part 1: Let us denote byEαt the set of sample paths in
which everyh − 1 time-slots in the interval−t + 1 to 0 see
at leastn arrivals. LetEβt be the set of sample paths in which
A(−t+1,0)

n0
−
∑d

j=−t+1 XF (j) > 0. Let Et be the sample paths
such thatL(0) = −t andD(0) > d. Then, the following can
be shown,

Et ⊂ (Eαt )
c ∪ Eβt . (12)

To see this, observe thatEt is the set of sample paths in which
L(0) = −t andAF (−t+ 1, 0)−XF (−t+ 1, d) > 0. For all
sample paths in the setEαt ∩ Et, Lemma 9 holds and hence,

AF (−t+1, 0) =
⌈

A(−t+1,0)
n0

⌉

. Moreover, it is easy to observe

that, for all sample paths in the setEαt ∩Et, XF (−t+1, d) =
∑d

j=−t+1 XF (j). Hence, for a sample path belonging toEαt ∩

Et, we must haveA(−t+1,0)
n0

−
∑d

j=−t+1 XF (j) > 0. This

implies that,Et ∩ Eαt ⊂ E
β
t . Thus we have,Et = (Et ∩ E

α
t ) ∪

(Et∩(E
α
t )

c) ⊂ (Eβt ∪(E
α
t )

c). Hence, (12) holds. It then follows
that,

P(Et) ≤ P((Eαt )
c) + P(Eβt ). (13)

We now give the intuition behind the analysis ofEαt andEβt .
For a detailed proof, please refer to Appendix I.

We note that the eventEαt implies that every frame formed
in the interval from−t + 1 to 0 will have n0 packets, i.e.
all frames served are completely full. It is then obvious that
P(Eαt ) depends onh, i.e., it will be large if we increase the
maximum time for which any frame can remain open. By
choosing anh large enough we can ensure that the probability
P((Eαt )

c) is arbitrarily small. In particular, we can ensure that
the rate-function ofP((Eαt )

c) is greater than the rate-function
of P(Eβt ). The cost that needs to be paid for having a largeh
is the loss in frame-size, which isn0 = n−Lh. Nonetheless,
this decrease in frame-size is independent ofn and does not
affect the performance of the system significantly for largen.
Hence, it does not show up in the rate-function. Specifically,
for the choice ofh in (9), it can be shown that there exists
N3, c3 > 0 such that we have

P(Eαt ) > 1− c3te
−nI0 . (14)

for all n > N3.

It can be seen that the eventEβt is similar to the buffer
overflow event in a single-server queue with intermittent
connectivity as described earlier. Recall that as opposed to a
single-server queue with constant rate, in every time-slot, with
probability approximately1−e−nIX the service is equal ton0

packets, i.e., one frame. Thus, now there can be two factors
responsible forEβt . Firstly, if the arrival process is bursty, then
Eβt can be caused by a large burst of arrivals in a few time-
slots. Secondly, ifq is small Eβt can be caused by a time
interval of low service as frames get piled up in the buffer.
For moderate values ofq, one can expect that the most likely
way in which Eβt occurs is a mixture of bursty arrivals and
sluggish service. From large deviations theory we know that
the rate-function ofEβt is determined by the probability of the
most likely sample path leading toEβt . More formally, it can
be shown that there existsc2, c4, N4 > 0 such that

P

(

Eβt

)

= P

(A(−t+ 1, 0)

n0
−

d
∑

j=−t+1

XF (j) > 0
)

=
d

∑

a=−t

P

(

d
∑

j=−t+1

XF (j) = t+ a
)

P

(

A(−t+ 1, 0) > (t+ a)n0

)

≤ (t+ d+ 1) max
−t≤a≤d

{

P

(

d
∑

j=−t+1

XF (j) = t+ a
)

× P

(

A(−t+ 1, 0) > (t+ a)n0

)}

≤ c42
c2t

( n

1− q

)7H

× e−nmin{(d+1)IX ,mina∈{0,1,2...d}{IA(a)+(d−a)IX}}

≤ c42
c2t

( n

1− q

)7H

e−nI0 , (15)

for all n > N4.
Let c1 = 2max{c3, c4}. Substituting (14) and (15) into (13)

we then have

P(Et) ≤ c3te
−nI0 + c42

c2t
( n

1− q

)7H

e−nI0

≤ c12
c2t

( n

1− q

)7H

e−nI0

for all n > N1 = max{N3, N4}. Finally, summing overt = 1
to t∗ we have,

t∗
∑

t=1

P

(

D(0) > d,L(0) = −t
)

=
t∗
∑

t=1

P

(

Et

)

≤ c1t
∗2c2t

∗
( n

1− q

)7H

e−nI0 ,

for all n > N1.
Part 2: We would like to show that there existsN2 > 0

such that forn > N2

∞
∑

t=t∗

P

(

AF (−t, 0)−XF (−t, d) > 0
)

< 4e−nI0 .



We noted earlier that the equations for evolution ofAF (−t+
1, 0) are in general complicated. However, if an arrival process
satisfies certain conditions then some simple results such as
Lemma 9 and Corollary 2 can be obtained. Hence, to analyze
AF (−t + 1, 0) we first construct an arrival procesŝA(·) that
satisfies the conditions of Lemma 9 and̂AF (−t + 1, 0) >
AF (−t + 1, 0). We do this by adding some extra arrivals to
the processA(·) in some strategic time-slots. The resulting
arrival procesŝA(·) has the property that̂A(i) = p̂n whenever
A(i) ≤ p̂n and Â(i) = Ln wheneverA(i) > p̂n. (Please
refer to Appendix I for the details of how to constructÂ(·).)
Hence, the resulting arrival procesŝA(·) is in fact very simple.
We now get an upper bound on̂AF (−t + 1, 0), which, by
construction, is also an upper bound onAF (−t+ 1, 0).

Let B = {b1, b2, , b|B|} be the set of time-slots in the
interval−t + 1 to 0 whenA(i) ≥ p̂n. Then, from Corollary
2 we have that, givenL(0) = −t,

ÂF (−t+ 1, 0)

≤

|B|−1
∑

j=1

⌈

Â(bj + 1, bj+1 − 1)

n0

⌉

+

|B|
∑

j=1

⌈

Â(bj , bj)

n0

⌉

+

⌈

Â(−t+ 1, b1 − 1)

n0

⌉

+

⌈

Â(b|B| + 1, 0)

n0

⌉

≤
n

n0
[p̂t+ (L + 2)|B|+ 1].

From Assumption 2 on the arrival process we know that
for large enoughn and t, |B| can be made less than an
arbitrarily small fraction oft. Further, we can show that for
|B| < 1−p̂

6(L+2) t, n > H(2+p̂)
1−p̂ and t > 6

1−p̂ , AF (−t + 1, 0) ≤

ÂF (−t + 1, 0) ≤ (2+p̂
3 )t. (Please refer to Appendix I for

details.) Hence,

P

(

AF (−t+ 1, 0) ≥ (
2 + p̂

3
)t, L(0) = −t

)

≤ P

(

|B| >
1− p̂

6(L+ 2)
t

)

≤ e−ntIB(p̂−ā, 1−p̂

6(L+2)
), (16)

for all n > N5 = max{NB(p̂ − ā, 1−p̂
6(L+2)),

H(2+p̂)
1−p̂ } and t >

T1 = max{TB(p̂− ā, 1−p̂
6(L+2) ),

6
1−p̂}.

Moreover, we know that for eachi, XF (i) = 1 with

probability greater than1−
(

n
1−q

)7H

e−nIX for all n > NX .
Hence, using Lemma 1 we have that, there existsN6 > NX

such that,

P

(

XF (−t+ 1, d) < (
2 + p̂

3
)t, L(0) = −t

)

≤ P

(

XF (−t+ 1, d) ≤ (
2 + p̂

3
)(t+ d), L(0) = −t

)

≤ e−n(t+d)( 1−p̂
9 )IX

≤ e−nt
(1−p̂)IX

9 , (17)

for all n > N6 and t > 0.

Combining the above two results, from (16) and (17) we
have, for alln > N7 = max{N5, N6} and t > T1,

P

(

AF (−t+ 1, 0)−XF (−t+ 1, d) > 0, L(0) = −t
)

≤ 1− (1 − e−nt
(1+p̂)IX

9 )(1 − e−ntIB(p̂−ā, 1−p̂
6(L+2) ))

≤ 2e−tnIBX ,

whereIBX is the minimum ofIB(p̂−ā,
1−p̂

6(L+2) ) and (1−p̂)IX
9 .

Recall thatt∗ > max{T1,
I0

IBX
}. Hence, summing over all

t > t∗ we have, for alln > N2 = max{N7,
⌈

log 2
IBX

⌉

}

∞
∑

t=t∗

P

(

AF (−t, 0)−XF (−t, d) > 0, L(0) = −t
)

≤

∞
∑

t=t∗

P

(

AF (−t, 0)−XF (−t, d) > 0, L(0) = −t
)

≤

∞
∑

t=t∗

2e−ntIBX

≤
2e−nt∗IBX

1− e−nIBX

≤ 4e−nt∗IBX (ase−nIBX <
1

2
)

≤ 4e−nI0 .

The result of the theorem then follows.

VII. S IMULATION RESULTS

In this section, we compare the performance of the pro-
posed DWM algorithm with the classic Max-Weight (MW)
algorithm [7] and the recently-proposed Server-Side-Greedy
(SSG) algorithm in [1], [2]. We simulate these algorithms and
compare the empirical probabilities that the maximum delayat
any given time exceeds a constantd. We consider two settings:
(i) when the arrivals arei.i.d. across time-slots, and (ii) when
arrivals are correlated across time-slots.

In the first setting, the arrivals to every queue are given by
the following distribution:

a(i) =

{

5 with probability 0.167,

0 with probability 0.833,

independently for all time-slotsi. We run the MW, SSG and
DWM algorithms for a system withn = 30 users andm = 30
carriers/servers (and henceφ = 1). The user-server connection
probability isq = 0.75, so that the system is stable but heavily
loaded, i.e. greater than83.5% of the maximum load. We run
the simulation for105 time-slots.

In the second setting, we consider arrivals that are driven
by a Markov chain with two states. When the Markov chain
is in state 1,5 packets are generated in each-time slot, and
when the chain is in state 2, no packets are generated. Further,
state transitions occur at the end of time-slots. The transition

probability of the chain is given by the matrix

[

.5 .5

.1 .9

]

. Note

that the probability in state 1 is equal to0.167. Hence, the
Markovian arrivals have the same average rate as thei.i.d.
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Fig. 2. Performance of DWM, MW and SSG fori.i.d connectivity.n = 30,
q = 0.75, i.i.d. and 2-state Markov chain (m.c.) driven arrivals.

arrivals. The user-server connection probability is chosen as
q = 0.75. We also consider a system withn = 30 andm = 30
and run the simulation for105 time-slots.

The results are summarized in Fig. 2. As can be seen from
the plot, the proposed DWM algorithm performs consistently
better than the Max-Weight algorithm and the SSG algorithm.
The delay of the Max-Weight algorithm does not go down
substantially with increasingd. The queue-length-based SSG
performs better than Max-Weight. However, DWM performs
even better than SSG, and further reduces the delay-violation
probability by orders-of-magnitude. Note that SSG is designed
to minimize the queue overflow probability [1], [2]. Our
result thus illustrates that small queue length may not always
lead to small delay, e.g., if the packets in that queue is not
served for a long time. Since DWM directly treats delay, the
performance is significantly better. Finally, even though our
analytical results focus on the asymptotic limit of largen,
for such a medium-sized system (withn = 30 users and
m = 30 carriers/servers) the proposed DWM policy already
outperforms existing approaches significantly.

Recall that our analytical results require that the channelis
i.i.d. across time. Nonetheless, we expect that the key insights
from our analysis will also be useful under more general
settings. Next, we experiment with a setting in which the user-
server connectivity for each channel is correlated across time.
Specifically, the connectivity is driven by a Markov chain with
two states. When the Markov chain is in state 1, the user is
connected to that server and when it is in state 2 the user is
disonnected from the server. The transition probability ofthe

chain is given by the matrix

[

.2 .8

.4 .6

]

. We run the simulation

for both the i.i.d. arrival process and the time-correlatedarrival
process as described earlier. The results are summarized in
Fig. 3. We can observe very similar trends for the relative
performance of the DWM, SSG, and MW policies as in Fig. 2.
In particular, we observe that DWM achieves much better
delay performance even for Markovian-correlated channels.

The above results demonstrate how the delay-violation
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Fig. 3. Performance of DWM, MW and SSG for Markov-chain driven
connectivity.n = 30, i.i.d. and 2-state Markov chain (m.c.) driven arrivals.

probability varies withd. Since our analytical results study
the asymptotes asn increases, we next plot the probability of
delay-violation with increasingn for DWM, and compare it
with another fictitious policy called SSQ. Here, SSQ (Single-
Server Queue) represents a fictitious system with a single
server of capacityn that is fed with the aggregated arrivals
of all users. Hence, it provides a lower bound on the deadline
violation probability of other algorithms. In these simulations,
we takeφ = 1 and the arrivals to every queue are given by
the following distribution:

a(i) =

{

5 with probability 0.14,

0 with probability 0.86,

independently for all time-slotsi. We consider user-server
connectivity that isi.i.d. across time, users and servers, with
probability q = 0.5. The results are reported in Fig. 4 for
both d = 1 andd = 2. It can be seen in Fig. 4 that the rate-
function obtained from the theoretical result, i.e., Theorem 2,
matches well with the simulation result: the slopes of the
different curves (for the same value ofd) are almost identical,
except that the theoretical result is shifted above the empirical
curve by a constant amount. This can be attributed to theo(1)
terms not captured byI0 in Theorem 2. Further, the probability
of delay-violation under DWM is well approximated by that
under SSQ over the entire range ofn (fromn = 30 to n = 60).
Hence, this result confirms our intuition (see Section V-A) that
the OFDM system behaves quite similar to a single-server
queue under suitable assumptions.

VIII. A DMISSION CONTROL

From Theorem 2, we know the expression for the lower
bound on the rate-function achieved by DWM for any value
of φ. We now consider an OFDM system with a fixed number
of channelsn, but the number of usersm = φn can vary (i.e.,
φ can vary). WriteI0(d, φ) as the lower boundI0 defined in
Theorem 2, which now depends on bothd andφ. For largen,
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the probability of delay-violation can be approximated by

P

(

D(0) > d
)

≈ e−nI0(d,φ). (18)

Given a fixed bandwidthn and a delay-violation constraint of
the formP

(

D(0) > d
)

< ε, we can use (18) to estimate the
number of users (φn) that may be admitted in a cell such that

e−nI0(d,φ) < ε

=⇒ I0(d, φ) ≥ −
ln ε

n
. (19)

By plotting I0(d, φ) versusφ, we can then obtain the maxi-
mum value ofφ that satisfies (19).

Example: Consider a OFMDA system withn = 40 or-
thogonal channels and a delay constraint given byP(D(0) >
4 time-slots) < e−40. Thus, we need the decay rateI0(4, φ) ≥
− lnε

n = 1.
Consider the following scenario withi.i.d. arrivals of the

following distribution:

a(i) =

{

5 with probability p,

0 with probability 0,

where the values ofp may be varied. The user-channel
connectivity is i.i.d. across users and time, and each user-
channel pair is on with probability0.5. In Figure 5, the rate

function I(d, φ) is plotted as a function ofφ for d = 4 and
different values ofp.

From Figure 5, it can be seen that forp = 0.18 the number
of users that can be accommodated in the cell is roughly
0.58n = 23, where as forp = 0.10, roughly0.95n = 38 users
may be accommodated in the cell. These values can then be
used by the network provider to perform admission control
decision and/or provision the network resources.

IX. CONCLUSION

We consider the scheduling problem of the down-link of
an OFDM system for supporting a large number of delay-
sensitive users. Assuming an ON-OFF channel model, we
show that when the scale of the system is large, the OFDM
system can be approximated by a Single-Server Queue with
intermittent connectivity. Inspired by this observation,we first
construct the Frame Based Scheduling (FBS(h)) policy that
emulates the single-serve queue by accounting for the restric-
tions placed by the wireless channel in an OFDM system.
We then prove that, for a large class of arrival processes,
there exists a value ofh for which FBS(h) attains a close-to-
optimal rate-function for the delay violation probabilitywhen
the system size approaches infinity. Since FBS(h) may waste
capacity and the suitable value ofh depends on the arrival
process, we then design the Delay Weighted Matching (DWM)
scheduling algorithm, which also achieves a close-to-optimal
rate-function for the delay-violation probability, independently
of the arrival process. Further, the DWM algorithm achieves
high throughput and thus performs well even in medium-sized
systems. Our simulations indicate that DWM can significantly
improve the performance compared to the state-of-art algo-
rithms in the literature. We further show that the analytical
results for DWM can be used to determine a simple threshold
for admission control.

There are many interesting directions for future work. First,
we plan to use the insight gained from DWM to design
scheduling algorithms for more general channel models. Sec-
ond, although DWM achieves close-to-optimal rate-function, it
may have a high computational complexity. It would be worth-
while to consider scheduling algorithms that achieve good
delay bounds and are of lower complexity. Based on the results
in this paper, the more recent work in [11], [12] has studied
certain low-complexity algorithms of this type. We refer the
readers to these studies for the latest development. Third,in
this work we consider the case when all users have similar
arrival patterns, channel conditions, and delay requirements.
It would be interesting to see how the DWM algorithm can be
extended to users with different arrival patterns and channel
conditions and with diverse delay requirements.
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APPENDIX A

Proof of Lemma 1: From the choice ofN ≥ N1 we
have, that for alln > N and i,

P

(

Xi = 1
∣

∣

∣Xi′ , i
′ 6= i

)

< e−
nb
2 ,

regardless of the values of other random variablesXi′ , i
′ 6= i.

Applying Chernoff bound, we have,

P

(

t
∑

i=1

Xi > at
)

< e−tDKL(a||e−
nb
2 ).

Now for all n > N , we have

DKL(a||e
−nb

2 )

= a log
[ a

e−
nb
2

]

+ (1− a) log
[ 1− a

1− e−
nb
2

]

=
abn

2
+ a log a+ (1− a) log

[ 1− a

1− e−
nb
2

]

≥
abn

2
+ a log a+ (1− a) log(1− a)

≥
abn

2
− 2 (asx log

1

x
≤

1

e
for all 1 > x > 0)

≥
abn

3
(asn >

12

ab
).

Hence,P
(

∑t
i=1 Xi > at

)

< e−
tnab

3 for all n > N .

APPENDIX B

Proof of Lemma 3: Without loss of generality, we state
the proof for the case whenm = n. By applying the balance
equations we have that the expected fraction of time-slots that
the chain spends in states 1 and 2 is given byπ∗

1 = p2

p1+p2

andπ∗
2 = p1

p1+p2
respectively. Hence the average rateā for the

chain is given byπ∗
1r1 + π∗

2r2.
Now considern independent copies of this arrival process

driven by Markov chains. We denote byπ1(i), the fraction
of chains in state 1 at timei, and we denote byπ2(i) the
fraction of chains in state 2 at timei. Then, the packet arrivals
at time i is given byA(i) = n(r1π1(i) + r2π2(i)). Note that
at any timeπ1(i) + π2(i) = 1. Hence,A(i) can be written
as a function ofπ1(i) alone. For convenience we denote the
interval [x− ρ, x+ ρ] on the real line byB(x, ρ).

It is easy to see that, ifr1 = r2, thenA(i) = ān for all
i. The result then follows trivially. We consider here the case
whenr1 6= r2. Let ε1 = ε

|r1−r2|
. It can be seen that whenever

π1(i) ∈ B(π
∗
1 , ε1) thenA(i) ∈ B(nā, nε). It suffices to show

that givenε1 = ε
|r1−r2|

> 0 andδ > 0, there existsN, T > 0

and a positive functionIB1 (ε1, δ) = IB(ε, δ) independent of
n and t such that

P

(

∑t
i=1 1{π1(i)/∈B(π∗,ε1)}

t
> δ

)

≤ e−ntIB1 (ε1,δ)

for all n > N and t > T .
We divide the proof into two parts. In Part 1, we show

that there existsT1 such that, irrespective of the starting state
π1(j), with high probabilityπ(j + T1) ∈ B(π

∗
1 , ε1). More

precisely, there exists aT1 and a positive rate-functionI1(ε1)
such that,

P

(

π1(j + T1) ∈ B(π
∗
1 , ε1)

∣

∣

∣π1(j)
)

≥ 1− 4T1e
−nI1(ε1).

(20)

Then, in Part 2 we prove that at any timej, if π1(j) belongs
to B(π∗

1 , ε1), then with high probability, for the next several
time-slots the system remains inB(π∗

1 , ε1). More precisely,
there exists a positive rate-functionI2(ε1) such that,

P

(

π1(i) ∈ B(π
∗
1 , ε1) ∀ j < i ≤ j + T2

∣

∣

∣π1(j) ∈ B(π
∗
1 , ε1)

)

≥ 1− 4T2e
−nI2(ε1) (21)

for any positive integerT2.
Before we prove Part 1 and Part 2, we show why they imply

the result of the lemma. To this end, we chooseT2 such that
T1

T1+T2
< δ

2 and defineT3 := T1 + T2. Now, combining the
above equations, we have that, irrespective of the state of the
system at timej,

P

(

π1(i) ∈ B(π
∗
1 , ε1) ∀ j + T1 ≤ i ≤ j + T3

)

≥ 1− 4T3e
−nI3(ε1), (22)

whereI3(ε1) = min{I1(ε1), I2(ε1)}. We divide the interval1
to t into consecutive frames consisting ofT3 time-slots each.
Index these frames byk. Note that if(t mod T3) 6= 0, then
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the last frame may contain less thanT3 time-slots. Define
K :=

⌈

t
T3

⌉

− 1. Define the sequenceS(k) as follows:

S(k) =

{

0, if
∑kT3+T3

j=kT3+1 1{π1(j)∈B(π∗ ,ε1)}

T3
≥ 1− δ

2 ;

1, otherwise.

Then, for every value of0 ≤ k ≤ K − 1 (i.e. for every frame
except the last), we have

P

(

S(k) = 1
∣

∣

∣
S(k′), k′ 6= k

)

≤ 4T3e
−nI3(ε1),

regardless of what happens in all other framesk′ 6= k. Using
Lemma 1 in Section II-B, we know that there existsN such
that

P

(

K−1
∑

k=0

S(k) >
δ

2
K
)

≤ e−n
δKI3(ε1)

6 ,

for all n > N . Note that for allt > 3T3, we haveK > 2t
3T3

.
Hence,

P

(

K−1
∑

k=0

S(k) <
δ

2
K
)

≥ 1− e
−nt

δI3(ε1)
9T3 ,

for all n > N andt > 3T3. Note that the event
∑K

k=1 S(k) ≤
δ
2K implies that,

t
∑

j=1

1{π1(j)∈B(π∗,ε)}

≥ (1 −
δ

2
)KT3(1−

δ

2
)

≥ (1 −
δ

2
)2(t− T3)

= (1 − δ)t+
δ2

4
t− T3(1−

δ

2
)2

≥ (1 − δ)t (by choosingt >
T3(1−

δ
2 )

2

δ2

4

).

Hence, from the above two equations, we have, fort > T =

max{
4(1− δ

2 )
2

δ2 T3, 3T3} andn > N

P

(

∑t
j=1 1{π1(j) 6∈B(π∗

1 ,ε1)}

t
≥ δ

)

≤ e−nt
δI3(ε1)

9T ,

whereI3(ε1)
9T is a positive function ofδ, ε, p1 andp2. The result

of the lemma then follows.
We now prove Part 1 and Part 2.
Part 1: We definepm as

pm :=
min{p1, 1− p1, p2, 1− p2}

4
.

Takeε2 = min{ (p1+p2)ε1
3 , pm}. We define the functionDm(x)

as

Dm(x) =min
{

DKL(p1 + x||p1), DKL(p2 + x||p2),

DKL(p1 − x||p1),

DKL(p2 − x||p2)
}

,

whereDKL(x||y) denotes the Kullback Leibler divergence [9]
and is given by the formulaDKL(x||y) = x log x

y + (1 −

x) log 1−x
1−y . TakeT1 such that|(1 − p1 − p2)|

T1−1 < ε1
3 . We

useπ1→2(i) to denote the fraction of chains that transition
from state1 to 2 at the end of time-sloti. Similarly, we define
π2→1(i) to be the fraction of chains that transition from state
2 to state1 at the end of time-sloti.

By applying the Chernoff bound to the number of chains in
state 1 and 2, we have,

P

(

π1→2(i) > π1(i)(p1 +
ε2
2
)
∣

∣

∣π1(i)
)

≤ e−nπ1(i)DKL(p1+
ε2
2 ||p1),

P

(

π1→2(i) < π1(i)(p1 −
ε2
2
)
∣

∣

∣π1(i)
)

≤ e−nπ1(i)DKL(p1−
ε2
2 ||p1).

However, asπ1(i) < 1 the above equations imply that

P

(

π1→2(i) > π1(i)p1 +
ε2
2

∣

∣

∣π1(i)
)

≤ e−nπ1(i)DKL(p1+
ε2
2 ||p1),

P

(

π1→2(i) < π1(i)p1 −
ε2
2

∣

∣

∣π1(i)
)

≤ e−nπ1(i)DKL(p1−
ε2
2 ||p1).

Combining the above equations we get,

P

(

π1→2(i) ∈ B(π1(i)p1,
ε2
2
)
∣

∣

∣π1(i)
)

≥ 1− 2e−nπ1(i)Dm(
ε2
2 ).

(23)
Similarly,

P

(

π2→1(i) ∈ B(π2(i)p2,
ε2
2
)|π1(i)

)

≥ 1− 2e−nπ2(i)Dm(
ε2
2 ).

(24)

Combining (23) and (24) we have

P

(

π1(i+ 1) ∈ B(π1(i)(1− p1) + π2(i)p2, ε2)
∣

∣

∣π1(i)
)

≥ 1− 4e−nmin{π1(i),π2(i)}Dm(
ε2
2 ). (25)

We now use (23)-(25) to prove the claim (20) of Part 1. We
first show that, irrespective of the state of the system at time
0,

P

(

π1(1) ∈ [pm, 1− pm]
∣

∣

∣π1(0)
)

≥ 1− 4e−npmDm(
ε2
2 ).

To see this, note that there can be two cases: (1)π1(0) /∈
[pm, 1− pm] and (2)π1(0) ∈ [pm, 1− pm].
Case 1: Assume thatπ1(0) < pm (The case whenπ1(0) >
1 − pm leads to similar analysis). Note thatπ2(0) > 1 − pm
asπ1(0) + π2(0) = 1. From (24) we have

P

(

π2→1(0) ∈ B(π2(0)p2, ε2)
∣

∣

∣π1(0) < pm

)

≥ 1− 2e−nπ2Dm(ε2)

≥ 1− 2e−npmDm(ε2) (becauseπ2(0) > pm).

This implies that,

P

(

π1(1) ∈ (π2(i)p2 − ε2, π2(0)p2 + ε2 + pm)
∣

∣

∣
π1(0) < pm

)

≥ 1− 2e−npmDm(ε2).



It can be seen thatπ1(0) < pm implies

π2(0)p2 − ε2

≥ (1− pm)p2 − ε2

≥ (1− pm)(4pm)− ε2

≥ pm,

and

π2(0)p2 + ε2 + pm

≤ p2 + ε2 + pm

≤ 1− 4pm + ε2 + pm

≤ 1− pm.

Hence, the above implies that,

P

(

π1(1) ∈ [pm, 1− pm]
∣

∣

∣
π1(0) < pm

)

≥ 1− 2e−npmDm(ε2). (26)

Similarly, it can be shown that,

P

(

π1(1) ∈ [pm, 1− pm]
∣

∣

∣π1(0) > 1− pm

)

≥ 1− 2e−npmDm(ε2). (27)

Case 2: π1(0) ∈ [pm, 1 − pm]. Note that in this case
min{π1(0), π2(0)} > pm. Hence, applying (25), we have

P

(

π1(1) ∈ B(π1(0)(1 − p1) + π2(0)p2, ε2)
∣

∣

∣π1(0) ∈ [pm, 1− pm]
)

≥ 1− 4e−npmDm(
ε2
2 ).

Further, notice that forπ1(0) ∈ [pm, 1− pm] we have

π1(0)(1 − p1) + π2(0)p2 − ε2

≥ 4pm − ε2

≥ pm,

and

π1(0)(1 − p1) + π2(0)p2 + ε2

≤ 1− 4pm + ε2

≤ 1− pm.

It follows from the above equations that

P

(

π1(1) ∈ [pm, 1− pm]
∣

∣

∣π1(0) ∈ [pm, 1− pm]
)

≥ 1− 4e−npmDm(
ε2
2 ). (28)

Thus, combining (26), (27) from Case 1 and (28) from Case
2, we have

P

(

π1(1) ∈ [pm, 1− pm]
∣

∣

∣
π1(0)

)

≥ 1− 4e−npmDm(
ε2
2 ). (29)

Now that we have analyzedπ1(1), we proceed to study
π1(i), i = 2, ..., T1. In the above case 2, we observed that

π1(i) ∈ [pm, 1− pm]

⇒ B(π1(i)(1− p1) + π2(i)p2, ε2) ∈ [pm, 1− pm]. (30)

Moreover, sinceπ1(i) + π2(i) = 1, we have

π1(i)(1 − p1) + π2(i)p2 = π1(i)(1− p1 − p2) + p2. (31)

Then, from equations (25) and (31), we have,

P

(

π1(i) ∈ B(π1(i− 1)(1− p1 − p2) + p2, ε2)
∣

∣

∣π1(i) ∈ [pm, 1− pm]
)

≥ 1− 4e−npmDm(
ε2
2 ).

Using (30) and recursively applying the above equation for
T1 − 1 consecutive time-slots, we have,

P

(

π1(i) ∈ B(π1(i− 1)(1− p1 − p2) + p2

for all 2 ≤ i ≤ T1, ε2)
∣

∣

∣π1(1) ∈ [pm, 1− pm]
)

≥ 1− 4(T1 − 1)e−npmDm(
ε2
2 ).

Moreover, note that ifπ1(i) ∈ B(π1(i−1)(1−p1−p2)+p2, ε2)
for all 2 ≤ i ≤ T1 andπ1(1) ∈ [pm, 1− pm] then,

π1(T1)

∈ B



π1(1)(1 − p1 − p2)
T1−1 + p2

T1−2
∑

j=0

(1− p1 − p2)
j ,

ε2

T1−2
∑

j=0

(1− p1 − p2)
j





= B

(

p2
p1 + p2

+ π1(1)(1− p1 − p2)
T1−1

−
p2(1− p1 − p2)

T1−1

p1 + p2
,

ε2
p1 + p2

[

1− (1− p1 − p2)
T1−1

]

)

⊂ B(
p2

p1 + p2
, ε1) (from the choice ofT1 andε2)

= B(π∗
1 , ε1).

Hence, from the above two equations we have

P

(

π1(T1) ∈ B(π
∗
1 , ε1)

∣

∣

∣π1(1) ∈ [pm, 1− pm]
)

≥ 1− 4(T1 − 1)e−npmDm(
ε2
2 ). (32)

Now combining (29) and (32) we have,

P

(

π1(T1) ∈ B(π
∗
1 , ε1)

∣

∣

∣π1(0)
)

≥ 1− 4T1e
−npmDm(

ε2
2 ).

(33)

Part 2: Recall that, we wish to show that ifπ1(j) ∈
B(π∗

1 , ε1) then, with high probability, the system remains in
B(π∗

1 , ε1) for the nextT2 time-slots. Chooseε3 = ε1 min{p1+
p2, 2− p1 − p2} We know from (25) that,

P

(

π1(i+ 1) ∈ B(π1(i)(1 − p1) + π2(i)p2, ε3)
)

≥ 1− 4e−nmin{π1(i),π2(i)}Dm(
ε3
2 ).

Note that if π1(i) ∈ B(π
∗
1 , ε1) then B(π1(i)(1 − p1) +

π2(i)p2, ε3) ⊂ B(π
∗
1 , ε1). To see this, observe that ifπ1(i) ∈



B(π∗
1 , ε1) then,

π1(i)(1 − p1) + π2(i)p2 − ε3

≥ π∗
1 − ε1|1− p1 − p2| − ε3

≥ π∗
1 − ε1,

and further,

π1(i)(1 − p1) + π2(i)p2 + ε3

≤ π∗
1 + ε1|1− p1 − p2|+ ε3

≤ π∗
1 + ε1.

Hence, if π1(i) ∈ B(π∗
1 , ε1), then B(π1(i)(1 − p1) +

π2(i)p2, ε3) ∈ B(π
∗
1 , ε1). Now, using the above result and (25),

we have

P

(

π1(i+1) ∈ B(π∗
1 , ε1)

∣

∣

∣
π1(i) ∈ B(π

∗
1 , ε1)

)

≥ 1−4e−nπmDm(
ε3
2 ),

whereπm = min{π∗
1−ε1, π

∗
2−ε1}. Now, recursively applying

the equation above forT2 consecutive time-slots, we have

P

(

π1(i) ∈ B(π
∗
1 , ε1) ∀ j < i ≤ j + T2

∣

∣

∣π1(j) ∈ B(π
∗
1 , ε1)

)

≥ 1− 4T2e
−nπmDm(

ε3
2 ). (34)

APPENDIX C

Proof of Lemma 4: We first show that, if there exists a
setV ′ ⊂ X such that|∂G(V ′)| < v(V ′), thenG does not have
a perfectv-matching. For contradiction suppose thatM is a
perfectv-matching inG. Let G(M) be the sub-graph induced
by M . Then

|∂G(M)(V
′)| =

∑

x∈V ′

v(x) = v(V ′).

However, asG(M) is a sub-graph ofG, the above equation
implies that|∂G(V ′)| ≥ v(V ′), which contradicts our assump-
tion onV ′.

We now prove that, if|∂G(V )| ≥ v(V ) for every subsetV of
X , thenG contains a perfectv-matching. We construct another
bipartite graphG′(X ′ ∪ Y,E′). For each vertexxi in X , we
constructvi copies inX ′. Further, if there exists an edge inG
betweenxi and a vertex inY , then there exists an edge inG′

between each copy ofxi in X ′ and the corresponding vertex
in Y . With this construction, it is easy to see that a perfect
v-matching exists inG if and only if a perfect matching exists
in G′. Further, since|∂G(V )| ≥ v(V ) for every subsetV of
X in G, we must have, for every subsetV ′ of X ′ in G′,
|∂G′(V ′)| ≥ |V ′|. Thus, invoking Hall’s Theorem [10] onG′,
we conclude thatG′ must have a perfect matching. Hence,G
must contain a perfectv-matching.

APPENDIX D

Proof of Lemma 5: Let Nv(k) denote the number of
graphs with exactlyk edges that have a perfectv-matching.
Similarly, letNw(k) denote the number of graphs with exactly
k edges that have a perfectw-matching. LetN(k) be the total
number of possible graphs with exactlyk edges. According to
our system model, for any value ofk, all of the graphs withk
edges occur with probability 1

N(k)

(

nm
k

)

qk(1−q)nm−k. Hence,

P

(

G has a perfectv-matching
)

=

nm
∑

k=0

P

(

G hask edges
)Nv(k)

N(k)

=

nm
∑

k=0

(

nm

k

)

qk(1− q)nm−kNv(k)

N(k)
.

Similarly,

P

(

G has a perfectw-matching
)

=
n2
∑

k=0

P

(

G hask edges
)Nw(k)

N(k)

=

n2
∑

k=0

(

nm

k

)

qk(1 − q)nm−kNw(k)

N(k)
.

From the above two equations it is easy to see that, to prove
the result it suffices to show thatNv(k) ≥ Nw(k) for all
k ≥ 0. For k <

∑|X|
i=1 vi, Nv(k) = Nw(k) = 0 and hence the

statement is trivially true. We now prove this statement for
any generalk ≥

∑|X|
i=1 vi.

We first introduce some definitions and notations that will
be used in the proof. Letw2 = θ, w1 = θ + r, r ≥ 2. We
sequentially assign indices to all subsets ofY that have exactly
2θ+ r vertices. Without loss of generality let these indices be
from 1 to

(

|Y |
2θ+r

)

. Define J (·) to be a function that maps
every subset ofY with 2θ + r elements to its corresponding
index. Letξ be any|X |-dimensional vector with non negative
integer components such thatξ1 + ξ2 = 2θ + r. Suppose that
G has a prefectξ-matching. Then, we defineMG,ξ as the
perfectξ-matching inG such thatJ (∂G(MG,ξ)(x1∪x2)) is the
maximum among all perfectξ-matchings inG. DefineJG,ξ :=
J (∂G(MG,ξ)(x1 ∪ x2)).

We now construct the mappingΠ(·) from graphs withk
edges that have a perfectw-mapping to graphs withk edges
that have a perfectv-matching.

1) If G has a perfectv-matching and a perfectw-matching,
thenΠ(G) = G. In this case skip, steps 2 and 3.

2) If G has a perfectw-matching but not a perfectv-
matching, letξ = [θ + 1, θ + r − 1, w3...w|X|]. We first
form a graphG∗ which has a perfectξ-matching. To
do this, we choose a subsetP of ∂MG,w

(x1) such that
|P | = r−1. We delete edges betweenx1 and all vertices
of the setP and construct edges betweenx2 and each
vertex inP .



3) Π(G) is now obtained fromG∗ by swapping the labels
of x1 andx2.

It is easy to see thatΠ(G) has a perfectv-matching. It can
also be seen that the resultant graphΠ(G) and intermediate
graphG∗ (formed if step 2 is executed) have the same number
of edges asG. This follows from the fact that we delete and
add an equal number of edges.

We would like to show that if any two distinct graphsG′

andG′′ have perfectw-matchings and have equal number of
edges then they map to different graphs, i.e.,Π(G′) 6= Π(G′′)
. This would prove that, for anyk > 0, the number of graphs
which have a perfectv-matching and exactlyk edges is no
smaller than the number of graphs which havek edges and a
perfectw-matching.

Firstly, note that step 1 ensures that if a graph has both a
prefectw-matching and a prefectv-matching then it remains
unchanged. Moreover, steps 2 and 3 transform a graph with a
w-matching but nov-matching to a graph which has a perfect
v-matching but does not have a perfectw-matching. LetG′

be a graph with both a perfectw-matching and a perfectv-
matching and letG′′ be a graph with a perfectw-matching but
not a perfectv-matching. Then, by the above observation it
follows thatΠ(G′) 6= Π(G′′). Further, ifG′ andG′′ are two
different graphs with both aw-matching and av-matching,
thenΠ(G′) = G′ 6= G′′ = Π(G′′).

Secondly, letG′ andG′′ be two graphs that have a perfect
w-matchings but not a perfectv-matchings. Further, assume
thatJG′,w 6= JG′′,w. Then, we show thatΠ(G′) 6= Π(G′′). To
prove this, it suffices to show that if a graphG has a perfectw-
matching but not a perfectv-matching, thenJΠ(G),v = JG,w.
To see this notice that there exists a matchingM in Π(G)
such thatJ (∂Π(G)(M)(x1 ∪ x2)) = JG,w. For the sake of
contradiction, assume thatJΠ(G),v > JG,w. Then, note that,
for the intermediate graphG∗ created step 2, we must have
JG∗,ξ = JΠ(G),v > JG,w. From construction we know that
G∗ is formed by deleting all edges betweenx1 and P and
creating edges betweenx2 and all vertices inP , whereP is
a subset of∂G(MG,w)(x1). Then, fromMG∗,ξ we can form a
perfectw-matching,M̂ , in G by replacing edges betweenx2

and every vertex ofP by edges betweenx1 and every vertex
of P . It follows thatJ (∂G(M̂)(x1 ∪ x2)) = JΠ(G),v > JG,w.
But this contradicts our assumption onJG,w.

Thirdly, let G′ andG′′ be two graphs which have a perfect
w-matching but do not have a perfectv-matching. Further,
suppose thatJG′,w = JG′′,w. If G′ and G′′ differ in any
edge of the form(x1, y) or (x2, y), wherey belongs to the
setY \ ∂G(MG,w)(x1 ∪ x2), thenΠ(G′) 6= Π(G′′). To see this
observe that we do not alter edges of the form above in the
procedure of creatingΠ(G) from G.

Hence, we are now left with graphs similar in all the three
conditions mentioned below,

1) They have a perfectw-matching but do not have a
perfectv-matching.

2) They have the same index .
3) They are the same everywhere except in the per-

mutation of ∂G(MG,w)(x1 ∪ x2), i.e., for any two
graphsG′ andG′′ of the same type,∂G′(MG′,w)(x1 ∪
x2) = ∂G′(MG′′,w)(x1 ∪ x2) but ∂G′(MG′,w)(x1) 6=
∂G′′(MG′′,w)(x1).

If two graphs are similar in these three ways, then we say
that they are of the same type. We would like to show that
there exists a particular way to choose the setP such that all
of the graphs that are of the same type, map to different graphs
underΠ(·). To see this note that there are

(

2θ+r
θ

)

graphs of
each type. On the other hand, the number of output graphs
possible by an appropriate choice ofP is

(

2θ+r
θ+1

)

. As r ≥ 2,
it is easy to see that

(

2θ+r
θ+1

)

>
(

2θ+r
θ

)

. Hence, the number
of output graphs for any type are greater than the number of
graphs of that type. Hence, we can always find a mapping such
that if G′ andG′′ are of the same type, thenΠ(G′) 6= Π(G′′).
The result then follows.

APPENDIX E

Proof of Corollary 1: Let Ξ be the set of all|X |-
dimensional vectors with non-negative integer components,
such that for any vectorξ in Ξ,

∑|X|
i=1 ξi = n − H and

max{1≤i≤|X|} ξi ≤ H . First, for any vectorv with
∑|X|

i=1 vi <
n−H andmax{1≤i≤|X|} vi ≤ H , it is easy to see that there
exists a vectorξ′ in Ξ, such thatv is component-wise no
greater thanξ′. Hence,

P

(

G has a perfectv-matching
)

≥ P

(

G has a perfectξ′-matching
)

.

Thus, we only need to show that the result of the corrolary
holds for allv ∈ Ξ.

Fix v ∈ Ξ. Due to symmetry of channels and users, the
probability of finding a perfectv-matching does not depend on
the permutation of the components ofv. Hence, without loss
of generality, we assume that the components of the vector
v are in non-increasing order, i.e.,v1 ≥ v2 ≥ .... ≥ v|X|.
Similarly, the probability of finding a perfectw-matching does
not depend on the permutation of the components ofw. Hence,
we can rearrangew as

wi =











H, if 1 ≤ i ≤ k

n− (k + 1)H, if i = k + 1

0, if i > k + 1,

wherek =
⌈

n
H

⌉

− 2.
Consider the following algorithm:

1: λ← w
2: c← 1
3: d← |X |
4: while d > c do
5: while λc > vc andλd < vd do
6: λc ← λc − 1
7: λd ← λd + 1
8: end while
9: if λc = vc then

10: c← c+ 1



11: end if
12: if λd = vd then
13: d← d− 1
14: end if
15: end while

Let us assume thatwk+1 > vk+1. The case whenwk+1 ≤
vk+1 can be analyzed in a similar way. To see that the above
algorithm terminates whenλ = v, observe that initiallyH =
λi ≥ vi for all i ≤ k and0 = λi ≤ vi for all i > k+1. Further,
∑|X|

i=1 vi =
∑|X|

i=1 wi ⇒
∑k+1

i=1 (vi − wi) =
∑|X|

i=k+2(wi −
vi). Hence, after the inner while loop has executed exactly
∑k+1

i=1 (vi − wi) times, c = k + 1 andd = k. The algorithm
terminates at this point.

Moreover, in every step of the algorithm, the vectorλ
changes in exactly 2 components, i.e.,λc is incremented by 1
andλd is decremented by 1. It can be observed that, due to
the initial ordering of components, in every stepλ becomes
more balanced in the sense of Lemma 5. Hence, applying 5
recursively, the result follows.

APPENDIX F

Proof of Lemma 6: Definek =
⌈

n
H

⌉

−2. Let v be a|X |-
dimensional vector withv1 = n − (k + 1)H , vi = H ∀ 2 ≤
i ≤ k + 1 andvi = 0 everywhere else. Then by Corollary 1,

P

(

G has a perfectw-matching
)

≥ P

(

G has a perfectv-matching
)

.

Suppose that|∂G(x1)| ≥ v1. We can then choose a set
A ⊂ ∂G(x1) such that|A| = v1. Now construct the graph
Ĝ[X ∪ Y,E] from G by deleting all edges between(X − x1)
and A. Let vector v̂ = [0, v2, v3, ....vn]. If Ĝ has a perfect
v̂-matching, sayM̂ , then a perfectv-matching inG can be
obtained as the union of̂M and the set of edges betweenx1

andA in G. From the above discussion, we conclude that

P

(

G has a perfectv-matching
)

≥ P

(

|∂G(x1)| ≥ v1

)

P

(

Ĝ has a perfect̂v-matching
)

.

(35)

Next, we will bound both terms in the product on the right
hand side. For the first term, we know that,

P

(

|∂G(x1)| ≥ v1

)

≥ P

(

|∂G(x1)| ≥ H
)

= 1− P

(

|∂G(x1)| < H
)

≥ 1−

(

n

H − 1

)

(1− q)n−H+1

≥ 1− nH−1(1 − q)n−H+1

= 1−
( n

1− q

)H−1

(1− q)n

≥ 1−
( n

1− q

)H

e−n log 1
1−q , (36)

where in the second inequality we have considered all cases
wherex1 is not connected to a subset ofn−H + 1 servers,
and have taken the union bound over all such cases.

Now consider the second term in the product in (35). IfĜ
has nov̂-matching, then by Lemma 4, there must existA and
B such that

1) A ⊆ X,B ⊆ Y ,
2) |B| = v̂(A)− 1, and
3) ∂Ĝ(A) ⊆ B.

Hence, by union bound over all possible subsetsA ⊆ X and
all possible corresponding subsetsB ⊆ Y , we have

P

(

Ĝ has nov̂-matching
)

≤
∑

{A⊆X}

P

(

|∂Ĝ(A)| < v̂(A)
)

=
∑

{A⊆X}

P

(

|∂G(A)| ≤ v̂(A)− 1
)

.

Here, we may consider only thoseA such that for all vertices
xi in A, v̂i > 0. Notice that the maximum size of any such
set isk. Hence,

P

(

Ĝ has nov̂-matching
)

≤

k
∑

a=1

∑

{A⊆X,|A|=a}

P

(

|∂G(A)| ≤ v̂(A)− 1
)

=

k
∑

a=1

∑

{A⊂X,|A|=a}

P

(

|∂G(A)| ≤ Ha− 1
)

≤

k
∑

a=1

(

k

a

)(

n

n−Ha+ 1

)

(1− q)a(n−Ha+1), (37)

where in the last step we have considered all setsA andY \B
such that|A| = a, |Y \B| = n−Ha+1, and the corresponding
event that no vertices inA are connected to vertices inY \B.

Let N1 =
⌈

(1−q)H
q

⌉

. Then for alln > N1, we have

(

n

n−Ha+ 1

)

=

(

n

Ha− 1

)

≤

(

Hk + 2H

Ha− 1

)

(asn ≤ (k + 2)H)

≤ (Ha)(Hk + 2H)2H
(

Hk

Ha

)

≤
( n

1− q

)

(Hk + 2H)2H
(

Hk

Ha

)

(asHa ≤ n <
n

1− q
)

≤
( n

1− q

)2H+1
(

Hk

Ha

)

, (38)

where the last step is true becauseHk+2H ≤ n+H ≤ n
1−q



for all n > N1. Moreover,

(1− q)a(n−Ha+1)

≤ (1 − q)a(kH+H−Ha+1) (asn ≥ (k + 1)H)

≤ (1 − q)Ha(k−a). (39)

Substituting (38) and (39) in (37), for alln > N2 :=

max{N1,
⌈

1
(1−q)2H

⌉

} we have,

P

(

Ĝ has nov̂-matching
)

≤
k
∑

a=1

( n

1− q

)2H+1
(

k

a

)(

Hk

Ha

)

(1 − q)a(n−Ha+1)

≤
( n

1− q

)2H+1

(1− q)k(H+1)

+
( n

1− q

)2H+1 k−1
∑

a=1

(

k

a

)(

Hk

Ha

)

(1− q)Ha(k−a)

≤
( n

1− q

)2H+1

(1− q)n−2H

+ 2
( n

1− q

)2H+1
d k

2 e
∑

a=1

(

k

a

)(

Hk

Ha

)

(1 − q)Ha(k−a)

≤
( n

1− q

)4H

(1− q)n + 2
( n

1− q

)2H+1

×

d k
2 e

∑

a=1

ea log k+aH log kH−Ha(k−a) log 1
(1−q) , (40)

where the last step is true because1
(1−q)2H ≤

n
(1−q)2H−1 ≤

(

n
1−q

)2H−1

.
Note that the exponent in the last summation is quadratic

in a with positive leading coefficient. Hence, the terms will
achieve their maxima at the end-points, i.e.a = 1 or a =

⌈

k
2

⌉

.
It turns out that the term corresponding toa = 1 will dominate
all other terms. To see this, substitutinga = 1, we have,

ea log k+aH log kH−Ha(k−a) log 1
(1−q)

≤ n(H+1)
( 1

1− q

)H

e−n log 1
(1−q)

≤
( n

1− q

)H+1

e−n log 1
(1−q) . (41)

for all n > N2. Similarly, by substitutinga =
⌈

k
2

⌉

, we have

ea log k+aH log kH−Ha(k−a) log 1
(1−q)

≤ e2n logn− n2

6H log 1
(1−q)

≤ e−n log 1
(1−q) × e3n log n− n2

6H log 1
(1−q)

≤ e−n log 1
(1−q) , (42)

for all n > N3, whereN3 is the smallest integer such that the
exponent in the second step satisfies3n logn− n2

6H log 1
(1−q) <

0 for all n > N3.

Hence, from (40), (41) and (42), we have

P

(

Ĝ has nov̂-matching
)

≤
( n

1− q

)4H

e−n log 1
(1−q)

+ 2

⌈

k

2

⌉

( n

1− q

)3H+2

e−n log 1
(1−q)

≤
( n

1− q

)4H

e−n log 1
(1−q)

+
( n

1− q

)3H+3

e−n log 1
(1−q) (as2

⌈

k

2

⌉

≤
n

1− q
)

≤ 2
( n

1− q

)6H

e−n log 1
(1−q) (asH ≥ 1)

for all n > NX := max{N2, N3}.
Finally, substituting (36) and (43) into (35), we have

P

(

G has a perfectv-matching
)

≥ P

(

∂G(x1) ≥ v1

)

P

(

Ĝ has a perfect̂v-matching
)

≥ 1− 3
( n

1− q

)6H

e−n log 1
1−q

≥ 1−
( n

1− q

)7H

e−n log 1
1−q , (43)

for all n > NX .

APPENDIX G

We first prove a result that will be used in the proof of
Lemma 7.

Lemma 10: Consider a bipartite graphG[X ∪ Y,E] such
that every vertex inX is assigned aunique positive weight.
Let the vertices ofX in the decreasing order of their weights
be {x1, x2, ....xn}. Suppose that there exists a matchingM
that covers{x1, x2, ...xk}, i.e., the set of vertices withk largest
weights. Then the maximum-weight matchingM∗ of G covers
the set{x1, x2, ...xk}.

Proof: Suppose (for contradiction) that there exists a
vertexxi ∈ {x1, ..., xk} that is not covered byM∗. Without
loss of generality, assume thatxi is such a vertex with the
smallest index. In other words,x1, ..., xi−1 are covered by
M∗, but xi is not. Let u1 = xi. Sinceu1 = xi is covered
by the matchingM , it must be matched to a nodes1 ∈ Y .
Note thats1 must be covered by the matchingM∗: if it was
not covered byM∗, we would have been able to add the
edge(u1, s1) to the matchingM∗, which contradicts to the
assumption thatM∗ is the maximum-weight matching. Let
u2 ∈ X be the vertex matched tos1 by the matchingM∗. Note
thatu2 must belong to{x1, ...xi−1}. (Otherwise, ifu2 was one
of the vertices in{xi+1, ..., xn}, then instead of matchings1
to u2 in M∗, we could have matcheds1 to u1, in which case
we would have gotten a matching with a larger weight than
M∗.) Hence,u2 is again covered by the matchingM . Using
a similar argument, we can thus finds2 ∈ Y such thatu2 is
matched tos2 by the matchingM , and findu3 ∈ X such that
u3 is matched tos2 by the matchingM∗. We can continue



performing this procedure as long as we can find a vertexuk

in each step that belongs to{x1, ...xi−1}. Further, each of
the uk’s is distinct because they are part of the matchingM ,
and each of thesk ’s is distinct because they are part of the
matchingM∗. However, since there are only(i − 1) vertices
in the set{x1, ...xi−1}, eventually we will run out of vertices
from this set. The lastsK vertex must then be matched to a
vertexuK+1 in {xi+1, ..., xn} by the matchingM∗. Then, by
matching eachsk to uk, we obtain a matching with a larger
weight thanM∗, which contradicts to the assumption thatM∗

is the maximum-weight matching. Hence, the result of the
lemma must hold.

Proof of Lemma 7: Consider two queuing systems,Q1

and Q2, each consisting ofn queues andn channels. Both
systems have the same arrivals and channel realizations.Q1

uses DWM andQ2 uses FBS(h) as the scheduling rule.
Suppose that a packetp enters in the system at timetp at
queueqp. Then, according to the DWM policy, at any time
t ≥ tp if packetp is still present in the system, it has a weight
w(p) = t − tp +

qp
n+1 . For convenience we may make the

following assumption: packets that arrive to the same queue
in the same time-slot are queued in the order that they arrive,
and they must be served in the same order. We assign every
packetp an order-indexxp from 1 to L. If a packet is the
first to arrive to a queue in a time-slot, then it is given the
order-indexL. The next packet is given the order-indexL−1,
and so on. We then redefine the weights of the packets as
ŵ(p) = t− tp +

qp
n+1 +

xp

(L+1)(n+1) . It must be noted that the
DWM schedule would not change if we used weightsŵ(·)
instead ofw(·). However,ŵ(·) makes the analysis easier as
now every packet in the system has a unique weight.

Let Q1(t) represent the set of packets present in the system
Q1 at the end of time-slott and letQ2(t) represent the set
of packets present in the systemQ2 at the end of time-slot
t. Then, it suffices to show thatQ1(t) ⊂ Q2(t) for all time
t. We denote byA(t) the set of packets that arrive at timet.
Let X1(t) andX2(t) denote the set of packets that depart the
systemsQ1 andQ2 respectively, at timet. Hence,

Qi(t+ 1) =
(

Qi(t) ∪ A(t+ 1)
)

\Xi(t+ 1), i = 1, 2.

We prove by contradiction. Suppose thatQ1(t) 6⊆ Q2(t) for
somet. Without loss of generality, assume thatτ is the first
time slot such thatQ1(τ) 6⊆ Q2(τ). Hence, there must be a
packet,p, such thatp ∈ Q1(τ) andp /∈ Q2(τ). Becauseτ is
the first time for such an event, we must havep ∈ X2(τ).

Let B1(v) andB2(v) denote the set of packets inQ1(τ −
1) ∪A(τ) andQ2(τ − 1) ∪A(τ) with weight greater than or
equal tov. ThenB1(v) ⊂ B2(v) for all v. As p is scheduled
by Q2, thus from the definition of FBS(h), we know that all
packets inB2(w(p)) must also be scheduled at timet. This
is because all packets with a weight greater thanw(p) must
belong to either of the following categories-

1) Packets that arrived beforetp.
2) Packets that arrived attp but to queues with higher

indices.

3) Packets that arrived attp to qp but have a higher order-
index thanxp, i.e. they are queued in beforep.

Hence, ifp is a part of the head-of-line frame at timet, then
all of these packets should belong to the head-of-line frameat
time t.

Consider a bipartite graphG[X ∪ Y,E] where X =
Q2(τ − 1) ∪ A(t), Y is the set of servers andE denotes the
connectivity at timeτ . Then, the above statement means that
there exists a matching,M , such that every vertex ofB2(w(p))
is covered underM . Hence,M must also cover every vertex of
B1(w(p)). Now, from the graph we remove the set of vertices
corresponding to packets that are present inQ2(τ − 1) but
are not present inQ1(τ − 1). Let the new graph be graph
G′[X ′ ∪ Y ′, E′]. Note thatX ′ is just Q1(τ − 1) ∪ A(τ). Let
the restriction ofM to G′ beM ′. ThenM ′ covers all vertices
in B1(w(p)). Moreover, notice thatB1(w(p)) is the set of
packets with the highest weights inG′.

From the definition of DWM,X1(τ) is determined by the
maximum weight matching inG′. We have shown that there
exists a matchingM ′ that covers the setB1(w(p)), i.e., the
set of the packets with the highest weights. Then, by Lemma
10, the maximum weight matching covers every vertex in
B1(w(p)). However, this contradicts to the claim thatp is
not scheduled byQ1 at timeτ .

APPENDIX H

Proof of Lemma 9: Referring to equation (7), condition
1 in the statement of Lemma 9 implies that1{F (j)>0} = 1 for
all j ∈ {i, i+1, ...., k} and conditions 1 and 2 together imply
that R(j) = 0 only when [R(j − 1) − A(j)]mod(n0) = 0.
Hence, for the interval fromi to k, we can write the recursive
equation forAR0

F (i, j) as follows: for anyi ≤ j ≤ k,

AR0

F (i, j) =AR0

F (i, j − 1) +

⌈

A(j)−R(j − 1)

n0

⌉

(44)

R(j) =[R(j − 1)−A(j)]mod(n0), (45)

whereAR0

F (i, i) = 0 andR(i − 1) = R0. We now prove the
equality in (8) by induction onk. For k = i the equality in
(8) is trivially true. Suppose that the equality in (8) is true for
somek = j. Then, we want to show that it is also true for
k = j + 1 that satisfies the conditions in the lemma. To see
this, note that from (44),

AR0

F (i, j + 1)

= AR0

F (i, j) +

⌈

A(j + 1)−R(j)

n0

⌉

= AR0

F (i, j) +

⌈

A(j + 1)− [R0 −A(i, j)]mod(n0)

n0

⌉

= AR0

F (i, j)

+









A(j + 1)−
⌈

A(i,j)−R0

n0

⌉

n0 +A(i, j)−R0

n0









= AR0

F (i, j) +

⌈

A(i, j + 1)−R0

n0

⌉

−

⌈

A(i, j)−R0

n0

⌉



=

⌈

A(i, j + 1)−R0

n0

⌉

.

Further, from (45),

R(j + 1)

= [R(j)−A(j + 1)]mod(n0)

= [[R0 −A(i, j)]mod(n0)−A(j + 1)]mod(n0)

= [[R0 −A(i, j + 1)]mod(n0).

Hence, by induction the equality (8) must be true for anyk
that satisfies the conditions in the lemma.

APPENDIX I

Proof: We first choose the value ofh based on the statis-
tics of the arrival process. Let the mean of the arrival process
be ā. We fix δ < 2

3 andε < φā
2 . Then, from Assumption 2 on

the arrival process, there exists a positive functionIB(ε, δ),
such that for alln > NB(ε,δ)

φ andt > TB(ε, δ) we have,

P

(

∑j+t
i=j+1 1{|A(i)−āφn|>εφn}

t
> δ

)

< e−ntIB(ε,δ),

for any integerj.
We then choose

h = max

{

TB(ε, δ),

⌈

1

(ā− ε)(1− 3δ
2 )

⌉

,

⌈

2I0
IB(ε, δ)

⌉

}

+ 1.

(46)

The reason for choosing such a value ofh will become clear
later on. Recall thatL is the maximum number of packets that
can arrive to a queue at any time-sloti andH = hL. Note
thatH is then the maximum number of packets that can arrive
to a queue inh time-slots.

Let L(0) be the last time,−t before0, when the buffer was
empty, i.e.,D(−t) = 0. Then given thatL(0) = −t, the event
D(0) > d occurs if and only if the number of frames that
arrive in the time interval from−t+1 to 0 is greater than the
total number of frames that could be served in−t + 1 to d.
That is,
{

D(0) > d,L(0) = −t
}

=
{

L(0) = −t, AF (−t+ 1, 0)−XF (−t+ 1, d) > 0
}

.

By taking the union over all possible values ofL(0) we get,

P

(

D(0) > d
)

≤

∞
∑

t=1

P

(

L(0) = −t, AF (−t+ 1, 0)−XF (−t+ 1, d) > 0
)

.

We now fix any1 > p̂ > φā. Then define,

t∗ := max

{

TB(p̂− ā,
1− p̂

6(L+ 2)
),

⌈

6

1− p̂

⌉

,

⌈

I0

min{IB(p̂− ā, 1−p̂
6(L+2) ), (

1−p̂
9 )IX}

⌉}

(47)

and split the summation as,

P

(

D(0) > d
)

≤

t∗
∑

t=1

P

(

L(0) = −t, AF (−t+ 1, 0)−XF (−t+ 1, d) > 0
)

+
∞
∑

t=t∗

P

(

L(0) = −t, AF (−t+ 1, 0)−XF (−t+ 1, d) > 0
)

.

(48)

We divide the proof into two parts. In Part 1 we prove that
there existsN1 > 0 such that for alln > N1

t∗
∑

t=1

P

(

AF (−t+ 1, 0)−XF (−t+ 1, d) > 0, L(0) = −t
)

< c1t
∗2c2t

∗
( n

1− q

)7H

e−nI0 ,

where c1, c2 are positive constants independent oft and n.
And in Part 2 we prove that there existsN2 > 0 such that for
all n > N2

∞
∑

t=t∗

P

(

AF (−t+ 1, 0)−XF (−t+ 1, d) > 0, L(0) = −t
)

≤ 4e−nI0 .

Finally, by substituting both parts into equation (48), we have
that there existsN := max{N1, N2} such that for alln > N ,

∞
∑

t=1

P

(

D(0) > d,L(0) = −t
)

≤ (c1t
∗2c2t

∗
( n

1− q

)7H

+ 4)e−nI0 .

By taking logarithm and limit asn tends to infinity, we get
the desired result.

Part 1: Let us denote byEαt the set of sample paths in
which everyh − 1 time-slots in the interval−t + 1 to 0 see
at leastn arrivals. LetEβt be the set of sample paths in which
A(−t+1,0)

n0
−

∑d
j=−t+1 XF (j) > 0. And let Et be the sample

paths such thatL(0) = −t andD(0) > d. Then, the following
can be shown,

Et ⊂ (Eαt )
c ∪ Eβt . (49)

To see this, observe thatEt is the set of sample paths in which
L(0) = −t andAF (−t+ 1, 0)−XF (−t+ 1, d) > 0. For all
sample paths in the setEαt ∩ Et, Lemma 9 holds and hence,

AF (−t+1, 0) =
⌈

A(−t+1,0)
n0

⌉

. Moreover, it is easy to observe

that, for all sample paths in the setEαt ∩Et, XF (−t+1, d) =
∑d

j=−t+1 XF (j). Hence, for a sample path belonging toEαt ∩

Et, we must haveA(−t+1,0)
n0

−
∑d

j=−t+1 XF (j) > 0. This

implies that,Et ∩ Eαt ⊂ E
β
t . Thus we have,Et = (Et ∩ E

α
t ) ∪

(Et∩(E
α
t )

c) ⊂ (Eβt ∪(E
α
t )

c). Hence, (49) holds. It then follows
that,

P(Et) ≤ P((Eαt )
c) + P(Eβt ). (50)

We note that the eventEαt implies that every frame formed
in the interval from−t + 1 to 0 will have n0 packets, i.e.



all frames served are completely full. It is then obvious that
P(Eαt ) depends onh, i.e., it will be large if we increase the
maximum time for which any frame can remain open. By
choosing anh large enough we can ensure that the probability
P((Eαt )

c) is arbitrarily small. In particular, we can ensure that
the rate-function ofP((Eαt )

c) is greater than the rate-function
of P(Eβt ). The cost that needs to be paid for having a large
h is the loss in frame-size, which isn0 = n − Lh. But this
decrease in frame-size is independent ofn and does not affect
the performance of the system significantly for largen. Hence,
it does not show up in the rate-function. Specifically, for the
choice ofh in (46), it can be shown that there existsN3, c3 > 0
such that we have

P(Eαt ) > 1− c3te
−nI0 . (51)

for all n > N3.
To see this, we first divide the time interval from−t+1 to

0 into frames ofh−1
2 time-slots each. We index these frames

from 1 to
⌈

2t
h−1

⌉

. Then, from assumption 2 on the arrival
process, there existsN8 > 0 such that for any framej we
have

P

(

∑−(j−1) (h−1)
2

i=−j (h−1)
2 +1

1{|A(i)−ām|>εm}

h−1
2

< δ
)

> 1− e−
m(h−1)IB (ε,δ)

2

≥ 1− e−nI0 (from (46) as(h− 1) ≥
2I0

φIB(ε, δ)
)

for all n > N8. This equation implies that in every frame,
with high-probability, the fraction of time-slots whenA(i) <
ān− εn is less thanδ. Taking the union over all frames, we
have

P

(

∑−(j−1)h
2

i=−j h
2 +1

1{|A(i)−ām|>εm}

h
2

< δ ∀ j ∈ {1, 2, ...d
2t

h− 1
e}
)

> 1−
( 2t

h− 1
+ 1

)

e−nI0 . (52)

We now show that if the above statement is true, then the
sum of arrivals for anyh − 1 consecutive time-slots in the
interval−t+1 to 0 is greater thann. To see this, letk be any
integer from the set{−t+1, ...− h+1}. Let us consider the
interval fromk to k+h−2. Note that this interval can intersect
at most three frames ofh−1

2 time-slots. It then follows that the
interval fromk to k+h−2 can have at most3δh2 time-slots with
arrivals less than̄am−εm. Hence,A(k, k+h−2) ≥ (h−1)(1−
3δh
2 )(ā−ε)φn. From the choice ofh−1 ≥

⌈

1
(ā−ε)(1− 3δ

2 )φ

⌉

, it

follows thatA(k, k + h− 2) ≥ n. Hence, all sample paths in

which
{

∑−(j−1) h
2

i=−j h
2
+1

1{|A(i)−ān|>εn}

h
2

< δ ∀ j ∈ {1, 2, ...d 2t
h−1e}

}

belong to the setEαt . It then follows from (52) that

P(Eαt ) > 1− (
2t

h
+ 1)e−nI0

≥ 1− 3te−nI0 (53)

It can be seen that the eventEβt is similar to the buffer
overflow event in a single-server queues with intermittent
connectivity as described earlier. Recall that as opposed to
a single-server queue with constant rate, in every time-slot,
with probability approximately1− e−nIX the service is equal
to n0 packets, i.e., one frame. So now there can be two factors
responsible forEβt . Firstly, if the arrival process is bursty, then
Eβt can be caused by a large burst of arrivals in a few time-
slots. Secondly, ifq is small Eβt can be caused by a time
interval of low service as frames get piled up in the buffer.
For moderate values ofq, one can expect that the most likely
way in which Eβt occurs is a mixture of bursty arrivals and
sluggish service. From large deviations theory we know that
the rate-function ofEβt is determined by the probability of
the most likely sample path leading toEβt . More formally, we
show that there existsc2, c4, N4 > 0 such that

P

(

Eβt

)

≤ c42
c2t

( n

1− q

)7H

e−nI0 , (54)

for all n > N4.
We first derive an upper bound for the probability of a large

burst of arrivals in the time from−t+1 to 0. We know from
the Chernoff bound that for any integerst > 0 andx ≥ 0,

P

(

A(−t+ 1, 0) ≥ n0(t+ x)
)

= P

(

A(−t+ 1, 0) ≥ (n−H)(t+ x)
)

≤ e−n(θ(t+x)−λaq(−t+1,0)(θ))+H(t+x)θ

Let θt = argmaxθ[θ(t + x) − λaq(−t+1,0)(θ)]. Let θ∗ =
max{θ1, θ2, ...θt∗}. Then for anyt in {1, 2, ...., t∗},

P

(

A(−t+ 1, 0) ≥ (n−H)(t+ x)
)

≤ e−n(θ(t+x)−λaq(−t+1,0)(θ))eH(t+x)θ∗

≤ e−nIA(x)eH(t+x)θ∗

(55)

Note that for largen, the probabilities of the event{A(−t+
1, 0) ≥ n0(t + x)} and {A(−t + 1, 0) ≥ n(t + x)} differ
by a factor which does not depend onn. Hence, in the large
deviations sense, the rate-functions of the these two events is
the same.

Now we consider the effect of sluggish service. Specifically,
we calculate an upper bound on the probability that, in the
interval from−t + 1 packets can be served in exactlyt + a
time-slots, for somea ≤ d. Recall from Lemma 6 that for all
n > NX , the probability of receiving service in each time slot

is greater than1−
(

n
1−q

)7H

e−n log 1
1−q . Hence, we have

P

(

d
∑

−t+1

XF (i) = t+ a
)

≤
( n

1− q

)7H
(

t+ d

t+ a

)

e−(d−a)n log 1
1−q

≤
( n

1− q

)7H

2t+de−(d−a)n log 1
1−q . (56)

It may be observed that this is monotonic function ina.



Using the results from (56) and (55), we have

P

(

Eβt

)

= P

(A(−t+ 1, 0)

n0
−

d
∑

j=−t+1

XF (j) > 0
)

=

t+d
∑

a=0

P

(

d
∑

j=−t+1

XF (j) = a
)

P

(

A(−t+ 1, 0) > an0

)

≤ (t+ d+ 1) max
0≤a≤t+d

{

P

(

d
∑

j=−t+1

XF (j) = a
)

× P

(

A(−t+ 1, 0) > an0

)}

≤ (t+ d+ 1)max
{

P

(

A(−t+ 1, 0) > (t+ d)n0

)

,

P

(

XF (−t+ 1, d) = t− 1
)

,

max
a∈{0,1..,d−1}

{

P

(

XF (−t+ 1, d) = t+ a
)

×P
(

A(−t+ 1, 0) > (t+ a)n0

)}}

≤ (t+ d+ 1)max
{

2t+d
( n

1− q

)7H

e−n(d+1)IX ,

2t+de(t+d)Hθ∗
( n

1− q

)7H

× e−nmina∈{0,1,2...d}{IA(a)+(d−a)IX}
}

≤ (t+ d+ 1)2(t+d)(Hθ∗

log 2+1)
( n

1− q

)7H

×max
{( n

1− q

)7H

e−n(d+1)IX ,

e−nmina∈{0,1,2...d}{IA(a)+(d−a)IX}
}

≤ c42
c2t

( n

1− q

)7H

× e−nmin{(d+1)IX ,mina∈{0,1,2...d}{IA(a)+(d−a)IX}}

≤ c42
c2t

( n

1− q

)7H

e−nI0 , (57)

for all n > N4, wherec4 = 2d(
Hθ∗

log 2+2)+1 andc2 = Hθ∗

log 2 + 2.
Let c1 = 2max{c3, c4}. Substituting (53) and (57) into (50)

we then have

P(Et) ≤ c3te
−nI0 + c42

c2t
( n

1− q

)7H

e−nI0

≤ c12
c2t

( n

1− q

)7H

e−nI0

for all n > N1 = max{N3, N4}. Finally, summing overt = 1
to t∗ we have,

t∗
∑

t=1

P

(

D(0) > d,L(0) = −t
)

=

t∗
∑

t=1

P

(

Et

)

≤ c1t
∗2c2t

∗
( n

1− q

)7H

e−nI0 ,

for all n > N1.

Part 2: We would like to show that there existsN2 > 0
such that forn > N2

∞
∑

t=t∗

P

(

AF (−t, 0)−XF (−t, d) > 0
)

< 4e−nI0 .

We noted earlier that the equations for evolution ofAF (−t+
1, 0) are in general complicated. But if an arrival process
satisfies certain conditions then some simple results such as
Lemma 9 and Corollary 2 can be obtained. Hence, to analyze
AF (−t + 1, 0) we first construct an arrival procesŝA(·) that
satisfies the conditions of Lemma 9 and̂AF (−t + 1, 0) >
AF (−t + 1, 0). We do this by adding some extra arrivals to
the processA(·) in some strategic time-slots. The resulting
arrival procesŝA(·) has the property that̂A(i) = p̂n whenever
A(i) ≤ p̂n and Â(i) = φLn wheneverA(i) > p̂n. Hence,
the resulting arrival procesŝA(·) is in fact very simple. We
can then get an upper bound on̂AF (−t + 1, 0), which, by
construction, is also an upper bound onAF (−t+ 1, 0).

Before constructingÂ(·), we first consider another arrival
process denoted byA′(·) such that for the new arrival process
A′(·), every frame formed in the interval−t + 1 to 0 is
completely full, i.e., has exactlyn0 packets each. Moreover,
AF (−t + 1, 0) = A′

F (−t + 1, 0). It is then easy to see that
from arguments similar to Lemma 9, we haveA′

F (−t+1, 0) =
⌈

A′(−t+1,0)
n0

⌉

. We constructA′(·) as follows,

1: for i = −t+ 1 to 0 do
2: if Z(i− 1) = h− 1 andA(i) < R(i− 1) then
3: r ← R(i− 1)−A(i)
4: j ← 0
5: while r > 0 do
6: if A(i− j) > p̂n then
7: δA = 0
8: else
9: δA = min{r, p̂n−A(i − j)}

10: end if
11: A′(i− j)← A(i − j) + δA
12: r ← r − δA
13: j ← j + 1
14: end while
15: end if
16: end for

In the above algorithm, step 2 checks to see if at timei
there is a frame that has been open forh time-slots but has not
receivedn0 packets. Note that if this is true, then the arrivals
in the intervali− h+1 to i must be less thann0. In order to
make the frame completely full, we add extra arrivals to these
time-slots till the frame-size becomesn0. While doing so, we
do not add packets to time-slots that already have greater than
p̂n arrivals, and we do not add more thanp̂n−A(j) arrivals
to a time-slotj with A(j) < p̂n. Note that asp̂ > φā and
h − 1 > 1

ā , hence it follows that̂pn(h − 1) > n > n0. This
implies that we can always fill frames in this manner.

From the algorithm above, it follows thatA(i) ≤ p̂n
if and only if A′(i) ≤ p̂n. Now we construct the arrival
processÂ(·) which satisfies the conditions of Lemma 9 as



follows

1: for i = −t+ 1 to 0 do
2: if A(i) > p̂n then
3: Â(i)← φLn
4: else
5: Â(i)← p̂n
6: end if
7: end for

The resulting arrival procesŝA(.) is in fact very simple.
For most time-slots,̂A(i) = p̂n and then for a few time-slots
Â(i) = Ln. Notice that wheneverA′(i) ≤ p̂n then Â(i) =
p̂n and wheneverA′(i) ≥ p̂n then Â(i) = φLn ≥ p̂n. It
follows thatÂ((−t+1, 0)) is greater thanA′(−t+1, 0). Thus

from Lemma 9 we haveÂF (−t + 1, 0) =
⌈

Â(−t+1,0)
n0

⌉

≥
⌈

A′(−t+1,0)
n0

⌉

= A′
F (−t+1, 0) = AF (−t+1, 0). So an upper

bound onÂF (−t+1, 0) is an upper bound onAF (−t+1, 0).
Let B = {b1, b2, , b|B|} be the set of time-slots in the

interval−t+ 1 to 0 whenA(i) ≥ p̂n. Then from Corollary 2
we have that, givenL(0) = −t,

ÂF (−t+ 1, 0)

≤

|B|−1
∑

j=1

⌈

Â(bj + 1, bj+1 − 1)

n0

⌉

+

|B|
∑

j=1

⌈

Â(bj , bj)

n0

⌉

+

⌈

Â(−t+ 1, b1 − 1)

n0

⌉

+

⌈

Â(b|B| + 1, 0)

n0

⌉

≤

|B|−1
∑

j=1

(bj+1 − 1− bj)p̂n

n0
+

|B|
∑

j=1

φLn

n0

+
(b1 − (−t+ 1) + 1)p̂n

n0
+

(0− b|B|)p̂n

n0
+ 2|B|+ 1

≤
(t− |B|)p̂n

n0
+ |B|

φLn

n0
+ 2|B|+ 1

≤
n

n0
[p̂t+ (φL+ 2)|B|+ 1].

From Assumption 2 on the arrival process we know that
for large enoughn and t, |B| can be made less than an
arbitrarily small fraction oft. Further, we can show that for
|B| < 1−p̂

6(L+2) t, n > H(2+p̂)
1−p̂ and t > 6

1−p̂ , AF (−t + 1, 0) ≤

ÂF (−t + 1, 0) ≤ (2+p̂
3 )t. This follows by substituting the

values oft, |B| andn in the equation above,

AF (−t+ 1, 0)

≤ ÂF (−t+ 1, 0)

≤
n

n0
[p̂t+ (φL + 2)|B|+ 1]

≤
2 + p̂

1 + 2p̂
[p̂+

(1− p̂)

3
]t (since(

1− p̂

6
t > 1)

≤
2 + p̂

1 + 2p̂
.
1 + 2p̂

3
t

=
(2 + p̂

3

)

t. (58)

It then follows that,

P

(

AF (−t+ 1, 0) ≥
(2 + p̂

3

)

t, L(0) = −t

)

≤ P

(

|B| >
1− p̂

6(φL+ 2)
t

)

≤ e−ntφIB( p̂
φ
−ā, 1−p̂

6(φL+2)
), (59)

for all n > N5 = max{NB(
p̂
φ − ā, 1−p̂

6(φL+2) ),
H(2+p̂)
1−p̂ } and

t > T1 = max{TB(
p̂
φ − ā, 1−p̂

6(φL+2)),
6

1−p̂}.
Moreover, we know that for eachi, XF (i) = 1 with

probability greater than1−
(

n
1−q

)7H

e−nIX for all n > NX .
Hence, using Lemma 1 we have that, there existsN6 > NX

such that,

P

(

XF (−t+ 1, d) < (
2 + p̂

3
)t, L(0) = −t

)

≤ P

(

XF (−t+ 1, d) ≤ (
2 + p̂

3
)(t+ d), L(0) = −t

)

≤ e−n(t+d)( 1−p̂
9 )IX

≤ e−nt
(1−p̂)IX

9 , (60)

for all n > N6 and t > 0.
Combining the above two results, from (59) and (60) we

have, for alln > N7 = max{N5, N6} and t > T1,

P

(

AF (−t+ 1, 0)−XF (−t+ 1, d) > 0, L(0) = −t
)

≤ 1− (1− e−nt
(1+p̂)IX

9 )(1− e−ntIB( p̂
φ
−ā, 1−p̂

6(φL+2)
))

≤ 2e−tnIBX ,

where IBX is the minimum of IB(
p̂
φ − ā, 1−p̂

6(φL+2)) and
(1−p̂)IX

9 .
Recall thatt∗ > max{T1,

I0
IBX
}. Hence, summing over all

t > t∗ we have, for alln > N2 = max{N7,
⌈

log 2
IBX

⌉

}

∞
∑

t=t∗

P

(

AF (−t, 0)−XF (−t, d) > 0, L(0) = −t
)

≤

∞
∑

t=t∗

P

(

AF (−t, 0)−XF (−t, d) > 0, L(0) = −t
)

≤

∞
∑

t=t∗

2e−ntIBX

≤
2e−nt∗IBX

1− e−nIBX

≤ 4e−nt∗IBX (ase−nIBX <
1

2
)

≤ 4e−nI0 .

The result of the theorem then follows.
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