
Coded Caching for Files with Distinct File Sizes
Jinbei Zhang†, Xiaojun Lin‡, Chih-Chun Wang‡, Xinbing Wang†

†Department of Electronic Engineering, Shanghai Jiao Tong University, China
‡School of Electrical and Computer Engineering, Purdue University, USA

Email: †{abelchina, xwang8}@sjtu.edu.cn, ‡{linx,chihw}@purdue.edu

Abstract—Coded caching can exploit new multicast opportuni-
ties even when multiple users request different pieces of content,
and thus can significantly reduce the backhaul requirement for
serving high-volume content. However, existing studies of coded
caching have been limited to the scenarios where all files of
interest are of a common size. This work studies the performance
limits of coded caching when the file sizes are different. We derive
a new lower bound and an achievable upper bound for the worst-
case transmission rate under coded caching, and show that these
two bounds differ by at most a Θ(logK) factor, where K is the
number of users in the system. There are two key novelties in our
analysis. First, our lower bound is derived by considering a new
cut-set bound where larger files are requested more times. The
analysis of this new cut-set bound requires careful concatenation
of several entropy inequalities. Compared to a lower bound
using standard cut-set arguments, our lower bound is improved
by a Θ(logK) factor. Second, our achievable scheme uses a
caching probability that increases proportionally with the file size.
Compared to schemes that use a common caching probability,
the achievable rate of our scheme is reduced by a Θ(K

log2 K
)

factor.

I. INTRODUCTION

A new form of caching schemes, called “coded caching”,
have received significant attention lately in reducing the back-
haul requirement for serving a large volume of content to
multiple users [1]. The significant performance improvement
of coded caching arises from its capability to exploit poten-
tial multicast opportunities even when each user requests a
different piece of content. Consider the setting of [1] where
one server serves K users via a broadcast channel. Each user
has a storage/cache of size M bits. The server has N files
(N > K) with equal size F bits (F > M

N), and each user can
request any one of the N files. Note that in the worst case,
each user may request a distinct file. In conventional uncoded
caching schemes, the server would be unable to exploit the
broadcast capability of the channel in such a worst case, and
thus had to transmit to each user a difference piece of content
that is not stored in the user’s cache. It is then easy to see
that the total transmission rate needed from the server in the
worst case is KF (1 − M

NF), since each user can only cache
M
NF fraction of each file. In contrast, in a coded caching
scheme [1], the worst-case transmission rate from the server
is reduced to KF · 1−M/NF

1+KM/NF . The additional reduction factor
of 1/[1 +KM/(NF)] is significant when the global storage
capability of the system is large, and thus is called the global
caching gain in [1]. The key idea behind this performance
improvement is to exploit “multicast” opportunities even when
different users request different files. For example, suppose

that there are two users A, B, and each user requests a
different file. If user A has cached some content requested
by user B, and user B has cached some content requested by
user A, the server can broadcast the XOR of these two parts,
which allows both users to decode their requested content.

Along this line, [1]–[7] have studied the fundamental limits
of coded caching under the assumption that all files are of the
same size. A common theme of these studies is to first find
an information-theoretic lower bound of the transmission rate.
Then characterize the performance of an achievable scheme
with a common caching probability, i.e., which caches a
common fraction of every content in each user’s cache. Finally
prove that the performance of the achievable scheme is a
constant factor away from the lower bound. Such approaches
are later generalized to decentralized coded caching schemes
[2], hierarchical networks [3], and multi-level coded caching
[4], average rate [5], [6] and online caching [7], respectively.

However, one limitation of these previous studies is that
they assume all files to be of the same size. In practice, it
is common that different types of content are of significantly
different sizes. In this paper, we carry out the first study of
the performance limits of coded caching when the files are of
different sizes. We derive a lower bound and an achievable
upper bound for the worst-case transmission rate that differ
by at most a Θ(logK) factor. The contributions of our results
are two-fold. First, our lower bound (Proposition 1) considers
a new cut-set bound that is different from those used in prior
work. As a result, we tighten the lower bound by a Θ(logK)
factor (see the comparison with Lemma 1). In contrast to the
cut-set bounds in [1]–[7] where each file is requested only
once, in our new cut-set bound each file could be requested
multiple times, in proportion to its file size. Analyzing this
cut-set bound also requires careful concatenation of several
entropy inequalities [8] and could be of independent interest.
Second, our achievable upper bound (see Sec. IV) uses a
caching probability that is proportional to the file size. In other
words, the amount of cached content for a file is quadratically
proportional to its file size. In contrast to a scheme that uses
a common caching probability for all files, the transmission
rate of our achievable scheme is reduced by a Θ(K/ log2 K)
factor.

As illustrated in Table I, for a system with 8 users and 2
types of file sizes (the detailed setting provided in Section V),
our new lower bound (LB2, Proposition 1) is higher than the
conventional lower bound (LB1, Lemma 1) by about 11%, and
our achievable scheme (UB2) attains a transmission rate lower

2

than that using a common caching probability (UB1) by about
16%. For a system with 8 users and 3 types of file sizes, our
lower bound is 30% higher, and our achievable upper bound
is about 31% lower. The trend when the number of users and
number of file types further increase is illustrated in Figure 1.

These results thus provide significant new insights in the
performance limits of coded caching in the more practical s-
cenarios of distinct file sizes. The rest of the paper is organized
as follows. In Section II, we present the network model. We
provide the lower bounds of the worst-case transmission rate
in Section III, and derive the achievable rate in Section IV.
Numerical comparison is presented in Section V. Finally, we
conclude.

TABLE I: Comparisons

Rate LB2/LB1 Gain UB1/UB2 Gain
2 types 4/3.6 11% 15.3757/13.2523 16%
3 types 5/3.8462 30% 21.2593/16.2196 31%

Number of types

lo
g(

R
at

e)

LB1
LB2
UB1
UB2

logK

K/log2 K

logK

logK

Fig. 1: An illustration on the trend when the number of types
increases.

II. NETWORK MODEL

We assume there are N files from the set F =
{F1,F2, ...,FN}. The size of the i-th file Fi is denoted by
Fi

∆
= |Fi|. Without loss of generality, we assume that the file

size is non-increasing, i.e., Fi ≥ Fj if i ≤ j.
All the files are stored in a server, which serves K users

through a broadcast channel. Each user is equipped with a
cache of a common size M . The content of the data cached
in user k is denoted by Mk. We assume that

PN
i=1 Fi ≥ 2M

and N ≥ K, which is true in most situations where cache
size is limited. During off-peak hours, the server can place
some of the contents (possibly coded) in each user’s cache
Mk, with the hope of reducing the rate needed to satisfy
users’ requests during peak hours. This process is called the
caching phase. We emphasize that the caching phase must be
completed before any file requests are made.

During peak hours, the k-th user will request the content of
the wk-th file, namely Fwk

. Denote the requests of all K users
as a K-dimensional vector w⃗. Since there are N files to choose
from, there are totally NK request patterns w⃗, and we denote
the collection of all patterns by W. If part of the file Fwk

has been cached in Mk, it will be retrieved locally. For those
uncached content, the server will broadcast some additional

content, denoted by R, to all K users simultaneously. The
goal is that every user k must be able to reconstruct the file
Fwk

, based on the content R received during peak hours and
the cached data Mk. Obviously, what content R to transmit
depends on the request pattern w⃗ and on the set of files F. As
a result, we often denote it by Rw⃗(F).

From the above discussion, given a set of files F, a coded
caching scheme needs to decide (a) what is the content to be
cached in each Mk, k = 1, ...,K; and (b) for each pattern w⃗ ∈
W, what is the additional data to send, i.e., {Rw⃗(F) : ∀w⃗ ∈
W}. The objective is to minimize the worst-case transmission
rate maxw⃗∈W Rw⃗(F), denoted by R(F). We said that the rate
R(F) is achievable if, for every ε > 0 and every large enough
file size, there exists a caching and transmission scheme such
that, regardless of the request pattern w⃗, with probability of
error less than ε, every user can reconstruct the requested file.
Let R∗(F) denote the infimum over all achievable R(F).

A. Two Approximate Systems

In the previous formulation, the minimal rate R∗(F) de-
pends on the sizes of the N files and we did not impose any
constraints on the file sizes. We now consider two quantized
versions from F, constructed as

FUB = {FUB
i |FUB

i = F1 · 2−⌊log2
F1
Fi

⌋
, 1 ≤ i ≤ N},

FLB = {FLB
i |F LB

i = F1 · 2−⌊log2
F1
Fi

⌋−1
, 1 ≤ i ≤ N}.

(1)

It is easy to see that F LB
i ≤ Fi ≤ FUB

i , for any i ≤ N . This
thus naturally implies R∗(FLB) ≤ R∗(F) ≤ R∗(FUB).

For the practical scenarios in which 2M ≤
PN

i=1 Fi and
K ≤ N , one can prove that the two rates R∗(FLB) and
R∗(FUB) differ by at most a constant term since F LB

i = FUB
i /2

for all i. Hence, for the purpose of proving constant-factor
performance gaps, it is sufficient to focus on those file sets F
such that the file sizes differ by power-of-2 factors.

Thus, in the sequel we will only consider those F with the
above property. Assume that there are at most T distinct file
sizes in F. We now call the files of the same size as “of
the same type”. Thus, we introduce the following equivalent
notations. The l-th type, l = 1, ..., T , has file size Fl = 21−lF1

where F1 is the largest file size in the system. Suppose that
the l-th type has Nl different files. Then, the collection of all
Nl files of type l is denoted by Fl and we re-index each file
of the l-th type by Fl = {Flj |1 ≤ j ≤ Nl}.

III. LOWER BOUNDS OF THE WORST-CASE
TRANSMISSION RATE

We now present two lower bounds on R∗(F). The first lower
bound (Lemma 1) is derived using standard cut-set bounds in
the literature, which is then compared with the second and
tighter lower bound (Prop. 1). We then highlight the difference
in the analysis.

Lemma 1: The worst-case transmission rate is lower bound-
ed by

R∗(F) ≥ max
Φ

1 P
l∈Φ

Nl/L
£
 X

l∈Φ

NlFl − LM

!
(2)

3

where L =

�P
l∈Φ

NlFl/2M

2M

�
, and the maximization is tak-

en over any subset Φ of {1, 2, ..., T} that satisfies 2M ≤P
l∈Φ NlFl ≤ 2KM. If the expressions inside the floor and

ceil functions in (2) are integers, the lower bound in (2) can
be represented as

R∗(F) ≥ max
Φ

(
P

l∈Φ NlFl)
2

4M
P

l∈Φ Nl
. (3)

The lower bound in Lemma 1 can be easily obtained using
standard cut-set bounds in the literature, which we provide
a high-level sketch below. For a subset Φ of file types, we
choose h (h ≤ K) users to request files from Fl, l ∈ Φ. As

in prior studies [1]–[7], we can construct
¡P

l∈Φ
Nl

h

¤
request

patterns for these h users such that every file in Fl, l ∈ Φ, is
requested once. Since all the files requested can be retrieved
from the transmissions and the local storages, we have the

following cut-set, i.e.,
¡P

l∈Φ
Nl

h

¤
R∗(F)+hM ≥

P
l∈Φ NlFl.

Choosing h = L, we obtain (2).
We next present the second and tighter lower bound. For

ease of exposition, we first focus on the case when the
following two assumptions hold.

Assumption 1: 2M
F1

and NlFl

2M are both integers for all types
l such that 1 ≤ l ≤ min(T, log2 K).

Assumption 2:
Pmin(T,log2 K)

l=1
NlFl

2M ≤ K.
With Assumption 1, we will not need to be concerned

with the use of floor and ceiling functions, which simplifies
the discussions below. On the other hand, Assumption 2 is
similar to the constraint on the set Φ in Lemma 1. While
Assumptions 1-2 simplify the analysis of Proposition 1, they
still allow us to expose the key new insights of the proof. We
will then relax Assumptions 1-2 in Proposition 2.

Proposition 1: Under Assumptions 1-2, the worst-case
transmission rate can be lower bounded by

R∗(F) ≥
min(T,log2 K)X

l=1

NlF
2
l

4M
. (4)

To compare (3) and (4), we let T = log2 K and Nl+1 =
4Nl. Recall that Fl+1 = 1

2Fl. Then, the file set Φ chosen
in Lemma 1 equals to {1, 2, ..., log2 K}. The RHS of (3) is
smaller than N1F

2
1

M . On the other hand, the RHS of (4) equals
to log2 K · N1F

2
1

4M , which is a Θ(log2 K) factor higher than (3).
The key novelty in the proof of Proposition 1 is to use a

new cut-set bound that is different from that in (2). Unlike the
derivation of (2) where we consider a set of request patterns
so that every file is requested once, in the new cut-set bound
we consider a new set of request patterns so that larger files
are requested more times. The study of this new scenario
also requires more careful concatenation of several entropy
inequalities [8], some of which have been used in [1] and
[4]. For ease of exposition, next we focus on the simpler case
with only two types T = 2, which however still illustrates the
novelty of our constructions.

Let s1 = N1F1

2M and s2 = N2F2

2M . By Assumption 1, both

s1 and s2 are integers and min(s1, s2) ≥ 1. We then choose
two user sets U1 and U2, which satisfy |U1| = s1, |U2| =
s2,U1

T
U2 = ∅. By Assumption 2, we can always find U1

and U2 among the K different users.
Divide file set F2 into two non-overlapping subsets F21 and

F22 with equal size N2/2. We then choose two disjoint sets
of request pattern D1 and D2, which satisfy |D1| = |D2| =
N1

s1
and

S
w⃗∈D1

S
k∈U1

Fwk
= F1,

S
w⃗∈D1

S
k∈U2

Fwk
= F21,S

w⃗∈D2

S
k∈U1

Fwk
= F1,

S
w⃗∈D2

S
k∈U2

Fwk
= F22. We first

explain the construction of D1. In the very first request pattern
w⃗ in D1, we let the s1 users in U1 request the first s1 files in
F1, and let the s2 users in U2 request the first s2 files in F21.
Then, in the second request w⃗ in D1, we let the s1 users in U1

requests the second s1 files in F1 and let the s2 users in U2

request the second s2 files in F21. Continue this construction
until |D1| = N1/s1, i.e., each of the N1 files in F1 has all
been requested once. At the same time, totally N1

s1
s2 files of

F2 have been requested by users in U2. Since s1 = N1F1

2M ,
s2 = N2F2

2M and F1 = 2F2, we have N1

s1
s2 = N2/2. That is,

all files in the first half F21 have been requested.
The construction of D2 is similar. The difference is that, we

allow the files in F1 to be requested by users in U1 the second
time during D2, while the users in U2 will now request the
second half F22 instead. See Figure 2 for illustration.

Fig. 2: An illustration on the requesting process for file
systems with two types.

However, even with this new set of request patterns, new
analysis is needed in order to produce a better lower bound
on the transmission rate. Specifically, if we directly apply the
idea that the overall rate from all the transmissions plus all
the cache sizes must be greater than the total size of all files
combined (as in the derivation of (2)), we would obtain

2N1

s1
R∗(F) + N1F1

2
+

N2F2

2
≥ N1F1 +N2F2. (5)

On the other hand, a strictly better bound than (5) can be
obtained, as stated in the following lemma.

Lemma 2: For the request patterns constructed as in Figure
2, the worst-case transmission rate should satisfy

2N1

s1
R∗(F) ≥ N1F1 +

N2F2

2
. (6)

Thus, the lower bound on 2N1

s1
R∗(F) is increased by another

term N1F1

2 . This increase is the key step towards the tighter
lower bound in Proposition 1. Indeed, substituting s1 = N1F1

2M
and noting that F1 = 2F2, the T = 2 case of Proposition 1 fol-
lows immediately from Lemma 2, i.e., R∗(F) ≥ N1F

2
1 +N2F

2
2

4M .

4

Proof of Lemma 2: For ease of presentation, we denote
RD1 ,

S
w⃗∈D1

Rw⃗, RD2 ,
S

w⃗∈D2
Rw⃗, MU1 ,

S
k∈U1

Mk,
and MU2 ,

S
k∈U2

Mk. Summing over all rates for each
transmission, we have
2N1

s1
R∗(F) ≥ H(RD1) +H(RD2)

= H(RD1 |F1) + I(RD1 ;F1) +H(RD2 |F1) + I(RD2 ;F1)

≥ H(RD1 ∪RD2 |F1) + I(RD1 ;F1) + I(RD2 ;F1)

= I(RD1 ∪RD2 ;F2|F1) + I(RD1 ;F1) + I(RD2 ;F1).

(7)

Here, the first, second and third lines follow from the definition
and basic properties of entropy. The fourth line is due to
H(RD1 ∪ RD2 |F1) = H(RD1 ∪ RD2 |F1,F2) + I(RD1 ∪
RD2 ;F2|F1), and the fact that H(RD1 ∪ RD2 |F1,F2) = 0,
since Rw⃗ is generated by file-sets F1 and F2.

We then bound each of the mutual-information terms in (7).
Noting that all files in F1 can be reconstructed from: (i) the
transmissions for the request patterns in D1, and (ii) the local
storages of users in U1, we have

H(F1) = I(F1;RD1 ,MU1)

≤ I(F1;RD1) +H(MU1),
(8)

where the second equality is due to the chain rule. Since the
total cache size

S
k∈U1

Mk is s1 ·M = N1F1

2 , we have

I(F1;RD1) ≥ H(F1)−H(MU1) ≥
N1F1

2
. (9)

Similarly, we have I(F1;RD2) ≥ N1F1

2 .
Finally, using a similar logic, the entropy of type-2 files F2

can be written as
H(F2) = I(F2;RD1 ∪RD2 ,MU2 |F1)

≤ I(F2;RD1 ∪RD2 |F1) +H(MU2).
(10)

Here, the first equality is due to the independence of F1

and F2, along with the fact that F2 can be decoded fromS
w⃗∈D1∪D2

Rw⃗ and
S

k∈U2
Mk.

Since the size of
S

k∈U2
Mk is s2M = N2F2

2 , we have

I(F2;RD1 ∪RD2 |F1) ≥
N2F2

2
. (11)

The result of Lemma 2 then follows. �
We can then easily generalize the above proof for the case

of T ≥ 3 by choosing T groups of users U1 to UT , each having
sl =

NlFl

2M users. This is always possible when Assumptions
1-2 hold. The rest of the derivation for Proposition 1 follows
by applying the above techniques iteratively.

A. Relaxing Assumptions 1 & 2

To relax Assumptions 1-2, the analysis is more complicated
as we need to consider many corner cases. In the following,
we provide the general lower bound without these assumptions
and provide a sketch of the proof.

Proposition 2: The worst-case transmission rate is lower
bounded by R∗(F), where R∗(F) is the infimum of all values
of R that satisfy

R > max

T2−1X

l=T1+1

NlFl

2
+

N ′
T2
FT2

2
,

T4−1X
l=T3

NlF
2
l

32M ′ +
N ′

T4
F 2
T4

32M ′

!
,

where M ′ = M −
PT1

l=1 Nl(Fl − R), and the parameters T1

to T4, N ′
T2

and N ′
T4

are of integer values and can be uniquely
computed (for any given R) in the following way. (i) T1 is
the largest index l such that Fl > 2R. If no such l exists,
choose T1 = 0; (ii) T2 is the largest index satisfying (a) T ≥
T2 > T1, (b) FT2 > 2M ′, and (c)

PT2−1
l=T1+1 Nl < K. If no

such T2 exists, then choose T2 = T1 and N ′
T2

= 0. Otherwise,
choose N ′

T2
= min(NT2 ,K −

PT2−1
l=T1+1 Nl). (iii) T3 is the

smallest index l such that Fl ≤ 2M ′. If no such l exists,
then T3 = T + 1; (iv) T4 is the largest index satisfying (a)
T ≥ T4 ≥ T3, and (b)

PT4−1
l=T3

NlFl < 2KM ′. If no such T4

exists, then choose T4 = T3 and N ′
T4

= 0. Otherwise, choose
N ′

T4
= min(NT4 , ⌊(2KM ′ −

PT4−1
l=T3

NlFl)/FT4⌋).
The main intuition of this general lower bound is as follows.

We divide the file types into three groups. Group 1: types
1 to T1, Group 2: (T1 + 1) to T2, and Group 3: T3 to T4.
Suppose that there exists a scheme that can achieve a worst-
case transmission rate R. It implies that the transmission rate
R has to cover all possible request patterns chosen from all
three groups of files. Then, we quantify the impact of the
requests for each file group and derive the condition on R.

First, note that each file of type l in Group 1 is larger than
2R. To satisfy all requests for a given file from Group 1, each
node needs to store at least (Fl − R) amount of its contents.
Therefore, the remaining cache size that can be used to satisfy
file requests for Groups 2 and 3 is upper bounded by M ′. (This
argument can be made precise using conditional entropy.) As
a result, when considering Groups 2 and 3, we can treat it
equivalently as if the effective cache size has been reduced to
M ′. We now consider Group 2. We first notice that for any
l = T1 + 1 to T2, we must have M ′ < Fl

2 . We then consider
a request pattern in which

PT2−1
l=T1+1 Nl + N ′

T2
users requestPT2−1

l=T1+1 Nl + N ′
T2

distinct files. By a simple cut-set bound

argument, we can obtain R >
PT2−1

l=T1+1
NlFl

2 +
N ′

T2
FT2

2 .
For Group 3, we use the same bounding techniques as in

Prop. 1, i.e., we choose larger files multiple times in the set of
request patterns. We can then show that, in order to satisfy the
requests for files in Group 3, it requires a minimum rate that is
larger than

PT4−1
l=T3

NlF
2
l

32M ′ +
N ′

T4
F 2

T4

32M ′ . Proposition 2 then follows.
Note that the rate for files in Group 3 can be compared to (4).
It is looser now since we have relaxed Assumptions 1-2.

IV. A NEW ACHIEVABLE SCHEME

In this section, we compare two achievable schemes. One
assumes a uniform caching probability. The other adopts a
proportional caching probability. It will be shown that the
second scheme achieves a lower rate than the first one.

Consider an achievable scheme where the fractions of every
file are cached with an equal probability q, as in [1]–[7]. Due
to the memory constraint, we have

P
l∈Φ qNlFl = M and

q = MP
l∈Φ

NlFl
. Using the results in [2], we can show that its

achievable rate, Runi, is lower bounded by

Runi ≥
KF1(1− q)

1 +Kq
≥

F1

PT
l=1 NlFl

4M
. (12)

5

By choosing T = log2 K and Nl+1 = 4Nl, we can show that
the lower bound (4) is log2 K ·N1F

2
1 /(4M) and the achievable

bound (12) is larger than KN1F
2
1 /(8M). The gap between

those bounds can be as large as Θ(K/ log2 K).
Next, we present the second scheme. Again, we first impose

Assumptions 1-2. Let T = min(T, log2 K). For every file
in Fl (l ≤ T), denote its caching probability as ql. Namely,
each user k will cache qlFl of every file in Fl. The overall
cache-size constraint thus implies that

PT
l=1 qlNlFl = M. The

key difference from the first scheme is that we choose ql to
be linearly proportional to Fl. In other words, the amount of
cached content for a file of type l is quadratically proportional
to Fl. The motivation for this choice of ql is as follows.
Note that if we consider all request patterns where all K
users request only the files with size Fl, the rate needed
can be approximated1 by Fl

ql
. Thus, in order to minimize the

worst-case value, i.e., maxl
Fl

ql
, we should choose ql to be

proportional to the file size Fl, i.e., ql
∆
= QFl where the

constant Q equals to M/(
PT

l=1 NlF
2
l). This choice is also

consistent with the choice of request patterns D in the proof
of Lemma 2 and Proposition 1. Since the larger files in F1

is requested twice as frequently as the shorter files in F2, it
suggests that more cache space may be allocated to F1.

We now describe the transmission design. Initialization:
each user k reconstructs the portion of the requested file Fwk

that is stored in its local cache Mk. Transmission: for any
non-empty subset U ⊂ {1, · · · ,K}, we do the following. For
each k ∈ U , we assemble the portion of the requested file
Fwk

that is cached by all users h ∈ U\k but not by user k
as a continuous bit-string and denote the assembled bit-string
by Bk. Then, we send the bit-wise XORed2 string

L
k∈U Bk.

Note that some bit string Bk may be shorter than the other
Bk′ . We simply zero-padded the shorter bit strings during
XOR. In the end, the total amount of bits sent for a given
U is maxk∈U |Bk|. After finishing transmission for all U , it is
guaranteed that all users can recover the desired packets.

Note that in our construction, those files of type l > T will
never be cached. As a result, if any user k requests such a
file, the entire file will be treated as a single bit-string and
transmitted separately. By analyzing the bit-length of each
transmission U , we can upper bound the transmission rate by

Rprop
∆
=
X
U

max
k∈U

|Bk| ≤ (T + 1)

TX
l=1

NlF
2
l /M. (13)

Comparing eqs. (13) and (4), the gap is at most 4(log2 K+1),
which is a dramatic improvement from (12). Thus, using a
caching probability ql proportional to Fl is critical.

Note that while our scheme allows coding across different
file-types, the inequality in (13) does not exploit this gain,
which may be the reason for the Θ(log2 K)-factor gap be-
tween our upper and lower bounds. For future work, it would
be interesting to see whether this gap can be removed.

1This approximation can be observed from the first inequality in (12).
2If ≥ 2 users request the same file, then we only XOR the string once.

The reason is that XOR the same string twice will give a zero-string.

When relaxing Assumptions 1-2, the analysis becomes
more complicated due to many corner cases. We can have
the following result.

Proposition 3: We can construct a modified scheme that
achieves Rprop ≤ (32 log2 K + 22)R∗(F), where R∗(F) is
specified in Proposition 2.
Namely, the gap to the lower bound is at most Θ(log2 K).

V. NUMERICAL COMPARISON

We compare the two lower bounds, (3) and (4), and the two
upper bounds, (12) and (13), in the following two numeric
examples. There are K = 8 users, each with a cache size
M = 128. System 1 has 2 file types with F1 = 8, N1 = 16,
F2 = 4, and N2 = 64. System 2 has 3 file types with F1 = 8,
N1 = 16, F2 = 4, N2 = 64, F3 = 2, and N3 = 128.
For the achievable schemes, instead of deriving the bounds,
we list the exact Rprop (UB2 in Table I) and Runi (UB1 in
Table I) values by numerically computing

P
U maxk∈U |Bk|.

These numerical results verify our findings, i.e., not only the
proposed lower bound (4) is greater than the result in (3) that
uses the traditional cut-set bounds, but also Rprop is much
larger than Runi. That is, proportional caching probability
significantly outperforms uniform caching probability.

VI. CONCLUSION

In this paper, we study coded caching for systems where
files of interest are of different sizes. We provide tighter lower-
bound and achievable bound for the worst-case transmission
rate, which differ by at most a Θ(logK) factor. The key
novelty is a new cut-set (lower) bound that considers request
patterns where larger files are requested more times.

ACKNOWLEDGMENT

This work was partially supported by NSF grants: CCF-
0845968, ECCS-1407603, and CCF-1422997, a grant from the
Army Research Office W911NF-14-1-0368, and two grants
from NSF China (No. 61325012, 61271219).

REFERENCES

[1] M.A. Maddah-Ali, and U. Niesen, “Fundamental Limits of
Caching”, in IEEE Trans. Inform. Theory, vol. 60, no. 5, pp.
2856-2867, May 2014.

[2] M.A. Maddah-Ali, and U. Niesen, “Decentralized Coded
Caching Attains Order-Optimal Memory-Rate Tradeoff”, to ap-
pear in IEEE/ACM Trans. Netw., 2014.

[3] N. Karamchandani, U. Niesen, M.A. Maddah-Ali and S. Dig-
gavi, “Hierarchical Coded Caching”, arXiv:1403.7007v2 [cs.IT],
Jun. 2014.

[4] J. Hachem, N. Karamchandani and S. Diggavi, “Multi-level
Coded Caching”, arXiv:1404.6563 [cs.IT], Apr. 2014.

[5] U. Niesen, and M.A. Maddah-Ali, “Coded Caching with
Nonuniform Demands”, arXiv:1308.0178v2 [cs.IT], Mar. 2014.

[6] M. Ji, A. Tulino, J. Llorca and G. Caire, “On the Average
Performance of Caching and Coded Multicasting with Random
Demands”, arXiv:1402.4576v2 [cs.IT], Jul. 2014.

[7] R. Pedarsani, M.A. Maddah-Ali and U. Niesen, “Online Coded
Caching”, arXiv:1311.3646 [cs.IT], Nov. 2013.

[8] R.W. Yeung, “A Framework for Linear Information Inequali-
ties”, in IEEE Trans. Inform. Theory, vol. 43, no. 6, pp. 1924-
1934, Nov. 1997.

6

Appendix : Supplemental Materials

A. Proof of Proposition 2

Proposition 2: The worst-case transmission rate is lower
bounded by R∗(F), where R∗(F) is the infimum of all values
of R that satisfy

R > max

T2−1X

l=T1+1

NlFl

2
+

N ′
T2
FT2

2
,

T4−1X
l=T3

NlF
2
l

32M ′ +
N ′

T4
F 2
T4

32M ′

!
,

where M ′ = M −
PT1

l=1 Nl(Fl − R), and the parameters T1

to T4, N ′
T2

and N ′
T4

are of integer values and can be uniquely
computed (for any given R) in the following way. (i) T1 is the
largest index l such that Fl > 2R. If no such l exists, choose
T1 = 0; (ii) T2 is the maximum value satisfying (a) T ≥ T2 >
T1, (b) FT2 > 2M ′, and (c)

PT2−1
l=T1+1 Nl < K. If not such

T2 exists, then choose T2 = T1 and N ′
T2

= 0. Otherwise,
choose N ′

T2
= min(NT2 ,K −

PT2−1
l=T1+1 Nl). (iii) T3 is the

smallest index l such that Fl ≤ 2M ′. If no such l exists,
then T3 = T +1; (iv) T4 is the maximum value satisfying (a)
T ≥ T4 ≥ T3, and (b)

PT4−1
l=T3+1 NlFl < 2KM ′. If no such T4

exists, then choose T4 = T3 and N ′
T4

= 0. Otherwise, choose
N ′

T4
= min(NT4 , ⌊(2KM ′ −

PT4−1
l=T3+1 NlFl)/FT4⌋).

Proof logic: Suppose that a rate R is achievable to satisfy
users’ worst-case request. We will first show the achievable
rate should satisfy (14). Then, since we do not know the exact
value of R before-hand, we take the minimum over all values
of R that satisfy (14), which then becomes a lower bound for
R∗(F). The result of Proposition 2 then follows.

Towards that end, we divide the files into 4 groups. The
division is closely related to the parameter M ′. As we will
see shortly, M ′ can be interpreted as the effective cache size
in each user’s storage that can be used to retrieve files outside
Group 1.

Group 1: First, consider the files in Group 1, which contains
all the files with size Fl > 2R. Now consider

P
l∈Φ1

Nl

request patterns as follows. A fixed user, say k, will request
one distinct file in Group 1 for each of request patterns. Then,
since user k must be able to retrieve each requested file, we
must have

H(
[

1≤l≤T1

[
1≤j≤Nj

Flj |
[

1≤l≤T1

[
1≤j≤Nj

R−→w ,Mk) = 0. (14)

Let A =
S

1≤l≤T1

S
1≤j≤Nj

Flj and B =S
1≤l≤T1

S
1≤j≤Nj

R−→w . Then, Eq. (14) can be simplified to
H(A|B,Mk) = 0.

According to the property of entropy, we have,

0 = H(A|B,Mk) = H(A|Mk)− I(A;B|Mk)

≥ H(A|Mk)−H(B).
(15)

Further, we have

H(Mk|A) = H(Mk)− I(A;Mk)

= H(Mk)−H(A) +H(A|Mk)

≤ H(Mk)−H(A) +H(B),

(16)

where in the last step we have used (15). Note that H(A) =PT1

l=1 NlFl, H(B) ≤
PT1

l=1 NlR, and H(Mk) = M .
Therefore, for any user k, we must have H(Mk|A) ≤
M −

PT1

l=1(Fl − R) = M ′. Recall that A is exactly all the
information in Group 1. Therefore, when user k request a file
outside Group 1, user k must be able to retrieve the file with
Mk|A and its received rate R. Intuitively, this means that
the amount of cached information in Mk that can be used
for recovering files outside Group 1 is no larger than M ′.
Therefore, when we quantify the impact of files in Group 2
and Group 3, we will take M ′ as literally the cache size.

Group 2: Recall that the total number of files in Group 2
is L2 =

PT2−1
l=T1+1 Nl + N ′

T2
. Note that L2 ≤ K according

to our construction. Consider one request pattern, where L2

users request the L2 files in Group 2. Then, we must have

H(R) + L2M
′ ≥

L2X
k=1

H(Fwk
). (17)

For every file Fwk
in Group 2 requested by user k, H(Fwk

) >
2M ′. Recall that H(M′

k) ≤ M ′. Therefore, we have

R >

T2−1X
l=T1+1

NlFl

2
+

N ′
T2
FT2

2
. (18)

Group 3: For files in Group 3, we want to use the results in
Proposition 2. Therefore, we need two conditions, i.e., 2M ′

FT3
,

N ′
T4

Fl

2M ′ and NlFl

2M ′ with T3 ≤ l ≤ T4 − 1 are all integers.

For files in Group 3, we have 2M ′

Fl
≥ 1. We now construct

a system, where user k is equipped with a cache of size M2,
which is chosen as the smallest value satisfying 2M2

Fl
is an

integer and M2 ≥ M ′. Therefore M ′ ≤ M2 < 2M ′. Clearly,
if there exists a scheme that can satisfy all the requests using
the storage size M ′. there must exist another scheme that can
satisfy all the requests using the larger storage size M2.

Let Hl = Nl for T3 ≤ l ≤ T4 − 1 and HT4 = N ′
T4

. The
files in Group 3 can then be divided into two subsets, i.e.,
Φ4 = {l|HlFl

2M2
< 1}, and Φ5 = {l|HlFl

2M2
≥ 1}.

For files in Φ4, we haveX
l∈Φ4

HlF
2
l

4M ′ <
X
l∈Φ4

HlF
2
l

2M2
(since HlFl < 2M2 for all l)

<
X
l∈Φ4

Fl (since Fl+1 = Fl/2 for all l)

< 2max
l∈Φ4

Fl (since Fl ≤ 2R for all l)

≤ 4R.
(19)

For files in Φ5, we further choose Gl ≤ Hl to be the largest
value satisfying that Gl ≤ Hl and GlFl

2M2
is an integer. Gl

always exists since 2M2

Fl
is an integer and HlNl

2M2
≥ 1. Hence,

we have Hl

2 < Gl ≤ Hl. Note that Assumption 1 now holds
with Gl, Fl and M2. Further Assumption 2 holds becausePT4

l=T3

HlFl

2M2
≤ K. Therefore, for Gl, Fl and M2, we can use

7

Proposition 2, and have

R ≥
X
l∈Φ5

GlF
2
l

4M2

>
X
l∈Φ5

HlF
2
l

16M ′ .

(20)

Combining Equations (19)(20), we have

R >

T4X
l=T3

HlF
2
l

32M ′ . (21)

Combing Equations (18) and (21), we conclude that R must
satisfy (14). The result of the proposition then follows.

B. Proof of Proposition 3

Proposition 3: We can construct a modified scheme that
achieves Rprop ≤ (32 log2 K + 22)R∗(F), where R∗(F) is
specified in Proposition 2.

Proof: Caching: For each file Fl in Group 1, recall that
we have Fl ≥ 2R∗(F). We divide Fl into two parts. One part
is of size Fl−2R∗(F), which is cached in every user’s storage.
The other part is of size 2R∗(F). For the second part, each
user caches 1

2 of it. Therefore, at each user, the amount of
storage used to cache files in Group 1 is

PT1

l=1(Fl −R∗(F)).
Then, the amount of storage that can be used for other files is
exactly M ′, as defined in Prop. 2.

Let T5 be the largest value satisfying (i) FT5 > 2R∗(F)
K and

(ii) T5 ≤ T4 − 1. For files Flj , T3 ≤ l ≤ T5, 1 ≤ j ≤ Nl,
proportional caching as in Sec. IV is used. For all other files,
they are not cached.

Transmission: For users requesting files in Group 1, the rate
can be upper bounded by 2R∗(F). To see this, consider another
system where each file is of size 2R∗(F) and the caching
probability is 1/2, which would requires a rate at most K ·
2R∗(F)(1− q)/(1 +Kq) < 2R∗(F).

Let Hl = Nl for T1 + 1 ≤ l ≤ T2 − 1, and HT2 = N ′
T2

.
For files outside Group 1, we have two cases.

Case 1: If
PT2

l=T1+1 Nl > K, we have
PT2

l=T1+1 Hl =
K. For files outside Group 1, the total rate needed must be
no larger than

PT2

l=T1+1 HlFl, which is smaller than 2R∗(F)
according to Prop. 2.

Case 2: If
PT2

l=T1+1 Nl ≤ K, there will be no file with type
T2 + 1 ≤ l ≤ T3 − 1.

For users requesting files in Group 2, transmitting the files
directly would require a rate less than

PT2

l=T1+1 HlFl ≤
2R∗(F).

For files of type l, with T3 ≤ l ≤ T5, the caching probability
for Fl is M ′FlPT5

l=T3
HlF 2

l

and thus larger than Q1 = M ′FlPT4

l=T3
HlF 2

l

.

Therefore, the rate for serving files of type l can be upper
bounded by Fl

Q1
≤ 32R∗(F). Note that T5 − T3 ≤ log2 K

since FT3 ≤ 2R∗(F) and FT5 > 2R∗(F)
K . Therefore, the total

rate needed for files of type l with T3 ≤ l ≤ T5 is no larger
than 32 log2 K ·R∗(F).

For users requesting other files with type l larger than T5,
the rate needed is less than max(KFT4 ,KFT5+1). Note that

PT4

l=T3
HlFl > 2KM ′ − 2M ′. Therefore, R∗(F) > K−1

16 FT4

and KFT4 < 18R∗(F). And KFT5+1 ≤ 2R∗(F).
Combing all these rates together, we conclude.

