OFDM Downlink Scheduling for Delay-Optimality:
Many-Channel Many-Source Asymptotics with
General Arrival Processes

Manu Sharma and Xiaojun Lin
School of Electrical and Computer Engineering, Purdue ehsity
West Lafayette, IN, USA.
Email: {sharma50, link@ecn.purdue.edu

Abstract—We consider the downlink of an OFDM system for in the buffer at the base-station. In the literature, it idlwe
supporting a large number of delay-sensitive users. The OFM  known that the Max-Weight algorithm is throughput optimal
scheduling problem can be modeled as a discrete-time multi- \,nqar such a setting, in the sense that it can stabilize ttersy

source multi-server queuing system with time-varying conec- .
tivity. For such a system, the Max-Weight policy is known to under the largest set of offered loads. However, it has been

be throughput-optimal and the Server-Side Greedy (SSG) paty observed in[[1] [[2] [3] that the Max-Weight algorithm can
has been recently shown to achieve small queue lengths for.d. lead to large delays for users. Specifically, although aesyst
arrival processes. However, there is often significant difrence can be stabilized by the Max-Weight algorithm, the queue
between queue-length optimality and delay optimality, andthere length can be very largel][1[][2][3] proposed a number of

exist arrival patterns such that algorithms with small queue heduli lqorithms that fficient i intairli
backlog can still lead to large delay. In this work, we propos a new scheduling algonthms that are efficient in maintainevg

new OFDM scheduling algorithm that gives preference to pacts dueue lengths for all users. They keep queue length small by
with large delay. Assuming ON-OFF channels, we calculate yger ~ serving the queues with higher weighted sum and at the same
and lower bounds for the delay violation probability for a time balancing queues in each time-slot. The authors| o] [
large class of e_lrnval_ processes. We discuss _the cases whéhne [3] use large-deviation tools to study the asymptotic dedy
proposed algorithm is rate-function delay-optimal, and wealso -
show that these bounds can be used to construct an admissionOTc the probability that the queue-length of any user exceed a
control sceme. We substantiate the result via both analysiand ~given threshold, as the number of users and the number of
simulation. frequency carriers both increase. They show that for Bdlinou
arrivals that are i.i.d. across time, the proposed algorith
. INTRODUCTION rate-function queue-length optimal i.e., they achievdangest
Next generation OFDM-based wireless cellular systendecay-rate for the above queue overflow probability. Foremor
(e.g. WiMax and LTE) are envisioned to provide much higheyeneral arrival processes, the algorithms are shown t@eehi
data rate and larger system capacity. It is conceivableithatstrictly positive decay-rates for the queue overflow prolitsb
the future, both voice, data, and video traffic can be carriedHowever, simply maintaining low queue-lengths is insuffi-
on a single packet-based OFDM system, eliminating the neeédnt for guaranteeing low waiting-time. When the number of
to maintain separate voice networks. An important problearrival packets is constant over time, one may map the decay
in the realization of this goal is the design of schedulingate of the queue-overflow probability to that of the delay-
algorithms that provide low-delay guarantees to delayifeas violation probability [4]. For general arrival processéisere
voice/video users. In a typical OFDM system, the bandwidthay not exist such mappings. The discrepancy can be quite
available to the base-station is partitioned into hundrefds large especially when the arrivals are correlated over.tfoe
orthogonal carriers. A given user can be served by mulgéxample, a packet that is present in a queue with low queue-
ple frequency carriers simultaneously, and the allocatbn length may have to wait for a long time to get served if few
carriers to users can change over every time-slot. How ugeickets are offered to this queue for several time-slots.
transmissions should be scheduled over frequency and timén this paper, we directly study the packet delay of OFDM
will have a significant impact on the delay performance of thgdown-link scheduling algorithms under an ON-OFF fading
system. Morevoer, an efficient admission control algoriism model. We use large-deviations tools and study the asymptot
needed to ensure that the network capacity is fully utilizeédal decay-rate of the probability that the delay of any mdck
while meeting the delay requirement of the users. Both ekceeds a threshold, as the number of users and the number of
these problems need to be carefully studied. channels both increases. (The precise definition of theebov
In this paper, we focus on the down-link OFDM schedulindelay-violation probability is given in Sectidd Il.) We pride
and admission control problem in a single cell. Arrivinga new OFDM scheduling algorithm and derive a lower bound
packets get queued in the buffer at the base-station béfeye ton the rate-function of the delay-violation probabilityedmed
are transmitted to the users. For the scheduling problem thethis algorithm. We also obtain an upper-bound on the rate-
goal is to minimize the amount of time that any packet spenfismction of the delay-violation probability for any schéditg



policy. From these bounds, we can identify the cases whgmobability asm and n increase (defined below). Then, in
the proposed algorithm is rate-function delay-optimallikén section[VIll when we study the admission control problem,
[, [2l, [8], our result holds for a large class of generaial we will vary ¢ and study the largest value ¢fthat can meet
processes, which may be correlated across time. We furtleer a given delay constraint. The arrival process to each queue i
these bounds to derive a simple threshold policy for adamssiassumed to be stationary and ergodic, and i.i.d. acrossegqueu
control. To the best of our knowledge, this is the first worklowever, arrivals may correlate across time. We assume that
that deals directly with the design and analysis of rateefion  time is slotted. Leta, (i) denote the number of packets that
delay-optimal scheduling and admission control policies &rrive to queue: at time, and leta,(i,j) = > ;_; au(k)

OFDM wireless cellular systems. denote the total arrivals to queue from time : to j. We
When a large number of users are served by a singlésea to denoteE[a,(-)]. Let A(i) = Y_"" , a, (i) denote the
server queue with fixed capacity, it is easy to see that tbemulative arrivals at timeéand A(i, j) = >_7._, A(k) denote

delay-optimal policy should serve packets in a First-conthe cumulative arrivals to all queues from tir® 5. To model
First-serve manner. Previously, many-source large-tiewist channel fading, the queue-server connectivity in timé-sis
tools have been used to study the delay performance of Firgizen by the matrixC (i) = [cu.s(7)]mxn. We assume an ON-
come First-serve (FCFS) scheduling policy in such sing®@FF model. Whenr, (i) = 1 we say that the queue is
server queues_[5][6]. Somewhat surprisingly, our analysi®nnected to the server at time i. Whene, (i) = 0 we
indicates that, when the number of users and the numbersaly that the queue is disconnected from server at time
carriers are large, an OFDM system under ON-OFF fadinag At every time-slot the resource manager or the scheduler
behaves quite closely to a single-server queue with integnti  at the base station allocates queues to servers. If a cauhect
connectivity, provided that some conditions on the per-usservers is allocated to a queue in time-slot i, then one
transmission requirements are satisfied (see Lerhina 6 picket fromu can be served by the end of the time-slot by
Sectior 1V). Unfortunately, the FCFS policy no longer & servers. In a time-slot, multiple servers may be assigned to
these conditions. Specifically, due to the random conriéctiva single queue, but each server can be assigned only to one
between queues and servers, we may not always be ablejieue. For concreteness we assume that all arrivals octhe at
serve the set of packets with the highest delay in every timigeginning of a time-slot followed by any possible service W
slot. Hence, we must design a new policy, called DWM (delagiso assume that the average arrival ratalls into the interior
weighted matching), that respects the conditions on the pef the maximum stability region of the systefi [7], and hence
user transmission requirement. the system can be made stationary and ergodic under some
In summary, the main contributions of this work are, scheduling algorithm. Further, we assume that each queuie ha
« We develop a scheduling algorithm, called DWM (delayinfinite buffer capacity so that no packets are ever dropped.
weighted matching), and obtain a lower bound on the
asymptotic decay-rate of its delay-violation probability
By comparing with a related upper bound on the rate-
function for any scheduling policy, we identify cases
when the proposed DWM algorithm is rate-function
delay-optimal. Our analysis holds for a large class of
arrivals processes that may be correlated across time.
Further, we develop a simple admission control policy
based on the decay rate attained by the DWM algorithm.
o The key insight that emerges from our work is that OFDM Fig. 1. System Model
systems with a large number of users and channels may
be approximately modeled as a single-server queue withFix @ queueu at a time-sloti. Over all packets that are
intermittent connectivity. While this insight considelpb Present in queue at times, let D, (i) denote the maximum
simplifies the analysis and design, its application reguiréelay starting from timei until all packets in this set are
careful consideration of the restrictions imposed by tHeerved, Note that if the packets of each quelsre served in
random nature of channel capacity in a wireless OFDRI First-come First-serve (FCFS) manner and there is at least
system. We provide the analytical techniques that suene packet that arrives to queuweat time i, then D, (i) is
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cessfully address these issues. the maximum delay of all packets that arrive to queuat
time <. Further, this definition allow®,, () to be well-defined
Il. SYSTEM MODEL even when there is no packet arriving to queuat time .

We model the down-link of a single cell in an OFDM sysiet D(i) = max,{D,(¢)}. Hence,D(i) > d if and only
tem as a discrete-time multi-source multi-server systeth wiif there exists a packet that arrived on or before tiinand
stochastic connectivity. There ane frequency sub-carriers that has not been served till timiet- d. In this paper, we are
each of which is represented by a server. Therenare ¢n  interested in the delay performance in the large-systeimesg
users and the base-station maintains a queue for each aser3pecifically, consider a sequence of systems with a fixdalit
most of the analysis we will fiy and study the delay violation with both the number of users and the number of servers



increasing proportionally to infinity. Assuming that thessgm independently acrossu, s.

is stationary and ergodic, let Remark: Assumption 1 is mild and it states that the arrivals
) 1 in every time-slot must be bounded above by a finite number
1(d) = nlggo—g 10gP(D(O) > d), L. Assumption 3 has been used in previous work [1] [2] [3]

whenever the limit existsI(d) is called the rate-function for [Bﬂ Although thgi.i.d. ON'OFF (?hannell model is a simpli-
cation, we believe that the insights will also be useful for

delay thresholdi, which captures the asymptotic decay—ratg . :
(as the system size increases) of the probability thét) more general channel models. For instance, in SeCfidn VII we
exceeds the thresholl One can imagine that a larger valudVill also provide simulation results for Markovian charsel

of rate-function would imply a lower probability of packets*SSumption 2 is very general and captures a large class of
getting delayed byl time-slots. In fact, for large: we can arrival processes. The intuition behind Assumption 2 is a

estimateP(D(0) > d) ~ e~—"/@), and the estimate becomesstat|st|cal multiplexing effect when a large number of s@sr

b for | . | of. O Lis th desi are multiplexed. The basic tenet of the assumption is that
etter or increasing values ol. our goat s then to design wq arrivals to different queues are independent of eacér.oth
scheduling algorithms that achieve large values of theydel

f onl(d). A policy i id 10 b ¢ ion del Recall that the arrivals to every queue may vary around the
rate-function ( ).' policy Is said to be rate-function delay-q4, yajues. In some time-slots, the arrivals to one queue
optimal if it achieves the maximum value dfd)

heduli lqorith hi Note that th thgt an-Iy may be higher or lower thaf. However, when considering a
scheduting algoriinm can achieve. Note that Ineé above arqgrge number of such independent sources, one would expect

n, fixed-d asymptotics are meaningful for the OFDM systemg, ; e sources with large arrivals would balance the ssurc
with a large number of users and carriers but requiring small., <1411 arrivals so that the sum is close aon. Hence,

dell3ayf. " ih th ‘ del at the chance that the sum is far away from the meam
; he _orel we I(t:(t)r? |tn_ue f\tNI fe Sélst em thmo ei V}’?hs ale ;& low, especially whem is large. Further, as long as the
echnicatresut that is often reterred fo in the rest ot P o mporal correlation of arrivals is short-ranged, the cean
Lemma 1: Let X;,7 = 1,2,... be a sequence of binary . . .
. . that the total arrival over a large interval is far away from
random variables such that for all L . .
the mean also diminishes as the length of the time interval
]P’(XZ- = 1‘X1-,, i # z) < c(n)e ™, increases. Such intuitive properties are captured in Apsiom
2. Specifically, the probability bound on the right hand side
of (@) can be made arbitrarily small for sufficiently large
and¢t. The assumption can be mathematically verified for a
large class of arrival processes. We provide here the payof f

regardless of the values of other random varialesi’ # i,
wherec(n) is a polynomial inn of finite degree. LetV; be
such that(n) < e foralln > Ny. Then, forany) < a < 1,

¢ mab two special classes, i.e., i.i.d. arrivals and arrivalseiti by
]P’(ZXi > at) <e @ two-state Markov chains.
=1 Lemma 2: Leta(-) be a packet arrival process such that in
for all n > N := max{12 N;}. every time-slot,
Proof: Please refer to Appendix]A. [ | ) N
_ ) r with probability p,
A. Technical Assumptions a(i) = 0 with probability 1 p."

Additionally, we make the following technical assumptions
about the arrival process and the channel states. Recall tNate that in this case@ = pr. Then, given any > 0, and
m = ¢n for a fixed . § > 0, there existl’ > 0, N > 0, and a positive function

Assumption 1: Arrivals are bounded. There exisis< oo Ip(€,0) independent of, andt such that
such thata,, (i) < L for any: andu.

]P)(Zz_l 1{|A(i)7¢’1m\>em} > 5) < e—mtIB(e,(?)

Assumption 2: Given anye > 0 andé > 0, there exists t

T >0, N > 0, and a positive functioriz (e, §) independent for all ¢ > T andn > N.

of n andt such that Proof: Let e = £. Then, it is clear that, if at any
S 1 a time ¢ the fraction of queues that receivearrivals belongs

P( i=1 _{[A@)—am|>em} 6) < e mHB(€) (1) to the interval(p — e, p + €2), then |A(i) — am| < em.

t I . 4
Moreover, the probability of this event is no smaller than
for all t > 7 andn > N. For eache > 0 andd§ > 0, let 1 —2¢~mmin{Dxw(p+eallp).Drr(p=elIP)} whereD g (z||y) =

ch(;?)a?\givN?é:sgc?ise?;e corresponding set of values fof log £ + (1 —)log {=2, is the Kullback-Leibler divergence

' ’ [9]. We defineS(i) to be a sequence of random variables such
that S(i) = 1 if |A(i) —am| > em and S(i) = 0 otherwise.
Then, from Lemmall we know that there exis{s> 0 such
that

Assumption 3: We assume that the channel process .,
ie.,

1 with probability ¢, ¢ S(i)

Cus() = {o with probability 1 — g, P(in

dmin{ Dy (pteallp). Dy (p—eallp)}
3

> 5) < e mt



for all n > N andt > 0. The result then follows. B to nz + nt. The minimum ofl4 (¢, ) taken over all positive

The next lemma shows that Assumption 2 also holds for ameger values ot is defined as
arrival process driven by a two-state Markov chain. .

Lemma 3: Let a(-) be a packet arrival process driven by a La(w) = inf La(t, ).
Markov chain with two states 1 and 2. Assume that whenever
the Markov chain is in staté, r; packets are generated in
each time-slot. State transitions occur at the end of tilois.s

In our analysis, we will also use another quantity that is
closely related td 4 (x). Define

Suppose that the transition probability of the chain is give It(t,z) = lim+ Ia(t,y).
by the matrix, |1 71 P! ] Note that in this case = o
p2 1—p2 and
Plzfpz 1 ,+ Plzjrl 2T2' . . IX(x) ;= inf IX(t, I)
Then, givere > 0, ando > 0, there existd’, N and a positive >0
function I (¢, §) independent of: and¢ such that Roughly speaking[(t,z) can be interpreted as the rate-
S 1A function for the probability that int time-slots, the total
]P’( i=1 {lA@)-am|>em} 6) < e~mtB(e9) number of arrivals is stricthgreater than na + nt. Clearly,
t for any value ofr wherel(t,z) is continuous with respect
forall #> 1 andn > N. to 2, we must have | (¢, ) = I4(t,z). However, there may
Proof: Please refer to Appendix|B. ®  be discontinuous points of such thatl}(t,z) # Ia(t,z).
B. Chernoff Bound and Cramer’s Theorem This potential difference may lead to a gap between the upper

and lower bounds that we derive for the rate-function of the

In the rest of the paper, we will frequently use the fo”OWin%{elay-violation probability. We will provide more detaidhen

standard results from Probability Theory in our proofs. Le : . . .
X;,1 <i < n be a sequence of i.i.d. random variables. Fé’\r/e discuss this gap in Sectidq V.

any z > E[X;], the Chernoff bound states that I1l. AN UPPERBOUND ON THE RATE FUNCTION
o Bz Ax. (0)] In this section we derive an upper-bound on the rate function
P(ZXi =z "x) se T I(d) of the delay asymptote for all scheduling algorithms.
=1 Theorem 1. Given the system model as described in Section
for any real numbed > 0, (2) 11, under any scheduling algorithm,

where\y, (/) = log E[e?¥¢] is the cumulant-generating func- 1

tion of X;. The best bound is obtained by choosing the real hﬂsogp_g IOg]P(D(O) - d)

numberd = 0* that maximize®z — \x, (), assuming that* < I 2 mind(d+ 1] i (T (d— 7
exists. Cramer’'s Theorem states that the upper boundbf (2) < Iy = min{(d+1) X’oﬂ?d{ ald =) +elx}

is tight in the exponenf]9, Chapter 2], i.e. wherely — 10g(1%q)-

. 1 " . . Proof: We consider two event§, and&; that imply that
nlgngo—ﬁlogP(ZXian) =0"zr — \x, (0"). D(0) > d.
=t Event &: Suppose that there is a packet that is present at
Note that the cumulative arrivals in our system in any timgueue 1 at time 0. Further, suppose that from tineo d
interval -t +1100, i.e. A(=t +1,0) = 377" au(~t+1,0), queue 1 is disconnected from all servers. Then, at the end of

is just the sum ofim = ¢n i.i.d. random variables. Hencetime-slotd this packet is still in the buffer, henc@(0) > d.
using Cramer’s Theorem we have, for any> 0,

]P)(El) _ (1 _ q)n(dJrl) _ efn(dJrl)IX. (3)
nan;O —% 1ogIP’(A(—t +1,0) > n(t+ x)) Event &;: Consider the following sequence of events. Fix
é m any e > 0. Chooset such that/}{ (t,d — c¢) < I;(d —c) +e.
= w}gnoo —E]P’(A(—t +1,0)> E(t + x)) Further, there exist§ > 0 such thatl 4 (¢, d—c+0) < I} (t,d—
¢)+ e < I} (d—c)+ 2e Suppose that from time-t + 1 to 0
= ¢sup {e(t + :c) _ )\au(—t+1,0)(9):| . there are greater than or equakitt+n(d—c+4) arrivals to the
0 ¢ system. Let the probability of this event pg;_.). Then from

where )\, (_¢11.0)(0) = log E[ef*(—t+1.0)] js the cumulant- Cramer's Theorem, we know théitm,, -1 1ogp(d_c) <
generating function of, (—¢ + 1,0). For a fixeds, we define 1a(t,d — ¢ +3) < I (d — ¢) + 2¢. The total service at any

the quantity time cannot exceed. Hence, at the end of time 0, there are
t at leastn(d — ¢) + 1 packets in the buffer (as long as> 3).
IA(t,z) := ¢psup [9( ) — Aau (—t4+1,0) (9)] ) Moreover, at the end of timéd — ¢ the buffer must contain
¢ ¢ at least one packet that arrived before titnéVithout loss of

This quantity is the rate function for the probability thatti generality, assume that this packet is present in queuew, No
time-slots, the total number of arrivalsgseater than or equal assume that queue 1 remains disconnected from all servers in



the nextc time-slots. This occurs with probabilify —¢)“* = edges such that in the induced sub-gréfifdi1) the degree of
e~"clog 55 independently of all past history. Hence, at thevery vertex is at most one. A perfect matching is a matching
end of timed, there is still a packet that arrived before time Guch that in the induced sub-graph the degree of every vertex
and that remains in queue 1. Hené&0) > d in this case. In is exactly one. Unfortunately, this concept of matchingas n

other words, the probabilitP(D(O) > d) is no smaller than Very useful in our setting because, if a queue has more than
one packets waiting to be served, we would have liked to

allocate more than one servers to the queue.
In order to address the above issue, in this section we

p(d_c)e*”dX. Since this is true for ang < ¢ < d, by taking
¢ that maximizes the above quantity, we have,

p(&) > max {p(d,c)e‘”dx}. generalize this idea of matching to vector matching. Let

Ose=d G[X UY, E] be a bipartite graph where the vertices of set
Thus, X are indexed a$z1, 22, .., }. Letv be a] X |-dimensional
1 vector whose elements are non-negative integer$/ lis a
Jim —— 1ogIP’(€2) < Oglcigd{lj(d —c¢)+2e+clx}. subset ofX, thenv(V) = 3> ;.. <y vi. Then, av-matching

o M is a sub-set\/ of edges such that:
Hence, by picking the more probable event frémandé&s

we have |ag(1\,{) (xz)l < Vi, for all 1 <1< |X|, and,
1 < .
lim —~ 1ogP(D(O) > d) e, W)l < 1, forally €Y.
n—00 n . .
. . In other words each vertex; in X is matched to at most
< T(d - . C Lo
= mm{ce?ol,lfl.d}{IA (d =) +2e+elxh (d+ 1)Ix} v; vertices inY, but each vertex iy’ is matched to at most
one vertex inX. Note that a graph may have more than one
v-matchings. Aperfect v-matching is a v-matching (/) such
lim _llogp(l)(o) > d) that |Og(ar) (2)| = v; for all z; € X. If G admits a perfect
n—oo M R v-matching, then it is said to be perfectlymatched. For our
<If = min{cegiln d}{IX(d —¢)+clx},(d+1)Ix}. OFDM systemu; corresponds to the number of packets that
"" queuez; requests to serve. Thus, a perfeematching will
B correspond to a schedule of servers to queues that serves the
IV. VECTOR MATCHING IN BIPARTITE GRAPHS requested packets from all queues. Since the edges appear

. . . ... _randomly, we will be interested in the probability that afpet
In section[Y, we will propose new scheduling algorithms y P y P

. - v-matching can be found. The following two lemmas show
Fate. Towards ths end, we it sty a snapshot of e syctEgUTS USefl propertes for estimating his probabily.
: ' y P Y emma 4: Let G[X UY, E] be a bipartite graph. Let be

at a given time, when each queue has some packets that need . : .
. " a|X| dimensional vector whose components are non-negative
be served. We will study under what conditions an allocation L .
. tegers. TherG has a perfect-matching if and only if for
of servers/carriers to the users/queues can be found sath
. : everyV C X, |0g(V)| > v(V).
all desired packets can be served. As we will see below, this ) . .
Remark: If v; = 1 for all ¢, then the above result is

F;ggl)er? b?;grtzi ;Irzvgﬁd as a vector matching problem Ine‘%‘quivalent to the well known Hall's Marriage Theorem in

We first introduce some notations that will be used in thi%;raph Theory[I0]. For a detailed proof of the result please

) . refer to AppendiXC.
section. We use7[X U Y, E] to denote a general bipartite . L .
graph, whereX andY are two disjoint sets of vertices and Lemma 5. Let GIXUY, E] be a random bipartite graph, in

£ 5 th st of cces such ht every cdge I comnetsa e 1 2 Pak ot © 4 ancy = ) ere s cte
vertex inX to a vertex inY". For our OFDM system, the st y P Y4, P y

corresponds to the set of queues, and the s&t corresponds edges. Lev andw be vectors of lengthX'| with non-negative

to the set ofn servers. According to Assumption 3, each edg|gteger components such that,
1) w1 > wa + 2;

between a vertexx in X and a vertexy in Y exists with

probability ¢, independently of other edges. L&t (=) denote vr=wi — 10 =wz+ L
the set of neighbors of vertexin G. Suppose that’ is a set 3) vi = w;, for 3 <i < |X].
of vertices of G. We definedq (V) = U.cyda(z). |0c(V)| Then,
is called the degree df and denotes the number of distinct
neighbors of the vertices df. If M is a subset of edges of

As the above equation holds for alt> 0, we have

]P’(G has a perfecb-matching)

G, i.e., M C E, thenG(M) is called the sub-graph induced > P(G has a perfectu—matchin@.
by M and consists of all vertices @ and edges present in N
M. Remark: Note thatv andw are the same everywhere except

We review the concept of matching in a bipartite graphn the first two components. Moreoveris more balanced than
which is well known in Graph Theory [10, Chapter 16]. Givenw, i.e., v; + v2 = wy + wy but |v; — ve| < |wy; — ws|. The
a bipartite graphG[X U Y, E], a matchingM is a subset of above result then states that, if a vector is more balanbed, t



probability of perfect vector matching is higher. This leasiqueue. In a single-server queue with service rate H, even
result forms the basis of the next Corollary. For a detailaéflone user requests — H packets and all other users request

proof please refer to Appendix|D. no packets, all packets can be served in one time-slot. In our
In the following results,H is a given positive integer OFDM system, however, since each user is connected to only
independent of. gn servers on average, there usually exists no feasible stehedu

Corollary 1: Let G[X UY, E] be a random bipartite graphthat can serve that above pattern in one time-slot. Hence, we
in which for every pair ofr € X andy € Y there is an mustimpose the additional constraint thatx; <;<,, w; < H.
edge betweenr andy with probability ¢, independently of Due to this difference, we will not be able to directly use an
other edges. Let andw be two vectors of lengthX| with algorithm that is optimal for a single-server queue to sewe

non-negative integer components such that, OFDM system. In the following sections, we will introduce
1) max;[v;] < H; new concepts that address this difficulty.
2) Zlﬂ v < Z‘{i{ll w; =n — H; V. SCHEDULING POLICIES
n—(k+1H, ifi=1 In this section we propose two scheduling policies that can
3) wi =4 H, if 2<i<k+1; attain close to the upper bourig (given in Theorenf]l) on
0, ifi>k+1, the asymptotic decay rate of the delay violation probahilit
wherek = [2] — 2. Then, We assume that in every time-slot _th_e sch(_edu!er has perfect
knowledge of queue-server connectivity, which is repréasn
]P’(G has a perfecb-matching) by the matrixC(i). Also, it can use the past history of arrival

and channel processes.
A. Intuition behind the Proposed Delay-Based Policies

Corollary[d can be shown by convertiagto v in a sequence  Motivated by Lemmal6, we consider a single-server queue
of steps such that in every step the new vector becomes muaith intermittent connectivity. Specifically, in eveg tevslot

balanced (in the sense of Lemida 5). The result then followss server is connected with probability— (-2 7 o—nlx
1—q !

from Le_mmal];. For the details of the proof please refer ©hd disconnected otherwise. Whenever the sefver is cathect
AppendleE. N it can serveny = n — H packets. However, it cannot serve

. '-e”?ma 6: Let GIX Y Y, E] be a random bipartite _graph,any packets when disconnected. It is not difficult to see, that
in which for every paur ofz € X__and ¥ e Y there is an if we serve packets in such a single-server queue in a FCFS
edge betweem andy with probability ¢, independently of all (First-Come First-Serve) manner, then the delay ratetfonc

other edges. LeLX| = m and[Y| = n. Let w be a vector ;oo yima| je. it is equal to the upper bourdg given in
with non-negative integer components Wib" , w; <n—H oo

andmax <<, w; < H, then for some finite value aWVx,

> ]P’(G has a perfectu-matchin@.

Now from Lemmal[®b, our OFDM system is in fact quite

- o : i .
]P’(G has a perfectu—matching) > 1_(1 n ) olos g similar to the single-server queue in the sense that, under

—q suitable restrictions, the probability that packets may be
TH
forall n > Nx. served in a time-slot is no less thdn— 1%(1 e ix,
Proof: Please refer to AppendiX F. B However, obviously we cannot use a FCFS policy directly,

Remark: The decay rate stated in Lemria 6 can not Heecause it may violate the condition of Leminh 6, which
further improved. To see this, note thatdf;, = H, then translates to the restriction that in a time-slot every user
the probability that the vertex; is connected to less thanhave no more thati/ packets to be served.

H vertices inY is at least(1 — ¢)" #+1. This event alone To circumvent the difficulty, we propose two policies
will imply that the decay rate of the probability of prefectBS() and DWM. The policy FBS() approximates the FCFS
w-matching cannot be larger thasg 1%(1 policy, while respecting the restrictions mentioned abde

Let X denote the set of: source queued; denote the set will show that there exists a value for the paramétesuch
of n servers, and use an edge betweeand s if queuew that FBSf) attains a rate-function close tf. However,
is connected to serverin the OFDM system. According to the FBS{) policy is conservative in nature, and may waste
Lemma 6, as long azz’;l w; < n—H andmax;<;<,, w; < capacity. Further, it may not be throughput-optimal for &din
H, with high probability an allocation of servers to queues casize system. Therefore, we propose another policy DWM,
be found such that each usawill be able to servev; packets. which is more aggressive in serving packets and does noeéwast
Hence, our OFDM system is very similar to a single-serveapacity. We further show that DWM always serves packets
gueue with service rate — H and intermittent connectivity, ahead of FBS() for every arrival process and every valuegf
provided that the service requirement of each user is balindged hence the delay rate-function for DWM must be no smaller
by H. In the sequel, we will use this insight to desigrhan the delay rate-function for FB9( Thus, policy DWM
scheduling algorithms with good delay performance. Howevean also attain a rate-function close & when the system
the additional constrainhax;<;<., w; < H represents a key sizen approaches infinity. Further, it will perform much better
difference between our OFDM system and a single-seniarmedium-sized systems.



B. Policy FBS(h) (Frame Based Scheduling) C. Policy DWM (Delay Weighted Matching)

This policy serves packets in units of frames. Suppose that aAlthough policy FBSE) attains a rate function close to the
positive integer: is given. Recall that no more thanpackets upper boundl; in the asymptotic regime when the system
arrive to any user in a time-slot. Lety = n — Lh be the sizen increases to infinity, it is clearly inefficient. Specifigall
capacity of each frame. In the policy FB§(each frame is policy FBS(:) may not serve any packet in a time-slot, and
composed of packets that satisfy the following two condsio may waste up td.h packets in a time-slot even if it serves a

1) The number of packets in the frame is no greater th&i@me. Further, it is not throughput-optimal for any fingize
no (i.€., the capacity of a frame): system. As a result, policy FBB&( may perform poorly when

2) The difference of arrival times of any two packets in thi1e System size is not very large. In addition, for Thedrém 2 t
frame must be no larger than hold, we need to know the value bfin advance. Such a value

A K L hti lot. the f i of h depends on the statistics of the arrivals and channel states
S packets arrive in each time-slot, the frames are Constiic,, ;.\, may be difficult to predict in practice. Next, we propos

by filling in the packets sequentially. Specifically, pacskmanother policy, called DWM (Delay Weighted Matching), that

belonging to queud are filled before packets belonging 10, ddresses the above difficulty

gueue2, and so on. Further, older packets are added befor n every time-slot, define the waiting time of every packet

newer packet;. We fill each frame until the above cond|t|qns the time that the packet has spent in the buffer. We assign
cannot be maintained. Then we start a new frame. There m|% t

be a frame that is only partially filled at the end of a timetslo_. weight to every packet as follows. If a paCke.t has a waliting
. . e ) .~ “time of W and belongs to the queue with index then

In the next time-slot this frame is filled first, before stagtia . . . u o

new frame its weight is W 4+ —*=. Next, construct a bipartite graph

n+1
A frame in general may be represented as a vect@"in

G[X UY, E] such that vertices itX correspond to the oldest
n packets of every queue andis the set of servers. The edge
where theu-th component of the vector represents the numb.
of packets of user. in the frame. The policy FB%) serves

§ELE is constructed as follows: i is connected ta, then all
the f i th d h ructed. F tvertices that correspond to packetsuadre connected te. The
te rarpes |nf € same or e(rj as ety are lC(:nsSruc_?_ j Il,urlg\ Ckets to transmit are then determined by a maximum-weight
at most one trame 1S served In a time-siot. Spectiicatly, atching algorithm. In the following Lemma we compare
v(7) denote the vector representing the head-of-line frame g?cglicies DWM and FBS)
time 7. From the construction of the frame described above . e
Lemma 7: For any given sample path and for any value of

and Assumption 1 on the boundedness of the arrival process . .
We havemax <<, va(i) < Lh. Moreover,>"™ | v,(i) < /% by the end of time-slot, Policy DWM has served every

nog = n — Lh for all i. Note that a frame might contain_lessDaCket that FBS() has served.
Proof: Please refer to Appendix]G. [ |

than ny packets if it is the only frame left or if it was full !
because of condition 2 (described earlier). By LemmalY, the rate-fuqcthn of DWM must_be no smaller
In each time-sloti the policy FBSL) tries to schedule than that of FBSf). Combinging T_heorelﬁlz with I__emnﬁ 7
the head-of-line frame(i) for transmission. Letd = hL. Wf conclude that DWM also atains a _rat_e-_functlon close to
We know from Section IV on vector matching that, withfo_When the system size approaches |nf|n|t)_/. Further, we
- TH ~would expect DWM to outperform FBSJ even if the system
probability 1 — (ﬁ) e~"!x, the scheduler can transmit thesjze is not very large. Note that DWM does not require the
whole frame in a given time-slot. If the policy FEg(cannot value of in advance, and hence can be readily used even if
transfer the whole frame, then no packets are scheduledsin e do not have prior statistical knowledge of the arrivald an
time-slot and the scheduler will try again in the next tine:s channel states. Finally, the throughput optimality of DW
Define the random variabl& r(i) = 1 if v(i) is successfully finite system-size: can be shown analogously to other max-
transmitted at time, and X (i) = 0, otherwise. weight algorithms. We refer to the readers to our more recent
The following theorem shows that there exists a valué ofwork [11] for details.
such that policy FBS) attains a rate-function close ty .
Theorem 2: If the arrival process satisfies Assumptions +
and 2 and the channel process satisfies Assumptions 3, th%'n,T he Gap between Ip and I
there exists a value o for which the scheduling policy For a fixedd > 0, let I (d) (correspondingly,fo(d))
FBS(h) obtains the following rate-function denote the upper bound (correspondingly, lower bound)rgive

. in Theoren{]l (correspondingly, Theorémn 2). In other words,
lim inf_—log]P’(D(O) > d)

n—00 n

If(d) £ min{ min If(d—c)+clx,(d+1)Ix}, (4)

>Ip2min{ min Ia(d—c)+eclx,(d+1)Ix}. cc{0L,...d}
c€{0,1,...d} Ip(d) = min{ {Ionin 0 Ia(d—c)+clx,(d+1)Ix}. (5)
ceq0,1,...

Section[V] will be devoted to prove Theordmh 2. We will
also comment on the potential gap betwegrand the upper Clearly, they are virtually of the same form except tia(d)
bound ;" shortly in Sectio V-D. is computed fron?} (-) while Iy (d) is computed froml ().



Recall from Sectiofi [I-B that

e + 3 +
Iy(x) = %I;EIA(t,x), If(x):= %I;EIA (t,z), and

I (t,x) 1irn+ Ia(t,y).

Yy—x
Thus, I} (t,z) and I4(t,z) differ only at the pointz where
I4(t,z) is discontinuous with respect ta. Suppose that for
somezx, > 0 there is a non-zero probability that
t+ xo

au(_t+170) > ¢ .

Comparing[(b) and{6) term-by-term, we then have

I(d) >

min{ Ia(d—c)+clx,dIx}

€{0,1
Io(d —1).

..... -1}
>

VI. ANALYSIS OF FBS(h)

In this section, we will prove Theorel 2 for policy FBS(
(By Lemmal[Y, the same conclusion will then also hold for
policy DWM.) We start with a set of equations that capture

Then, the rate functio (¢, =) must be finite, convex and the frame dynamics in FBS). Define F(i) as the number

increasing with respect te in the range[0, ], and hence
it must be continuous in0,x0]. The only possibility of
discontinuity is at the right end-point of an intervial, x|
such that

t+ 20

Pla,(—t +1,0) > 5 ] >0, and
Play(—t +1,0) > Hjo] -0,

in which casel4(t,z) is finite and I} (t,x) = +oc. Thus,
we would expect thafy(d) and I;(d) are identical in most
cases. Specifically, suppose that the valueydhat attains the
minimum for Io(d) in @) is such that 4 (d—co) = La(to,d—
¢p), and that the functioti4 (¢¢, -) is continuous at: = d —¢g.
Then, we must havé,(d) = I (d). The following example
illustrates one such case.

Example 1: Consideri.i.d. arrivals with maximum number

of unserved frames in buffer at time Then, we can write a
recursive equation foF'(4):

F(i) = max{F(i — 1) + Vl(i)_n—}j“_ﬂ — Xp(i),0}
[Z(i — 1)+ 1Jmodh), if A®i) < R(i —1)
Z(i) =11, if A(i) > R(i —1)
0, if A(i)=R(i—1).
R(i) = 1{ruy>0y iz >0y [R(i — 1) — A(i)]mod(ng). (7)

To explain this set of equations, recall that after each time
slot, the end-of-line frame may be only partially filled and

thus can be filled with new arrivals in the next time-slot. We

use R(i) to represent the remaining available space in the
end-of-line partially-filled frame at the end of timeHence,

AW-RGE-1) represents the number of new frames that are

no

created at time. Note that ifA(i) < R(i—1), i.e., the number

of packets that arrive in any time slot equalltoSuppose that qf arrivals at timei is less than the remaining available space

Lo >1andd < Lo—1.Foranyt > 1and0 <c¢<d, letx =

in the end-of-line frame at the end of time— 1, then no

d—c < Lo —1. Under such a scenario, there exists a non-zeg@yy frame is addedX (i) represents the number of frames

probability thata,(—t¢ + 1,0) can reachLt = LoDt

£, Hence, we must haves (t,d — c) = I (t,d — c) for all
t andec, and thusly(d) = I (d).

served in time-slot. Notice that a maximum of one frame
and henceny packets can be transmitted in a time-slot. The
variable Z (i) counts the number of time-slots for which the

On the other hand, the following example illustrates a cas@d-of-line frame has been open. It starts at 1 when a new

when the two bounds do not meet.
Example 2: Consideri.i.d. Bernoulli arrivals such that in

frame is opened, i.e., whed(i) > R(i — 1). Then it is
incremented by 1 every time when the number of arrivals

each time-slot either one packet arrives to a queue withgerod (i) is less thank(i — 1). If it reachesh, then this frame is

bility a or no packets arrive to the queue with probabilitya.
(Note thatZ = 1 in this example.) Suppose that= 1 and
d = 0. Then, we havd 4(t,0) = log1/a andI; (¢,0) = +oc.
We can verify that in this cask (1) = min{log 1/a, Ix} and
Ig(1) = Ix.

Even in the case whehy(d) # I (d), the following lemma
shows that they cannot be too far away from each other.

Lemma 8: For anyd > 1, we must havey(d) > I (d—1).

Proof: Note that

1 IX(d—l—C)—f—Clx, dlx} (6)

min

IT(d—1) £ mi
0( ) mm{ce{o,l,...df

For anyt > 1 andc € {0,1...,d — 1}, since I4(t,x) is
increasing inz, we havel}(t,d — 1 —c¢) < Ia(t,d — c).
Taking infimum over alk, we havel ; (d—1—c) < I4(d—c).

completed and a new frame is started, in which céagg = 0
and R(i) = 0. Let v be anm-dimensional vector whosg"
component represents the number of packets of quene
frame. The construction of the frames ensures that for every
framev; < hL = H and) ;" v; < n — H = ny. Hence,
from Lemma® we ha\;%thaXF(i) = 1 with probability no

smaller thanl — ( 1 - e~ "X in every time-slot.

Let Ry = R(i — 1) be the empty space in the end-of-line
frame at the end of time — 1. Further, letA% (i, k) denote
the number of new frames created from tiint® &, including
any partially-filled frame at timé but excluding any partially-
filled frame at timei. We use the notatiod » (¢, k) to denote
AR (i k), if Ry = 0. Hence we can write,

n

F(k) = F(i —1) + AR (i, k) — Xp(i, k),



where X (i, k) denotes the total number of frames departinfpr any integer;.

from the buffer in the time interval to k. That is, Recall thatl, is defined in the statement of TheorEin 2. We
k then choose
Xrp(i k) =Y Xp()1{rg)>0}- . Tote,5) 1 { 21, -‘ o
j=1i = max €,0), , .
T | " Sa—o0—2) | | olIn(e,0)
In general the equations if](7) are complicated to analyze. )

However, if the arrival process satisfies some special eondi

tions in a time intervali, k), then we can derive some usefulThe reason for choosing such a valuehofvill become clear

results as follows. later on. Recall thalL is the maximum number of packets that
Lemma 9: Let A(-) be an arrival process to the system. Letan arrive to a queue at any time-sl@nd H = hL. Thus,H

R, be the empty space in the end-of-line frame at the end isfthe maximum number of packets that can arrive to a queue

time i — 1. Let the arrivals in the interval fromto k be such in i time-slots.

that Let L(0) be the last time—¢ before0 such that the buffer
1) The buffer never becomes empty in the interval, i.ewas empty, i.e.D(—t) = 0. Then given that.(0) = —t, the
F(j)>0forall je{ii+1,... k}. eventD(0) > d occurs if and only if the number of frames

2) For anyh — 1 consecutive time-slots in the interval, thghat arrive in the time interval from-¢+1 to 0 is greater than
cumulative arrivals are greater than or equahtg i.e., the total number of frames that could be served-ir4- 1 to

SR AGG) > no, foranyz € {i,i+1, ..., k—h+2}. d. Thatis,

j=z

Then the following holds for policy FB&J, {D(O) > d, L(0) = —t}
oo o [AG,k) — Ry ’
Ap® (i, k) = [Tw : = {L(O) = —t,Ap(—t+1,0) — Xp(—t+1,d) > o}.
R(k) = [Ro — A(i, k)Jmod(no). (8)

By taking the union over all possible values bf0) we get,
Remark: The condition of the Lemma implies that every

frame has exactlyy, packets. The result then follows. For]P’(D(O) > d)
details, please refer to Appendi¥ H. [ ] )

Corollary 2: Let A(-) be an arrival process such that< Z]P’(L(O) =—t,Ap(—t+1,0) = Xp(—t+1,d) > 0).
F(j) > 0foralli <j<kandletB = {zi,..., 75} be t=1
a sequence of time-slots in increasing order, belongingéo e now fix anyl > p > a. Then define,
interval from: to k, such that in every intervdl; + 1, 2;;11),
i € {1,2...,|B| — 1}, the condition 2 of Lemm@&l9 is satisfied. o max{TB(p . 1-p )) [ 6 w

3 6 1 )

Then, (L+2 —p
|B|-1 1
Alx; +1,2541) { 0 _ H (10)
Afto 1 < 2\ T gt X PO .
Fler+1lap) < ; [ o —‘ min{/z(p — a, —G(sz)), (%) Ix}

Proof: From LemmdP we have that and split the summation as,

1Bl 1 . _ _ P(D(0) > d
A 1 -
ARz +1,zp) = Y { (o + ’I:rl) R(IJ)W : ( - )
.7 0
= <> P(L(0) = —t, Ap(~t+1,0) = Xp(~t+1,d) > 0)
Since R(:) > 0, it follows that, pa—
|B|-1 ~
AR (2 + L) < Y {A(% + 1,:vj+1)w +>° ]P’(L(O) = —t, Ap(—t+1,0) = Xp(~t +1,d) > o).
’ - £ n ' t=t*
Jj=1 0 (11)

We are now ready to prove Theorém 2. We divide the proof into two parts. In Part 1 we prove that

Proof of Theorem @ We first choose the value of there existsVi >0 such that for alln > N,
based on the statistics of the arrival process. Let the méan o ¢
the arrival process be. We fix § < 2 ande < 4. Then, from ZP Ap(—t+1,0) = Xp(—t+1,d) > 0,L(0) = —t)
Assumption 2 on the arrival process, there exists a positivet=1
function Iz (e, §), such that for alln > Np(e,d) andt > < erproeat” (L)mefnlo
Tg(e,5) we have, ! 1—gq

where ¢y, co are positive constants independenttoénd n.
Then, in Part 2 we prove that there exigts > 0 such that

)

j+t
P(Zi:jﬂ 1{ja()—an|>en} - 5) < o—ntln(ed)
t b



for all n > N» It can be seen that the eveﬁf is similar to the buffer
0o overflow event in a single-server queue with intermittent
Z IP’(AF(—t +1,0) — Xp(—t+1,d) >0,L(0) = —t) connectivity as described earlier. Recall that as oppose t
P— single-server queue with constant rate, in every time-glith
< gm0 probability approximatelyt —e~"/x the service is equal tay
B packets, i.e., one frame. Thus, now there can be two factors
Finally, by substituting both parts into equationl(11), veé responsible fo€”. Firstly, if the arrival process is bursty, then
that there existsV := max{Ny, N>} such that for alln > N, ¢7 can be caused by a large burst of arrivals in a few time-

0o slots. Secondly, ifg is smallsf can be caused by a time
Z]P’(D(O) >d,L(0) = —t) interval of low service as frames get piled up in the buffer.
t=1 For moderate values @f, one can expect that the most likely
woegt (M \H —nl way in which 5{5 occurs is a mixture of bursty arrivals and
< (egt*2 (—) +4)e" ™o, : . e
1—gq sluggish service. From large deviations theory we know that

the rate-function oE’f is determined by the probability of the
most likely sample path leading Xf More formally, it can
be shown that there exists, ¢4, N4 > 0 such that

By taking logarithm and limit as tends to infinity, we get
the desired result.

Part 1. Let us denote byt the set of sample paths in
which everyh — 1 time-slots in the interval-t 4+ 1 to 0 see ]p(gﬁ)
at leastn arrivals. Leté‘[j be the set of sample paths in which i
M%;rl-ﬂ)_zj:_tﬂ Xp(j) > 0. Let&, be the sample paths p A(=t+1,0) ¢ Xo() > 0
such thatL(0) = —t and D(0) > d. Then, the following can — ( Z r(7) > )
be shown,

n
0 E—)

d d
& C(EM)°UEL. 12) _ 3 ]p( 3 Xr()) :t+a)JP>(A(_t+ 1,0) > (t+ a)no)
To see this, observe th&t is the set of sample paths in which a=—t  j=-t+1
L(0) = —t and Ap(—t +1,0) — Xp(—t +1,d) > 0. For all d
sample paths in the sé® N &, Lemmal® holds and hence, < (t +d + 1) _Imax {P( Z Xp(j)=t+ a)
Ap(—t+1,0) = ‘“%jl’o) . Moreover, it is easy to observe o j=—t+1
that, for all sample paths in the s&t N&;, Xp(—t+1,d) = X P(A(—t +1,0) > (t+ a)nO)}
Z?:—t+1 Xr(j). Hence, for a sample path belonginggon -, 202t( n )m
>~ C4

&, we must have‘“%jl’o) — E?:—t-&-l Xr(j) > 0. This 1—g¢

implies that,&; N & < £, Thus we haveg, = (& N &X) U x e~ nmin{(d+1)Ix mingefo,1,2...ay {Ja(a)+(d—a)lx }}

(&n(&Er)e) C (gfu(gta)c)_ Hence,[(IP) holds. It then follows n o \TH _,

that, < 042C2t(ﬁ) e "o, (15)
P(E:) < P((E7)) + P(E]). (13)

for all n > Ny.
We now give the intuition behind the analysis &f and&/. Letc; = 2max{cs, ¢4 }. Substituting[(TW) and{15) int6 (L 3)

For a detailed proof, please refer to Appendix I. we then have

We note that the everdl* implies that every frame formed ol wi/ MONTH
in the interval from—t + 1 to 0 will have n, packets, i.e. P(&) < cate™™° + 42 (Tq) e o
all frames served are completely full. It is then obviousttha no\T7
P(E8) depends orh, i.e., it will be large if we increase the < 01202t(Tq) e o

maximum time for which any frame can remain open. By _ _
choosing arh large enough we can ensure that the probabilitpr all » > N1 = max{N3, N,}. Finally, summing ovet = 1
P((£2)¢) is arbitrarily small. In particular, we can ensure thao t* we have,

the rate-function of?((£;*)¢) is greater than the rate-function t* t*

of P(£]). The cost that needs to be paid for having a large ZP(D(o) > d, L(0) = —t) = ZP(&)
is the loss in frame-size, which igy = n — Lh. Nonetheless, =1 t=1

this decrease in frame-size is independent aind does not woct* (0 N\NH g

affect the performance of the system significantly for lange < at’2 (Tq) ¢ ’

Hence, it does not show up in the rate-function. Specificall]y

) . - ~~ for all n > Ny.
for the choice ofh in (@), it can be shown that there exists Part 2: We would like to show that there exisfs, > 0
N3, c3 > 0 such that we have

such that form > N,
P(EX) > 1 — cte "o, (14)

P(Ap(—t,0) — Xp(—t,d) > 0) < 4e~ "o,
for all n > Ns. ; ( p(=t,0) = Xp(=t,d) )



We noted earlier that the equations for evolutiongf(—t

1,0) are in general complicated. However, if an arrival proce$sve, for alln > N7
satisfies certain conditions then some simple results sach a
Lemmal® and Corollary 2 can be obtained. Hence, to analyze

Ap(—t+1,0) we first construct an arrival procesk-) that
satisfies the conditions of Lemnid 9 ant-(—¢ + 1,0) >

Ap(—t +1,0). We do this by adding some extra arrivals to
the processA(-) in some strategic time-slots. The resultmgvhereIBX is the minimum ofIB(

arrival process4( ) has the property thad (i) = pn whenever
A(i) < pn and A(i) = Ln wheneverA(i) > pn. (Please
refer to Appendix]l for the details of how to construdt.).)
Hence, the resulting arrival proceﬁ$-) is in fact very simple.
We now get an upper bound oAx(—t + 1,0), which, by
construction, is also an upper bound dp(—t + 1,0).

Let B =
interval —t + 1 to 0 when A(i) > pn. Then, from Corollary
2 we have that, givei.(0) = —t,

Ap(—t+1,0)
B [ -
(bj +1,bj41 — A(b;, b))
+° [7%

|B|—1 3
g [ o —‘ j=1
N {A(—t—i—l,bl - 1)} . {A(bm +1,0)W

no no

< nﬁ[ﬁw (L +2)|B] +1].
0

From Assumption 2 on the arrival process we know that

{b1,b2,,b 5} be the set of time-slots in the

Combining the above two results, frofn {16) ahd](17) we
= max{N5,N6} andt > T1,

]P’(AF(—t +1,0) = Xp(—t+1,d) > 0,L(0) = —t)

a+p)r1 _ 5—g. _Lt=P
,ntTX)(l e ntlp(p a,G(LJrz)))

<1-(1-
<2 —tnIBx

(1-p)Ix
a, 6(L+2)) and! —
Recall thatt* > max{T}, - 7. }. Hence, summing over aII
t > t* we have, for alln > N, = max{Ny, P"gﬂ}

Ipx
i IP’(AF(—L‘,O)

t=t*

— Xp(~t,d) > 0,L(0) = —t)

< i ]P’(AF(—t, 0) — Xp(—t,d) > 0,L(0) =

t=t*

o0
S Z 2efntIBX

t=t*
2677125*[3)(

)

= 1—enlsx
" 1

<4 —nt*Ipx as —nlpx < =

< 4e (ase )
< 4e~ o,

The result of the theorem then follows. [ |

VII. SIMULATION RESULTS

for large enoughn and ¢, |B| can be made less than an |n this section, we compare the performance of the pro-
arbltrarlly smaII fraction oft. Further, we can show that forposed DWM algorithm with the classic Max-Weight (MW)

|B| < 5 t,n > H(QJ;” andt>— Ap(—t+1,0) <

L+2)

algorithm [7] and the recently-proposed Server-Side-@yee

Ap(—t +1,0) < (2;:1’)15 (Please refer to Appendi¥ | for (SSG) algorithm in[[1],[[2]. We simulate these algorithmslan

details.) Hence,

P (AF(—t +1,0) > (%ﬁ)t,L(O) = —t)

< <P-“vm>, (16)
for all n > N5 = InaX{N?(A @, 50y f_tf)} andt >
Tl = maX{TB(ﬁ —a, 6(L+2))7 %

Moreover, we know that for each, Xr(i) = 1 with

H
probability greater than — e~™x for all n > Ny.
Hence, using Lemmil 1 we have that, there exigis> Ny
such that,
~t)

)(t +d), L(0) = —t)

25Dy 1(0) =

2+p
3

]P(XF(—t+1,d) (

< P(Xp(—t+1,d) < (

o n(t+d) (P57 Ix

IN

(A-p)Ix
—nt——my—

IN

e

: (17)

for all n > Ng andt¢ > 0.

compare the empirical probabilities that the maximum delay
any given time exceeds a constaniVe consider two settings:
(i) when the arrivals aréi.d. across time-slots, and (ii) when
arrivals are correlated across time-slots.

In the first setting, the arrivals to every queue are given by
the following distribution:

(i) 5 with probability 0.167,
all) =
0 with probability 0.833,

independently for all time-sloté& We run the MW, SSG and
DWM algorithms for a system with = 30 users andn = 30
carriers/servers (and henge= 1). The user-server connection
probability isq = 0.75, so that the system is stable but heavily
loaded, i.e. greater tha#8.5% of the maximum load. We run
the simulation forl0° time-slots.

In the second setting, we consider arrivals that are driven
by a Markov chain with two states. When the Markov chain
is in state 1,5 packets are generated in each-time slot, and
when the chain is in state 2, no packets are generated. Eurthe
state transitions occur at the end of time-slots. The ttiamsi

probability of the chain is given by the matr x? g Note
that the probability in state 1 is equal tb167. Hence, the
Markovian arrivals have the same average rate asi.the
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Fig. 2. Performance of DWM, MW and SSG for.d connectivity.n = 30, Fig. 3. Performance of DWM, MW and SSG for Markov-chain dnive
q = 0.75, i.i.d. and 2-state Markov chain (m.c.) driven arrivals. connectivity.n = 30, i.i.d. and 2-state Markov chain (m.c.) driven arrivals.

arrivals. The user-server connection probability is choas probability varies withd. Since our analytical results study
g = 0.75. We also consider a system with= 30 andm = 30 the asymptotes as increases, we next plot the probability of
and run the simulation fot0® time-slots. delay-violation with increasing. for DWM, and compare it
The results are summarized in Fig. 2. As can be seen fra#th another fictitious policy called SSQ. Here, SSQ (Single
the plot, the proposed DWM algorithm performs consistentf§erver Queue) represents a fictitious system with a single
better than the Max-Weight algorithm and the SSG algorithrferver of capacity: that is fed with the aggregated arrivals
The delay of the Max-Weight algorithm does not go dowff all users. Hence, it provides a lower bound on the deadline
substantially with increasing. The queue-length-based SSiolation probability of other algorithms. In these simtidas,
performs better than Max-Weight. However, DWM perform#e take¢ = 1 and the arrivals to every queue are given by
even better than SSG, and further reduces the delay-wolatthe following distribution:
probability by orders-of-magnitude. Note that SSG is dest
to minimize the queue overflow probability[1].][2]. Our ali) = {5 with probability 0.14,
result thus illustrates that small queue length may not ydwa 0 with probability 0.86,
lead to small delay, e.g., if the packets in that queue is not
served for a long time. Since DWM directly treats delay, thiadependently for all time-slots. We consider user-server
performance is significantly better. Finally, even thouglr o connectivity that isi.i.d. across time, users and servers, with
analytical results focus on the asymptotic limit of large probability ¢ = 0.5. The results are reported in Figl 4 for
for such a medium-sized system (with = 30 users and bothd =1 andd = 2. It can be seen in Fidl] 4 that the rate-
m = 30 carriers/servers) the proposed DWM policy alreadfnction obtained from the theoretical result, i.e., Ttei2,
outperforms existing approaches significantly. matches well with the simulation result: the slopes of the
Recall that our analytical results require that the chaimeldifferent curves (for the same value @fare almost identical,
i.i.d. across time. Nonetheless, we expect that the key insighteept that the theoretical result is shifted above the ecapi
from our analysis will also be useful under more gener&Hrve by a constant amount. This can be attributed tothe
settings. Next, we experiment with a setting in which therusd€rms not captured b, in Theoreni2. Further, the probability
server connectivity for each channel is correlated aciioss.t Of delay-violation under DWM is well approximated by that
Specifically, the connectivity is driven by a Markov chairttwi under SSQ over the entire rangeroffrom n = 30 ton = 60).
two states. When the Markov chain is in state 1, the usert&nce, this result confirms our intuition (see Secfion]v4gtt
connected to that server and when it is in state 2 the usethg OFDM system behaves quite similar to a single-server
disonnected from the server. The transition probabilitghaf queue under suitable assumptions.

chain is given by the matri 2 8 . We run the simulation

. . 4 .6 : . VIIl. A DMISSION CONTROL
for both the i.i.d. arrival process and the time-correlagival

process as described earlier. The results are summarized ifrom Theoreni]2, we know the expression for the lower
Fig. [3. We can observe very similar trends for the relatiMeound on the rate-function achieved by DWM for any value
performance of the DWM, SSG, and MW policies as in Elg. &f ¢. We now consider an OFDM system with a fixed number
In particular, we observe that DWM achieves much bettef channels:, but the number of users = ¢n can vary (i.e.,
delay performance even for Markovian-correlated channelsg can vary). Writel,(d, ¢) as the lower bound, defined in
The above results demonstrate how the delay-violatidieorem 2, which now depends on batland¢. For largen,



I.1.D. arrivals

function I(d, ¢) is plotted as a function of for d = 4 and

S =2 different values of.

-8-55Q(d=2) From Figurdb, it can be seen that for= 0.18 the number
:::%\ggnr(edti:gl(dzl) of users that can be accommodated in the cell is roughly
-6-S8Q(d=1) 0.58n = 23, where as fop = 0.10, roughly0.95n = 38 users

may be accommodated in the cell. These values can then be
used by the network provider to perform admission control
decision and/or provision the network resources.

P(D(0) > d)

IX. CONCLUSION

We consider the scheduling problem of the down-link of
30 40 50 60 an OFDM system for supporting a large number of delay-
number of users/channels(n) .. .

sensitive users. Assuming an ON-OFF channel model, we
Fig. 4. Delay-violation probability versus for DWM and SSQ.q = 0.5 Show that when the scale of the system is large, the OFDM

and i.i.d. arrivals. system can be approximated by a Single-Server Queue with
- intermittent connectivity. Inspired by this observatiare first
’ [=-p=0.10 construct the Frame Based Scheduling (FBB(olicy that

emulates the single-serve queue by accounting for thaaestr
tions placed by the wireless channel in an OFDM system.
We then prove that, for a large class of arrival processes,
there exists a value df for which FBS{) attains a close-to-
optimal rate-function for the delay violation probabilityhen

the system size approaches infinity. Since FBStay waste
capacity and the suitable value 6fdepends on the arrival
process, we then design the Delay Weighted Matching (DWM)
scheduling algorithm, which also achieves a close-torogiti
rate-function for the delay-violation probability, indapdently

of the arrival process. Further, the DWM algorithm achieves
high throughput and thus performs well even in medium-sized
systems. Our simulations indicate that DWM can signifigantl
improve the performance compared to the state-of-art algo-

the probability of delay-violation can be approximated by rithms in the literature. We further show that the analytica
results for DWM can be used to determine a simple threshold

P(D(O) > d) ~ e~ "lo(d9), (18) for admission control.

Given a fixed bandwidtih and a delay-violation constraint of There are many mte_res_tlng dlr_ect|0ns for future work. ﬂ,:|_rs
we plan to use the insight gained from DWM to design

the formP(D(0) > d) <, we can usgl]]i?) to estimate thescheduling algorithms for more general channel models: Sec
number of usersq(n) that may be admitted in a cell such tha g, aithough DWM achieves close-to-optimal rate-furgtio

Rate—function

Fig. 5. Rate function versus i.i.d. arrivals wifh = 5 with varying p

e~ o(d:d) ¢ may have a high computational complexity. It would be worth-
Ine while to consider scheduling algorithms that achieve good
= Iy(d,¢) > - (19) delay bounds and are of lower complexity. Based on the sult

, ) _in this paper, the more recent work in [11], [12] has studied

By plotting Io(d, ¢) versus¢, we can then obtain the maxi-certain low-complexity algorithms of this type. We refeeth

mum value of¢ that satisfies[(19). _ readers to these studies for the latest development. Tinird,
Example: Consider a OFMDA system witlh = 40 or- his work we consider the case when all users have similar

thogonal channel;so and a delay constraint giver?b(0) > 4prival patterns, channel conditions, and delay requirgme

4 time-slotg < ¢~™". Thus, we need the decay rdig4, ¢) > |t would be interesting to see how the DWM algorithm can be

Ine _ L )
- —_1- ) ) o ) extended to users with different arrival patterns and chhnn
Consider the following scenario withi.d. arrivals of the .,,4itions and with diverse delay requirements.

following distribution:
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APPENDIXA
Proof of Lemma [ From the choice ofN > N; we

have, that for allh > N andi,

]P’(XZ- - 1‘Xi/,i’ ] z) <e %,

regardless of the values of other random varialesi’ # .
Applying Chernoff bound, we have,

t
P(30Xi > ar) < e Prtelle”™),
i=1

Now for all n > N, we have

Hence,]P>(Zf:1 X; > at) <e "5 foralln > N.

nb

Dgr(alle™ )

:alog{

nb

e 2

o

] +(1—a)log [%}

o

b 1—
% +aloga+ (1 —a)log [lian}

b

> %—l—aloga—l—(l—a)log(l—a)
b 1 1

22—2 (aszlog — < —forall 1 >z > 0)
2 T~ e

>ab—n (aSn>E)

- 3 ab”’

APPENDIXB

Proof of Lemma[@ Without loss of generality, we state
the proof for the case whem = n. By applying the balance
equations we have that the expected fraction of time-shatt t
the chain spends in states 1 and 2 is givenmy= ﬁ
andr; = pl’fﬁm respectively. Hence the average ratfor tﬁe
chain is given byriry + m3rs.

Now considern independent copies of this arrival process
driven by Markov chains. We denote by (i), the fraction
of chains in state 1 at time¢ and we denote by, (i) the
fraction of chains in state 2 at timeThen, the packet arrivals
at timei is given by A(i) = n(rym1 (i) + ram2(4)). Note that
at any timem (¢) + m2(4) = 1. Hence, A(i) can be written
as a function ofry (i) alone. For convenience we denote the
interval [x — p, z + p] on the real line by5(z, p).

It is easy to see that, ify = ro, then A(i) = an for all
1. The result then follows trivially. We consider here theecas
whenry # ro. Letey = |T1+T2 It can be seen that whenever
m1(i) € B(w},e1) then A(z) € B(na,ne). It suffices to show
that givene; = ﬁ > (0 andd > 0, there existaV,T > 0
and a positive functiod s, (e1,6) = Ig(e,6) independent of
n andt¢ such that

P(Zz—l 1{771(1’)%8(71—*751)} > 6) < e~ "tlB, (1,0)
r <
foralln > N andt > T.

We divide the proof into two parts. In Part 1, we show
that there existd? such that, irrespective of the starting state
m1(7), with high probabilityn(j + T1) € B(n,e1). More
precisely, there exists & and a positive rate-functiofy (e, )
such that,

P(m(j+T1) € B(nf,e)|m(j)) = 1 = 4Tye (e,
(20)

Then, in Part 2 we prove that at any tinjeif = (j) belongs
to B(n;, €1), then with high probability, for the next several
time-slots the system remains (7}, e;). More precisely,
there exists a positive rate-functidn(e;) such that,

P(wl(i) € B(ri,e1) Vi<i<j+Tam(j) € B(Wf,el))
> 1 — 4Tpe "2(€) (21)

for any positive integefs.

Before we prove Part 1 and Part 2, we show why they imply
the result of the lemma. To this end, we chodsesuch that
T:sz < g and defineTs := T + T>. Now, combining the
above equations, we have that, irrespective of the statkeof t

system at timey,

P(wl(i) eB(rle)Vi+Ti<i gj+T3)

> 1 — 4Tze "s(€1) (22)

wherels(e1) = min{I;(e1), I2(e1)}. We divide the interval
to t into consecutive frames consisting Bf time-slots each.
Index these frames by. Note that if (¢ mod T3) # 0, then
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the last frame may contain less thdh time-slots. Define

K = [TLJ — 1. Define the sequencg(k) as follows:
iy b1 Lim )eB(r e} >1- 8.

T3 27

S(k) = {o, it

1, otherwise.

Then, for every value o < k < K — 1 (i.e. for every frame
except the last), we have
P(S(k) - 1’5(14), K # k) < 4TyeIs(e),
regardless of what happens in all other frankést k. Using
Lemmall in Sectiofi II-B, we know that there existssuch
that
K-1

P(X s>

for all n > N. Note that for allt > 373, we haveK > 3% .
Hence,

6K13(51)
i) <o

)

0I3(e1)

) > 1 — —nt 0T

(3 s <

for all n > N andt > 375. Note that the ever_,_, S(k) <
¢ K implies that,

t
> L GreBio
j=1

0 0
>(1— =)KTs(1 — =
> (1-5)KT5(1 - 3)
> (1- 97t~ 13)
52 0.5
=(1-0t+ It—Tg(l— 5)
T3(1 — 2)?
> (1-46)t (by choosingt > ¥ ).
4
Hence, frcgrrz\ the above two equations, we have,tfor T' =
max{ 4(15_25) 13,373} andn > N

$813(e1)

25) <emErt

t
p( 2jm1 LmG)gBir 1))
t

whereL (T ) isa positive function 0b, ¢, p; andp-. The result
of the lemma then follows.

We now prove Part 1 and Part 2.

Part 1: We definep,,, as

~ min{p1,1 —p1,p2, 1 — pa}

Pm - 1
= min{ @229 4, 1 We define the functiom,,, ()

Takeey
as

Din() =min { Dici (p1 + allp1), Dicr (p2 + allpo).
Drr(p1 = |lp1),
Dicc(p2 = allp2) |

whereD,(z||y) denotes the Kullback Leibler divergenté [9]
and is g|ven by the formuldyr(z|ly) = zlog + (1 -

z)log =%, TakeTy such that|(1 — p; — pg)| ! < <. We
use WHQ( ) to denote the fraction of chains that transmon
from statel to 2 at the end of time-slat. Similarly, we define
m2—1(i) to be the fraction of chains that transition from state
2 to statel at the end of time-slot.

By applying the Chernoff bound to the number of chains in
state 1 and 2, we have,

()

P(mima(i) > m(i)(pr + 5)

< e—nm () DKL (p1+ZlIp1)
>~ b

P(mios2(i) < mi(0)(pr = 5)|m (i)

< efmrl(i)DKL (pr—%| \Pl)

However, asr; (i) < 1 the above equations imply that

]P)(ﬂ'l_>2( ) > m(i)p1 + %’ﬁ(i))

< efnﬂl(i)DKL(Pl‘i’%le),
]P’(m_m( ) < mi(i)p1 — 5 (i ))
< efnﬂl(i)DKL(PI**HPI)
Combining the above equations we get,

€ . —nmy (7 2
P(mio2(0) € B(mi(i)pr, 2)|mi0)) = 1 - 2702 (D),

(23)
Similarly,
]P)(T"Q*)l( ) S B(ﬂ'g( )pQ7 )|771( )) >1-— 2e—n7r2(i)Dm(€T2)'
(24)

Combining [28) and{24) we have

P(mi(i+1) € Bm()(1 - p1) + ma(i)pa, e2)|m (1))

Z 1-— 4€_nmin{ﬂ—l(z)xﬂé(l)}Dm(T (25)

We now use[(23)E(25) to prove the claim[20) of Part 1. We
first show that, irrespective of the state of the system a¢ tim
O!

]P(m(l) € [pm, 1 —pm]’ﬂ'l(())) >1— 4e=Pm Dm ()

To see this, note that there can be two cases:n(1)) ¢
[pmu 1 _pm] and (2)7‘—1(0) S [pmal _pm]
Case 1: Assume thatr;(0) < p,, (The case whemr;(0) >
1 — p,,, leads to similar analysis). Note that(0) > 1 — p,,
asm1(0) + m2(0) = 1. From [24) we have
]P)(Fg_>1 (0) S 8(71'2(0)]?2, 62)‘7T1 (O) < pm)
> 1— 287717T2Dm(€2)

> 1~ 2¢ P Pmle)

(becauserz(0) > py,).
This implies that,

]P(m(l) € (ma(i)p2 — €2, m2(0)p2 + €2 +pm)‘ﬂ'1(0) < pm)

Z 1 _ 26_77477an(52)'



It can be seen that,(0) < p,, implies Moreover, sincer (i) + m2(i) = 1, we have
m2(0)p2 — €2 71 (1) (1 — p1) + m2(i)pe = m1 (1) (1 — p1 — p2) + p2.  (31)
> (1= pm)p2 — €2
2 (1 - pm)(4pm) — €2
2 Pm; ]P’(Wl(i)EB(Wl(i—l)(l—m—pz)+p2,62)
e ‘”l(i) € [pm, 1 —pm]) > 1 — de PP (),
m2(0)p2 + €2 + pm

Then, from equation$ (25) and {31), we have,

Using [30) and recursively applying the above equation for

SP2t e+t pm T1 — 1 consecutive time-slots, we have,
< 1_4pm+€2 + Pm
<1—pm. P(Wl(i)EB(Wl(i—l)(l—pl—pz)erz
Hence, the above implies that, forall 2 <i < Ty, e)|mi(1) € [pm, 1 —pm])
]P(m(l) € [Pm,1 — pm]|m(0) < pm) >1—4(T) — 1)efnmem(%2).
> 1 — 2¢~PmDm(e) (26) Moreover, note that ifry (i) € B(m1(i—1)(1—p1—p2)+p2, €2)

Similarly, it can be shown that, forall2<i<T andm(1) € [pm, 1 —pm] then,

P(wl(l) € [P, 1 — pm]|m1(0) > 1 —pm) mi(T1)
T172
_ —npm Dy, (€2) - .
21-2e o (27) EB(Wl(l)(l—pl—pz)Tl Yo Z(l—pl—pﬁj,
Case 20 71(0) € [pm,l — pm]. Note that in this case J=0
min{m(0),72(0)} > p,,. Hence, applying [(25), we have T —2
€ 1—p1—pa)
P(mi(1) € B(ra(0)(1 = p1) + m2(0)pa, €2) ’ ; (=1 —p2)
) € 1 = £ =5 < E (1)1 - py - p2)"
_ = P11+ D2
> 1 — 4 PmPm(F), T -1
- _pz(l—pl—pz) ! €2 [1_(1_ _ )Tl—l]
Further, notice that forr, (0) € [p, 1 — p,] we have P1+ po "p1+ po P1=Pp2
m1(0)(1 — p1) + m=2(0)p2 — €2 C B(p ]jfp ,€1) (from the choice ofl; andes)
1 2
2 4pm — € = B(n},€1).
2 pm7
and Hence, from the above two equations we have
7T1(0)(1 - p1) + 7T2(0)p2 + €2 ]P)(Fl(Tl) € B(ﬂ—T7 61)‘7T1(1) € mev 1- pm])
<1 —Adpy + € >1—4(Ty — 1)e PmDPm(F), (32)
<1—pm.

Now combining [(2P) and(32) we have,

It follows from the above equations that )

P(mi (1)) € B(nt,e1)|m1(0)) > 1 — ATy e PmPm(F),

P(71(1) € [pms 1 = Pl [11(0) € s 1 = ] ( ) (33)

> 1 — 4e”"PmDm(F), 28
- ‘ (28) Part 2: Recall that, we wish to show that if(j) €

Thus, combining[(26)[(27) from Case 1 ahdl(28) from Cag&(r},¢;) then, with high probability, the system remains in

2, we have B(7}, e1) for the nextIs time-slots. Choose; = ¢; min{p; +
B(m1(1) € [ 1~ pil|m(0)) > 1 — de=mePeF), (g9) P22~ P1 = P2} We know from [25) that,

Now that we have analyzed, (1), we proceed to study ]P’(Wl (i+1) € B(my (i)(1 — p1) +7T2(i)p2,€3))
m(i),i =2,...,T1. In the above case 2, we observed that > 1 — de—nmin{m(8),m2()} D (F)

m1(1) € [pm, 1 = pm] , Note that if =, (i) € B(xi,e1) then B(m(i)(1 — p1) +
= B(mi(1)(1 = p1) + ma(i)p2. €2) € [Pm: L =pm]- (B0) 7,5\, e5)  B(t,e1). To see this, observe that i (i)



B(n7,€e1) then, APPENDIXD

Proof of Lemma B Let N, (k) denote the number of

m ()1 = p1) + ma(i)p2 — €3 graphs with exactly: edges that have a perfeestmatching.

>m —ell —p1 —pa| — € Similarly, let N,, (k) denote the number of graphs with exactly
> 7 — e, k edges that have a perfeetmatching. LetV (k) be the total
number of possible graphs with exactlyedges. According to
and further, our system model, for any value &f all of the graphs withk

edges occur with probabilityr (") ¢* (1—¢)"™~*. Hence,
71 (3)(1 — p1) + m2(i)p2 + €3
<7+ el —p1 —po| + €3 P(G has a perfecb—matchin@

STFT"‘EL Nv(k)

= ZP(G hask edgeé N
Hence, if m(i) € B(rnj,e1), then B(m(i)(1 — p1) + k=0
72(1)p2, €3) € B(my, €1). Now, using the above result aid125), o~ (nm\ i No (k)
=2 Jia-a
k=0

we have N(k)
P(m(i+1) € B(xf, e1)|mi (1) € B(xf, e1)) > 1—de” ™ Pn (S imilarl,

wherer,, = min{r} —e;, 75 —e; }. Now, recursively applying P(G has a perfectu—matching)

the equation above fdf, consecutive time-slots, we have n? )
= Z]P’(G hask edgeé ]\;U(k)
}P’(m(i) e B(nte)Vj<i<ij+ Tg’m(j) c B(w’{,el)) par
> 1 — 4Tpe " Dm($), (34) N (nm> by gynm—k Nu (k)

[ |
From the above two equations it is easy to see that, to prove

the result it suffices to show thav,(k) > N, (k) for all
k>0.Fork < Y Xl v, Ny(k) = Ny(k) = 0 and hence the
Proof of Lemma@ We first show that, if there exists g Statement is trivially true. We now prove this statement for

setV’ ¢ X such thaldg(V')| < v(V"), thenG does not have any generak > iz i - _ _
a perfectv-matching. For contradiction suppose thet is a We f|rsf[ introduce some definitions and notations that will
perfectv-matching inG. Let G(M) be the sub-graph inducedP® used in the proof. Lewy = 0, wy = 6 +r, r > 2. We
by M. Then sequentlal_ly assign indices to all subset_éfdhat have_exgctly
260 + r vertices. Without loss of generality let these indices be
e (V) = 3 o(@) = o(V"). from 1 to (,,7]). Define 7(-) to be a function that maps
every subset o™ with 26 + r elements to its corresponding
index. Let¢ be any|X |-dimensional vector with non negative
However, asG/(M) is a sub-graph of, the above equation integer components such thét+ & = 26 + r. Suppose that
implies that|0g(V')| > »(V"), which contradicts our assump-G has a prefec€-matching. Then, we defin@/c ¢ as the
tion on V", perfect{-matching inG' such that7 (0c(as, () (71 Uz2)) is the
We now prove that, ifdc (V)| > v(V) for every subset’ of maximum among all perfe¢tmatchings in. DefineJq ¢ :=
X, thenG contains a perfeat-matching. We construct another? (Oc(mg ) (21 U 22)).
bipartite graphG’(X’ UY, E’). For each vertex;; in X, we  We now construct the mapping(-) from graphs withk
constructy; copies inX’. Further, if there exists an edge@ €dges that have a perfeetmapping to graphs witl edges
betweenz; and a vertex ift’, then there exists an edge@ that have a perfeat-matching.
between each copy af; in X’ and the corresponding vertex 1) If G has a perfect-matching and a perfeet-matching,
in Y. With this construction, it is easy to see that a perfect  thenII(G) = G. In this case skip, steps 2 and 3.

v-matching exists irt7 if and only if a perfect matching exists  2) If G has a perfectw-matching but not a perfect-

APPENDIXC

zeV’

in G'. Further, sincéddg (V)| > v(V) for every subseV of matching, lett = [0 + 1,60 4+ r — 1, ws...w|x|]. We first
X in G, we must have, for every subs&t of X’ in G’, form a graphG* which has a perfec§-matching. To
|06/ (V')| > [V']. Thus, invoking Hall's Theoreni [10] o6, do this, we choose a subsBtof dy, ,, (1) such that
we conclude that&” must have a perfect matching. Hence, |P| = r—1. We delete edges between and all vertices
must contain a perfeat-matching. of the setP and construct edges between and each

[ | vertex in P.



3) II(G) is now obtained fronG* by swapping the labels mutation of dg(ar. ) (1 U x2), ie., for any two

of z; andzs. graphsG’ and G” of the same typedg: (s, ,)(z1 U
It is easy to see thdi(G) has a perfect-matching. It can w2) = Oar(mgn ) (T1 U x2) BUt Ogrng, ) (1) #
also be seen that the resultant grdpfz) and intermediate Oar (v ) (@1)-

graphG* (formed if step 2 is executed) have the same numberlf two graphs are similar in these three ways, then we say
of edges ag7. This follows from the fact that we delete andhat they are of the same type. We would like to show that
add an equal number of edges. there exists a particular way to choose the Betuch that all

We would like to show that if any two distinct graplig  Of the graphs that are of the same type, map to different graph
and G have perfects-matchings and have equal number ofinderTI(-). To see this note that there af¢’; ") graphs of
edges then they map to different graphs, IE(’) # I1(G”) €ach type. On the other hand, the number of output graphs
. This would prove that, for ang > 0, the number of graphs POssible by an appropriate choice Bfis (%). As r > 2,
which have a perfect-matching and exactly: edges is no it is easy to see that% ") > (*,"). Hence, the number
smaller than the number of graphs which havedges and a of output graphs for any type are greater than the number of
perfectw-matching. graphs of that type. Hence, we can always find a mapping such

Firstly, note that step 1 ensures that if a graph has bottih@t if G" andG"” are of the same type, théi(G") # [1(G").
prefectw-matching and a prefeet-matching then it remains The result then follows. ]
unchanged. Moreover, steps 2 and 3 transform a graph with a
w-matching but na-matching to a graph which has a perfect
v-matching but does not have a perfeetmatching. LetG’ . ; ! S
be a graph with both a perfeat-matching and a perfeat- dimensional vectors with r_lon-nega‘lgl(\{e integer components
matching and leG” be a graph with a perfect-matching but Such that for any vectog in =, > ;2; & = n —f and
not a perfecto-matching. Then, by the above observation #ax{i<i<|x|} & < H. First, for any vectow with Y <
follows thatII(G’) # II(G"). Further, ifG’ andG” are two 7 — H andmaxgi<;<|x)y v < H, it is easy to see that there
different graphs with both as-matching and a-matching, €Xists a vecto’ in =, such thatv is component-wise no
thenIl(G') = G £ G =11(G"). greater thart’. Hence,

Secondly, letG’ andG” be two graphs that have a perfect
w-matchings but not a perfeetmatchings. Further, assume
thatJe: w # Ja,w- Then, we show thall(G”) # II(G"). To > ]P’(G has a perfec{’-matching).
prove this, it suffices to show that if a graphhas a perfeci-
matching but not a perfeetmatching, then7i )., = Jaw- Thus, we only need to show that the result of the corrolary
To see this notice that there exists a matchivigin TI(G) h0|d_5 for allv € E.
such that7 (e (21 U 22)) = Jaw. For the sake of Fix v € = _Du_e to symmetry of (?hannels and users, the
contradiction, assume thafi ()., > Jo,0- Then, note that, probability of_flndmg a perfect-matching does no'F depend on
for the intermediate grapt* created step 2, we must havdhe permutation of the components«@fHence, without loss
Je+ ¢ = Iy > Je,w. From construction we know that of generality, we assume that the components of the vector
G* is formed by deleting all edges between and P and v are in non-increasing order, i.es; > v2 > ... > v/x].
creating edges between and all vertices inP, where P is  Similarly, the probability of finding a perfeei-matching does
a subset 0B, ) (z1). Then, fromMg- ¢ we can form a not depend on the permutation of the components.diience,

perfectw-matching,)M, in G by replacing edges between W€ Can rearrange as

APPENDIXE
Proof of Corollary [ Let = be the set of all|X|-

P(G has a perfecb—matchin@

and every vertex of” by edges between; and every vertex H, if1<i<k
of P. It follows thatj(@G(M)(xl L_J:cg)) = Jn@)w > JG,w- wi=n—(k+1)H, fi=Fk+1
But this contradicts our assumption gfe;, .. 0 TS

, 2> )

Thirdly, let G’ andG” be two graphs which have a perfect
w-matching but do not have a perfeectmatching. Further, \wherek = [2] - 2.
suppose that/c v = Ja»w. If G' and G” differ in any  Consider the following algorithm:
edge of the form(xy,y) or (z2,y), wherey belongs to the 1\ w
setY \ Oc(mg.,,) (21 Ux2), thenll(G”) # II(G”). To see this . ., 4
observe that we do not alter edges of the form above in the. ; X|
procedure of creatingl(G) from G. 4: while d > ¢ do

Hence, we are now left with graphs similar in all the threeg.  \\hile Ao > v, and Ay < vy do

conditions mentioned below, 6 Ao Ao — 1

1) They have a perfectv-matching but do not have a 7: Ad — g +1
perfectv-matching. 8: end while

2) They have the same index . 9: if \. = v, then

3) They are the same everywhere except in the pete: c+—c+1



11:  end if where in the second inequality we have considered all cases

12:  if Ay = vg then wherez; is not connected to a subset of— H + 1 servers,
13: d+—d-1 and have taken the union bound over all such cases.

14:  end if Now consider the second term in the product{inl (35)7If
15: end while has noi-matching, then by Lemmal 4, there must exisand

Let us assume thaty,; > vx1. The case whemy; < B such that
vk+1 can be analyzed in a similar way. To see that the abovel) ACX,BCY,
algorithm terminates when = v, observe that initiallyd = 2) |B| = 9(4) — 1, and
A > vz forall: < kand0 = \; < v; forall i > k+1. Further, 3) 9,(A) C B.
Zl 1'[}7, = le‘l w; = Zkﬂ(vi —w;) = ZLX;LH( G
v;). Hence, after the inner while loop has executed exac

Zf;l (v; —w;) times,c = k4 1 andd = k. The algorithm

llﬁlfnce, by union bound over all possible subséts X and
all possible corresponding subsé$sC Y, we have

terminates at this point. R

Moreover, in every step of the algorithm, the vector P(G has nof;-matching)
changes in exactly 2 components, i.g,,is incremented by 1 < Z ( 4)] < v(A))
and \; is decremented by 1. It can be observed that, due to
the initial ordering of components, in every stapbecomes {acxy
more balanced in the sense of Lemila 5. Hence, applfing 5 Z IP’(|6G | <9(A) — 1).
recursively, the result follows. [ | {ACXx}

APPENDIXF Here, we may consider only thosesuch that for all vertices

Proof of Lemma[@ Definek =[] —2. Letv be a|X|- ; in A, ; > 0. Notice that the maximum size of any such
dimensional vector withy, =n — (k+1)H, v, = H V 2 < setisk. Hence,
1 <k+1andv; = 0 everywhere else. Then by Corollary 1,

_ ]P’(G has noﬁ-matchin@
]P’(G has a perfecw—matchln@

k
> ]P’(G has a perfec’o-matching). Z > ]P’(|6G(A)| <9(4) - 1)
a=1{ACX [A|=a}
Suppose thatds(z1)| > v;. We can then choose a set k

A C 9g(z1) such that|A| = v;. Now construct the graph Z > ]P’(Iac( )| < Ha— 1)

G[X UY, E] from G by deleting all edges betwegX — 1) a=1 {ACX,|A|=a}

and A. Let vectoro = [0,va,vs,....v,]. If G has a perfect k

d-matching, sayM/, then a perfecv-matching inG can be Z ( )( >(1 _ g)en—Ha+l) = (37)

obtained as the union df/ and the set of edges between — n—Ha+1

and A in G. From the above discussion, we conclude that
where in the last step we have considered all setdY \ B

P(G has a perfec’o—matchin@ such thatA| = a, |Y'\ B| = n—Ha+1, and the corresponding
event that no vertices id are connected to vertices I\ B.

>P(|0g(z1)| > vy )P G has a perfect-matching).
(l ()l 1) ( ) Let N; = [%W Then for alln > Ny, we have

(35)

Next, we will bound both terms in the product on the righ n
hand side. For the first term, we know that, ( )

n—Ha+1
B(|06(1)| > v1) ()
ZP(|(9g(:c1)| > H) HZ;QH
- 1—]P’(|(9g(:101)| < H) = < Ha—1 > (asn < (k +2)H)

< (Ha)(Hk +2H)*" (H k)

Hk
>1 - pH-1(1 - g)nH+1 < (%)(Hk +2H)2H (m) (asHa <n < 1"?)
n \H-1
=1—(—o (1—q)" _(_n ¥ (HE
(=) (=) (a) (38)
n " —nlog ——
>1- () emiEr, (36) | .
I—q where the last step is true becau$é +2H <n+ H < yerr



for all n > N;. Moreover,

(

a(n—Ha+1)

(asn > (k+1)H)

1—q)
< (1 _ q)a(kHJerHaJrl)
< (39)

(1 _ q)Ha(kfa).

Substituting [(3B) and[(39) in[(B7), for alk > N, :=

max{ Ny, [W]} we have,

IP’(G‘ has noﬁ—matchin@

" (o

n N\ 2H+1
< (_) (1 — g)RtH+D

1—gq
k-1
. (1 i q)2H+1 Z <I;> <glz> (1 — g)Hotk—a)
a=1
. (%q)wﬂ(l T

o) S (oo

0 \AH n \2H+1
< (—) (1—q)"+2(—)
1—g¢ l—gq
[5] .
« Z ot log ktaH log kH—Ha(k—a) log T,  (40)
a=1

where the last step is true becaug(-)—_1 s S e S
o q) (1-9q)

1—q

Hence, from[(4D),[{(41) and_(#2), we have
]P’(G has nof;-matching)

n \4H
<(15,)
1—gq

n \3H+3
(1)
1—¢q

6H
< 2(1 n ) e—nlog 7(11@ (asH > 1)
—4q

o log - (asQ {g-‘ <

for all n > Nx := max{Ny, N3}.
Finally, substituting[(36) and_(%3) int6 (B5), we have

P(G has a perfecb—matchin@
> P(@G(xl) > Ul)P(G has a perfecﬁ—matchin@

6H
1-a(r)
1—¢

TH
>1—( i )
1—¢q

forall n > Ny. [ |

1
efnlog T

_ 1
e nlogliq

(43)

APPENDIX G

We first prove a result that will be used in the proof of
LemmalT.

Lemma 10: Consider a bipartite grapt¥[X U Y, E] such
that every vertex inX is assigned ainique positive weight.
Let the vertices ofX in the decreasing order of their weights

Note that the exponent in the last summation is quadrage {;, z,. ...z, }. Suppose that there exists a matchihg
in a with positive leading coefficient. Hence, the terms wilj 4t cover§zy, zo, ...z1}, i.e., the set of vertices with largest

achieve their maxima at the end-points, ize= 1 ora = [£].

It turns out that the term correspondingde= 1 will dominate
all other terms. To see this, substituting= 1, we have,
el log k+aH log kH—Ha(k—a) log ﬁ
H
1 ) €7n log (1*;11)
l—q

n \H+1
(=) e
1—-¢

for all n > N,. Similarly, by substitutingz = [%£], we have

< n(H+1)(

—nlog (liq)

(41)

e log k+aH log kH—Ha(k—a) log ﬁ

2 1
6271 log n— g7 log g

IN

n2

—nlog ﬁ % e?m log n— &4 log ﬁ

IN

e

L1
< e—nlog T

(42)

weights. Then the maximum-weight matchimj* of G' covers
the set{z, xo, ...z }.

Proof: Suppose (for contradiction) that there exists a
vertexz; € {x1,..., 21} that is not covered by/*. Without
loss of generality, assume that is such a vertex with the
smallest index. In other words;y, ..., z; 1 are covered by
M*, but z; is not. Letu; = z;. Sinceuw; = z; is covered
by the matchingM, it must be matched to a nodg € Y.
Note thats; must be covered by the matchidd*: if it was
not covered byM*, we would have been able to add the
edge(u1, s1) to the matchingh*, which contradicts to the
assumption that\/* is the maximum-weight matching. Let
ug € X be the vertex matched tq by the matching/*. Note
thatus must belong td z1, ...x;—1 }. (Otherwise, ifus was one
of the vertices in{x; 1, ..., z,, }, then instead of matching,
to us in M*, we could have matchegl to uy, in which case
we would have gotten a matching with a larger weight than
M*.) Hence,uy is again covered by the matching. Using

for all n > N3, whereNs is the smallest integer such that thea similar argument, we can thus fisd € Y such thatu; is

exponent in the second step satisfiedogn— 6"—; log (1—iq) <
0 for all n > N3.

matched tos; by the matchingV/, and findus € X such that
ug is matched toss by the matchingh/*. We can continue



performing this procedure as long as we can find a vesfex 3) Packets that arrived &j to g, but have a higher order-
in each step that belongs tory,...z;—1}. Further, each of index thanz,, i.e. they are queued in befope
the w;’s is distinct because they are part of the matchidg Hence, ifp is a part of the head-of-line frame at timethen
and each of thes,’s is distinct because they are part of thgy|| of these packets should belong to the head-of-line frame
matchingM™*. However, since there are onfy — 1) vertices time +.
in the set{z1, ...z;_1}, eventually we will run out of vertices  consider a bipartite grapl[X U Y, E] where X =
from this set. The lastx vertex must then be matched to &),(r — 1) U A(t), Y is the set of servers anfl denotes the
vertexug 41 N {@it1, ...,z } Dy the matching/™. Then, by connectivity at timer. Then, the above statement means that
matching eachs;, to u,, we obtain a matching with a largerthere exists a matching/, such that every vertex s (w(p))
weight than)/*, which contradicts to the assumption thdt" s covered unded/. Hence, M must also cover every vertex of
is the maximum-weight matching. Hence, the result of thgl(w(p))_ Now, from the graph we remove the set of vertices
lemma must hold. B corresponding to packets that are presenti(r — 1) but
Proof of Lemma[Zf Consider two queuing system&:  are not present irQ;(r — 1). Let the new graph be graph
and Q2, each consisting of. queues and: channels. Both ¢/[x’ U Y, E’]. Note thatX’ is just Q:(r — 1) U A(7). Let
systems have the same arrivals and channel realizatQns. the restriction of\/ to G’ be M’. ThenM’ covers all vertices
uses DWM andQ, uses FBSf) as the scheduling rule.in B, (w(p)). Moreover, notice tha3; (w(p)) is the set of
Suppose that a packet enters in the system at timg at packets with the highest weights @ .
queueg,. Then, according to the DWM policy, at any time  From the definition of DWM,X; (7) is determined by the
t > t, if packetp is still present in the system, it has a weighgaximum weight matching i’. We have shown that there
w(p) =t —t, + ;%5 For convenience we may make thexists a matching/’ that covers the seB; (w(p)), i.e., the
following assumption: packets that arrive to the same queyt of the packets with the highest weights. Then, by Lemma
in the same time-slot are queued in the order that they arriggj. the maximum weight matching covers every vertex in
and they must be served in the same order. We assign evgty,(p)). However, this contradicts to the claim thatis

packetp an order-index, from 1 to L. If a packet is the ot scheduled by, at time . -
first to arrive to a queue in a time-slot, then it is given the

order-indexL. The next packet is given the order-index- 1, APPENDIXH

and so on. We then redeiine the weights of the packets as p ot of Lemma@ Referring to equatiori{7), condition
W(p) =t =ty + ¥ + rntan - It must be noted that the 1 i, he statement of Lemnia 9 implies that-(j)~oy = 1 for

DWM schedule would not change if we used weighits) g j ¢ {4, +1,....,k} and conditions 1 and 2 together imply
instead ofw(-). However,w(-) makes the analysis easier agnat R(j) = 0 only when|[R(j — 1) — A(j)]mod(ng) = O.
now every packet in the system has a unique weight. Hence, for the interval from to &, we can write the recursive

Let Q1 (¢) represent the set of packets present in the SYSt%’Guation forAl{f“ (i, ) as follows: for anyi < j < k,
Q; at the end of time-slot and letQ(¢) represent the set

. P o o A(j)—R(j—1
of packets present in the syste@y at the end of time-slot AJ;D (4, 5) :A?’ (1,5 — 1)+ { () (U )-‘ (44)

t. Then, it suffices to show thad,(t) C Q2(t) for all time no

t. We denote byA(t) the set of packets that arrive at time R(j) =[R(j — 1) — A(j)]mod(ny), (45)
Let X, (¢) and X5 (¢) denote the set of packets that depart the

systemsQ; and Q. respectively, at time. Hence, where A7 (i,i) = 0 and R(i — 1) = Ro. We now prove the

equality in [8) by induction ork. For k = i the equality in
Qi(t+1)= (Qi(t) UA(t+ 1)) \ Xi(t+ 1), i=1,2. (@) is trivially true. Suppose that the equality [d (8) isetrfor
somek = j. Then, we want to show that it is also true for

We prove by contradiction. Suppose tiiit(t) Z Q2(t) for . = j 4 1 that satisfies the conditions in the lemma. To see
somet. Without loss of generality, assume thats the first thjs, note that from[{44),

time slot such thaty,(r) € Q2(7). Hence, there must be a "
packet,p, such thatp € Qi () andp ¢ Q(7). Becauser is  Az(i,j +1)

the first time for such an event, we must have Xo(7). _ ARo(; A(G+1)— R(H)

Let B;(v) and By(v) denote the set of packets @ (7 — =Ap’(0) + 1o
1)U A(r) andQ2(T — 1) U A(7) with weight greater than or A(i+1) — [Ry — A(i. ) modn
equal tov. Then By (v) C Ba(v) for all v. As p is scheduled = AR (i, 4) + [ G+1) - [R . () med O)W

by Q2, thus from the definition of FB&(, we know that all Rose -
packets inB;(w(p)) must also be scheduled at timeThis = Ap’(i,J)

is because all packets with a weight greater thdp) must {A(j Ty - [ww no + A(i, §) — Ro
—"_ 0

belong to either of the following categories-

1) Packets that arrived befotsg.

2) Packets that arrived &, but to queues with higher Ro /- -
indices. =Ap’(0) +

no

A(z‘,j—i—l)—Ro" - {A(z’,j) —RO"

no no



— {M] ) and split the summation as,

no
Further, from [(4b), P(Dfo) ~ d)
R(j+1) gZP(L(O):—t,AF(—t+1,O)—XF(—t+1,d) >o)
= [R(j) — A(j + 1)]mod(no) =1
= [[Ro — A(i, j)]mod(ng) — A(j + 1)Jmod(n) +3 ]P(L(O) = —t, Ap(—t + 1,0) = Xp(—t + 1,d) > 0).
= [[Ro — A(i,j + 1)]mod(ng). t=t*

(48)
We divide the proof into two parts. In Part 1 we prove that
there existsV; > 0 such that for alln > Ny
APPENDIX | +*
Proof: We first choose the value &f based on the statis- ZP(AF(—t +1,0) = Xp(—t+1,d) > 0,L(0) = —t)
tics of the arrival process. Let the mean of the arrival pssce =1

Hence, by induction the equalit{1(8) must be true for @&ny
that satisfies the conditions in the lemma.

bea. We fix § < 2 ande < £2. Then, from Assumption 2 on < eqt*acet’ (L)’YHe—nIo’
the arrival process, there exists a positive functigyie, d), I—q
such that for alln > W andt > Ts(e,5) we have, where c1, co are positive constants independenttoénd n.
. And in Part 2 we prove that there existg > 0 such that for
P(Zi:jH 1y 4¢)—agn|>epn} - 6) < e~ntIn(ed) all n > N»
t 00

for any integer;. > P(AF(—f +1,0) = Xp(=t+1,d) > 0,L(0) = —t)

We then choose =t

< 4e~ o,

1 21
h = max {TB(ﬁ, d), La o 35)—‘ ; L (EO(SJ } + 1. Finally, by substituting both parts into equatiénl(48), vevé
B% that there existsV := max{N;, N2} such that for alln > N,

(46)
The reason for choosing such a valuehoWill become clear ZP(D(O) >d, L(0) = —t)
later on. Recall thal is the maximum number of packets that t=1

can arrive to a queue at any time-sioand H = hL. Note < (c t*202t*( n
> 1 FE
1

that H is then the maximum number of packets that can arrive —q

to a queue i time-slots. By taking logarithm and limit as: tends to infinity, we get
Let L(0) be the last times-t before0, when the buffer was he desired result.

empty, i.e..D(—t) = 0. Then given that.(0) = —¢, the event  payt 1: Let us denote bye? the set of sample paths in

D(0) > d occurs if and only if the number of frames thaiyhich everyh — 1 time-slots in the intervak-¢ + 1 to 0 see

arrive in the time interval from-¢ 41 to 0 is greater than the 4t |easty arrivals. Letsf be the set of sample paths in which

7H
) +4)e o,

total number of frames that could be served-in+ 1 to d. ALY s, Xp(j) > 0. And let &, be the sample

Thats, paths such thak(0) = —t andD(0) > d. Then, the following
D(0) > d, L(0) = —t can be shown,

{ v v } & C(E)uEl. (49)

- {L(O) =t Ap(=t+1,0) = Xp(-t +1,d) > O}' To see this, observe th&t is the set of sample paths in which

L(0) = —tand Ap(—t+1,0) — Xp(—t + 1,d) > 0. For all

sample paths in the séf N &, Lemmal® holds and hence,

]P’(D(O) > d) Ap(—t+1,0) = A(%ﬁl’o)]. Moreover, it is easy to observe
oo that, for all sample paths in the s€t N &, Xp(—t+1,d) =

< ZP(L(O) =—t,Ap(—t+1,0) = Xp(—t+1,d) > 0). Zj}tﬂ Xr(j). Hence, for a sample path belongingdon
t=1 &, we must haved LD s~ X (7)) > 0. This

no

By taking the union over all possible values bf0) we get,

We now fix anyl > p > ¢a. Then define, implies that,&, N &> C £°. Thus we haveg, = (£, N EX) U
. 15 6 (EN(EM)°) C (EPU(E)¢). Hence,[[@D) holds. It then follows
t ::maX{TB(p_a’G(L+2))’{l—ﬁ-" that,
) (&) < P((E7)°) + (). (50)
0 o
’Vmin{IB G —a 1) (ﬂ)IX}—‘ } (47)  We note that the ever* implies that every frame formed
P6(L+2)/0 N9 in the interval from—t + 1 to 0 will have ny packets, i.e.



all frames served are completely full. It is then obviousttha It can be seen that the eveﬁf is similar to the buffer
P(Ef) depends orh, i.e., it will be large if we increase the overflow event in a single-server queues with intermittent
maximum time for which any frame can remain open. Bgonnectivity as described earlier. Recall that as opposeed t
choosing ar large enough we can ensure that the probability single-server queue with constant rate, in every timg-slo
P((£)¢) is arbitrarily small. In particular, we can ensure thatith probability approximately — e~"/x the service is equal
the rate-function of?((£;*)¢) is greater than the rate-functionto ny packets, i. e one frame. So now there can be two factors
of IP’(EB) The cost that needs to be paid for having a Iargespon3|ble fof Firstly, if the arrival process is bursty, then
h is the loss in frame-size, which isy = n — Lh. But this 5 can be caused by a large burst of arrivals in a few time-
decrease in frame-size is independent.@nd does not affect sIots Secondly, ifg is smaIIE can be caused by a time
the performance of the system significantly for largédence, interval of low service as frames get piled up in the buffer.
it does not show up in the rate-function. Specifically, foe thFor moderate values @f, one can expect that the most likely
choice ofh in (@8), it can be shown that there exigfs, cs > 0 way in which 5{5 occurs is a mixture of bursty arrivals and
such that we have sluggish service. From large deviations theory we know that
the rate-function ofﬁf is determined by the probability of

@ —nl
P(EF) > 1= cgte™™. 1) the most likely sample path leading &'. More formally, we
for all n > Nj. show that there exists, ¢4, N4 > 0 such that
To see this, we first divide the time interval froat + 1 to 8 wif M \H _p
0 into frames of2>! time-slots each. We index these frames (5 ) < a2 (1 — q) e (54)

from 1 to [%W Then, from assumption 2 on the arrivakor all n, > N,.

process, there exist®s > 0 such that for any framg we  We first derive an upper bound for the probability of a large
have burst of arrivals in the time from-¢ + 1 to 0. We know from
-z the Chernoff bound that for any integers- 0 andx > 0,
2t g HiAG) —am|>em)
p( B <o) P(A(—t+1,0) > no(t + 1))
2

o] g meTNECD - ]P’(A(—t +1,0)> (n— H)(t+ x))

—n(0(t+x)—Ag, (—t 6 H(t+z)0
>1—e ™o (from @8) as(h — 1) > 1210 5 ) < e R e O
¢15(c,9) Let 0, = argmaxp[0(t + x) — /\aq( t+1 0)(9)] Let 0* =
for all n > Ng. This equation implies that in every frame,max{ol,QQ,, .0+ }. Then for anyt in {1,2,....,t*},
with high-probability, the fraction of time-slots whe#(i) <
an — en is less thany. Taking the union over all frames, we ]P’(A(—t +1,0) > (n—H)(t+ I))

have o (O(HT)=Xay (—t41,0)(0)) H (t+2)0"

IN A

67nIA(z)€H(t+z)9* (55)

G-
> +1 1{)AG)—am|>em} ot
Pt <ovje{l2. [ )
3 Note that for largen, the probabilities of the evertA(—t +
o 1— ( 2t N 1) nly (52) 1,0) > no(t + x)} and {A(—t + 1,0) > n(t + x)} differ
h—1 by a factor which does not depend anHence, in the large

We now show that if the above statement is true. then tﬁgwatlons sense, the rate-functions of the these two svsnt

sum of arrivals for anyh — 1 consecutive time-slots in the (€ Same. _ _ , o
interval —t + 1 to 0 is greater tham. To see this, let: be any Now we consider the effect of sluggish service. Specifically

integer from the sef—¢ + 1,... — h+ 1}. Let us consider the we calculate an upper bound on the probability that, in the
interval from to k+h—2. Note that this interval can intersectiM€rval from —¢ + 1 packets can be served in exactly- a

at most three frames &L time-slots. It then follows that the time-slots, for some: < d. Recall from Lemmal6 that for all
interval fromk to k-f— 2 can have at mos% time-slots with " > Vx» the probability C;I;Irecelvmg service in each time slot

arrivals less thanm—em. Hence A(k, k+h—2) > (h—1)(1— is greater thari — (ﬁ) e "8 23 Hence, we have
301)(@— €)¢n. From the choice oh —1 > [7@1 S | it 4
follows thatA(k k+h —2) > n. Hence, all sample paths in P( Z Xp(i) =t+ a)
(G-
2777 h B 1{jA(i)—an|>en} —t+1
which e ; <sVje{1,2 Bftﬁ}} T () (emion
belong to the sefa It then follows from [G2) that < (ﬂ) t1a)€ e
2t TH
P(EY) > 1— (E +1)enlo < (1L) gttd,—(d—a)nlog 15 (56)
—q
—nl
> 1—3te” ™0 (53) 1t may be observed that this is monotonic functioruin



Using the results fronl(36) anf(55), we have Part 2: We would like to show that there exisf§; > 0

]P’(Ef) such thoaot forn > No
B d P(Ap(—t,0) — Xp(—t,d) > 0) < de” "o,
:p(w_ S Xe(j)>0) ; ( )
0 j=—t+l We noted earlier that the equations for evolutiondof (—t +
td d ) 1,0) are in general complicated. But if an arrival process
- Z]P( Z Xr(j) = G)P(A(_tJF 1,0)> “”0) satisfies certain conditions then some simple results sach a
a=0j=—t+l . Lemmal® and Corollary 2 can be obtained. Hence, to analyze
, Apr(—t+1,0) we first construct an arrival proces-) that
<(t+d+1) 0N g {P( >, Xr() = a) sati(sfies the)conditions of Lemnia 9 anf-(—t +SEI(,)O) >
o J=t+l Ap(—t+1,0). We do this by adding some extra arrivals to
X P(A(—t—i— 1,0) > ano)} the processA(-) in some strategic time-slots. The resulting
arrival processA(-) has the property thad (i) = pn whenever
< (t+d+ 1) max {P(A(—t +1,0)> (t+ d)no)a A(i) < pn and A(i) = ¢Ln wheneverA(i) > pn. Hence,
the resulting arrival procesd(-) is in fact very simple. We
P(XF(_t+ Ld)=t- 1)’ can then get an upper bourg(} oty (—t + 1,0), which, by
max {]P(XF(—t t1,d)=t+ a) construction, is also an upper bound Arjr_(—t +1,0). _
a€{0,1..,d—1} Before constructingA(-), we first consider another arrival
XP(A(_LL +1,0)> (t+ a)no)} } process denoted by’ () such.that for. the new arrival process
- A'(+), every frame formed in the intervatt + 1 to 0 is
<(t+d+ 1)max{2t+d(L) e (d+DIx completely full, i.e., has exactly, packets each. Moreover,
l—¢q Ap(—t +1,0) = AL(—t +1,0). It is then easy to see that
ot+d ,(t+d)HO" (L)m from arguments similar to Lemna 9, we hadg (—¢+1,0) =
l—q {“%:10)] We constructd’(-) as follows,

X e*"minae{o,l,z...d}{IA(G)JF(d*a)IX}} 1: fOf i = —t—l— 1to O dO

. TH 2. if Z(i—1)=h—1andA(:) < R(z — 1) then
< (t+d+ 120 EE D () s re R(i—1)— Afi)
—q .
n \7H 4 j+0
X max { (1 ) e~ A+ Ix 5: while » > 0 do
4 6: if A(i —j) > pn then
e M minae{o,1,2...d}{IA(a)Jr(d*a)Ix}} 7. SA =0
on \TH 8: else
< g2 (m) 9: dA = min{r,pn — A(i — j)}
~ e—nmin{(d-l—l)fx,mina5{0,1,2...d}{IA(G)+(d_a)IX}} 10: er)d if . . .
. 11: A(i—j)« A(i —j) + A
< 0420215( n )7 e—nlo’ (57) 12: r<nr—=0A
1—gq 13: j+—7+1
od(HE Loy _ Hoer 14: end while
for all n > Ny, wherecy = 2"z + ande, = i 2. =

Letc; = 2max{cs, ¢4 }. Substituting[(5B) and(57) intb (50) 16: end for

we then have . . .
In the above algorithm, step 2 checks to see if at time

P(&,) < cste ™0 4 422 (L)me—nlo there is a frame that has been open/fdime-slots but has not
1—gq receivedn, packets. Note that if this is true, then the arrivals
< 01202t(L)7H6—nIO in the intervali — h 4+ 1 to « must be less thany. In order to
- 1—gq make the frame completely full, we add extra arrivals to ¢hes

time-slots till the frame-size becomeg. While doing so, we
do not add packets to time-slots that already have greader th
- - pn arrivals, and we do not add more than — A(j) arrivals
to a time-slotj with A(j) < pn. Note that app > ¢a and
ZP(D(O) >d, L(0) = _t) = ZP(&) h—1> 1 hence it fol(lo)vvs thapn(h — 1) > n > ng. This
=1 - =1 implies that we can always fill frames in this manner.
< cpt*2cet’ (L) e o From the algorithm above, it follows thatl(i) < pn
l—gq if and only if A’(i) < pn. Now we construct the arrival
for all n > Nj. processA(-) which satisfies the conditions of Lemmia 9 as

for all n > Ny = max{N3, N,}. Finally, summing ovet = 1
to ¢* we have,

)



follows It then follows that,

1: for i=—-t+1to 0 do 2+ p

2. if A(i) > pn then P (AF(—t +1,0) > (T)t,L(O) = —t>

3 A(i) < ¢Ln 1 p

4. else <P <|B| > t>

5. A(i) « pn 6(¢L +2)

6: endif < e_"t‘“B(%_ 6<¢L+2>) (59)

7: end for X R X

_ p_ 5 _1-p H(2+4p)

The resulting arrival procesd(.) is in fact very simple. for all n > N; = ]fnax_{NBl(_ % 6(¢L+2))’ 1-p } and
For most time-slotsA (i) = jn and then for a few time-slots ¢ > 11 = max{Ts(5 — @ g5ray) 75 ' .
A(i) = Ln. Notice that whenever!'(i) < pn then A(j) =  Moreover, we know that for each, Xp(i) = 1 with
pn and wheneverd’(i) > pn then A(i) = ¢Ln > pn. It probability greater than — e e Ix forall n > Nx.

follows that A((—t+1,0)) is greater tham’(—¢+1,0). Thus  Hence, using Lemm@ 1 we have that, there exigis> Nx
from Lemmal® we havedp(—t + 1,0) = [ww > such that,

A'(=t+1,0) | _ _ 24+p
{T] = AL(—-t+1,0) = Ap(—t+1,0). So an upper IP’(XF(—t+ 1,d) < ( -;p)th(O) _ —t)

bound onAx(—t+1,0) is an upper bound oA - (—t+1,0).
Let B = {b1,bs,,b5} be the set of time-slots in the < ]P’(XF(—tJrl,d) <(
interval —¢ + 1 to 0 when A(i) > pn. Then from Corollary 2

240

)(t+d), L(0) = 1)

o n(t+d) (F52) Ix

we have that, giverL(0) = —t, <
(A—-p)1
. <e ™o, (60)
Ap(—t+1,0)
|B|—1 B for all n > Ng andt > 0.
Z Ab; +1, by+1 Z vab Combining the above two results, frofn [59) and](60) we
N pa have, for alln > N7 = max{Ns, Ns} andt¢ > T1,
Bl o " o <1- (1 _ e—nt(H’;)IX )(1 _ e—ntla(g_avﬁ(:iiz)))
< Z (bjy1 —1—b;)pn Z < 2emindsx
7=1 7=1 where Ipx is the minimum of Iz(2 — @, —=2-) and
by — (—t+1)+1 0— byg|)pn ¢ S(eL+2)
L (b= )+ Dpn (0= bs)p Lop|+1  Ushix
(t — Bl "0 oL o Recall thatt* > max {71, 72-}. Hence, summing over all
— pn n
<~——>— +|B|—/— +2|B|+1 t > t* we have, for alln > N, = max{Nv, H’gﬂ}
no no BX

< ot (L +2)Bl + 1] i P(AF(_LO) _ Xp(t.d) > 0, L(0) = _t)

From Assumption 2 on the arrival process we know that =t

for large enoughn and t, |B| can be made less than an < Z ]P:'(AF(_tvo) — Xp(—t,d) > 0,L(0) = —t)
arbitrarlly small fraction oft. Further, we can show that for o
1Bl < gzt n > B0 andt > &, Ap(—t+1,0) < .
Ap(—t +1,0) < (“P) ! This follows by substituting the < ) 2emntiex
values oft, |B| andn in the equation above, =
2e—nt Ipx
P —
AF(—t—Fl,O) — 1 —enlBx
< Ap(—t+1,0) < e IBx (ase "lEx < %)
< —[pt + (6L +2)|B| +1] < gemmh,
5 <
249 1-p . 1-p
< 24P s ( p)]t (since(A=2¢ > 1) The result of the theorem then follows. n
1+2p 3
- 2+ pA. 1+ 2pt
“1+2 3

- (20 =
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