
Fast computation of partial index and application to an AoI

minimization problem

Haoqian Xue

Department of Information Engineering

The Chinese University of Hong Kong

1155205422@link.cuhk.edu.hk

Xiaojun Lin

Department of Information Engineering

The Chinese University of Hong Kong

xjlin@ie.cuhk.edu.hk

Abstract

In this paper, we study efficient algorithms for computing the partial index. We focus on an AoI

(Age-of-Information) minimization problem under the generate-at-will setting such that multiple

sources/agents transmit information updates to the base-station over multiple heterogeneous and

unreliable wireless channels. While the partial index has been proposed to solve this otherwise

exponential-complexity MDP problem, computing the partial index for each source still incurs

significant complexity. Existing fast computation algorithms for Whittle index cannot be applied

to this setting due to the multiple heterogeneous channels. Instead, we identify a number of

general structural conditions for the per-agent MDP, based on which we develop a fast algorithm

that can compute the partial index more efficiently. We then verify that the AoI problem under

the generate-at-will setting satisfies these general conditions and our algorithm can compute the

partial index for all states and all channels with a complexity of O(M3K3), where K denotes the

number of per-source states and M denotes the number of channel types. Our numerical results

confirm that our proposed algorithm is significantly faster in computing the partial index than

standard methods based on binary search.

1 Introduction

Index policy has become an important tool for solving wireless scheduling problems minimizing

the AoI (Age of Information) [10]. AoI, defined as the elapsed time since the last received packet was

created at the source, is particularly suitable for measuring the freshness of information at the receiver

[9]. Compared to the classical metric of latency, AoI can capture the application requirement that

1

(oftentimes) only information with the latest timestamp is valuable to the receiver, and outdated data

packets are of little value. When information updates from multiple sources/agents are transmitted

over unreliable wireless channels, the resulting AoI minimization problem can be modeled as a Markov

Decision Process (MDP) [7, 8]. However, this MDP is known to suffer the curse of dimensionality,

i.e., its complexity grows exponentially with the number of sources/agents. Index policies, including

both the Whittle index [18] and the recently-developed partial index [19], can potentially help to

decompose this large-scale MDP into per-agent problems, which can lead to solutions with much

lower complexity.

For single-channel systems, the Whittle index [18] has been successfully applied to AoI minimiza-

tion [6,14,16]. To understand how to compute the Whittle index, first, for every price λ of using the

wireless channel, the agent needs to solve its own MDP minimizing the AoI plus the cost of using the

channel. Then, the Whittle index is defined as the largest λ such that the agent still prefers to use

the channel at the current state. Then, the Whittle index policy only needs to pick the agents with

the highest indices for transmission. In this way, the complexity of the Whittle index policy does not

grow with the number of agents [17]. In some simpler cases, the value function of the per-agent MDP

can be solved in closed-form, based on which one can derive a closed-form expression of the Whittle

index [15]. For more complex settings, however, neither the value function nor the Whittle index can

be derived in closed-form. For these cases, a brute-force method for calculating the Whittle index is

to conduct a binary search over different λ values, which involves solving the corresponding per-agent

MDP repeatedly using value iteration or policy iteration [1]. This repeated solution of per-agent

MDPs will incur high complexity [2, 12]. Thankfully, this computational difficulty for Whittle index

has been addressed in [11] and [3], which propose fast algorithms that can compute the Whittle index

of a restless bandit with K states in O(K3) complexity.

When the system has multiple heterogeneous channels, each source will have more choices than

simply “transmitting” or “not transmitting”. Then, the Whittle index cannot be defined any more.

To address this difficulty, a recent work [19] introduces the new notion of partial index, which extends

the Whittle index to systems with multiple heterogeneous channels. The partial index leads to a

low-complexity policy as well [19]. However, computing the partial index for each channel m at each

agent state is also a highly non-trivial task. Like the Whittle index, the standard binary search will

again incur high complexity due to the need to repeatedly solve the per-agent MDP. Unfortunately,

the idea of fast Whittle-index computation in [11] and [3] cannot be directly generalized to the partial

index. Note that in [11] and [3], the key idea is that, as λ increases, the passive set (i.e., the set of

states that the optimal decision of the per-agent MDP does not transmit) expands sequentially. Thus,

in order to obtain the Whittle index values for all of the states one by one, we can simply search

which state should be added next to the passive set. Since every passive set corresponds to a unique

policy, we only need to explore a small number of policies to find the correct next state to add. In

contrast, for partial index, even if we fix the passive set for a given channel m, we still do not know

how the passive sets for other channels will vary. Since there could be an exponential number of

2

possibilities for the other passive sets, using the idea of [11] and [3] alone is insufficient for lowering

the complexity.

To overcome this difficulty, in this paper we identify a number of new and general structural

conditions for the per-agent MDP, based on which we develop a fast algorithm for calculating the

partial index. Our structural conditions define an ordering of the policies for the per-agent MDP, as

well as a set of operations that can produce one policy after another policy. Once certain conditions

for such ordering and operations are met, we can then design a fast algorithm that can compute the

partial index with reduced complexity. We then verify that the AoI minimization problem under

the generate-at-will setting satisfies these structural conditions, and our algorithm can compute the

partial index for all states and channels withO(M3K3) complexity, whereM is the number of different

channel-types and K is the number of states. To the best of our knowledge, this is the first algorithm

in the literature that can compute the partial index with complexity that grows cubically with the

number of states (see detailed comparison with binary search in Section 4.1). Further, thanks to

our general structural conditions, our fast algorithm can potentially be applied to other problems

involving multi-agent MDPs sharing multiple heterogeneous resources.

The rest of the paper is structured as follows. In Section 2, we define both a specific system model

for AoI minimization and a more general model that can potentially be used for other problems, and

introduce the problem of computing the partial index. Our fast algorithm is presented in Section 3

for the general model, and then in Section 4 for the AoI model. Numerical results are presented in

Section 5, and then we conclude.

2 System Model and Partial Index

2.1 System Model for AoI Minimization

In this section we will review the AoI-minimization model from [19] under the generate-at-will

setting. Slightly different from [19], we use the discounted-cost MDP rather than the average-cost

MDP. Nonetheless, the results from [6] can be easily extended to discounted cost.

We consider a wireless system where N data sources transmit information to the base-station (BS)

over multiple heterogeneous channels in the uplink. Assume that time is slotted, i.e., each transmission

takes exactly one unit of time. We denote the heterogeneous channel types asM = {1, 2, ...,M} and
each channel type m ∈ M has C channel instances. Thus, on each type of channels, at most C

sources can be scheduled for transmission at each time slot. We assume that CM < N . Due to the

uncertainty of the wireless channel, each packet transmission of source n through a channel of type m

succeeds with probability pnm, independently of other transmissions. Let un(t) ∈ U ≜ {0}∪M be the

scheduling decision for source n at time t, such that un(t) = m, if source n is scheduled to transmit

on channel type m, and un(t) = 0, if the source will be passive and not transmit through any of the

channels.

We then collect all the decisions into the action Ū(t) = [u1(t), ..., uN (t)]. Note that the action Ū

3

must respect both the resource constraints and the constraint that each source can be scheduled on

at most one channel, i.e.,

N∑
n=1

1{un(t)=m} ≤ C, ∀m ∈M, t = 1, 2, ..., (1a)

M∑
m=1

1{un(t)=m} ≤ 1, ∀n = 1, ..., N, t = 1, 2, (1b)

We denote hn(t) as the AoI of source n at time t, which is the time elapsed from the generation

time of the last received packet from the data source n to the current time t.

We assume the generate-at-will setting [19], i.e., whenever a data source is scheduled for trans-

mission, it can generate a fresh packet immediately. Further, for technical reasons, we assume that

the maximum age is bounded by K. Thus, the state evolution for source n can be written as

hn(t+ 1) =

{
1, transmission success

min{hn(t) + 1,K}, otherwise.

Let Pnu (hn, h
′
n) be the state transition probability of source n when it takes the action u. Thus,

if source n is passive (i.e., u = 0), we have

Pn0 (hn,min{hn + 1,K}) = 1. (2)

If source n is scheduled on channel type m, we have,

Pnm(hn, 1) = pnm; P
n
m(hn,min{hn + 1,K}) = 1− pnm. (3)

We now model our AoI minimization problem as an MDP. Specifically, we collect the AoI of all

sources as the system state

S̄(t) ≜ [h1(t), h2(t), . . . , hN (t)] ∈ NN+ at time t. A policy π̄ then maps from the system state S̄(t)

to the action Ū(t). Our goal is then to minimize the total discounted AoI of all sources starting from

the initial states S̄(0), i.e.,

min
π̄

+∞∑
t=0

N∑
n=1

βtEπ̄S̄(0) [hn(t)] (4)

subject to (1a) and (1b), where 0 < β < 1 is the discount factor. Without loss of generality, we

assume that the initial states are all hn(0) = 1.

Unfortunately, this MDP is known to suffer the curse of dimensionality. Below, we will review

the partial index introduced in [19], which leads to an asymptotically optimal solution to problem (4)

with lower complexity.

4

2.2 The Relaxed Problem and Partial Index

Similar to the development of the Whittle index [18], we relax constraint (1a) to a discounted-sum

constraint, and obtain the relaxed problem from (4):

min
π̄

∞∑
t=0

N∑
n=1

βtEπ̄S̄0
[hn(t)]

s.t Eπ̄S̄(0)

[∞∑
t=0

N∑
n=1

βt1{uπ̄n(t)=m}

]
≤ C

1− β
,∀m

M∑
m=1

1{uπ̄n(t)=m} ≤ 1, ∀n ≤ N, t = 1, 2, ...

(5)

Next, we associate a Lagrange dual cost λm to each constraint with respect to m in (5), and form the

Lagrangian. Minimizing the Lagrangian over π

can then be decoupled into N sub-problems, one for each source n:

min
π̄

∞∑
t=0

βtEπ̄sn(0)

[
hn(t) +

M∑
m=1

λm1{uπ̄n(t)=m}

]

s.t.
M∑
m=1

1{uπ̄n(t)=m} ≤ 1, ∀t = 1, 2, ...,

(6)

We refer to sub-problem (6) as the per-agent problem. Note that (6) is also an MDP. It is known

that when λ⃗ = [λm]m∈M is optimally chosen, there exist optimal solutions to the per-agent MDP

that will also provide an optimal solution to the relaxed problem (5). See [4] (Ch 3, Theorem 3.6).

However, the solution to the relaxed problem (5) does not respect the original “hard” constraint

(1a). The goal of the partial index introduced in [19] is precisely to produce a policy that still satisfies

the “hard” constraint (1a). Below, we will focus on the per-agent MDP (6) of a particular source n,

and for ease of exposition, we will drop the index n whenever there is no source of confusion.

Let V ∗(s, λ⃗) and Q∗(s, u, λ⃗) denote the optimal value function and optimal state-action value

function, respectively, for (6). Thanks to the Bellman equation, they are related by:

V ∗(h, λ⃗) = min
u∈U
{Q∗(h, u, λ⃗)} (7)

Q∗(h, u, λ⃗) = h+ λu + β
∑
h′

Pu(h, h
′)V ∗(h′, λ⃗). (8)

We can now define the partial indexability and partial index through the concept of the passive

set [19]. Specifically, we focus on a given channel-type m. Let S = {0, ...,K} denote the per-source

state-space.

Definition 1. (Passive Set) Given the dual cost λ⃗, the set of passive states for action m ∈M is

Pm(λ⃗) ≜
{
h ∈ S | Q∗(h,m, λ⃗) > min

u̸=m,u≥0
Q∗(h, u, λ⃗)

}
.

5

Given the current vector λ⃗ = [λ1, ..., λM] of the dual costs, we now form a new λ⃗′ = [λ′m, λ⃗−m]

by varying only λm to λ′m but keeping all other dual costs λ⃗−m unchanged. For certain problems

(including the AoI minimization problem under the generate-at-will setting [19]), the passive set can

be shown to only expand as λ′m increases. In that case, the partial indexability is said to hold, as

defined below.

Definition 2. (Partial indexability) Given the cost vector λ⃗, the sub-problem (6) is partially indexable

if, for all m ∈M, the size of the passive set Pm(λ⃗′) increases monotonically to the entire state space

S as λ′m increases from 0 to ∞ (while fixing other channels’ costs λ⃗−m).

Definition 3. (Partial index) Given the dual cost λ⃗, the partial index Im(h, λ⃗−m) of state h ∈ S for

action m ∈ M is defined as the supremum of costs λ′m such that h is not in the passive set Pm(λ⃗′),
i.e.,

Im

(
h, λ⃗−m

)
≜

[
sup

{
λ′m | Q∗(h,m, λ⃗′) ≤ Q∗(h, u, λ⃗′),∀u

}]+
. (9)

We also define the partial index for the passive action u = 0 as I0

(
h, λ⃗

)
≜

[
min
m∈M

Q∗(h,m, λ⃗)−Q∗(h, 0, λ⃗)

]−
.

Note that the partial index is independent of the number C of channel instances per type, because

it is derived from the per-agent MDP (6). In [19], the authors proposed the Sum Weighted Index

Matching (SWIM) algorithm, which assigns sources to all channel instances according to a max-

weight matching (MWM) based on the partial indices. This algorithm not only respects the “hard”

constraint (1), but is also asymptotically optimal. However, a major bottleneck

in the SWIM policy is how to compute the partial index efficiently, as the dual costs λ⃗ change

constantly. As we discussed in the Introduction, a brute-force approach for computing the partial

index is through a binary search on the value of λ′m. This approach involves repeated solutions to

the value functions (7), which also involves high complexity. Thus, the main goal of our paper is to

design a fast algorithm to compute the partial index.

2.3 The More-General Setting

Before we proceed, we note that the AoI minimization problem in Section 2.1 can be seen as a

special case of a general multi-agent MDP. We can simply replace each source n by an agent, replace

its AoI hn(t), action un(t), and AoI cost hn(t) by a general state sn(t), action un(t), and cost-function

cn(sn, un).

Further, we can replace the transition probabilities Pnm(hn, h
′
n) in (2) and (3) by more general

state transition probabilities. We can then formulate the multi-agent MDP that minimizes the total

discounted cost subject to the constraints (1a) and (1b). This multi-agent MDP can again be decom-

posed using the approach in Section II.B, resulting into per-agent MDP in the form of (omitting the

6

agent index n):

min
π

∞∑
t=0

βtEπs(0)

[
c(s(t), u(t)) +

∑
m∈M

λm1{uπ(t)=m}

]
s.t.

∑
m∈M

1{uπ(t)=m} ≤ 1, ∀t = 1, 2, ...

(10)

The partial index can then be defined analogously based on this per-agent MDP. We will assume

that partial indexability holds for this per-agent MDP (as stated in Assumption 1 below), and our

goal is that the fast partial-index computation algorithm that we develop in this paper will work not

only for the AoI minimization problem, but also for other problems with similar structures.

Assumption 1. We assume that the problem (10) satisfies the partial indexability.

However, as we mentioned in the Introduction, fast computation is inherently more difficult to

develop for partial index than for Whittle index. Thus, in the rest of the paper we will identify

additional structural conditions on the types of problems that we can solve. In fact, the partial

indexability of the AoI minimization problem in Section 2.1 was shown in [19] based on also some

additional structural conditions. Therefore, below we will first state similar conditions for our general

model.

Condition 1. (1) There is a partial order < on the state space S of each agent n. When s1 < s2,

we say that state s2 is “higher” than state s1, and state s1 is “lower” than state s2;

(2) There is a total order < on the action set U of each agent n. When u1 < u2, we say that

action u2 is “stronger” than action u1, and action u1 is “weaker” than action u2. We use u1 ≤ u2 if

either u1 < u2 or u1 = u2;

(3) For any given λ⃗, the optimal policy π∗ to the per-agent MDP (6) will satisfy: if s1 < s2, then

π∗(s1) ≤ π∗(s2).

In other words, part (3) of the condition states that, for higher states, the optimal policy tends

to use stronger actions. To better understand Condition 1, let us use the per-agent problem (6) of

the generate-at-will AoI setting as an example.

We can simply use the natural order of the AoI to order the states. Further, we can order the

actions by their success probabilities. That is, assume without loss of generality that the channel

types are numbered such that pn1 < pn2 < ... < pnM . Then, we can again use the natural order of these

channel-type numbers to order the actions. Finally, part (3) of Condition 1 is then equivalent to the

MTT (Multi-Threshold-Type) property shown in Lemma 4.2 of [19].

However, Condition 1 and Assumption 1 are still insufficient for developing a fast partial-index

computation algorithm. Next, we will identify additional structural conditions that will enable fast

computation.

7

3 Towards fast partial-index computation

In this section, we study the general model in Section 2.3. We will focus on the per-agent MDP

(10) for a given agent n and develop a fast method for computing the partial index for each possible

action and state. For ease of exposition, we will again drop the agent index n throughout Sections

III and IV. According to the definition of the partial index (9), next we will fix a possible action m

and the dual costs λ−m for all actions other than m, and study the structures of the per-agent MDP

as λm varies.

3.1 Geometric Structure of the Value Function

Let Π denote the set of all feasible policies. Based on part (3) of Condition 1, we define Π′ as the

subset of Π that contains all the policies π such that π(s1) ≤ π(s2) if s1 < s2. We call Π′ the set

of potential optimal policies. Given a policy π and the initial state s(0) = 1, we can write its value

function as

V π(s(0), λ⃗) =

∞∑
t=0

βtEπs(0)

[
c(s(t), uπ(t)) +

M∑
m=1

λm1{uπ(t)=m}

]

=
∞∑
t=0

Eπs(0)

βt
c(s(t), uπ(t)) + ∑

k ̸=m
λk1{uπ(t)=k}


+ λmEπs(0)

[∞∑
t=0

βt1{uπ(t)=m}

]
=Dπ

m + λmT
π
m

where Dπ
m ≜

∑∞
t=0 Eπs(0)[β

t(c(s(t), uπ(t)) +
∑

k ̸=m λk1{uπ(t)=k})] and T
π
m ≜ Eπs(0)

[∑∞
t=0 β

t1{uπ(t)=m}
]
.

Note that both Dπ
m and T πm are independent of λm. Therefore, the value function can be regarded

as a linear function of λm, with the slope T πm. In particular, T πm can be interpreted as the total

discounted sum of the number of times that the policy π uses action m. Thus, we refer to it as the

active time of policy π for action m.

Thanks to Condition 1, the optimal value function satisfies

V ∗(s, λ⃗) = min
π∈Π′

V π(s, λ⃗). (11)

In other words, V ∗ is the point-wise minimum of a finite number of linear and non-decreasing functions.

We then immediately obtain the following lemma.

Lemma 1. V ∗(s, λ⃗) is a continuous, piece-wise linear, non-decreasing, and concave function in λm.

This structure is illustrated in Fig. 1. Each of the linear pieces corresponds to a different policy

attaining the minimum in (11). We will refer to them as supporting optimal policies.

In Fig. 1, suppose that there are in total L + 1 supporting optimal policies. Let π̃i be the i-th

supporting optimal policy for λm ∈ [λ̃i−1, λ̃i], i = 1, 2, ..., L, L + 1, where λ̃0 = 0 and λ̃L+1 = +∞.

8

Figure 1: An illustration of the supporting optimal policy

Among them, the last supporting optimal policy π̃L+1 corresponds to a passive set equal to the whole

state space S. This happens when λm is very large, and no optimal policies will use the channel m.

Recall Assumption 1 that partial indexability holds. Thus, once the passive set becomes S at

λm = λ̃L, at larger λm, the passive set will still be S. As a result, the active time will be zero, and the

value function will correspond to a line parallel to the x-axis for λm ≥ λ̃L. In contrast, the passive

sets of π̃1, ...π̃L are strict subsets of S. The corresponding slopes (i.e., active times) are positive and

decreasing in i as stated in Lemma 1. Among the transition points λ̃1, ..., λ̃L, some of them (the

squares in Fig. 1) correspond to a change/expansion of the passive set for action m (while others do

not). Each such λm is then the partial index for the state that was newly added to the passive set.

We note that a geometric structure similar to Fig. 1 has also been used in [3] to derive the fast

Whittle-index computation algorithm. The idea in [3] is to find the passive sets for these supporting

optimal policies one after another, which will then produce all the index values. However, for partial

index, there arises a significant difficulty. That is, unlike the situation for the Whittle index where

each passive set corresponds to a unique policy, in Fig. 1 the passive set for action m alone does not

determine a policy anymore. Indeed, between the two squares in Fig. 1, the passive set for action

m does not change, but the supporting optimal policies do change: they change in the states that

use actions other than m. Since in the worst case there are exponentially many possibilities for the

states that use actions other than m, we no longer have an efficient way to search for the supporting

optimal policies. Clearly, new solutions are needed.

3.2 Additional Structural Conditions

To overcome the above difficulty, our key idea below is to introduce a new “ordering” of the

policies (and the corresponding structural conditions), so that we can still search for the supporting

optimal policies efficiently. Towards this end, we first define an operation on policy.

9

Definition 4. (Operation on a policy) For any π ∈ Π′, the operation ψ takes the policy π, changes

its action at just one state s̄, and produces another policy ψ(π).

Since we want to search for the supporting optimal policies in Fig. 1 one-by-one, we want ψ to

produce a new policy ψ(π) that is to the right of π, i.e., with a smaller active time. This is the

concept of valid operation.

Definition 5. (Valid operation on a policy) For any π ∈ Π′, a valid operation ψ on π is an operation

such that T
ψ(π)
m < T πm.

Remark: By the above definition, the valid operation ψ must always operate on a potentially-

optimal policy π ∈ Π′, but it may produce a policy outside Π′.

Note that there will be many valid operations, but it suffices for our algorithm to use only a

subset. Let Ψ denote a subset of {(ψ, π) | ψ is a valid operation on π}. If (ψ, π) ∈ Ψ, we will say that

ψ is a Ψ-valid operation on π. Given such a set Ψ of valid operations, we can then obtain a partial

order of the policies.

Definition 6. For two policies π1, π2 ∈ Π′, we say π1 ≺Ψ π2, if π2 can be obtained from π1 by

performing a sequence of Ψ-valid operations. When π1 ≺Ψ π2, we will say that π1 is “before (earlier

than)” π2, and π2 is “after (later than)” π1. Whenever Ψ is clear from the context, we simply write

π1 ≺ π2.

In other words, a Ψ-valid operation can transform a given policy π to another policy “after” it.

Thus, by applying Ψ-valid operations repeatedly to various policies π ∈ Π′, we can get a partial order

of these policies.

Remark 1. For example, later in Section 4, we will use the following set Ψ, which contains all valid

operations of the following form: for each (ψ, π) ∈ Ψ, ψ will take one state s̄, and change the action

for this state by one of the following:

(i) if π(s̄) < m, then π(s̄) < ψ(π)(s̄) < m;

(ii) if π(s̄) > m, then π(s̄) > ψ(π)(s̄) > m;

(iii) if π(s̄) = m, then ψ(π)(s̄) ̸= m and ψ(π) ∈ Π′.

This set Ψ will again completely determine our partial order of the policies in the generate-at-will

case. We will show in Section 4 that ψ is indeed a valid operation on π, i.e., the new policy ψ(π) will

have a smaller active time than π (see Theorem 6 and Theorem 7).

Our fast computation algorithm (presented soon in Section 3.3) will, from the current supporting

optimal policy π, search for the next supporting optimal policy among policies of the form ψ(π), where

(ψ, π) ∈ Ψ. However, at this point, it is unclear why this strategy will work. First, even though the

supporting optimal policy on the right in Fig. 1 is known to have a smaller active time, it is unclear

why it can be obtained through a sequence of Ψ-valid operations from the previous supporting policy.

Second, even if there exists such a sequence of Ψ-valid operations from one supporting optimal policy

10

to another, finding this sequence with low complexity may not be easy. Thus, it is important to

introduce additional conditions below.

Some of these conditions use the following concept of ‘cross-over’.

Definition 7. A policy π is a cross-over between π1 and π2 if, for all states s, either π(s) = π1(s) or

π(s) = π2(s).

Lemma 2. Suppose that π1 and π2 are both optimal at λm. Then, any cross-over policies between π1

and π2 are also optimal at the same λm.

The intuition for Lemma 2 is quite straight-forward. Since both π1 and π2 are optimal, they must

have the same value function. Further, both π1(s) and π2(s) must satisfy the Bellman equation with

the common value function. Since any cross-over policy uses either π1(s) and π2(s), it must also

satisfy the Bellman equation and is thus optimal. Detailed proof can be found in Appendix A.

We can now state our additional conditions on the set Ψ of valid operations.

Assumption 2. For any policy π ∈ Π′ such that π(s̄) = m for some state s̄, there must exist a

Ψ-valid operation ψ on π such that ψ(π) ∈ Π′. Moreover, if an operation ψ on such policy π satisfies:

(1) ψ(π)(s̄) ̸= π(s̄); and (2) ψ(π) ∈ Π′, then it must be a Ψ-valid operation.

Assumption 3. For any two policies π1 ≺ π2 ∈ Π′, there must exist a Ψ-valid operation ψ on π1,

such that ψ(π1) is a cross-over between π1 and π2.

Assumption 4. Fix λ⃗−m. Suppose that two policies π1 and π2 are optimal when λm = µ1 and

λm = µ2 (µ1 < µ2), respectively. Further, suppose that there exists some state s such that π1(s) =

π2(s) = m. If π1 ≺ π2 does not hold (i.e., either π2 ≺ π1, or π1 and π2 are not comparable), then

there exists a Ψ-valid operation ψ on π2 such that ψ(π2) is a cross-over between π1 and π2.

Roughly speaking, Assumption 4 addresses the first difficulty and ensures that one supporting

optimal policy can always reach another supporting optimal policies on the right of Fig. 1 through a

sequence of Ψ-valid operations (see Theorem 3). Assumption 3 further ensures that we can find this

sequence of Ψ-valid operations through a greedy procedure (see Theorem 4). Finally, Assumption 2

covers a few corner cases in Theorem 4.

Next, we will develop our fast computation algorithm based on these assumptions.

3.3 The Proposed Algorithm

The first important consequence of the above assumptions is the following theorem, which states

that the sequence of supporting optimal policies must follow the partial order defined by the set of

valid operations in Ψ.

Theorem 3. Suppose that Assumptions 1 and 4 hold. Then, we must have π̃i ≺ π̃i+1 for i =

1, 2, ..., L− 1.

11

Proof. We prove this by contradiction. Recall that π̃i and π̃i+1 are both optimal policies. Further,

π̃i is optimal when λm = µ1 ∈ [λ̃i−1, λ̃i], π̃i+1 is optimal when λm = µ2 ∈ (λ̃i, λ̃i+1], and we have

µ1 < µ2. Assume that π̃i ≺ π̃i+1 does not hold. Since i ≤ L−1, the passive set of π̃i+1 is not the whole

state space S yet, and thus there exists state s that make π̃i+1(s) = m. According to Assumption 1,

we must then have π̃i(s) = m. Thus, we can apply Assumption 4, and infer that there exists a Ψ-valid

operation ψ on π̃i+1 such that ψ(π̃i+1) is a cross-over between π̃i and π̃i+1. As π̃i and π̃i+1 are both

optimal at the transition point λm = λ̃i (see Fig. 1), according to Lemma 2, ψ(π̃i+1) must also be

optimal at λm = λ̃i. Since ψ is a Ψ-valid operation, we must have π̃i+1 ≺ ψ(π̃i+1) and therefore,

T
ψ(π̃i+1)
m < T

π̃i+1
m . This means that π̃i and ψ(π̃i+1) are both optimal at λm = λ̃i, but the slope of the

line corresponding to ψ(π̃i+1) is smaller, which implies that π̃i+1 cannot be the supporting optimal

policy for λm ∈ (λ̃i, λ̃i + ϵ), which is a contradiction. Thus, we must have π̃i ≺ π̃i+1.

Let us denote

ηπ1,π2 =
Dπ2
m −Dπ1

m

T π1m − T π2m
(12)

as the abscissa (i.e., x-coordinate) of the intersection point between the lines corresponding to π1 and

π2 (which is exactly the value of λm such that V π1(s(0), λ⃗) = V π2(s(0), λ⃗).

Define Γ1(π) = {ψ(π) | (ψ, π) ∈ Ψ and ψ(π) ∈ Π′}. Inspired by Theorem 3, our proposed

algorithm will therefore search for the next supporting optimal policy from Γ1(π), where π is the

current policy. This idea leads to Algorithm 1 below. During initialization, Line 2 finds the first

supporting optimal policy π̃1 (at λm = 0), and Line 3 finds the last supporting optimal policy π̃L+1

(at very large λm). Line 4-14 iteratively find all of the other supporting optimal policies π̃2 to π̃L.

Specifically, Line 5 computes the abscissa values (12) between the current policy π and all policies

π′ ∈ Γ1(π). Line 6 picks the π′ with the smallest abscissa value η∗, which will become the next policy

π in Line 13. If the new policy changes action at a state s̄ whose original action is m (Lines 7 and

8), the passive set for action m has changed, and a new partial index value is then assigned (Lines 9

and 10). Line 12 computes the abscissa value (12) between π and π̃L+1 (whose active time is 0). If

η∗ ≥ ηstop, the next supporting optimal policy should be π̃L+1. The algorithm can terminate and the

partial index for all remaining states in the old passive set is assigned to ηstop (Line 15). Otherwise,

the iteration should continue (Line 14).

Theorem 4. Suppose that Assumptions 2, 3, and 4 hold. Algorithm 1 can obtain the partial index

of all states.

Proof. We prove this by induction. Before that, let us define some additional notations. For the k-th

iteration of Lines 4-14, we denote π(k) as the new policy ψ∗(π) obtained in Line 6, η(k) as the η∗

obtained in Line 6, and η
(k)
stop as the value of ηstop in Line 12. Our induction hypothesis is: for each

i = 1, ..., L, there exists an iteration number ki of Lines 4-14 such that at the ki-th iteration, the

algorithm can output π̃i with η
(ki) = λ̃i−1.

The base step i = 1 is obvious because the initial policy found by the algorithm (with λm = 0)

must be π̃1 and we have λ̃0 = 0 by default. Now we prove the induction step, which we state as a

12

Algorithm 1

1: Input: m, λ⃗−m, S; Output: Im

(
s, λ⃗−m

)
for all state s ∈ S;

2: Initialization: Given λ⃗−m and λm = 0, find the optimal policy π with the smallest active time

T πm, get the corresponding passive set Pm(λ⃗) and let Im

(
s, λ⃗−m

)
= 0 for s ∈ Pm(λ⃗);

3: Given the same λ⃗−m, find a large enough λm that can make Pm(λ⃗) = S and compute the optimal

value function V ∗(s0, λ⃗) = D
π̃L+1
m ;

4: repeat

5: Compute ηπ,π′ = Dπ′
m−Dπ

m

Tπ
m−Tπ′

m
for all π′ ∈ Γ1(π);

6: Compute η∗ = min
π′∈Γ1(π)

{ηπ,π′} and choose one corresponding ψ∗(π) ∈ argmin
π′∈Γ1(π)

{ηπ,π′};

7: Check the state s̄ that π(s̄) and ψ∗(π)(s̄) have different actions;

8: if π(s̄) = m then

9: Im

(
s̄, λ⃗−m

)
= η∗;

10: Pm(λ⃗)←− Pm(λ⃗) ∪ {s̄};
11: end if

12: Compute ηstop =
D

π̃L+1
m −Dπ

m
Tπ
m

;

13: π ←− ψ∗(π);

14: until η∗ ≥ ηstop
15: For all the state s ∈ S\Pm(λ⃗), let Im

(
s, λ⃗−m

)
= ηstop.

13

lemma below.

Lemma 5. Assume that for i ≤ L − 1 the algorithm can output π̃i after the ki-th iteration and

η(ki) = λ̃i−1. Then, through a finite number of iterations, i.e., after the ki+1-th iteration, the algorithm

can output π̃i+1 with η(ki+1) = λ̃i.

Based on Lemma 5, as long as the algorithm does not terminate, i.e., η(k) < η
(k)
stop, the algorithm

will continue producing the next supporting optimal policy from π̃2 to π̃L. We will later show that,

after the algorithm produces π̃L, it must get η(k) = η
(k)
stop in the next iteration. The algorithm will

then terminate. This would complete the proof of Theorem 4.

Proof of Lemma 5. We use another induction and the induction hypothesis is: for each iteration k

such that k ≥ ki and k ≤ ki+1, (1) π
(k) is optimal at λm = λ̃i and there is at least a common state s

that makes π(k)(s) = π̃i+1(s) = m; (2) either the policy π̃i+1 has already been outputted, or we must

have π(k) ∈ Π′ and π(k) ≺ π̃i+1; and (3) η(k) < η
(k)
stop.

To see why this induction hypothesis implies Lemma 5, note that if the iteration k of Algorithm 1

returns π̃i+1, then ki+1 = k and the result of Lemma 5 holds trivially. If not, part (2) of our induction

hypothesis ensures that π(k+1) is still earlier than π̃i+1. Since there are only a finite number of policies

that are after π̃i and before π̃i+1, eventually Algorithm 1 must output π̃i+1. (See the inlet of Fig. 1

for illustration.)

To prove our induction hypothesis, we skip the base step (k = ki) as it follows from the assumption

of the lemma. Next, we prove the induction step. Assume that π(k) is optimal at λm = λ̃i (which

implies that π(k) ∈ Π′), and π(k) ≺ π̃i+1. We wish to show that our induction hypothesis also holds for

k+1. We first verify part (1) of the induction hypothesis. Towards this end, we first show that the lines

corresponding to π(k+1) and π(k) must intersect at λ̃i. According to Assumption 3, as π(k) ≺ π̃i+1,

there exists a Ψ-valid operation ψ1 on π(k) such that ψ1(π
(k)) is a cross-over policy between π(k)

and π̃i+1. Then, by Lemma 2, since π(k) and π̃i+1 are both optimal at λm = λ̃i, ψ1(π
(k)) must

also be optimal at λm = λ̃i. Thus, it implies that ψ1(π
(k)) ∈ Π′ and further, ψ1(π

(k)) ∈ Γ1(π
(k)).

Therefore, Γ1(π
(k)) cannot be empty. Note that by Lines 5 and 6, we must have π(k+1) ∈ Π′.

According to the analysis above, we have shown that ψ1(π
(k)) is optimal at λm = λ̃i, and therefore,

the line corresponding to ψ1(π
(k)) will intersect with the lines corresponding to π(k) at λm = λ̃i.

Then, since in Line 6 we pick the policy with the smallest abscissa value, we must have η(k+1) =

minπ′∈Γ1(π(k)){ηπ(k),π′} ≤ ηπ(k),ψ1(π(k)) = λ̃i. It only remains to show that η(k+1) < λ̃i cannot happen.

We prove this by contradiction. Assume that η(k+1) < λ̃i, which implies that there is another policy

ψ∗(π(k)) in Γ1(π
(k)) whose line intersects with the line corresponding to π(k) at λm = η(k+1) < λ̃i.

Then, since T
ψ∗(π(k))
m < T

π(k))
m due to π(k) ≺ ψ∗(π(k)), that will make π(k) no longer the optimal policy

at λm = λ̃i, which is a contradiction to our assumption. Therefore, η(k+1) must be equal to λ̃i, and

the lines corresponding to π(k+1), π(k) and π̃i+1 must all intersect at λm = λ̃i. Hence, π(k+1) is also

optimal at λm = λ̃i.

14

Next, we show that there is at least a common state s that makes π(k+1)(s) = π̃i+1(s) = m.

We prove it by contradiction. Notice that according to our induction hypothesis for π(k), there is a

common state s̄ such that π(k)(s̄) = π̃i+1(s̄) = m. Assume on the contrary that π(k+1)(s̄) ̸= m. We

can construct a new policy π′ such that π′(s̄) = π(k+1)(s̄) and π′(s) = π̃i+1(s) for s ̸= s̄. It implies

that π′ is a cross-over policy between π(k+1) and π̃i+1. Because π
(k+1) and π̃i+1 are both optimal at

λm = λ̃i, π
′ is also optimal at λm = λ̃i and hence, π′ ∈ Π′. Consider the operation ψ1(π̃i+1) = π′.

According to Assumption 2, ψ1 must be a Ψ-valid operation. Then, the active time of ψ1(π̃i+1)

will be smaller than π̃i+1, which implies that π̃i+1 cannot be the next supporting optimal policy,

which is a contradiction! Therefore, we conclude that there is at least a common state s̄ that makes

π(k+1)(s̄) = π̃i+1(s̄) = m. Part (1) of the induction step for i+ 1 is then verified.

To verify part (2) of the induction step, if π(k+1) = π̃i+1, then π̃i+1 is outputted and the induction

step is trivially complete. Further, from our earlier proof for part (1) of the induction step, we have

shown that η(k+1) = λ̃i. If π̃i+1 is not outputted, we now show π(k+1) ≺ π̃i+1 by contradiction.

Assume on the contrary that π(k+1) ≺ π̃i+1 is not true. We already know from part (1) of the

induction step that there is at least a common state s that makes π(k+1)(s) = π̃i+1(s) = m. Further,

as shown in the proof of part (1) above, π(k+1) is optimal when λm = µ1 = λ̃i, π̃i+1 is optimal when

λm = µ2 ∈ (λ̃i, λ̃i+1], and we have µ1 < µ2. According to Assumption 4, there must be a Ψ-valid

operation ψ on π̃i+1 such that ψ(π̃i+1) is a cross-over between π(k+1) and π̃i+1. As π(k+1) and π̃i+1

are both optimal at λm = λ̃i, ψ(π̃i+1) must also be optimal at λm = λ̃i. However, π̃i+1 ≺ ψ(π̃i+1)

leads to T
ψ(π̃i+1)
m < T

π̃i+1
m , which implies that π̃i+1 is no longer the supporting optimal policy when

λm ∈ (λ̃i, λ̃i + ϵ), which is a contradiction! Therefore, we must have π(k+1) ≺ π̃i+1.

Finally, we prove part (3) of the induction hypothesis, i.e., η(k+1) < η
(k+1)
stop = D

π̃L+1
m −Dπ(k)

m

Tπ(k)
m

. We

prove by contradiction. Assume on the contrary that η(k+1) ≥ η
(k+1)
stop . As we have already known

from part (1) of the induction step that η(k+1) = λ̃i, we must then have η
(k+1)
stop ≤ λ̃i. Further,

we have shown that λ̃i is the x-oordinate of the intersection point between the lines corresponding

to π(k) and π̃i+1 (i < L). Meanwhile, η
(k+1)
stop is the x-coordinate of the intersection point between

the lines corresponding to π(k) and π̃L+1. Further, the line corresponding to π̃L+1 is parallel to the

x-axis, which has the smallest slope of 0, while the line corresponding to π̃i+1 has a slope greater

than 0. Since we have η
(k+1)
stop ≤ λ̃i, it then implies that π̃L+1 will be the next supporting optimal

policy on λm ∈ (η
(k+1)
stop ,+∞). In other words, π̃i+1 cannot be the next supporting optimal policy on

λm ∈ (η
(k+1)
stop , λ̃i) ⊂ (η

(k+1)
stop ,+∞), which is a contradiction! The result of Lemma 5 then follows.

We can now return to the proof of Theorem 4. Thanks to Lemma 5, we can conclude that our

algorithm will produce π̃1, π̃2, ..., π̃L and obtain λ̃1, λ̃2, ..., λ̃L−1. It only remains to show that our

algorithm can also obtain λ̃L.

Now, we suppose that during the q-th iteration, we obtain π(q) = π̃L. We will prove that after the

next iteration, we must have η(q+1) ≥ η
(q+1)
stop . In other words, the algorithm will stop. Towards this

15

end, note that π̃L ∈ Π′ and the passive set is not the whole state space yet. Thus, there is some state

s that makes π̃L(s) = m. According to Assumption 2, there exists at least one Ψ-valid operation ψ on

π(q) and ψ(π(q)) ∈ Π′. Hence, we can continue to get η(q+1) during the next (q + 1)-th iteration. We

now show that η(q+1) ≥ η
(q+1)
stop . Towards this end, we first show that η

(q+1)
stop = λ̃L. To see this, note

that according to Line 12, we have η
(q+1)
stop = D

π̃L+1
m −Dπ(q)

m

Tπ(q)
m

. Since π(q) = π̃L and T
π̃L+1
m = 0, we must

have η
(q+1)
stop = D

π̃L+1
m −Dπ̃L

m

T
π̃L
m −T

π̃L+1
m

= λ̃L, where the last equality follows from the definition of λ̃L, i.e., λ̃L is

the x-coordinate of the intersection point between the lines corresponding to π̃L and π̃L+1. It then

only remains to prove that η(q+1) ≥ λ̃L. We prove this by contradiction. Assume on the contrary that

η(q+1) < λ̃L. As π(q+1) is obtained by performing a Ψ-valid operation from π(q) (see the definition

of Γ1), we must have T π
(q+1)

m < T π
(q)

m = T π̃Lm . In other words, the line corresponding to π(q) = π̃L

intersects with a line with a smaller slope (that corresponds to π(q+1)) at a point η(q+1) earlier than

π̃L. It implies that the line corresponding to π(q+1) must be lower than the line corresponding to

π(q) = π̃L in the interval λm ∈ (η(q+1), λ̃L]. This contradicts our assumption that π̃L is the supporting

optimal policy when λm ∈ [λ̃L−1, λ̃L]. As a result, we must have η(q+1) ≥ λ̃L = η
(q+1)
stop . In summary,

not only can we obtain λ̃L, but also the algorithm will exit the loop from Line 3 to Line 13 after the

(q + 1)-th iteration and go to Line 14.

From Line 14, the partial index Im(s, λ⃗−m) for all the states s ∈ S/Pm(λ⃗) will be assigned to

η
(q+1)
stop = λ̃L. This assignment is correct because when λm < λ̃L, the supporting optimal policy π̃L

will choose action m for those states, but when λm > λ̃L, the optimal policy becomes π̃L+1 and it

chooses action m for no state at all. In summary, our algorithm can obtain the correct partial index

for all of the states.

3.4 Complexity of the Algorithm

To find the complexity of Algorithm 1, note that the most expensive part of the iteration in Lines

4-14 is Line 5, where we need to compute Dπ′
m and T π

′
m for every π′ ∈ Γ1(π). Fortunately, using

the fact that π′ and π differ in the decision at only one state, there is an efficient formula that can

compute these expressions from Dπ
m and T πm with O(K2) complexity (see [3], Section 4). Then, let A

upper-bound the total number of iterations of Lines 4-14, and let B upper-bound the size of Γ1(π).

The total complexity of all iterations is then O(ABK2). The initialization step can be solved by

linear programming, with complexity O(K3). Finally, since we have M possible actions, the total

complexity to compute the partial index for all states and all actions is then O(M(K3 + ABK2)).

Later in Section 4.1, we will show that, for the generate-at-will case, using the proposed algorithm

leads to a complexity of only O(M3K3).

16

4 Return to the generate-at-will AoI problem

Given the results in Section 3, we only need to verify that the generate-at-will AoI minimization

problem satisfies all the conditions/assumptions introduced earlier. As we mentioned in Section

2, Assumption 1 and Condition 1 have been verified in [19]. (Note that although [19] studies an

average-cost MDP, the analysis can be easily extended to discounted MDP.) Thus, here we will focus

on proving Assumptions 2, 3, and 4. But firstly, we need to verify that the operations defined in

Remark 1 are valid operations. We have the following two theorems.

Theorem 6. Consider two policies π and π′ in Π′ with the following properties: there exists exactly

one state s̄ such that π(s̄) ̸= π′(s̄) and π(s̄) = m; for all other states s ̸= s̄, the actions chosen by the

two policies are the same. Then, we must have T πm > T π
′

m .

The intuition of Theorem 6 is that, since π′ uses action m at fewer states, its active time for action

m should also be smaller. The proof is shown in Appendix B.

Theorem 7. Consider two policies π ∈ Π′ and π′ with the following properties: there exists exactly

one state s̄ along with channel u and u + 1 such that π(s̄) = u and π′(s̄) = u + 1. For all other

states s ̸= s̄, the actions chosen by the two policies are the same, i.e., π(s) = π′(s). The following

statements must holds:

(i) if u+ 1 < m, then T πm > T π
′

m ;

(ii) if u > m, then T πm < T π
′

m .

Sketch. Next, we will sketch the proof of Theorem 7, part (i). Let us define two Markov chains, chain

0 and chain 1. The two chains have exactly the same initial state s(0) = 1 and dual cost of channels

λ⃗, but chain 0 follows policy π and chain 1 follows policy π′. This means that their state transition

probabilities are also almost the same, except for state s̄ where their decisions differ. To compare

their active times, we perform the following stochastic coupling on the random transitions. From

time 0 onwards,

(1) For each s ̸= s̄, the l-th transition from state s of chain 1 will have the same channel success

(i.e., to state s0 = 1) or failure (i.e., to state s+ 1) event as the l-th transition from state s of chain

0.

(2) If the l-th transition from state s̄ of chain 0 has the success event, then the l-th transition

from state s̄ of chain 1 will also have the success event. If the l-th transition from state s̄ of chain 0

has the failure event, then the l-th transition from state s̄ of chain 1 will have the success event with

probability pu+1−pu
1−pu and will have the failure event (transmit to state s̄+ 1) with probability 1−pu+1

1−pu .

(Recall that we have assumed pu+1 > pu in our channel ordering.)

Define S+ as the subset of S that contains all the states that are higher than s̄, and define S− as

the subset of S that contains all the states that are lower than s̄. Thus, S = {s̄}∪S+∪S−. Let t0+(k)
be the k-th time when chain 0 transitions from S\S+ to S+, and t

0
−(k) be the k-th time when chain

0 transitions from S\S− to S−. Define t1+(k) and t
1
−(k) similarly for chain 1. We have the following

lemma.

17

Lemma 8. Under our coupling, we have t0+(k) ≤ t1+(k) and t0−(k) ≥ t1−(k) for all k.

Figure 2: The illustration for lemma 8

The result of the lemma can be understood from Fig. 2, which illustrates an example of the state

evolution of the two coupled chains. Each blue rectangle represents a period of time (i.e., an episode)

that the chain stays in S+, and each red rectangle represents an episode that the chain stays in S−.

Note that due to our coupling rule (1), the sequence of blue (correspondingly, red) rectangles/episodes

of the two chains must have exactly the same transitions. The only difference is at s̄ (the horizontal

gray bar), where chain 1 will have a larger probability to go down to state 1 (due to choosing channel

k+1) than chain 0. As a result, the red episodes of chain 1 tend to appear earlier than that of chain

0, and the blue episodes of chain 1 tend to appear later, which leads to Lemma 8.

To complete the proof sketch of Theorem 7, recall that we are interested in the active time of

choosing channel m. Consider first the case k + 1 < m. This implies that the states using channel

m (which are common for both π and π′) are in S+. As we have seen in Fig. 2 (Lemma 8), every

episode of chain 0 in S+ can only appear earlier than that of chain 1, and they have exactly the same

sequence of transitions, including the steps that they use channel m. It is then not hard to show that

T πm > T π
′

m . Part (i) of Theorem 7 then follows. The case of k > m can be shown similarly. See the

detailed proof in Appendix C.

Combining Theorems 6 and 7, we conclude that all the operations in Ψ given in Remark 1 are

valid operations. Next, we will prove that Ψ given in Remark 1 will satisfy Assumptions 2, 3 and 4.

As Assumption 2 can be verified relatively directly, we set it as a corollary. Finally, Assumptions 3

and 4 are verified by Theorem 9 below.

Corollary 1. Ψ satisfies Assumption 2.

The proof is provided in Appendix D.

18

Theorem 9. Ψ satisfies Assumption 3 and Assumption 4.

The proof is provided in Appendix E.

4.1 Complexity Analysis and Comparison to Binary Search

From Section 3.4, we only need to analyze the upper bound A on the number of iterations and

the upper bound B of the number of operations in Γ1(π).

We can show that B is upper-bounded by 2M and A is upper-bounded by MK +1. The detailed

proof is provided in Appendix F.

Based on the upper bounds, the complexity of our algorithm (for all states and all channels) will

be

O(M(K3 + (A− 1)BK2)) = O(M3K3). (13)

Comparison with binary search: We now compare the complexity in (13) with a brute-force

binary search method. Note that our algorithm computes each partial index precisely. While the

binary search can only compute the partial index with some precision of ϵ. Assume that the search

range for λm is [Cmin, Cmax]. Then, the total number of binary searches is log2((Cmax − Cmin)/ϵ).
For each step of the binary search, we should calculate the optimal policy for a given λm, and see

whether the optimal policy chooses channel m for a given state s. We could use either policy iteration

or value iteration to do so. Between them, policy iteration is usually of lower complexity, as it can

give the exact optimal policy in a finite number of steps. Its complexity is NPI(β)O(Kω +MK2),

where NPI(β) is the number of the policy iterations and is of the order O(MK), and ω can be taken

as 2.807 by Strassen’s algorithm [5, 13]. Putting these together, the complexity of binary search to

compute a partial index for one state and all channels is O(M2K3.807+M3K3), which is higher than

our complexity (13) to compute the index for all states and all channels when K is large.

5 Numerical Results

In this section, we present MATLAB simulation results of our proposed algorithm. We first verify

the correctness of our method. We focus on the per-source MDP (6) withM = 3,K = 8, and channel

success probabilities given by p⃗ = [0.3, 0.6, 0.9]. We compute the partial index of every channel m and

state s, and then compare the results by our algorithm and by binary search. For binary search with

policy iteration, we set the precision level as ϵ = 0.001, and the search range [Cmin, Cmax] = [0, 100] for

the dual cost λm. In all the experiments, we find that the partial indices computed by our algorithm

and by binary search are all within ϵ, which verifies that our algorithm computes the correct partial

index. Table I show a representative example for m = 3 and λ⃗ = [1, 1.5, 2], where the partial indices

obtained by the two algorithms match each other for all states.

Next, we compare the running times of the two algorithms. Note that there are two ways to use

our fast computation algorithm. The first is to use it at a pre-computation stage. That is, we first

19

Table 1: The partial index computed by binary search/our method

I3(1, λ⃗−3) I3(2, λ⃗−3) I3(3, λ⃗−3) I3(4, λ⃗−3)

0.782 / 0.783 2.129 / 2.129 2.560 / 2.560 2.907 / 2.908

I3(5, λ⃗−3) I3(6, λ⃗−3) I3(7, λ⃗−3) I3(8, λ⃗−3)

3.259 / 3.259 3.609 / 3.609 3.933 / 3.933 3.933 / 3.933

sample some values for λ⃗ (e.g., in a grid) and pre-calculate the partial index at these λ⃗ values. Then,

in real time execution of the SWIM policy, we use interpolation to approximate the partial index

for the current λ⃗, which is much faster. For this pre-computation stage to work, it is important to

pre-calculate the partial index for all states. The second approach is to directly use our algorithm in

real time, in which case only the partial index of the current state needs to be computed. Note that

our algorithm always produces the partial index for all states.

In contrast, binary search by default produces only the partial index for one state, and it needs

to be executed K times to compute the partial indices for all states.

Below, we vary M between 3 and 6, and vary K between 10 and 20. For M = 3, the channel

success probabilities are p⃗ = [0.3, 0.6, 0.9], and forM = 6 we use p⃗ = [0.1, 0.2, 0.3, 0.5, 0.7, 0.9]. In Fig.

3, we show the running times of the two algorithms (in milliseconds) to compute the partial index

for one λ⃗ and for all channels. When these algorithms are used for pre-computation (i.e., the partial

indices for all states must be computed), we can compare the first and second bars within each group

in Fig. 3. We can clearly see that our algorithm reduces the running time by orders of magnitude.

For example, the reduction is more than 30 times (1.5 vs 50.6ms) for M = 6 and K = 10. The gap

is even larger (almost 100 times) at M = 6 and K = 20. On the other hand, when these algorithms

are used in real time (i.e., only the partial index for the current state needs to be computed), the

gap between the first and the third bars is smaller. Nonetheless, our algorithm still shows significant

speed-up (between 2 to 5 times) depending on the setting.

6 Conclusion

In this paper, we study how to efficiently compute the partial index. While we focus on the

AoI minimization problem under the generate-at-will setting [19], we also identify general structural

conditions under which our fast algorithm will work. These general conditions can potentially be

applied to other multi-agent MDPs where agents share multiple heterogeneous resources, which we

will explore in the future.

20

Figure 3: The running times for partial index computation

References

[1] N. Akbarzadeh and A. Mahajan. Dynamic spectrum access under partial observations: A restless

bandit approach. In 2019 16th Canadian Workshop on Information Theory (CWIT), pages 1–6.

IEEE, 2019.

[2] N. Akbarzadeh and A. Mahajan. Restless bandits with controlled restarts: Indexability and

computation of Whittle index. In 2019 IEEE 58th Conference on Decision and Control (CDC),

pages 7294–7300, 2019.

[3] N. Akbarzadeh and A. Mahajan. Conditions for indexability of restless bandits and an O
(
k3
)

algorithm to compute Whittle index. Advances in Applied Probability, 54(4):1164–1192, 2022.

[4] E. Altman. Constrained Markov decision processes. Routledge, 2021.

[5] E. A. Feinberg and G. He. Complexity bounds for approximately solving discounted mdps by

value iterations. Operations Research Letters, 48(5):543–548, 2020.

[6] Y.-P. Hsu. Age of information: Whittle index for scheduling stochastic arrivals. In 2018 IEEE

International Symposium on Information Theory (ISIT), pages 2634–2638, 2018.

[7] Z. Jiang, B. Krishnamachari, S. Zhou, and Z. Niu. Can decentralized status update achieve

universally near-optimal age-of-information in wireless multiaccess channels? In 2018 30th In-

ternational Teletraffic Congress (ITC 30), volume 01, pages 144–152, 2018.

[8] I. Kadota, A. Sinha, E. Uysal-Biyikoglu, R. Singh, and E. Modiano. Scheduling policies for

minimizing age of information in broadcast wireless networks. IEEE/ACM Transactions on

Networking, 26(6):2637–2650, 2018.

21

[9] Kahraman, A. Köse, M. Koca, and E. Anarim. Age of information in Internet of Things: A

survey. IEEE Internet of Things Journal, 11(6):9896–9914, 2024.

[10] A. Maatouk, S. Kriouile, M. Assad, and A. Ephremides. On the optimality of the Whittle’s index

policy for minimizing the age of information. IEEE Transactions on Wireless Communications,

20(2):1263–1277, 2020.

[11] J. Niño-Mora. Dynamic priority allocation via restless bandit marginal productivity indices.

Transactions in Operations Research, 15:161–198, 2007.

[12] Y. Qian, C. Zhang, B. Krishnamachari, and M. Tambe. Restless poachers: Handling exploration-

exploitation tradeoffs in security domains. In Proceedings of the 2016 International Conference

on Autonomous Agents & Multiagent Systems, pages 123–131, 2016.

[13] B. Scherrer. Improved and generalized upper bounds on the complexity of policy iteration.

Advances in Neural Information Processing Systems, 26, 2013.

[14] B. Sombabu, A. Mate, D. Manjunath, and S. Moharir. Whittle index for AoI-aware scheduling.

In 2020 International Conference on COMmunication Systems NETworkS (COMSNETS), pages

630–633, 2020.

[15] J. Sun, Z. Jiang, B. Krishnamachari, S. Zhou, and Z. Niu. Closed-form Whittle’s index-enabled

random access for timely status update. IEEE Transactions on Communications, 68(3):1538–

1551, 2020.

[16] V. Tripathi and E. Modiano. A Whittle index approach to minimizing functions of age of

information. pages 1160–1167, 2019.

[17] R. R. Weber and G. Weiss. On an index policy for restless bandits. Journal of Applied Probability,

27(3):637–648, 1990.

[18] P. Whittle. Restless bandits: activity allocation in a changing world. Journal of Applied Proba-

bility, 25(A):287–298, 1988.

[19] Y. Zou, K. T. Kim, X. Lin, and M. Chiang. Minimizing age-of-information in heterogeneous

multi-channel systems: A new partial-index approach. In Proceedings of the twenty-second inter-

national symposium on theory, algorithmic foundations, and protocol design for mobile networks

and mobile computing, pages 11–20, 2021.

Appendix

22

A Proof for Lemma 2.

As π1 and π2 are both the optimal policies, we have V π1(s, λ⃗) = V π2(s, λ⃗) = V ∗(s, λ⃗). According

to the Bellman equation, for any state s,

V π1(s, λ⃗) = s+ λπ1(s) + β
(
pπ1(s)V

π1(1, λ⃗) + (1− pπ1(s))V
π1(s+ 1, λ⃗)

)
, ∀s ∈ S (14)

and

V π2(s, λ⃗) = s+ λπ2(s) + β
(
pπ2(s)V

π2(1, λ⃗) + (1− pπ2(s))V
π2(s+ 1, λ⃗)

)
, ∀s ∈ S (15)

has the same solution V ∗(s, λ⃗). Notice that for any cross-over policy π between π1 and π2, for any

state s, either π(s) = π1(s) or π(s) = π2(s) will hold. Then, the system of Bellman Equation

V π(s, λ⃗) = s+ λπ(s) + β
(
pπ(s)V

π(1, λ⃗) + (1− pπ(s))V π(s+ 1, λ⃗)
)
,∀s ∈ S (16)

will also have the solution V ∗(s, λ⃗) for all s. Thus, π is also the optimal policy with that given λ⃗.

B Proof for Theorem 6.

Recall that for the AoI minimization problem under the generate-at-will setting, the states are

simply the AoI. Further, in order to better represent the state, we use the notation si to denote AoI

state i. We also note that Π′ contains all the policies that choose stronger actions at higher states.

We will repeatedly use this property in all the following proofs.

Before we start to prove Theorem 6, we state a lemma, which can be easily verified by algebra.

Lemma 10. For a, b, c > 0 and a < b, there is a
b <

a+c
b+c .

Going back to Theorem 6, we use Aπm to denote the subset of states that contains all the states

choosing channel m under policy π. This set can be viewed as the “active set” for choosing channel

m, which is opposite to the passive set. We also denote the lowest state and the highest state in Aπm
as sq and sp, respectively. As π ∈ Π′, according to the definition of Π′, we know that all the states

between sp and sq will belong to Aπm. Therefore, A
π
m can be expressed as Aπm = {sp, sp+1, ..., sq}.

Denote T πsi (s1) ≜ Eπ
[∑∞

t=0 β
t1{s(t)=si}|s(0) = s1

]
as the expected discounted visiting time of state

si. According to the generate-at-will setting [19], state si+1 can only be reached from state si (i ≥ 1)

with probability 1− pπ(si). Using this fact, we first show that T πs2(s1) = β
(
1− Pπ(s1)

)
T πs1 (s1). To see

this, note that,

23

T πs2 (s1) = Eπ

[∞∑
t=0

βt1{s(t)=s2} | s(0) = s1

]

=
∞∑
t=0

Eπ
[
βt1{s(t)=s2} | s(0) = s1

]
=

∞∑
t=0

βtPπ {s(t) = s2 | s(0) = s1}

=
∞∑
t=1

βtPπ {s(t) = s2 | s(0) = s1} (∵ s(0) ̸= s2)

(a)
=

∞∑
t=1

βt
∑
s

Pπ {s(t) = s2 | s(t− 1) = s}Pπ {s(t− 1) = s | s(0) = s1}

(b)
=

∞∑
t=1

βtPπ {s(t) = s2 | s(t− 1) = s1}Pπ {s(t− 1) = s1 | s(0) = s1}

=
∞∑
t=1

β
(
1− pπ(s1)

)
βt−1Pπ {s(t− 1) = s1 | s(0) = s1}

= β
(
1− pπ(s1)

) ∞∑
t=1

Eπ
[
βt−11{s(t−1)=s1} | s(0) = s1

]
= β

(
1− pπ(s1)

) ∞∑
t=0

Eπ
[
βt1{s(t)=s1} | s(0) = s1

]
= β

(
1− pπ(s1)

)
T πs1 (s1) .

where equality (a) holds by using total probability and the Markov property. And equality (b) holds

since Pπ {s(t) = s2 | s(t− 1) = s} = 0, if s ̸= s1.

Using the same method, we can obtain, inductively for i = 1, ...,K − 1, that

T πs3(s1) = β(1− pπ(s2))T
π
s2(s1) = β2(1− pπ(s1))(1− pπ(s2))T

π
s1(s1)

...

T πsi (s1) = βi−1
i−1∏
j=1

(1− pπ(sj))T
π
s1(s1).

24

Further, for SK , we have,

T πsK (s1) = Eπ
[∞∑
t=0

βt1{s(t)=sK} | s(0) = S1

]

=
∞∑
t=1

βt [Pπ {s(t) = sK | s(t− 1) = sK−1}Pπ {s(t− 1) = sK−1 | s(0) = s1}

+Pπ {s(t) = sK | s(t− 1) = sK}Pπ {s(t− 1) = sK | s(0) = s1}]

= β
(
1− pπ(sK−1)

)
T πsK−1

(s1) + β
(
1− pπ(sK)

)
T πsK (s1)

= βK−1
K−1∏
j=1

(
1− pπ(sj)

)
T πs1 (s1) + β

(
1− pπ(sK)

)
T πsK (s1) .

We then get,

T πsK (s1) =
1

1− β
(
1− pπ(sK)

) · βK−1
K−1∏
j=1

(
1− pπ(sj)

)
T πs1 (s1)

=
[
1 + β

(
1− pπ(sK)

)
+ β2

(
1− pπ(sK)

)2
+ · · ·

]
βK−1

K−1∏
j=1

(
1− pπ(sj)

)
T πs1 (s1)

= βK−1
K−1∏
j=1

(
1− pπ(sj)

)
T πs1 (s1) + βK

K∏
j=1

(
1− pπ(sj)

)
T πs1 (s1)

+ βK+1
K+1∏
j=1

(
1− pπ(sj)

)
T πs1 (s1) + · · · .

In other words, we can rethink T πsK (s1) as the sum of the contributions of many “imaginary” states

t ≥ K, where the contribution from each st, t ≥ K, follows the same form as (*), with Pπ(st) =

Pπ(sK). This use “imaginary” states greatly simplifies the presentation below. Specifically, denote

Ci = βi−1Πi−1
j=1(1− pπ(sj)) for all i = 1, 2, ..., (specifically, we have C1 = 1). We then have,

T πsk(s1) = CkT πs1(s1), k = 1, 2, ...,K − 1,

T πsK (s1) =
∞∑
k=K

CkT πs1(s1).
(17)

Notice that,

25

K∑
k=1

T πsk(s1) =
K∑
k=1

Eπ
[∞∑
t=0

βt1{s(t)=sk}|s(0) = s1

]

= Eπ
[∞∑
t=0

βt
K∑
k=1

1{s(t)=sk}|s(0) = s1

]

= Eπ
[∞∑
t=0

βt· 1|s(0) = s1

]

=
∞∑
t=0

βt =
1

1− β
.

(18)

At meanwhile,
∑K

i=1 T πsi (s1) = T
π
s1(s1)

∑∞
i=1Ci. We then obtain,

T πsk(s1) =
1

1− β
Ck∑∞
i=1Ci

, k = 1, ...,K − 1;

and T πsK (s1) =
1

1− β

∑∞
i=K Ci∑∞
i=1Ci

.

(19)

We now use (19) to compare the active times for channel m under policy π and π′. Recall that π

and π′ only differ at a single state s̄ and π(s̄) = m. Based on the different value of π′(s̄), we divide

into two cases, which are π′(s̄) > m or π′(s̄) < m.

Case 1: π′(s̄) > m. Since π′ ∈ Π′, s̄ must be sq. We then have π′(sq) > m = π(sq) and

pπ′(sq) ≥ pπ(sq) = pm. We further divide into two sub-cases to compare T πm and T π
′

m .

Case 1.1: q ̸= K. Then, the active times for channel m under policy π and π′ can be expressed

by T πm(s1) =
∑q

i=p T πsi (s1) and T
π′
m (s1) =

∑q−1
i=p T π

′
si (s1). For policy π, we have

T πm(s1) =

q∑
i=p

T πsi (s1) =
1

1− β

∑q
i=pCi∑∞
i=1Ci

=
1

1− β

∑q−1
i=p Ci + Cq∑p−1

i=1 Ci +
∑q−1

i=p Ci + Cq +
∑∞

i=q+1Ci

=
1

1− β
b+ c

a+ b+ c+ cde
;

where a =
∑p−1

i=1 Ci, b =
∑q−1

i=p Ci, c = Cq, d = β (1− pπ(sq)) and e = 1+
∑∞

i=1 β
i
∏i+q
j=q+1(1− pπ(sj)).

Here we have written the last term of the denominator as

∞∑
i=q+1

Ci =β
q

q∏
j=1

(1− pπ(sj))

1 + ∞∑
i=1

βi
i+q∏

j=q+1

(1− pπ(sj))


=Cq · β (1− pπ(sq)) ·

1 + ∞∑
i=1

βi
i+q∏

j=q+1

(1− pπ(sj))

 = cde;

26

Similarly, for policy π′, if we denote d′ = β(1− pπ′(sq)) < d, then T π
′

m (s1) can be expressed as

T π
′

m (s1) =

q−1∑
i=p

T π′
si (s1) =

1

1− β
b

a+ b+ c+ cd′e
.

Therefore, proving T πm(s1) > T π
′

m (s1) is equivalent to proving b+c
a+b+c+cde > b

a+b+c+cd′e . From

Lemma 10, we have b+(d−d′)ce
a+b+c+cde >

b
a+b+c+cd′e . Thus it suffices to prove

b+ c

a+ b+ c+ cde
>

b+ (d− d′)ce
a+ b+ c+ cde

⇐⇒ 1 > (d− d′)e

⇐⇒ e <
1

d− d′
.

Recall that π′ ∈ Π′. Then, we have π′(sj) ≥ π′(sq) for all the states sj ≥ sq (j ≥ q). Further, we

have pπ′(sj) ≥ pπ′(sq) for all j ≥ q. Therefore,

e = 1 +
∞∑
i=1

βi
i+q∏

j=q+1

(1− pπ(sj)) ≤ 1 +
∞∑
i=1

βi(1− pπ′(sq))
i <

∞∑
i=0

(d′)i =
1

1− d′
<

1

d− d′
.

The last step is because d < 1. Thus the result of the theorem for π′(s̄) > m and q ̸= K then follows.

Case 1.2: q = K. Then, the active times for channel m under policy π and π′ can be expressed

by T πm(s1) =
∑K

i=p T πsi (s1) and T
π′
m (s1) =

∑K−1
i=p T π

′
si (s1). For policy π, we have

T πm (s1) =
K∑
i=p

T πsi (s1) =
1

1− β

∑∞
i=pCi∑∞
i=1Ci

=
1

1− β

∑K−1
i=p Ci + CK +

∑∞
i=K+1Ci∑p−1

i=1 Ci +
∑K−1

i=p Ci + CK +
∑∞

i=K+1Ci

=
1

1− β
b+ c+ c d

1−d

a+ b+ c+ c d
1−d

=
1

1− β
b+ c

1−d
a+ b+ c

1−d
,

(20)

27

where a =
∑p−1

i=1 Ci, b =
∑K−1

i=p Ci, c = CK , d = β (1− pπ(sK)) and
∑∞

i=K+1Ci have been written as

∞∑
i=K+1

Ci =
∞∑
i=K

βi−1
i−1∏
j=1

(
1− pπ(sj)

)

= βK
K∏
j=1

(
1− pπ(sj)

)1 + ∞∑
i=1

βi
i+K∏

j=K+1

(
1− pπ(sj)

)
= CK · β

(
1− pπ(sK)

)1 + ∞∑
i=1

βi
i+K∏

j=K+1

(
1− pπ(sj)

)
= CK · β

(
1− pπ(sK)

) [
1 +

∞∑
i=1

βi
(
1− pπ(sK)

)i]

= CK · β
(
1− pπ(sK)

) 1

1− β
(
1− pπ(sK)

)
= c

d

1− d
.

(21)

Similarly, for policy π′, if we denote d′ = β(1− pπ′(sK)) < d, then T π
′

m (s1) can be expressed as

T π
′

m (s1) =

q−1∑
i=p

T π′
si (s1) =

1

1− β
b

a+ b+ c
1−d′

.

Therefore, proving T πm(s1) > T π
′

m (s1) is equivalent to proving
b+ c

1−d

a+b+ c
1−d

> b
a+b+ c

1−d′
. In fact, we

have,
b+ c

1−d
a+ b+ c

1−d
>
b+ c

1−d −
c

1−d′

a+ b+ c
1−d

>
b

a+ b+ c
1−d′

(22)

where the second inequality uses Lemma 10. Thus, the result of the theorem for π′(s̄) > m and q = K

then follows.

Case 2: π′(s̄) < m. Since π′ ∈ Π′, s̄ must be sp. We then have π′(sp) < m = π(sp) and

pπ′(sp) ≤ pπ(sp) = pm.

Case 2.1: p, q ̸= K. Then, the active times for channel m under policy π and π′ can be expressed

by T πm(s1) =
∑q

i=p T πsi (s1) and T
π′
m (s1) =

∑q
i=p+1 T π

′
si (s1).

T πm(s1) =

q∑
i=p

T πsi (s1) =
1

1− β

∑q
i=pCi∑∞
i=1Ci

=
1

1− β
Cp +

∑q
i=p+1Ci∑p−1

i=1 Ci + Cp +
∑q

i=p+1Ci +
∑∞

i=q+1Ci

=
1

1− β
b+ bcd

a+ b+ bc(d+ e)
;

28

where a =
∑p−1

i=1 Ci, b = Cp, c = β (1 − pπ(sp)), d =
∑q

i=p+1 β
i−p−1

∏i−1
j=p+1(1 − pπ(sj)), e =∑∞

i=q+1 β
i−p−1

∏i−1
j=q+1(1 − pπ(sj)). Here, we have written the last two terms on the denominator

as,

q∑
i=p+1

Ci =β
p

p∏
j=1

(1− pπ(sj))

 q∑
i=p+1

βi−p−1
i−1∏

j=p+1

(1− pπ(sj))


=Cp · β (1− pπ(sp)) ·

 q∑
i=p+1

βi−p−1
i−1∏

j=p+1

(1− pπ(sj))

 = bcd;

∞∑
i=q+1

Ci =β
p

p∏
j=1

(1− pπ(sj))

 ∞∑
i=q+1

βi−p−1
i−1∏

j=p+1

(1− pπ(sj))


=Cp · β (1− pπ(sp)) ·

 ∞∑
i=q+1

βi−p−1
i−1∏

j=p+1

(1− pπ(sj))

 = bce;

Similarly, for policy π′, if we denote c′ = β(1− pπ′(sp)) > c, then T π
′

m (s1) can be expressed as

T π
′

m (s1) =

q∑
i=p+1

T π′
si (s1) =

1

1− β
bc′d

a+ b+ bc′(d+ e)
. (23)

Therefore, proving T πm(s1) > T π
′

m (s1) is equivalent to proving b+bcd
a+b+bc(d+e) >

bc′d
a+b+bc′(d+e) .

b+ bcd

a+ b+ bc(d+ e)
>

bc′d

a+ b+ bc′(d+ e)

⇐⇒1− b+ bcd

a+ b+ bc(d+ e)
< 1− bc′d

a+ b+ bc′(d+ e)

⇐⇒ a+ bce

a+ b+ bc(d+ e)
<

a+ b+ bc′e

a+ b+ bc′(d+ e)

(24)

From Lemma 10, we have a+bce
a+b+bc(d+e) <

a+bce+b(c′−c)(d+e)
a+b+bc′(d+e) . Thus it suffices to prove

a+ bce+ b(c′ − c)(d+ e)

a+ b+ bc′(d+ e)
<

a+ b+ bc′e

a+ b+ bc′(d+ e)

⇐⇒(c′ − c)d < 1

⇐⇒d < 1

c′ − c
.

Recall that π ∈ Π′. Then, we have π(sj) ≥ π(sp) for all the states sj ≥ sp (j ≥ p). Further, we

have pπ(sj) ≥ pπ(sp) for all j ≥ p. Therefore,

d =

q∑
i=p+1

βi−p−1
i−1∏

j=p+1

(1− pπ(sj)) ≤
q−p−1∑
i=0

βi(1− pπ(sp))
i <

∞∑
i=0

ci =
1

1− c
<

1

c′ − c
.

29

The last step is because c′ < 1. Thus the result of the theorem for π′(s̄) < m and p, q ̸= K then follows.

Case 2.2: q = K and p ̸= K. This case is very similar to case 2.1. The active times for channel

m under policy π and π′ can be expressed by T πm(s1) =
∑q

i=p T πsi (s1) and T
π′
m (s1) =

∑q
i=p+1 T π

′
si (s1).

T πm(s1) =

q∑
i=p

T πsi (s1) =
1

1− β

∑∞
i=pCi∑∞
i=1Ci

=
1

1− β
Cp +

∑∞
i=p+1Ci∑p−1

i=1 Ci + Cp +
∑∞

i=p+1Ci +
∑∞

i=q+1Ci

=
1

1− β
b+ bcd

a+ b+ bcd
;

where a =
∑p−1

i=1 Ci, b = Cp, c = β (1− pπ(sp)), d =
∑∞

i=p+1 β
i−p−1

∏i−1
j=p+1(1− pπ(sj)).

Then, if we denote c′ = β(1− pπ′(sp)) > c, T π
′

m (s1) can be formulated as,

T π
′

m (s1) =

q∑
i=p+1

T π′
si (s1) =

1

1− β
bc′d

a+ b+ bc′d
.

We can prove b+bcd
a+b+bcd >

bc′d
a+b+bc′d by using the same way as in case 2.1.

Case 2.3: p = K. As state sK is the largest state and π′(sK) < m, according to π′ ∈ Π′, it implies

π′ will not choose channel m for any state. Therefore, the active time for channel m under policy π′

is zero, which is smaller than the active time for channel m under policy π.

Combining all these cases, we complete the whole proof.

C Proof for Theorem 7.

Let us define two Markov chains, chain 0 and chain 1. The two chains have exactly the same initial

state s(0) = s1 and dual cost λ⃗ of channels, but chain 0 follows policy π and chain 1 follows policy π′.

This means that their state transition probabilities are also almost the same, except for state s̄ where

their decisions differ. To compare their active times, we perform the following stochastic coupling on

the random transitions. From time 0 onwards,

(1) For each s ̸= s̄, the l-th transition from state s of chain 1 will have the same channel success

(i.e. to state s(0) = s1) or failure (i.e. to state s+1) event as the l-th transition from state s of chain

0.

(2) If the l-th transition from state s̄ of chain 0 has the success event, then the l-th transition

from state s̄ of chain 1 will also have the success event. If the l-th transition from state s̄ of chain 0

has the failure event, then the l-th transition from state s̄ of chain 1 will have the success event (i.e.,

to state s(0) = s1) with probability pu+1−pu
1−pu and will have the failure event (i.e., to state s̄+ 1) with

probability 1−pu+1

1−pu . (Recall that we have assumed pu+1 > pu in our channel ordering.)

30

Define S+ as the subset of S that contains all the states higher than s̄, and S− as the subset of S
that contains all the states lower than s̄. Thus, S = {s̄}∪S+ ∪S−. Let I0+(k), n = 1, 2, ... denote the

k-th contiguous time-interval such that the state of chain 0 is in S+. We call this interval the k-th

S+-episode of chain 0. Analogously, we define I0−(k), I
1
+(k), and I

1
−(k).

Lemma 11. Under our coupling, for each k, the sequence of states visited in the k-th S+-episode

(i.e., the time-interval I0+(k)) of chain 0 is the same as the sequence of states visited in the k-th

S+-episode (i.e., the time-interval I1+(k)) of chain 1. Similarly, the sequence of states visited in the

k-th S−-episode (i.e., the time-interval I0−(k)) of chain 0 is also the same as the sequence of states

visited in k-th S−-episode (i.e., the time-interval I1−(k)) of chain 1.

Proof. We prove this by induction. Our hypothesis is just the conclusion of the lemma. As state s̄

can be any state in the state space, S− or S+ may become an empty set when s̄ is the smallest state

s1 or the largest state sK , respectively. In our following proof, we only discuss the more common

case that both S− and S+ are not empty sets, i.e., s1 < s̄ < sK . The other two corner cases can be

verified in a very similar way.

Before we use the induction method, we note that the first state of each S−-episode for both chain

0 and chain 1 must be s1; and the first state of each S+-episode for both chain 0 and chain 1 must

be s̄+ 1.

We now prove the base step k = 1. As s1 < s̄ < sK , we can directly have s1 ∈ S−. Consider

the first S−-episodes of chain 0 and chain 1. As the states in S−-episode all belong to S−(̸∋ s̄),

according to our coupling (1), from the same first state s1, the sequence will choose the same channel

for transmission, have the same success/failure event and will enter the same state one by one, until

the states of chain 0 and chain 1 leave S− simultaneously. Hence, the first S−-episode in I0−(1) of

chain 0 and the first S−-episode in I1−(1) of chain 1 must be the same. Next, we consider the first

S+-episodes of chain 0 and chain 1. As the states of these two S+-episodes of chain 0 and chain 1 all

belong to S+(̸∋ s̄), we can also use coupling (1). According to the statement of the last paragraph,

we know that the first state of the sequence in I0+(1) of chain 0 and the first state of the sequence in

I0+(1) of chain 1 are the same, i.e., s̄+1. From the same first state of both S+-episodes, the sequences

must choose the same channel for transmission, have the same success/failure event and will enter

the same next state one by one, until the states of chain 0 and chain 1 leave S+ simultaneously.

Therefore, the first S+-episode in I0+(1) of chain 0 and the first S+-episode in I1+(1) of chain 1 must

also be the same.

We now prove the induction step. That is, assume that the induction hypothesis holds for 1, ..., k,

we now prove that it also holds for k + 1. We first consider the (k + 1)-th S−-episode of chain 0 and

the (k + 1)-th S−-episode of chain 1. To begin with, according to the induction assumption that the

i-th (i ≤ k) S−-episodes of both chain 0 and chain 1 are the same, we know that for any state s in S−,

the total number of times that chain 0 reaches state s in its first k S−-episodes is the same as that by

chain 1. In other words, for any state s ∈ S−, the same numbers of transitions from state s for both

chain 0 and chain 1 are the same. Next, we know that the first state of the (k + 1)-th S−-episode

31

for chain 0 is the same with the first state of the (k + 1)-th S−-episode for chain 1. Then we can

use coupling (1) to compare the (k + 1)-th S−-episode of chain 0 and the (k + 1)-th S−-episode of

chain 1. That is, from the same first state of both episodes, the two sequences will choose the same

channel for transmission, have the same success/failure event and will enter the same next state, until

they simultaneously leave S−. Therefore, the (k + 1)-th S−-episode in I0−(k + 1) of chain 0 and the

(k + 1)-th S−-episode in I1−(k + 1) of chain 1 must also be the same. Using the same method, we

can also show that the (k + 1)-th S+-episode in I0+(k + 1) of chain 0 and the (k + 1)-th S+-episode

in I1+(k + 1) of chain 1 must be the same. Thus, the result of Lemma 11 follows.

Let τ0k (s̄) be the k-th time that the chain 0 hits state s̄. Let n+0 (k) be the number of S+-episodes of

chain 0 before time τ0k (s̄), and let n−0 (k) be the number of S−-episodes before time τ0k . Analogously,

we define τ1k (s̄), n
+
1 (k), n

−
1 (k) for chain 1. We will prove the following two lemmas below. (For

simplicity, we use the short-hand notation τ0k = τ0k (s̄) and τ
1
k = τ1k (s̄).)

Lemma 12. Before time τ0k (including τ0k), chain 0 has k S−-episodes. Before time τ1k (including

τ1k), chain 1 also has k S−-episodes.

Proof. We only prove the result for chain 0, and the proof for chain 1 is exactly the same.

Notice that before the chain 0 enters an S+-episode, the chain must reaches state s̄ first. After

the chain leaves an S+-episode, chain 0 must hit state s1 ∈ S− next. Similarly, before chain 0 enters

an S−-episode, the chain will either hit s̄ or in S+. After the chain leaves an S−-episode, the chain

must hit s̄. Note that the initial state is s1 ∈ S−.
Suppose that there are ak number of S+-episodes before τ0k . Before each of these episodes, the

chain must hit state s̄. Therefore, among the (k− 1) time-instants (before τ0k , not including τ
0
k) that

the state of chain 0 is s̄, ak of them will transit to s̄ + 1 ∈ S+. For the remaining (k − ak − 1)

time-instants that the state of chain 0 is s̄, it should transit to s1 ∈ S−. Notice that after the state

of the chain leaves each of the above ak of S+-episodes, it will also enter S−. Further, the initial

episode is the S−-episode. Putting these together, the number of the S−episodes before τ0k is then

(k − 1− ak) + ak + 1 = k.

The next lemma shows that each S+-episode of chain 1 occurs no earlier than that of chain 0, and

each S−-episode of chain 1 occurs no later than that of chain 0.

Lemma 13. For each k, we have (i) n+1 (k) ≤ n
+
0 (k) and (ii) n−1 (k) ≥ n

−
0 (k).

Proof. We prove the lemma by induction. The induction hypothesis is just the conclusion of the

lemma. The base step is trivial because by our coupling, the two chains should have the same

evolution in their first S−-episodes until t = τ1k = τ0k . Hence, we will have n+1 (1) = n+0 (1) = 0 and

n−1 (1) = n−0 (1) = 1.

Next, we will prove the induction step. Suppose that the induction hypothesis holds for k. We

next prove that n+1 (k+1) ≤ n+0 (k+1) and n−1 (k+1) ≥ n−0 (k+1). Consider the evolution of the two

32

chains starting from time-instants τ1k and τ0k , respectively. Through our coupling, either they have

the same succuss/failure event, or chain 0 fails but chain 1 succeeds. Therefore, we divide into several

cases.

If they have the same success event, they both start a new S−-episode. Thus, we must have

n+1 (k+1) = n+1 (k), n
−
1 (k+1) = n−1 (k)+1, n+0 (k+1) = n+0 (k) and n

−
0 (k+1) = n−0 (k)+1. According

to the assumption of our induction hypothesis that n+1 (k) ≤ n
+
0 (k) and n

−
1 (k) ≥ n

−
0 (k), we will then

obtain n+1 (k + 1) ≤ n+0 (k + 1) and n−1 (k + 1) ≥ n−0 (k + 1).

If they have the same failure event, they both start a new S+-episode. Thus, we must have

n+1 (k+1) = n+1 (k)+1, n−1 (k+1) = n−1 (k), n
+
0 (k+1) = n+0 (k)+1 and n−0 (k+1) = n−0 (k). According

to the assumption of our induction hypothesis that n+1 (k) ≤ n+0 (k) and n
−
1 (k) ≥ n−0 (k), we will also

obtain n+1 (k + 1) ≤ n+0 (k + 1) and n−1 (k + 1) ≥ n−0 (k + 1).

If chain 0 fails and chain 1 succeeds, then chain 0 starts a new S+-episode, and chain 1 starts

a new S−-episode. Thus, we must have n+1 (k + 1) = n+1 (k), n
−
1 (k + 1) = n−1 (k) + 1, n+0 (k + 1) =

n+0 (k) + 1 and n−0 (k + 1) = n−0 (k). According to the assumption of our induction hypothesis that

n+1 (k) ≤ n
+
0 (k) and n

−
1 (k) ≥ n

−
0 (k), we can obtain that n+1 (k+1) = n+1 (k) ≤ n

+
0 (k) < n+0 (k+1) and

n−1 (k + 1) > n−1 (k) ≥ n
−
0 (k) = n−0 (k + 1).

Combining these three cases, we can conclude that the induction hypothesis will hold for k + 1.

The result of the lemma then follows.

Using Lemma 13 and Lemma 12, we now show Lemma 8 holds, i.e., t0+(k) ≤ t1+(k) and t0−(k) ≥
t1−(k) for all k, where t

0
+(k) is denoted as the k-th time when chain 0 transitions from S\S+ to S+,

and t0−(k) is the k-th time when chain 0 transitions from S\S− to S−. t
1
+(k) and t1−(k) are defined

analogously for chain 1.

Proof of Lemma 8. We first compare t0+(k) and t
1
+(k). According to the definition of t0+(k), chain 0

must be at state s̄ at time t0+(k) − 1. Suppose that this is the k′-th time that chain 0 is at state s̄,

i.e., τ0k′ = t0+(k)− 1. By lemma 13, we have

n+1 (k
′) ≤ n+0 (k

′) (25)

n−1 (k
′) ≥ n−0 (k

′). (26)

By definition of t0+(k), chain 0 must have completed k−1 of S+-episodes. Thus, we have n
+
0 (k

′) =

k − 1. Meanwhile, we also know that n−0 (k
′) = k′ by Lemma 12. According to (25), it implies that,

n+1 (k
′) ≤ k − 1, n−1 (k

′) ≥ k′. (27)

In other words, at the k′-th time that chain 1 enters s̄ (which is τ1k′), the number of S+-episodes

before it is no larger than k − 1. Hence, the k-th time that chain 1 transits from s̄ to S+ must be at

or after τ1k′ , i.e.,

t1+(k)− 1 ≥ τ1k′ . (28)

33

Suppose that at t1+(k)−1, it is also the k′′-th time that chain 1 enters state s̄, i.e., τ1k′′ = t1+(k)−1.

Then, we must have

k′′ ≥ k′.

We thus have
n+1 (k

′′) = k − 1, (by defition of t1+(k))

n−1 (k
′′) = k′′ ≥ k′

In other words, we have shown the following. At time τ0k′ , chain 0 has (k − 1) of S+-episodes, k
′

of S−-episodes, and reaches s̄ for k′ times hitting s̄. At time τ1k′′ , chain 1 has (k − 1) of S+-episodes,

k′′(≥ k′) of S−-episodes, and reaches s̄ for k′′(≥ k′) times. By Lemma 11, the length of the n-th

S+-episode (or S−-episode) is the same for both chain 0 and chain 1. Thus, we must have,

τ1k′′ ≥ τ0k′

⇒t1+(k)− 1 ≥ t0+(k)− 1

⇒t1+(k) ≥ t0+(k).

(29)

Next, we compare t0−(k) and t1−(k). By Lemma 11, both chain 0 and chain 1 will start their

k-th S−-episode at t0−(k) and t1−(k), respectively, and these two S−-episodes should have the same

sequence. We denote the length of this k-th S−-episode as lk. As both chain 0 and chain 1 will

hit state s̄ right after they leave their k-th S−-episode, chain 0 and chain 1 must be at state s̄ at

t0−(k) + lk and t1−(k) + lk, respectively. Suppose that this is the k′-th time that chain 0 is at state s̄,

i.e., τ0k′ = t0−(k) + lk. By definition of t0−(k) and τ0k′ , chain 0 must have completed k of S−-episodes

before τ0k′ . Thus we have n−0 (k
′) = k. According to Lemma 12, n−0 (k

′) also equals to k′. This implies

that, at time t0−(k) + lk, it is exactly the k-th time that chain 0 is at state s̄. Therefore, we have

k′ = k, τ0k = t0−(k) + lk and n−0 (k) = k. For the same reason, we can know that at time t1−(k) + lk, it

is also the k-th time that chain 1 is at state s̄, i.e., τ1k = t1−(k) + lk and we must have n−1 (k) = k.

Meanwhile, denote ak
△
= n+0 (k) and bk

△
= n+1 (k). According to Lemma ??, we have bk = n+1 (k) ≤

n+0 (k) = ak. In other words, we have shown the following. At time τ0k , chain 0 has ak of S+-episodes,

k of S−-episodes, and hit s̄ for k times. On the other hand, at time τ1k , chain 1 has bk(≤ ak) of

S+-episodes, k of S−-episodes, and hit s̄ for k times. By Lemma 11, the length of the n-th S+-episode

(or S−-episode) is the same for both chain 0 and chain 1. Thus, we must have,

τ1k ≤ τ0k
⇒t1−(k) + lk ≥ t0−(k) + lk

⇒t1−(k) ≤ t0−(k)

(30)

The result of Lemma 8 then follows.

Recall that π and π′ differ at state s̄, with π(s̄) = u and π(s̄) = u+1. Thus, either when u+1 < m

or when u > m, chain 0 and chain 1 should use action m on the same set of states. We denote this

state set as Am. We then have the following lemma.

34

Lemma 14. Denote τ0k (s) and τ
1
k (s) as the k-th time that chain 0 and chain 1 enter state s, respec-

tively. For any state s ∈ Am,
(I) if u+ 1 < m, then τ0k (s) ≤ τ1k (s);
(II) if u > m, then τ0k (s) ≥ τ1k (s).

Proof. (I) If u+ 1 < m, it implies that channel u+ 1 has lower priority than channel m. Notice that

π ∈ Π′, which implies that a higher state will use a channel with higher priority. Further, notice that

π(s) = m and π(s̄) = u < m. Therefore, we must have s̄ < s, and thus Am ⊆ S+. Using Lemma 8,

each S+-episode of chain 1 occurs no earlier than that of chain 0. Further, the k-th S+-episode of

chain 1 has the same state evolution as the k-th S+-episode of chain 0, and thus both episodes enter

state s with the same sequence. Combining these facts, we therefore have τ0k (s) ≤ τ1k (s).
(II) Similar to (I). If u > m, it implies that π(s̄) = u > m = π(s). By π ∈ Π′, we must have s < s̄,

and thus Am ⊆ S−. Using Lemma 8, each S−-episode of chain 1 occurs no later than that of chain 0.

Further, the k-th S−-episode of chain 1 has the same state evolution as the k-th S−-episode of chain

0, and thus both episodes enter state s with the same sequence. Combining these facts, we therefore

have τ0k (s) ≥ τ1k (s).

We can now complete the proof of theorem 7. If u+ 1 < m, according to Lemma 14,

T πm(s0) = Eπ
[∞∑
t=0

βt1{uπ(t)=m} | s0

]

= Eπ
[∞∑
k=1

∑
s∈Am

βτ
0
k (s) | s0

]

< Eπ
′

[∞∑
k=1

∑
s∈Am

βτ
1
k (s) | s0

]
= T π

′
m (s0),

(31)

where in the first inequality, we use < instead of ≤ because there is a non-zero probability that the

S−-episodes of chain 1 occurs strictly earlier than that of chain 0, and thus the there is a non-zero

probability that
∑∞

k=1

∑
s∈Am

βτ
0
k (s) <

∑∞
k=1

∑
s∈Am

βτ
1
k (s).

(ii) Similar to (i). We have,

T πm(s0) = Eπ
[∞∑
t=0

βt1{uπ(t)=m} | s0

]

= Eπ
[∞∑
k=1

∑
s∈Am

βτ
0
k (s) | s0

]

> Eπ
′

[∞∑
k=1

∑
s∈Am

βτ
1
k (s) | s0

]
= T π

′
m (s0).

(32)

35

where in the first inequality, we use > instead of ≥ because there is a non-zero probability that the

S+-episodes of chain 0 occurs strictly earlier than that of chain 1, and thus the there is a non-zero

probability that
∑∞

k=1

∑
s∈Am

βτ
0
k (s) >

∑∞
k=1

∑
s∈Am

βτ
1
k (s).

D Proof for Corollary 1.

We first verified the second part of Assumption 2. Considering policy π ∈ Π′ such that π(s̄) = m

for some state s̄, and consider an operation ψ on π that satisfies ψ(π)(s̄) ̸= π(s̄) = m and ψ(π) ∈ Π′.

By Theorem 6, this operation ψ must be a valid operation. From Remark 1, (ψ, π) must belong to

Ψ because ψ satisfies statement (iii) of Remark 1. Therefore, ψ is a Ψ-valid operation. The second

part of Assumption 2 thus holds.

It remains to verify the first part of Assumption 2. That is, for any policy π ∈ Π′ such that

π(s̄) = m for some state s̄, we will show that there must exist a Ψ-valid operation ψ on π and

ψ(π) ∈ Π′. Note that we cannot simply change the decision at state s̄ to an action different from

m, because the new policy may not satisfy part (3) of condition 1, and thus it may not belong to

Π′. Instead, we look at the set Aπm of all the states choosing channel m under policy π. Aπm is not

empty because there exists some state s̄ such that π(s̄) = m. Since we assume that π ∈ Π′, this set of

states must be contiguous due to part (3) of Condition 1. Thus, we can denote Aπm = {a, a+1, ..., b}.
Further, we must have π(b+1) ≥ m+1 if b+1 is a valid state, and π(a−1) ≤ m−1 if a−1 is a valid

state. We then construct ψ(π) as follows. If m < M , we then let ψ(π)(b) = m+1. Otherwise (i.e., if

m =M , we then let ψ(π)(a) = m−1. It is easy to show that the resulting ψ(π) also satisfies part (3)

of Condition 1, and thus ψ(π) ∈ Π′. According to Theorem 6, ψ is a valid operation. Moreover, (ψ, π)

must belong to Ψ defined in Remark 1 because ψ satisfies statement (iii) of Remark 1. Therefore, ψ

is a Ψ-valid operation. The result of Corollary 1 then follows.

E Proof for Theorem 9.

To begin with, we need to prove two lemmas.

Lemma 15. Consider two policies π1 ∈ Π′ and π2 ∈ Π′, such that π1 ≺ π2. Then, the following will

hold:

(1) for any state s such that π1(s) < m, we must have π1(s) ≤ π2(s) < m;

(2) for any state s such that π1(s) > m, we must have π1(s) ≥ π2(s) > m.

Proof. Since π1 ≺ π2, it implies that π2 can be obtained from π1 by performing a sequence of Ψ-

valid operations, with Ψ defined by Remark 1. We denote this sequence of Ψ-valid operations as

ψ(j), 1 ≤ j ≤ J , and denote the intermediate policies as π(j) = ψ(j)(π(j−1)), 1 ≤ j ≤ J , with π(0) = π1

and π(J) = π2. This sequence of operations is illustrated below:

π1
△
= π(0)

ψ(1)

−−→ π(1)
ψ(2)

−−→ π(2)
ψ(3)

−−→ . . .
ψ(J)

−−−→ π(J)
△
= π2. (33)

36

To prove part (1), we will use induction. The induction hypothesis is that, for any state ŝ

such that π1(ŝ) < m, we will have π1(ŝ) ≤ π(j)(ŝ) < m for 0 ≤ j ≤ J . The base step (j = 0)

trivially holds because π(0)(ŝ) = π1(ŝ). For the induction step, we assume that π1(ŝ) ≤ π(j)(ŝ) < m

holds for j ≤ J − 1. We wish to show that the induction hypothesis also holds for j + 1, i.e.,

π1(ŝ) ≤ π(j+1)(ŝ) < m. As π(j+1) is obtained from π(j) through a Ψ-valid operation, there will

be only one state s on which π(j) and π(j+1) have different actions. If s ̸= ŝ, then π(j) and we

then have π(j+1) will have the same action and π1(ŝ) ≤ π(j)(ŝ) = π(j+1)(ŝ) < m. If s = ŝ, then

π(j+1)(ŝ) will not be equal to π(j)(ŝ). Since π(j)(ŝ) < m, the Ψ-valid operation ψ on π(j) must

satisfy the statement (i) of Remark 1. Hence, π(j)(ŝ) < ψ(π(j))(ŝ) = π(j+1)(ŝ) < m. We then also

have π1(ŝ) ≤ π(j)(ŝ) < π(j+1)(ŝ) < m. Combining these two cases, we conclude that the induction

hypothesis must also hold for J . It implies that our induction hypothesis must also hold for j = J ,

and thus π1(ŝ) ≤ π(J)(ŝ) = π2(ŝ) < m.

We can prove part (2) in a similar way.

Lemma 16. For two policies π1 ∈ Π′ and π2 ∈ Π′ such that π1(s̄) = π2(s̄) = m for some state s̄,

π1 ≺ π2 will hold if π1 and π2 satisfy both of the following conditions:

(1) For any s ∈ S such that π1(s) < m, π2 satisfies π1(s) ≤ π2(s) < m;

(2) For any s ∈ S such that π1(s) > m, π2 satisfies π1(s) ≥ π2(s) > m.

Proof. Suppose that π1 and π2 satisfy the two conditions. In order to show π1 ≺ π2, we only need to

find a sequence of Ψ-valid operations (with Ψ defined in Remark 1), which when performed from π1,

will finally obtain π2. Let us define state sets S ̸=, A,B,C and D, where S̸= = {s | π1(s) ̸= π2(s)},
A = {s | π1(s) < π2(s) < m}, B = {s | π1(s) > π2(s) > m}, C = {s | π2(s) < π1(s) = m},
D = {s | π1(s) = m < π2(s)}. We first show that S̸= = A ∪ B ∪ C ∪ D. Towards this end, note

that for any state s ∈ A ∪ B ∪ C ∪ D, we must have π1(s) ̸= π2(s). Thus, s ∈ S ̸=, and we then

have S ̸= ⊇ A ∪ B ∪ C ∪ D. It remains to show that S ̸= ⊆ A ∪ B ∪ C ∪ D. We divide into several

cases. If π1(s) < m, then by Condition (1), we will have π1(s) < π2(s) < m, which implies that

s ∈ A. If π1(s) > m, then by Condition (2), we will have π1(s) > π2(s) > m, which implies that

s ∈ B. If π1(s) = m, then π2(s) is either larger than or smaller than m, which implies that s ∈ C∪D.

Combining the three cases above, we must have s ∈ A ∪ B ∪ C ∪ D. Then, we can conclude that

S̸= ⊆ A ∪B ∪ C ∪D.

Since we know that S̸= = A∪B ∪C ∪D, a natural way to find the sequence of Ψ-valid operations

that converts π1 to π2 is to have each Ψ-valid operation changes the action of one state in S̸= under

policy π1 to the action of that state under policy π2. If we can make sure that each step still produces

a new policy in Π′, then each new policy will have fewer states whose action differs from π2. Thus,

this sequence of Ψ-valid operations will eventually produce π2. Towards this end, we will first find

a sub-sequence of Ψ-valid operations that change the action of the states in C, until we obtain a

policy that has the same actions as π2 on all states in C. Then, we will find a sub-sequence of Ψ-valid

operations that change the action of the states in A, followed by D and B. Finally, we simply combine

these four sub-sequences into one sequence. After performing this sequence of Ψ-valid operations from

37

π1, we can obtain π2. In the following proof, we only show how we find the sub-sequences for C and

A, as finding the sub-sequences for D and B is quite similar.

Part I. Construct the sub-sequence of Ψ-valid operations that change the states in C.

Recall that C = {s | π2(s) < π1(s) = m}. We write the set C as {c1, ...ck}, with c1 < ... < ck. We

then construct the first subsequence of operations ψci and policies πci , i = 1, ..., as follows,

π1
△
= πc0

ψc1

−−→ πc1
ψc2

−−→ πc2
ψc3

−−→ . . .
ψck

−−→ πck , (34)

where πci = ψci(πci−1). Specifically, we construct πci such that πci(ci) = π2(ci) and π
ci(s) = πci−1(s)

for s ̸= ci. We can see that each time after performing an operation, the new policy will have one fewer

state on which its action differs from π2 (i.e., πci−1(ci) = m = π1(ci) ̸= π2(ci) but πci(ci) = π2(ci)).

Note that the order with which we changed the actions of states goes from the lowest state c1 to the

highest state ck in C. Thus, we know that πci must have the same actions as π2 on c1, c2, ..., ci ∈ C
and must have the same actions as π1 on ci+1, ..., ck ∈ C. Further, πci has the same actions as π1 for

state s /∈ {c1, c2, ..., ci}. We will next show that each intermediate policy πci will belong to Π′ and

thus, each operation will satisfy the statement (iii) of remark 1. Therefore, these operations are all

Ψ-valid operations. Part I is then completed.

We now show that πci belongs to Π′. Recall that we have shown that πci(s) = π2(s) for states

s ∈ {c1, ..., ci} and πci(s) = π1(s) for all the states s /∈ {c1, ..., ci}. To show πci ∈ Π′, we just need

to compare its actions at different states and verify part (3) of Condition 1. Below, we will focus on

comparing the action at all possible states s with the action at states in {c1, ..., ck}. (The comparison

for other state pairs can be done with another induction on i. We divide into several cases.

(case 1) s < ci and s ∈ {c1, ..., ci−1}: We can verify that πci(s) = π2(s)
(a)

≤ π2(ci) = πci(ci). Here,

Step (a) is because π2 ∈ Π′.

(case 2) s < ci, s /∈ {c1, ..., ci−1} and s ∈ A: We can verify that πci(s) = π1(s)
(b)
< π2(s)

(a)

≤ π2(ci) =

πci(ci). Here, Step (a) is because π2 ∈ Π′ and Step (b) is because s ∈ A.
(case 3) s < ci, s /∈ {c1, ..., ci−1} and s /∈ A: We can verify that πci(s) = π1(s)

(d)
= π2(s) ≤

π2(ci) = πci(ci); Here, Step (d) and be explained as follows. We first show that in case 3 we must

have π1(s) < m. To see this, note that since s < ci and π1 ∈ Π′, we must have π1(s) ≤ π1(ci) = m.

To show that π1(s) < m, we prove by contradiction. Assume on the contrary that π1(s) = m. As

π2 ∈ Π′, we must have π2(s) ≤ π2(ci) < m (since ci ∈ C). Hence, we must have s ∈ C. Since s < ci,

s must be one of the states among c1, ..., ci−1. However, case 3 assumes that s /∈ {c1, ..., ci−1}, which
is a contradiction. Therefore, we must have π1(s) < m. Next, according to Condition (1) of Lemma

16, we will have π1(s) ≤ π2(s) < m. Further, notice that case 3 assumes s /∈ A. Then, we must have

π1(s) = π2(s), and step (d) holds.

(case 4) ci < s < s̄: We can verify that πci(ci) = π2(ci) < m = π1(ci)
(e)

≤ π1(s) = πci(s). Here,

Step (e) is because π1 ∈ Π′.

38

(case 5) s ≥ s̄: We can verify that πci(ci) = π2(ci) < m = π1(s̄)
(a)

≤ π1(s) = πci(s). Here, Step (e)

is because π1 ∈ Π′.

Combining all of these cases, we conclude that πci ∈ Π′ for i = 0, ..., k. In other words, the

operation ψci satisfies the statement (iii) of Remark 1 and it is a Ψ-valid operation for all i. As a

special case, we have πck ∈ Π′.

Part II. Construct the sub-sequence of Ψ-valid operations that changes the states in A.

Recall that A = {s | π1(s) < π2(s) < m}. We write the set A as {a1, ...ak}, with a1 < ... < ak.

From the analysis in Part I, we know that πck takes the same actions as π2 on states in C and πck ∈ Π′.

We also know that πck ̸= π2 on A,B,D. Next, we construct the second subsequence of operations

ψai and policies πai :

πck
△
= πak+1

ψak

−−→ πak
ψak−1

−−−−→ πak−1
ψak−2

−−−−→ . . .
ψa1

−−→ πa1 , (35)

where πai = ψai(πai+1). Specifically, we construct πai such that πai(ai) = π2(ai) and π
ai(s) = πai+1(s)

for s ̸= ai. We can also see that each time after performing an operation, the new policy will have

one fewer state on which it differs from π2 (i.e., πai+1(ai) = π1(ai) ̸= π2(ai) but πai(ai) = π2(ai)).

Note that the order with which we changed the actions of states goes from the highest state ak to the

lowest state a1 in A. Thus, we know that πai must have the same action as π2 on ai, ai+1, ..., ak ∈ A
and must have the same actions as π1 on a1, ..., ai−1 ∈ A. Further, combining the result in Part I, we

know that πai has the same actions as π2 on C ∪ {ai, ai+1, ..., ak} and πai has the same actions as π1

on the states that are not in C ∪ {ai, ai+1, ..., ak}.
Now, we will show that each intermediate policy also satisfies πai ∈ Π′ for i = 1, ..., k, k+1. Before

that, we first prove a lemma below.

Lemma 17. For the intermediate policy πai, ai−1 is the highest state among these states s such that

πai(s) ̸= π2(s) and s < s̄.

Proof. We first show that the states in A and C must be smaller than s̄. For any s ∈ A, we have

π1(s) < π2(s) < m. As π1(s) < m = π1(s̄), according to π1 ∈ Π′, we must have s < s̄. For any s ∈ C,
we have π2(s) < m. As π2(s) < m = π2(s̄), according to π2 ∈ Π′, we must have s < s̄.

With the same method above, we can also show that the states in B and D must be larger than

s̄. Notice that S̸= = A ∪ B ∪ C ∪D. That implies that A and C contain all the states on which π1

has different actions with π2 before s̄.

We have already known that πai has the same action as π2 on C ∪ {ai, ai+1, ..., ak} and has the

same actions as π1 on the complement. Hence, a1, ..., ai−1 ∈ A correspond to all the states s < s̄ at

which πai and π2 have different actions. Therefore, ai−1 is the highest state among these states s

such that πai(s) ̸= π2(s) and s < s̄.

39

Now, we go back to show πai ∈ Π′, we divide into several cases.

(case 1) s < ai and s ∈ {a1, ..., ai−1} ⊂ A. We can verify that πai(s) = π1(s) < π2(s) ≤ π2(ai) =

πai(ai);

(case 2) s < ai and s /∈ {a1, ..., ai−1}. We can verify that πai(s)
(a)
= π1(s)

(b)
= π2(s) ≤ π2(ai) =

πai(ai). Here, to see why equality (a) holds, we first show that ak < c1, which means that the largest

state in A is still smaller than the smallest state in C. Notice that π1(ak) < m = π1(c1), as π1 ∈ Π′,

we must have ak < c1. Therefore, if s < ai, s must not belong to C ∪{ai, ai+1, ..., ak}. In other word,

πai(s) remains the same with π1(s), thus equality (a) holds. Step (b) can be explained as follows.

We have known that A ∪ C = {a1, ..., ak} ∪ {c1, ..., ck} contains all the states which make π1 and π2

different before s̄. Further, as s < ai and s /∈ {a1, ..., ai−1}, which implies that s < s̄ and s /∈ A ∪ C,
then we must have π1(s) = π2(s). Therefore, equality (b) holds.

(case 3) ai < s < s̄. We can verify that πai(ai) = π2(ai) ≤ π2(s)
(c)
= πai(s). Here, equality (c) is

based on Lemma 17. To see this, according to Lemma 17, ai−1 is the largest state that makes πai

and π2 different before s̄. Therefore, π2(s) = πai(s) for ai < s < s̄.

(case 4) s ≥ s̄. We can verify that πai(ai) = π2(ai) < m ≤ π1(s)
(d)
= πai(s). Here, equality (d)

holds because πai remains the same with π1 on the states which are not in C ∪ {ai, ..., ak}, including
all of the states after s̄.

Combining all of these cases, we conclude that, πai ∈ Π′. Further, the operation ψai satisfies the

statement (i) of Remark 1 and it is a Ψ-valid operation for all i. Also as a special case, we have

πa1 ∈ Π′.

Part III. Construct the sub-sequence of Ψ-valid operations that changes the states in D

and B, and then combine the four sub-sequences to one sequence.

Now, πa1 only has different actions with π2 on states in D and B. Using similar methods, we can

construct the third and the fourth subsequences of operations:

πa1
△
= πdk+1

ψdk

−−→ πdk
ψdk−1

−−−−→ πdk−1
ψdk−2

−−−−→ . . .
ψd1

−−→ πd1 .

πd1
△
= πb0

ψb1

−−→ πb1
ψb2

−−→ πb2
ψb3

−−→ . . .
ψbk

−−→ πbk .

(36)

where πd1 only has different actions with π2 on state sets B and πbk will have the same action with

π2 for all the states. In other words, π2 = πbk ! We can also show in a similar way that all of the

intermediate policies will belong to Π′ and all of these operations are Ψ-valid operations. Combining

all of this, we can have,

π1 = πc0
ψc1

−−→ . . .
ψck

−−→ πck
ψak

−−→ . . .
ψa1

−−→ πa1
ψdk

−−→ . . .
ψd1

−−→ πd1
ψb1

−−→ . . .
ψbk

−−→ πbk = π2. (37)

which implies π2 can be obtained by performing a sequence of Ψ-valid operations from π1, thus

π1 ≺ π2.

40

Figure 4: The operation for each part

E.1 Proof that Ψ satisfies Assumption 3

Suppose π1 ≺ π2 and both π1 and π2 are in Π′. By definition, π1 and π2 are different, and

hence S̸= = {s | π1(s) ̸= π2(s)} ≠ ∅. Denote A = {s | π1(s) < m, s ∈ S ̸=} = {a1, ..., akA},
B = {s | π1(s) > m, s ∈ S̸=} = {b1, ..., bkB} and C = {s | π1(s) = m, s ∈ S̸=} = {c1, ..., ckC}. Clearly,
we have S ̸= = A ∪ B ∪ C. We can assume that a1 < ... < akA , b1 < ... < bkB and c1 < ... < ckC .

As S ̸= is not empty, it implies that A,B, and C cannot all be empty sets. We now divide our proof

based on the sets A,B, and C.

If A ̸= ∅, we construct a policy π′ such that π′(akA) = π2(akA) and π′(s) = π1(s) for s ̸= akA .

In other words, we change the action of π1 at the highest state akA of A to that of π2. As π′ and

π1 only differ at one state akA , π
′ can be regarded as being performed by an operation ψ on π1, i.e.,

π′ = ψ(π1). We can see that ψ(π1) = π′ is a cross-over policy between π1 and π2. It only remains to

show that ψ is a Ψ-valid operation. As π1(akA) < m and π1 ≺ π2, according to part (1) of Lemma

15, we have π1(akA) ≤ π2(akA) < m. Further, π1(akA) ̸= π2(akA) since akA ∈ S̸=, so we must have

π1(akA) < π2(akA) < m. Therefore, π1(akA) < ψ(π1)(akA) < m. As a result, ψ satisfies item (i) of

Remark 1 and is a Ψ-valid operation.

If B ̸= ∅, the construction of the cross-over operation ψ(π1) through a Ψ-valid operation ψ is

similar. (We just need to change the action of π1 at state b1 to that of π2.)

If C ̸= ∅, we further divide into two cases depending on the value of π2(ckC) as follows. To begin

with, we note that π2(ckC) cannot be equal to m since ckC ∈ S ̸=.
Case 1: π2(ckC) > m. We construct an operation ψ(π1) = π′ such that π′(ckC) = π2(ckC) and

π′(s) = π1(s) for s ̸= ckC . π′ is clearly a cross-over between π1 and π2. We next prove that this

operation ψ satisfies item (iii) of Remark 1, and thus is a Ψ-valid operation. Towards this end, it

suffices to prove π′ ∈ Π′, i.e., it satisfies part (3) of the Condition 1. Recall that π1 and π2 both

belong to Π′. Consider any other states s ̸= ckC . If s < ckC , then we have π′(s) = π1(s) ≤ π1(ckC) =

41

m < π2(ckC) = π′(ckC). If ckC < s, we first prove that π1(s) = m cannot happen. We prove by

contradiction. Suppose on the contrary that π1(s) = m. Note that we have already assumed that

ckC is the largest state such that π1(ckC) = m and π2(ckC) ̸= π1(ckC). Since π1(s) = m and s > ckC ,

we must have π1(s) = π2(s). As π2 ∈ Π′, we will get π1(s) = m < π2(ckC) ≤ π2(s) = π1(s), which is

a contradiction. Therefore, π1(s) = m cannot happen. Further, since π1 ∈ Π′ and s > ckC , we must

have π1(s) > m. Since π1 ≺ π2, according to part (2) of Lemma 15, we must have π1(s) ≥ π2(s) > m.

Therefore, π′(ckC) = π2(ckC) ≤ π2(s) ≤ π1(s) = π′(s). In summary, ψ(π1) = π′ must belong to Π′.

We then confirm that ψ satisfies item (iii) of Remark 1, and hence ψ is a Ψ-valid operation.

Case 2: π2(ckC) < m. We construct an operation ψ(π1) = π′ such that π′(c1) = π2(c1) and

π′(s) = π1(s) for s ̸= ckC . We next also prove that this operation will satisfy item (iii) of Remark

1, and thus is a Ψ-valid operation. Towards that end, it suffices to prove π′ ∈ Π′. As π2 ∈ Π′ and

we have already assumed c1 < c2 < ... < ckC , we must have π2(c1) ≤ π2(ckC) < m. Moreover, we

recall that π1 ∈ Π′. Consider any other states s ̸= c1. If c1 < s, then π′(c1) = π2(c1) < m =

π1(c1) ≤ π1(s) = π′(s). If s < c1, we first prove that π1(s) = m cannot happen. We prove by

contradiction. Suppose on the contrary that π1(s) = m. Note that we have already assumed that

c1 is the lowest state such that π1(c1) = m and π2(c1) ̸= π1(c1). Since s < c1 and π1(s) = m, we

must have π1(s) = π2(s). As π2 ∈ Π′, we will get π1(s) = π2(s) ≤ π2(c1) < m = π1(s), which is a

contradiction. Therefore, π1(s) = m cannot happen. Further, since π1 ∈ Π′ and s < c1, we must

have π1(s) < m. As π1 ≺ π2, according to Part (1) of Lemma 15, we must have π1(s) ≤ π2(s) < m.

Therefore, π′(s) = π1(s) ≤ π2(s) ≤ π2(c1) = π′(c1). In summary, ψ(π1) = π′ must belong to Π′. We

can then confirm that ψ satisfies item (iii) of Remark 1, and hence ψ is a Ψ-valid operation.

(a) The case of π2(ckC
) > m (b) The case of π2(ckC

) < m

Figure 5: The illustration for E.1

E.2 Proof that Ψ satisfies Assumption 4

Fix λ⃗−m. Suppose that π1 ∈ Π′ and π2 ∈ Π′ are optimal when λm = µ1 and λm = µ2 respectively,

with µ1 < µ2. Further, suppose that π1(s̄) = π2(s̄) = m for some state s̄, and π1 ≺ π2 is not true.

42

Let A = {s | π2(s) < π1(s) < m}, B = {s | m < π1(s) < π2(s)}, C = {s | π1(s) < m and π2(s) = m}
and D = {s | m < π1(s) and π2(s) = m}. As π1 ≺ π2 is not true, we first show that A,B,C and D

cannot all be empty. We prove by contradiction.

Assume on the contrary that sets A,B,C, and D are all empty sets. We first consider states s

such that π1(s) < m. By our assumption, we have π1(s̄) = m. Since π1 ∈ Π′, i.e., it satisfies part (3)

of Condition 1, we must have s < s̄. Since π2(s̄) = m and π2 ∈ Π′, using Condition 1 again, we must

have π2(s) ≤ m. Moreover, since set A is assumed to be an empty set, π2(s) must be larger or equal

to π1(s); since C is also assumed to be an empty set, we must have π2(s) ̸= m. Therefore, π2(s) must

satisfy π1(s) ≤ π2(s) < m. Using a similar argument, for the states s such that π1(s) > m, we can

show that, if B and D are empty sets, then it implies that π2(s) must satisfy π1(s) ≥ π2(s) > m.

According to Lemma 16, π1 must be before (earlier) than π2, which contradicts to our assumption

that π1 ≺ π2 is not true. Therefore, we conclude that the sets A,B,C, and D cannot all be empty.

Next, we show that the sets C and D must be empty. We first prove by contradiction that C

must be empty. Assume on the contrary that C ̸= ∅. There must exist at least one state c ∈ C, such
that π1(c) < m and π2(c) = m. As π2 is optimal when λm = µ2 and π2(c) = m, we can know that

c /∈ Pm(λ⃗′′) at λ⃗′′ = [λ⃗−m, µ2]. Note that if we can show that c ∈ Pm(λ⃗′) at λ⃗′ = [λ⃗−m, µ1], it will

then contradict Assumption 1 that the passive set should only expand. We can then conclude that

C must be empty. Unfortunately, we cannot draw the conclusion of c ∈ Pm(λ⃗′) at λ⃗′ = [λ⃗−m, µ1]

directly from the assumption that π1 is optimal when λm = µ1 and π1(c) ̸= m. That is because there

may be another optimal policy when λm = µ1 whose action for state c is channel m. To overcome

this difficulty, we consider two cases to construct a contradiction.

Case 1: π1 is only optimal at a single point λm = µ1 and π1 is not optimal at any other points.

In this case, there must be two supporting optimal policies π̃i−1 and π̃i that are optimal when

λm ∈ [µ1 − ϵ, µ1] and λm ∈ [µ1, µ1 + ϵ], respectively, where ϵ > 0 is a small amount that also satisfies

µ1 + ϵ < µ2. As c /∈ Pm(λ⃗′′) and µ1 + ϵ < µ2, according to Assumption 1 (the partial indexability

holds), we must have c /∈ Pm(λ⃗′′′) at λ⃗′′′ = [λ⃗−m, µ1 + ϵ]. Thus π̃i(c) must be m. Then, we construct

a policy π′ such that π′(c) = π1(c) ̸= m and π′(s) = π̃i(s) for s ̸= c. It is easy to see that π′ is

a crossover between policy π1 and π̃i. As π1 and π̃i are both optimal when λm = µ1, according to

Lemma 2, π′ is also optimal when λm = µ1. Further, as π′ is an optimal policy, π′ must belong to

Π′. According to Theorem 6, we must have T π
′

m < T π̃im , which implies that π̃i can no longer be the

supporting optimal policy when λm ∈ [µ1, µ1 + ϵ], which is a contradiction. Therefore, under Case 1,

we can conclude that C must be empty.

Case 2: π1 is optimal at more than one point. According to Lemma 1, π1 must be one of the

supporting optimal policies. We suppose that π1 is optimal when λm ∈ [λ̃i−1, λ̃i] and µ1 is a point in

this closed interval. Thus, we have λ̃i−1 ≤ µ1 < µ2. Note that π1 may not be the only supporting

optimal policy when λm ∈ [λ̃i−1, λ̃i], and there may be other policies which are also optimal in this

interval. We first show by contradiction that there must be at least one other policy π3 such that π3 is

also an supporting optimal policy when λm ∈ [λ̃i−1, λ̃i] and π3(c) = m. Assume on the contrary that

43

this statement is not true, which implies that for any other supporting optimal policies at [λ̃i−1, λ̃i],

the optimal action for state c is not m. Therefore, c ∈ Pm(λ⃗′′′) at λ⃗′′′ = [λ⃗m, µ3], where µ3 is any

point between (λ̃i−1,min(µ2, λ̃i)). Combined with c /∈ Pm(λ⃗′′) at λ⃗′′ = [λ⃗−m, µ2], Assumption 1 is

then violated, which is a contradiction. Therefore, there must be another supporting optimal policy

π3 that is also optimal when λm ∈ [λ̃i−1, λ̃i] and meanwhile π3(c) = m. Using a similar method as

that in case 1, we can also construct a policy π′ such that π′(c) = π1(c) ̸= m and π′(s) = π3(s) for

s ̸= c. π′ is a crossover policy between policy π1 and π3. As π1 and π3 are both optimal policies for

λm ∈ [λ̃i−1, λ̃i], according to Lemma 2, π′ is also optimal when λm ∈ [λ̃i−1, λ̃i]. Therefore, π′ ∈ Π′.

According to Theorem 6, T π
′

m < T π3m . Then π1 and π3 cannot be supporting optimal policies anymore,

which is also a contradiction. Thus, under Case 2, we conclude that C ̸= ∅ as well.
Combining these cases together, we conclude that C must be the empty set. Using a similar

argument, D must also be an empty set.

Now that we have shown that C and D are both empty sets, we conclude that A and B cannot

both be empty. If A ̸= ∅, we pick a state a ∈ A. We construct an operation ψ(π2) = π′ such that

π′(a) = π1(a) and π
′(s) = π2(s) for s ̸= a. Then, π′ is a cross-over policy between π1 and π2. Further,

we have π2(s) ≤ π′(s) < m for all the states such that π2(s) < m. According to statement (i) of

Remark 1, ψ(π2) = π′ is then the Ψ-valid operation required in Assumption 4. The case of B ̸= ∅
can be verified similarly.

F Some details about computing the complexity

We first show that B is upper-bounded by 2M , i.e., the number of operations in Γ1(π) is at most

2M during any iteration of our Algorithm 1. Denote the active set for each channel u, u = 0, 1, ...,M

under policy π as Aπu . Aπm is non-empty because, if Aπm is empty, which means that Pm = S, then
we should have terminated Algorithm 1. Suppose that other than Aπm ̸= ∅, the non-empty active sets

are Aπc1 , ..., A
π
cp , A

π
d1
, ..., Aπdq , with c1 < ... < cp < m < d1 < ... < dq. Notice that, for ψ(π) to be in

Γ1(π) ⊂ Π′, it must differ from π at only one state s̄. Further, the state s̄ must be either the largest

state in Aπc1 , ..., A
π
cp , A

π
m or the smallest state in Aπm, A

π
d1
, ...Aπdq . Otherwise, ψ(π) cannot be in Π′. If

we pick state s̄ being the largest state in Aπci , i = 1, ..., p − 1, there are ci+1 − ci different Ψ-valid

operations ψ corresponding to ψ(π)(s̄) being ci + 1, ..., ci+1. If s̄ is the largest state in Aπcp , there are

m− cp− 1 Ψ-valid operations. Due to similar reasons, there are di−di−1 different Ψ-valid operations

if s̄ is the smallest state in Aπdi for i = 2, ..., q, and there are d1 −m− 1 Ψ-valid operations if s̄ is the

smallest state in Aπd1 . If state s̄ is in Aπm, s̄ must be either the largest or the smallest state in Aπm.

We denote them as state a and state b, respectively. ψ(π)(a) can be cp, ...,m− 1 and ψ(π)(b) can be

44

m+ 1, ..., d1. Thus, B can be bounded by

B ≤
p−1∑
i=1

(ci+1 − ci) + (m− cp − 1) +

q∑
i=2

(di − di−1) + (d1 −m− 1) + (m− cp) + (d1 −m)

= (m− 1− c1) + (dq −m− 1) + (m− cp) + (d1 −m)

= (dq − c1) + (d1 − cp)

< M +M = 2M.

Next, we show that A is upper-bounded by MK +1. i..e, the total number of iterations is upper-

bounded by MK + 1. After the A-th iteration, the passive set is the whole state space S and we

stop the algorithm. For π(1), ..., π(A−1), there still exists some state for which the optimal action is

channel m. We define a function f(k) =
∑

s[π
(k)(s)1{π(k)(s)<m} + (M − π(k)(s))1{π(k)(s)>m}], which is

a function of the iteration number k. We prove that f(k + 1) > f(k), and therefore f(k) is a strictly

increasing function. We will then be able to bound the number of iterations by the maximum value

of f(·). Towards this end, Suppose that π(k+1) = ψ(π(k)). Due to the definition of Ψ-valid operation

in Remark 1, there are three cases:

(Case 1) ψ satisfies (i) of Remark 1. Then, there is a state s̄ such that π(k)(s̄) < π(k+1)(s̄) < m.

Thus, we have π(k+1)(s̄)1{π(k+1)(s̄)<m} > π(k)(s̄)1{π(k)(s̄)<m}, and other terms in f(k+1) coincide with

those of f(k). Therefore, f(k + 1) > f(k).

(Case 2) ψ satisfies (ii) of Remark 1. Then, there is a state s̄ such that π(k)(s̄) > π(k+1)(s̄) > m.

Thus, we have (M −π(k+1)(s̄))1{π(k+1)(s̄)>m} > (M −π(k)(s̄))1{π(k)(s̄)>m}, and other terms in f(k+1)

coincide with those of f(k). Therefore, f(k + 1) > f(k). Therefore, f(k + 1) > f(k).

(Case 3) ψ satisfies (iii) of Remark 1. Then, there is a state s̄ such that π(k)(s̄) = m and

π(k+1)(s̄) ̸= m. Thus, we have π(k)(s̄)1{π(k)(s̄)<m} + (M − π(k)(s̄))1{π(k)(s̄)>m} = 0, but one of these

two items is positive for π(k+1). Again, other terms of f(k+1) coincide with those of f(k). Therefore,

f(k + 1) > f(k).

In summary, no matter which Ψ-valid operation is chosen in Line 6 of Algorithm 1, we have

f(k + 1) > f(k), i.e., f(k) is a strictly increasing function. Since f(k) ≥ 0 for all k, the total

number of iterations can thus be bounded by the maximum value of f(·) plus 1. For each state s,

π(k)(s)1{π(k)(s)<m}+(M −π(k)(s))1{π(k)(s)>m} is less than M . Since there are K states, we must have

f(k) < MK. Therefore, we obtain A− 1 < MK and A < MK + 1.

45

	Introduction
	System Model and Partial Index
	System Model for AoI Minimization
	The Relaxed Problem and Partial Index
	The More-General Setting

	Towards fast partial-index computation
	Geometric Structure of the Value Function
	Additional Structural Conditions
	The Proposed Algorithm
	Complexity of the Algorithm

	Return to the generate-at-will AoI problem
	Complexity Analysis and Comparison to Binary Search

	Numerical Results
	Conclusion
	Appendices
	Proof for Lemma 2.
	Proof for Theorem 6.
	Proof for Theorem 7.
	Proof for Corollary 1.
	Proof for Theorem 9.
	Proof that satisfies Assumption 3
	Proof that satisfies Assumption 4

	Some details about computing the complexity

