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Abstract—The uncertainty and variability of renewable gener-
ation pose significant challenges to reliable power-grid operations.
This paper designs robust online strategies for jointly operating
energy storage units and fossil-fuel generators to achieve provably
reliable grid operations at all times under high renewable uncer-
tainty, without the need of renewable curtailment. In particular,
we jointly consider two power system operations, namely day-
ahead reliability assessment commitment (RAC) and real-time
dispatch. We first extend the concept of “safe-dispatch sets” to
our setting. While finding such safe-dispatch sets and checking
their non-emptiness provide crucial answers to both RAC and
real-time dispatch, their computation incurs high complexity in
general. To develop computationally-efficient solutions, we first
study a single-bus case with one generator-storage pair, where
we derive necessary conditions and sufficient conditions for the
safe-dispatch sets. Our results reveal fundamental trade-offs
between storage capacity and generator ramp-up/-down limits
to ensure grid reliability. Then, for the more general multi-
bus scenario, we split the net-demand among virtual generator-
storage pairs (VGSPs) and apply our single-bus decision strategy
to each VGSP. Simulation results on an IEEE 30-bus system show
that, compared with state-of-art solutions, our scheme requires
significantly less storage to ensure reliable grid operation without
any renewable curtailment.

I. INTRODUCTION

While renewable energy is considered crucial for a sustain-
able energy future, its uncertainty and variability pose signifi-
cant challenges to the reliable operations of power systems [1].
In electricity grids, the demand and supply must be balanced
at all time, subject to various physical limits on generation
and transmission. The higher uncertainty and variability of
renewable resources makes it challenging to determine how
many generation resources need to be committed ahead of
time, and how to dispatch them in real time, to meet the
demand. Energy storage can be a key resource to improve
grid reliability in this situation because it can shift demand and
supply in time [2]. However, storage also has it own operation
limits, and hence adding storage into the resource pool also
introduces new questions on how to operate both generators
and storage units to maintain reliable grid operations at all
times.

In this paper, we study these questions at the Independent
System Operator (ISO) level. An ISO is responsible for
maintaining reliable grid operations in a large geographic area
[3]. An ISO operates the wholesale electricity market, which
usually includes a day-ahead market and a real-time market
[4] [5]. The day-ahead market is a forward market that allows
market participants to commit the amount of energy to buy or

sell in each hour of the following day. A key part of the day-
ahead operation, including both market clearance and the later
RAC1 (Reliability Assessment and Commitment) stage, is to
set aside enough resources ahead of time to meet the demand
in the next day. Then, when the operating day comes, the real-
time market dispatches resources every 5 minutes to match the
supply to any demand deviation from day-ahead predictions.
Thus, in this paper we aim to provide solutions, both for RAC
and real-time dispatch, to the problem of managing generators
and storage to provably ensure reliable grid operations under
high renewable uncertainty.

One key challenge to this problem is the multi-stage nature
of the operation decisions. In practice, the availability of
uncertain renewable supply is revealed sequentially over time.
The ISO only knows the information up to the present time,
yet decisions must be made despite future uncertainty. This
causality (also known as non-anticipativity) requirement can-
not be violated during the decision making process. However,
a large body of existing literature uses a two-stage assumption,
which does not respect this multi-stage nature. Under such a
two-stage assumption, one assumes that there is a second stage
where uncertainty is completely revealed [6] [7]. In practice,
such a second stage with perfect information does not exist.
As a result, such a two-stage approach can significantly under-
estimate the resource requirement for reliability [8] [9] [10].

There is a limited body of work that directly deals with
this multi-stage problem, with or without energy storage. In
[8], the authors use affine policies to solve this multi-stage
decision problem using only generators. This approach is
further extended in [9] to work with storage units. However, a
common weakness in [8] and [9] is that such an affine policy
treats resources with different capabilities in the same manner,
which tends to be overly conservative (see further discussion
in Section III-C). Partly due to this reason, [9] must assume
renewable curtailment so that the demand-supply balance can
always be met despite this inefficiency. In our prior work
[10], we show that by pairing generators of different ramping
speeds, one can support reliable grid operations at a higher
level of uncertainty than what affine policies allow. On the
other hand, [10] does not deal with energy storage. As the
reader will see in Section III, the operation characteristics

1Note that RAC can also be performed during real-time operation when
future operating conditions change significantly, for which our proposed
methodology can also be applied. We mainly focus on day-ahead RAC because
a “late” RAC usually needs to commit more-expensive fast generation.



of energy storage are very different from generators. Thus,
the following open question remains: if one does not allow
renewable curtailment, how can generators and storage be
used together in a complementary manner to maintain reliable
multi-stage grid operations under high renewable uncertainty?

To address this open question, in this paper we develop
new efficient methods to manage generators and storage units
in both RAC and real-time dispatch that can provably ensure
reliable grid operations at all times without the need of
renewable curtailment. Specifically, in Section II we extend the
notion of “safe dispatch sets” of [10], which contain decision
points at the current time that can guarantee grid safety2 at all
times in the future. By definition, verifying the non-emptiness
of the safe dispatch set at day-ahead RAC ensures grid safety
for the entire next day, and real-time dispatch can simply pick
dispatch decisions from the safe dispatch set at each time (see
[10] and Section II-D). However, the computation of such safe
dispatch sets incurs high complexity in general. To develop
computationally efficient solutions, in Section III we first focus
on a single-bus system with one generator and one storage
unit, and study how their different operation characteristics
complement each other. We derive both necessary conditions
and sufficient conditions for grid safety, which are tight under
certain circumstances. Thus, our results reveal fundamental
trade-offs between storage capacity and generator ramp-up/-
down limits to ensure reliability. Further, our key technical
contribution is to identify a “flat-top/flat-bottom” property (see
Section III-B), which breaks down the dependency across
stages, and leads to easy-to-verify sufficient conditions for
the safe dispatch sets. Then, for the more general multi-
bus scenario in Section IV, we optimize affine demand split-
ting to “virtual generator-storage pairs” (VGSPs) to obtain a
computationally-efficient characterization of a provable subset
of the true safe dispatch set. Numerical results in Section
V demonstrate that, compared to [9], our approach requires
significantly less storage to ensure reliable grid operations
when renewable curtailment is not allowed, especially when
the decision horizon is large. Even if curtailment is allowed as
in [9], our solution tends to utilize a higher level of renewable
supply.

II. SYSTEM MODEL

We now present the system model for reliable grid op-
erations with energy storage, when renewable curtailment is
not allowed. There is a set of Nb buses B = {1, 2, . . . , Nb}
that are inter-connected by a set of Nl transmission lines
L = {1, 2, . . . , Nl}. There could be multiple generators,
renewable sources, storage units, and/or loads on each bus.

We adopt a discrete-time model for decision making. During
real-time operation, at the beginning of each time slot, the ISO
needs to make a decision that is going to last for the entire
time slot. Assume that the operation horizon is divided into
T time slots. To model the day-ahead decision, we assume

2In this paper, we use the term “safety” and “reliability” interchangeably,
which both mean that demand and supply have to be balanced at all time
subject to physical limits (also related to “resource adequacy”).

that a set of generators and storage are already committed,
our goal is to check if this set of resources are sufficient for
reliable grid operations for the entire horizon. Note that this is
part of the RAC decision. (The other part is to decide which
units to commit.) In the following paragraphs, we introduce the
notations and characteristics of various system components.

A. Demand Side

On each bus b, we take renewable supply as negative load,
and define the uncertain net-demand Db(t) at bus b at time
t as the load minus the renewable supply. Let Db(t1 : t2)
denote the net-demand sequence at bus b from time t1 to t2.
Let D(t1, t2) denote the collection of net-demand sequences
Db(t1, t2) on all buses. Note that here we implicitly assume
that renewable is not curtailed. There are two motivations
that justify this assumption. First, if the renewable supply is
“behind-the-meter,” e.g., as in the case of rooftop solar, it is
not under the control of the ISO and thus cannot be easily
curtailed. Second, since renewable supply often has lower
daily operation cost than fossil-fuel generation, it is desirable
to utilize renewable energy as much as possible. Thus, even
though curtailing renewable energy may help to ensure reliable
grid operation in some cases, it does so at the cost of
efficiency and economy. Hence, it would still be interesting,
and practically useful, to study how to ensure reliable grid
operations without the need of renewable curtailment.

Next, we model the uncertainty of net-demand. We define
the uncertainty set D as the set of all net-demand sequences
D(1 : T ) for which we wish to ensure reliable grid operations.
Throughout this paper, we are interested in an uncertainty set
of the following form:

Dmin
b (t) ≤ Db(t) ≤ Dmax

b (t), for all t, (1)

|Db(t1)−Db(t2)| ≤ ∆b|t1 − t2|, for all t1, t2, (2)

where the parameters Dmin
b (t) and Dmax

b (t) represent the
lower and upper bounds, respectively, for the net-demand on
bus b at time t. ∆b ≥ 0 denotes the maximum rate of change in
net-demand on bus b. The constraint in (2) models that renew-
able supply does not change arbitrarily fast. These parameters
can be obtained from historical data and day-ahead prediction
[11]. Notice that, although the uncertainty set D contains net-
demand sequences for the entire time horizon, at time t the
ISO only sees the realization of net-demand up to t. Unlike a
two-stage model where the entire net-demand is revealed at a
second stage [6] [7], here the future values of D(t+1 : T ) are
still unknown to the ISO. Nonetheless, the constraint in (2) can
be used to refine the future uncertainty based on the revealed
history, which can be viewed as some form of “near-term
prediction.” Specifically, given D(1 : t), the set of possible
future net-demand trajectories D(t1, t2), t1, t2 > t, tends to
be smaller, which we denote by

D[t1:t2]|D(1:t) =
{
D(t1 : t2)| there exist D′(1 : T ) ∈ D,

such that D′(1 : t) = D(1 : t), and D′(t1 : t2) = D(t1 : t2)
}
.



B. Supply Side

Next, we formulate the mathematical models for generators
and storage units, which the ISO dispatches to balance the
uncertain net-demand at all time.

1) Generators: We restrict the term “generators” to dis-
patchable fossil-fuel generation units. (Recall that renewable
generation is treated as negative load.) Let G = {1, 2, ..., Ng}
be the set of generators in the system, and Pg(t) be the power
level of generator g ∈ G at time t. Each generator has to
operate within its capacity range, i.e.,

Pmin
g ≤ Pg(t) ≤ Pmax

g ,∀g ∈ G, t = 1, 2, . . . , T, (3)

where Pmin
g and Pmax

g denote the lower and upper power lim-
its, respectively, of generator g. Since storage alone will not be
able to sustain extended periods of demand-supply imbalance,
we assume that Pmax

g ≥ Dmax(t) and Pmin
g ≤ Dmin(t) for

all time t. Further, the generator dispatch decisions have to
satisfy the following ramping constraint:

−Rg ≤ Pg(t+ 1)− Pg(t) ≤ Rg, t = 1, 2, . . . , T − 1, (4)

where Rg is the ramping speed of generator g. We use Gb ⊆ G
to denote the set of generators at bus b ∈ B.

2) Storage units: Let S = {1, 2, ..., Ns} be the set of
storage units (e.g., battery and pumped hydro) in the system,
and each storage unit s ∈ S has a finite capacity Qmax

s . We use
Qs(t) to denote the energy storage level (also known as state
of charge) of storage s at the end of time-slot t, and Qs(0) is
the initial storage level of unit s. Without loss of generality,
we assume that the minimum storage level for each unit is
zero. Thus, the storage levels of all units at all time need to
satisfy the following capacity constraints:

0 ≤ Qs(t) ≤ Qmax
s ,∀s ∈ S, t = 0, 1, ..., T. (5)

One key difference between energy storage units and genera-
tors is that the charging/discharging actions are coupled across
time. The power provided by storage unit s during time-slot t
can be expressed as follows:

Φs(t) = Qs(t− 1)−Qs(t), t = 1, 2, ..., T, (6)

where positive (or negative) signs of Φ(t) correspond to the
storage providing (or absorbing) energy. Note that here we
have assumed that charging/discharging has no efficiency loss.
We will discuss briefly at the end of Section III-B how to
generalize our analysis to the case with efficiency loss. Further,
for ease of exposition, we have assumed that each slot is of
unit length. Thus, the units of Q and Φ are kWh and kWh/slot,
respectively. Finally, each storage unit s may also have a power
limit Φs such that |Φ(t)| ≤ Φs for all time t. Let Sb denote
the set of storage units on bus b.

C. Demand-supply Balance & Transmission Constraints

In this work, we assume a DC power flow model [12] and
ignore the transmission loss in the system. For reliable grid
operations, the total net-power provided by generators and

storage units must be equal to the total net-demand at all time,
i.e.,∑

g∈G
Pg(t) +

∑
s∈S

Φs(t) =
∑
b∈B

Db(t), t = 1, 2, . . . , T. (7)

Further, the transmission-line limits must be obeyed at all time.
The DC model formulates the transmission-line constraints
using a shift-factor matrix S = [Sl,b], each element of which
characterizes the contribution from bus b to the power-flow
on line l. Thus, the power flow going through line l at time t
cannot exceed a value TLl, which can be written as∣∣∣∣ Nb∑

b=1

Sl,b

(
Db(t)−

∑
g∈Gb

Pg(t)−
∑
s∈Sb

Φ(t)

)∣∣∣∣ ≤ TLl,

∀t = 1, 2, . . . , T ;∀l ∈ L.

(8)

D. Objectives of Online Multi-stage Decisions

We first introduce the following definitions.

Definition 1 (Causality). Given an uncertainty set D, a real-
time dispatch algorithm π(D) is causal if, for every time t,
the algorithm only uses D(1 : t) in producing the dispatch
decision Pπ(D)(t) =

[(
P
π(D)
g (t), Q

π(D)
s (t)

)
|g ∈ G, s ∈ S

]
.

Definition 2 (Robustness). A causal real-time dispatch al-
gorithm π(D) is robust if and only if, for all net-demand
sequence D(1 : T ) ∈ D and at all time t, the dispatch
decision Pπ(D)(t) produced by algorithm π(D) satisfies all
physical constraints (3)-(8). Further, a causal real-time dis-
patch algorithm π is robust given D(1 : t) and P(t) if
and only if, for any possible future net-demand sequence
D(t + 1 : T ) ∈ D[t+1:T ]|D(1:t), the dispatch output Pπ(t1)
produced by π will satisfy all constraints (3)-(8), for all t1 > t.

The objectives of this work are the following: (i) At RAC,
given the uncertainty set D, determine whether there exists
a causal and robust real-time dispatch algorithm π(D); (ii)
At each time t, find the real-time dispatch algorithm π(D) to
dispatch the generators and storage units based on D(1 : t) to
meet all physical constraints.

Note that the causality requirement differentiates our online
multi-stage decisions from two-stage formulations in the lit-
erature. (Readers may refer to [8] and [10] for the limitation
of two-stage formulations.) In [10], the authors introduce the
notion of safe-dispatch sets, which we extend to our setting.
Let P(t) = [Pg(t), g ∈ G] and Q(t) = [Qs(t), s ∈ S]. Note
that Q(t−1) corresponds to the storage levels both at the end
of time-slot t− 1 and at the beginning of time-slot t.

Definition 3 (Safe Dispatch Set). Given past demand sequence
D(1 : t), the safe dispatch set F

(
D(1 : t)

)
is defined as

F
(
D(1 : t)

)
=
{

[P(t),Q(t− 1)]
∣∣ starting from P(t) and

Q(t− 1), there exists a causal algorithm π that both can
balance the demand D(t) subject to the condition (3),

(5)-(8), and is robust given D(1 : t)
}
. (9)



As argued in [10], once the safe dispatch sets are known,
both the RAC and real-time decisions are straight-forward.
At RAC, one simply checks whether the safe dispatch set
without any revealed net-demand F(∅) is non-empty. Note that
by definition, F(∅) 6= ∅ at day-ahead RAC also implies that
F(D(1 : t)) will be non-empty at all time t during real-time
operation. At real-time dispatch at time t, the causal algorithm
π can simply pick any P(t) such that [P(t),Q(t − 1)] ∈
F(D(1 : t)) that can be reached from P(t − 1), which
implies that all physical constraints can be met in the future.
Further, such decisions are known to be “maximally-robust,”
i.e., if these decisions cannot meet all physical constraints,
no other algorithms can do under the same uncertainty set
D. [10] demonstrates that the true safe-dispatch sets can be
calculated via backward induction. However, such a backward
induction incurs exponential complexity in the problem size.
Thus, our goal in this paper is to develop computationally-
efficient methods to characterize the safe-dispatch sets.

III. SINGLE BUS W/ ONE GENERATOR-STORAGE PAIR

Towards this end, we first focus on a simpler scenario with
one bus, one generator g, and one energy storage unit s. For
simplicity, we will drop the subscript b for the net-demand
because the net-demand D(t) becomes a scalar. Although, we
still retain the subscripts g and s to differentiate generator g
from storage unit s. Note that in this scenario the safe-dispatch
set becomes a set of vectors (Pg(t), Qs(t− 1)). This scenario
can be compared to the scenario of one fast generator plus
one slow generator in [10]. However, the safe-dispatch set for
that scenario in [10] only contains the power level of the slow
generator, and thus becomes one dimensional. In contrast, our
safe-dispatch set is two dimensional and thus much harder to
characterize. In the rest of this section, we fix t and D(1 : t).
We will proceed by proposing the necessary conditions that
the generator-storage pair needs to satisfy for reliability. Then,
we continue to derive the sufficient conditions. Furthermore,
we show that the sufficient conditions are tight under certain
circumstances.

A. Necessary Conditions for (Pg(t), Qs(t−1)) ∈ F(D(1 : t))

We first derive necessary conditions based on the capacity
limit Qmax

s of the storage. Suppose that the generator is
operated at Pg(t) at time t. Due to the ramp limit Rg of
the generator, its future power level at t′ ≥ t is bounded by
P eff
g (t′) ≤ Pg(t′) ≤ P

eff

g (t′), where

P
eff

g (t′) = min{Pg(t) + (t′ − t)Rg, Pmax
g }, (10)

P eff
g (t′) = max{Pg(t)− (t′ − t)Rg, Pmin

g }. (11)

Thus, to balance demand at t′, we must have

P
eff

g (t′) + Φs(t
′) ≥ max

D(t′)∈Dt′|D(1:t)

{D(t′)}, (12)

P eff
g (t′) + Φs(t

′) ≤ min
D(t′)∈Dt′|D(1:t)

{D(t′)}. (13)

Hence, the conditions (12) and (13) implies that: for ∀t′ ≥ t,

Pg(t)+(t′−t)R+Q(t′−1)−Q(t′) ≥ max
D(t′)∈Dt′|D(1:t)

{D(t′)},

(14)
Pg(t)−(t′−t)R+Q(t′−1)−Q(t′) ≤ min

D(t′)∈Dt′|D(1:t)

{D(t′)}.

(15)
Replacing t′ by τ , and (14) and (15) from t to t′, we obtain
the following necessary conditions:

t′∑
τ=t

P
eff

g (τ)+Qs(t−1)−Qs(t′) ≥
t′∑
τ=t

max
D(τ)∈Dτ|D(1:t)

{D(τ)}.

(16)

t′∑
τ=t

P eff
g (τ)+Q(t−1)−Q(t′) ≤

t′∑
τ=t

min
D(τ)∈Dτ|D(1:t)

{D(τ)}.

(17)

As Q(t′) ∈ [0, Qmax], from (16) we must have, for ∀t′ ≥ t,

Qs(t−1) ≥ −
t′∑
τ=t

[Pg(t)+(τ−t)Rg]+
t′∑
τ=t

max
D(τ)∈Dτ|D(1:t)

{D(τ)}.

(18)
This condition is shown in Fig. 1a, where D(t) grows at the
fastest rate ∆ to reach net-demand upper bound Dmax(t′), and
Pg(t) also grows at the fastest rate to meet demand. The area
between these two lines gives a lower bound on the storage
level Qs(t−1). Note that (18) for each t′ is a linear constraint
in (Pg(t), Qs(t − 1)) (see yellow dotted lines in Fig. 1b).
Intersection of (18) over all t′ thus gives a convex constraint,
which is shown by the lower blue solid curve in Fig. 1b.
Every point on the blue solid curve represents an operation
point where the storage has just enough energy to support the
fastest increasing demand. Similarly, from (15) we must have:

Qs(t− 1) ≤ −
t′∑
τ=t

[Pg(t)− (τ − t)Rg]

+

t′∑
τ=t

min
D(τ)∈Dτ|D(1:t)

{D(τ)}+Qmax. (19)

Intersection of (19) over all t′ ≥ t gives the upper red solid
curve in Fig. 1b. (18) and (19) combined thus produces a
convex outer bound of the safe-dispatch set (see Fig.1b), which
we refer to as the “leaf-region” at time t given D(t). Further,
we can rearrange (18) and (19) to get, ∀t1, t2 ≥ t,

ξmin
t1 (D(1 : t), Qs(t−1)) ≤ Pg(t) ≤ ξmax

t2 (D(1 : t), Qs(t−1)),

where

ξmin
t1 (D(1 : t), Qs(t− 1)) =

1

t1 − t+ 1

(
−

t1∑
τ=t

(τ − t)Rg

−Qs(t− 1) +

t1∑
τ=t

max
D(τ)∈Dτ|D(1:t)

{D(τ)}
)
, (20)



(a) (b) (c)

Fig. 1. (a) If the generator operates at Pg(t), the storage unit needs to supply at least the energy represented by the shaded area.
(b) An outer bound of the safe-dispatch set given by the intersection of constraints (18) and (19). (Each yellow line corresponds to (18) for some t′ ≥ t.)
(c) An illustration of the storage size needed for meeting the fastest change of demand.

ξmax
t2 (D(1 : t), Qs(t− 1)) =

1

t2 − t+ 1

( t2∑
τ=t

(τ − t)Rg

−Qs(t− 1) +Qmax +

t2∑
τ=t

min
D(τ)∈Dτ|D(1:t)

{D(τ)}
)
. (21)

For example, the points A and B in Fig. 1b correspond
to mint2≥t ξ

max
t2 (D(1 : t), Qmax

s ) and maxt1≥t ξ
min
t1 (D(1 :

t), Qmax
s ), respectively. Thus, a necessary condition for

F(D(1 : t)) 6= ∅ is that there must exist some Q(t − 1) ∈
[0, Qmax

s ] such that

max
t1≥t

ξmin
t1 (D(1 : t), Q(t−1)) ≤ min

t2≥t
ξmax
t2 (D(1 : t), Q(t−1)).

Using similar techniques, we can obtain another set of
necessary conditions based on the power limit Φs of the
storage. Specifically, using |Φ(t′)| ≤ Φs in (12) and (13),
we get, for all t1, t2 ≥ t,

Pg(t) + (t1 − t)Rg + Φs ≥ max
D(t1)∈Dt1|D(1:t)

{D(t1)}, (22)

Pg(t)− (t2 − t)Rg − Φs ≤ min
D(t2)∈Dt2|D(1:t)

{D(t2)}. (23)

Thus, we have

max
t1≥t

γmin
t1 (D(1 : t)) ≤ Pg(t) ≤ min

t2≥t
γmax
t2 (D(1 : t)),

where

γmin
t1 (D(1 : t)) = max

D(t1)∈Dt1|D(1:t)

{D(t1)} − (t1 − t)Rg − Φs,

γmax
t2 (D(1 : t)) = min

D(t2)∈Dt2|D(1:t)

{D(t2)}+ (t2 − t)Rg + Φs.

A necessary condition for F(D(1 : t)) 6= ∅ is then
maxt1≥t γ

min
t1 (D(1 : t)) ≤ mint2≥t γ

max
t2 (D(1 : t)). Note that

this condition further reduces the safe-dispatch set (see the
vertical dashed lines in Fig. 1b). We will thus refer to the part
of the leaf-region between these two vertical dashed lines as
the “cropped leaf-region” at time t given D(t).

Based on these necessary conditions, we can obtain useful
necessary conditions on the storage size needed for reliability.

Next, we focus on the case where the net-demand upper/lower
bounds are linear and symmetric. More precisely, the upper
bound Dmax(·) and lower bound Dmin(·) are straight lines
with slope β ≥ 0 and −β ≤ 0, respectively (see Fig.1c). The
following lemma thus gives a lower bound on the required
storage size when the time-horizon is long.

Lemma 4 (Minimum Storage Size). Suppose that the demand
upper/lower bounds are linear and symmetric. For all ε >
0, there exists T0 such that, whenever the time horizon T is
longer than t + T0, in order to have F(D(1 : t)) 6= ∅, the
storage size must satisfy:

Qmax
s ≥ Gap(t)2

2

( 1

Rg − β
− 1

∆− β

)
− ε, (24)

where Gap(t) = Dmax(t)−Dmin(t). Further, the power limit
Φs of the storage must satisfy

Φs ≥ Gap(t)
∆−Rg
∆− β

− ε. (25)

We briefly sketch the idea of the proof. Suppose that the
current net-demand is D(t) = Dmin(t). We can show that
there must exist some (Pg(t), Qs(t − 1)) ∈ F(D(1 : t))
such that Pg(t) ≤ Dmin(t). Otherwise, we can show that,
if D(t′) = Dmin(t) for all t′ ≥ t, then all future safe-
dispatch sets F(D(1 : t′)) cannot contain any element with
Pg(t

′) ≤ D(t′). This contradicts F(D(1 : t)) 6= ∅ because the
storage cannot sustain an infinite period with Pg(t′) > D(t′).
Now, consider the case where the future net-demand keeps
increasing at the fastest rate ∆ until it reaches the upper bound
of net-demand (see Fig. 1c). Since Pg(t

′) ≤ Dmin(t′), the
shaded area then gives a lower bound for Qs(t− 1) ≤ Qmax

s ,
which is precisely the right-hand side of (24). Further, the
length of the vertical line in Fig. 1c gives a lower bound of
(25) for Φs. Detailed proof is in Appendix A.

B. Sufficient Conditions for F(D(1 : t)) 6= ∅
Next, we turn to sufficient conditions for F(D(1 : t)) 6= ∅.

Based on the analysis in Section III-A, a natural necessary
condition for F(D(1 : t)) 6= ∅ is that, given D(t), the cropped



leaf-region in Fig. 1b is not empty. In other words, there exists
Qs(t − 1) ∈ [0, Qmax

s ] that intersects the cropped leaf-region
horizontally, i.e., h(D(1 : t), Qs(t− 1)) 6= ∅, where

h(D(1 : t), Qs(t− 1))

=
[

max
{

max
t1≥t

ξmin
t1 (D(1 : t), Qs(t−1)),max

t1≥t
γmin
t1 (D(1 : t))

}
,

min
{

min
t2≥t

ξmax
t2 (D(1 : t), Qs(t−1)),min

t2≥t
γmax
t2 (D(1 : t))

}]
.

(26)

Unfortunately, we can find examples such that this necessary
condition is insufficient for reliability. The reason is that the
value of Qs(t − 1) is determined by the previous decision
Pg(t − 1), i.e., Qs(t − 1) = Qs(t − 2) + Pg(t − 1) −D(t −
1) (cf. (6) and (7)). Thus, even though the “cropped leaf-
region” is non-empty, this particular value of Qs(t − 1) may
not intersect the cropped leaf-region. As a result, no feasible
Pg(t) can ensure future reliability. We note that this situation
is in sharp contrast to [10] where similar necessary conditions
were shown to be sufficient for the two-generator case. A key
difference from [10] is that the safe-dispatch set for the two-
generator case in [10] can be taken as 1-dimensional, while
ours is 2-dimensional, which thus creates new difficulties. Our
key contribution, which is presented below, is to introduce a
new flat-top/flat-bottom property of the cropped leaf-region,
which is useful for checking reliability. Before we present our
sufficient conditions, we introduce the following definitions.

Definition 5 (Flat-top/Flat-bottom). A non-empty “cropped
leaf-region” given by conditions (18)-(19) and (22)-(23) is
“flat-top” if the horizontal line Qs(t − 1) = Qmax

s intersects
the “leaf-region”, i.e.,(26) holds with Qs(t−1) = Qmax

s . Sim-
ilarly, it is “flat-bottom” if the horizontal line Qs(t− 1) = 0
intersects the “leaf-region”, i.e.,(26) holds with Qs(t−1) = 0.

Fig. 1b gives an example of “cropped leaf-region” being
both “flat-top” and “flat-bottom”. Thanks to the convexity of
the “leaf-region”, a direct benefit of being both “flat-top” and
“flat-bottom” is that, for all Qs(t − 1) ∈ [0, Qmax

s ], there
always exists a non-empty set of choices for Pg(t). Thus,
the difficulty described earlier due to the coupling between
Qs(t − 1) and Pg(t − 1) is avoided. The following theorem,
which is the first main result of our work, then shows that this
property is sufficient for reliability.

Theorem 6. Given D(1 : t), if, for all t′ ≥ t and every
D(t′) ∈ Dt′|D(1:t), the “cropped leaf-regions” are both “flat-
top” and “flat-bottom”, there must exist a causal and robust
real-time dispatch algorithm π. Further, the algorithm π may
choose any dispatch decision (Pg(t), Qs(t)) from the following
set

F ′ = {(Pg(t), Qs(t))
∣∣Ps(t) ∈ h(D(1 : t), Qs(t− 1)),

Qs(t) = Pg(t) +Qs(t− 1)−D(t)}. (27)

where h(D(1 : t), Q(t − 1)) is the 1-dimensional interval as
described in (26).

Fig. 2. Using Theorem 7 for general uncertainty sets.

Sketch of Proof. By the flat-top/flat-bottom assumption, the
set h(D(1 : t), Qs(t− 1)), and thus F ′s must be non-empty.
Suppose that a vector (Pg(t), Qs(t)) is chosen from F ′. It
follows from the equality Qs(t) = Pg(t) +Qs(t− 1)−D(t)
that such a decision pair (Pg(t), Qs(t)) can balance the net-
demand D(t) at time t. We next show the reliability for all
future t′ > t by constructing a causal real-time dispatch
algorithm π that is robust given D(1 : t). Algorithm π
essentially picks a dispatch level from the interval h(D(1 :
t′), Qs(t

′− 1)), while satisfying the generator’s ramping con-
straint from Pg(t

′ − 1). The detailed proof for the sufficiency
of the algorithm can be found in Appendix B.

Remark: We note that Theorem 6 is crucial for the rest
of the analysis in this section because it successfully breaks
the coupling between time t and t − 1. Instead, in order to
ensure F(D(1 : t)) 6= ∅, we only need to check the cropped
leaf-region at time t, and we do not need to worry about
what the previous dispatch decisions were. This decoupling
significantly simplifies the analysis. As we will see later, this
only incurs a minor loss of optimality because under certain
circumstances, the resulting sufficient conditions are tight.

We note that the flat-top/flat-bottom property in Theorem 6
is still tedious to check because we need to check it for every
value of D(t′). Next, we return to the special case where the
upper/lower bounds of net-demand are linear and symmetric
(see Lemma 4 and Fig. 1c). Interestingly, here the situation
becomes much simpler.

Theorem 7. Given the uncertainty set D with symmetric
bounds (parameterized by β), the “cropped leaf-region” at
time t for every D(t) is “flat-top” and “flat-bottom” if the
storage size Qmax

s and power limit Φs satisfy the following:
Qmax
s ≥ Gap(t)2

2

(
1

Rg−β −
1

∆−β
)

and Φs ≥ Gap(t)
∆−Rg
∆−β .

The intuition behind Theorem 7 is that in this special setting,
the flat-top/flat-bottom property is most difficult to hold when
D(t) = Dmin(t) (or D(t) = Dmax(t)). Thus, the requirements
in Lemma 4 with ε = 0 become sufficient. The detailed proof
is non-trivial and is available in Appendix C.

For a general uncertainty set with arbitrary upper and
lower bounds, the two extreme cases D(t) = Dmin(t) or



D(t) = Dmax(t) may no longer give the right requirement
on Qmax

s and Φs. However, we can still leverage Theorem
7 to derive a sufficient condition for the flat-top/flat-bottom
property. Specifically, at time t, we find the value of β such
that a larger uncertainty set with linear and symmetric bounds
can contain all possible future trajectories (see Fig 2). This
value of β can be found as follows: consider a time-dependent
β(t) such that

β(t)
∆
= max{βu(t), βl(t)}, (28)

where

βu(t) = max
{

max
t′>t

Dmax(t′)−Dmax(t)

t′ − t
, 0
}
,

−βl(t) = min
{

min
t′>t

Dmin(t′)−Dmin(t)

t′ − t
, 0
}
.

Plugging β(t) and Gap(t) into (24) and (25), and taking a
maximum over all time t, we then get a sufficient condition
for the storage size and power limit for the general case:

Qmax
s = max

t

[Gap(t)2

2

( 1

Rg − β(t)
− 1

∆− β(t)

)]
, (29)

Φs = max
t

[
Gap(t)

∆−Rg
∆− β(t)

]
. (30)

C. Discussion & Comparison with Prior Work

Comparing Theorem 7 with Lemma 4, we can see that
our characterization of the safe-dispatch set is quite precise.
Indeed, when both Dmax(t) and Dmin(t) are constant (i.e.,
β = 0) and the time horizon approaches infinity, the con-
ditions in Theorem 7 are both sufficient and necessary for
F(D(1 : t)) 6= ∅. To the best of our knowledge, this is the first
time in the literature where storage requirement for reliability
under multi-stage uncertainty is characterized in such a precise
manner. Specifically, note that if there was no storage (i.e.,
only one generator g), its ramp speed Rg must be at least
∆. Storage allows us to use a generator with Rg < ∆, and
the condition in Theorem 7 precisely quantifies the storage
needs. In particular, as Rg decreases and ∆ increases, the
storage capacity Qmax

s also increases. If Φs is very large, as
∆ approaches infinity, the storage capacity Qmax

s approaches
Gap(t)2

2
1

Rg−β , which is still a finite value. These results thus
provide useful and new insights for storage operations in future
power grid with high renewable uncertainty.

A highly desirable feature of the above sufficient conditions
is that they do not depend on the time horizon T . In contrast,
we have found that, if renewable curtailment is not allowed,
using affine policies as in [9] may require storage capacity
that grows linearly in T . To see this, suppose that Gap(t) =
Dmax(t) − Dmin(t) ≥ G for all t. The affine policy in [9]
sends a fixed fraction η of uncertain demand to the storage. If
curtailment is not allowed, the storage size Qmax

s must then
be at least G

2 ηT , so that it will not over-charge or under-
charge under all possible net-demand sequences. If Rg < ∆,
the fraction η cannot be too small. The storage capacity must
then grow linearly with T . Even if curtailment is allowed, the

above analysis suggests that, given Qmax
s , the fraction η has

to be small when T is large. If Rg < ∆, this small η implies
that a considerable fraction of the renewable supply must be
curtailed. These observation will be verified by our simulation
results in Section V.

In summary, for the scenario of one generator-storage pair,
we have provided sufficient conditions for F(D(1 : t)) 6= ∅,
which both answer the RAC problem (by checking F(∅) 6= ∅)
and the real-time dispatch problem (by dispatching decisions
according to Theorem 6). We exploit the complementary
characteristics of generator and storage, thus resulting into
more effective use of storage units than purely affine policies
(as in [9]).

D. Accounting for the Efficiency Loss of Storage Unit

Although throughout the paper we assume no efficiency
loss in charging/discharging, we believe that our analysis can
also be extended to incorporate efficiency loss. Basically,
the quantity Qs(t − 1) − Qs(t

′) in (16) needs to be either
multiplied or divided by the efficiency ratio. Suppose that the
storage unit has efficiency losses in charging and discharging,
with efficiency ratio θchar and θdisc, respectively. Then, the
conditions (16) and (17) will become

t′∑
τ=t

P
eff

g (τ)+θdisc(Qs(t−1)−Qs(t′)) ≥
t′∑
τ=t

max
D(τ)∈Dτ|D(1:t)

{D(τ)},

(31)
and
t′∑
τ=t

P eff
g (τ)+

Qs(t− 1)−Qs(t′)
θchar

≤
t′∑
τ=t

min
D(τ)∈Dτ|D(1:t)

{D(τ)}.

(32)
It turns out that when θchar < 1 and/or θdisc < 1, the above
conditions are not necessary any more. However, they can still
be used to derive a sufficient condition similar to Theorem 6
and Theorem 7. Specifically, we can still define the leaf-region
based on (31) and (32) to obtain

Qs(t− 1) ≥ 1

θdisc

(
−

t′∑
τ=t

[Pg(t) + (τ − t)Rg]

+

t′∑
τ=t

max
D(τ)∈Dτ|D(1:t)

{D(τ)}
)

(33)

and

Qs(t− 1) ≤ θchar

(
−

t′∑
τ=t

[Pg(t)− (τ − t)Rg]

+

t′∑
τ=t

min
D(τ)∈Dτ|D(1:t)

{D(τ)}
)

+Qmax. (34)

These inequalities can be used to define the “leaf-region” and
“cropped leaf-region” as in Section III-A. Then, we can show
a corresponding version of Theorem 6 that, if the “cropped
leaf-region” is flat-top and flat-bottom at every time t′ given
any net-demand D(t′), we must then have F(D(1 : t)) 6= ∅.



Further, we can establish a sufficient condition on the storage
size and power limit similar to Theorem 7 that

Qmax
s ≥ Gap(t)2

2θdisc

( 1

Rg − β
− 1

∆− β
)
,

Φs ≥
Gap(t)(∆−Rg)
θdisc(∆− β)

.

We note that we only have θdisc in these sufficient conditions
because, when there is an balance between D(t) and Pg(t),
although θdisc < 1 increases the amount of storage capacity
needed for discharging, θchar < 1 actually decreases the
amount of storage capacity needed for charging. Hence, the
effect of θdisc dominates. Finally, we expect this result to also
be necessary when the upper/lower bounds of net-demand is
linear and symmetric. Details will be presented in the journal
version of this paper.

IV. THE MULTI-BUS SCENARIO

In the multi-bus scenario, characterizing the exact safe-
dispatch set F(D(1 : t)) is intractable due to high dimen-
sionality. Instead, our focus is on obtaining a subset of the
exact safe dispatch set for the general case. By verifying that
this subset is non-empty, we can then conclude that the true
safe dispatch set F(D(1 : t)) is non-empty.

Similar to the demand splitting idea in [10], we send
fractions of the future net-demand uncertainty to the resources
according to pre-computed splitting factors. However, in con-
trast to [9] where uncertainty is sent to each generator and
storage unit separately, we propose to send uncertainty to a
pair of generator and storage. As we argue in Section III, such
pairing can better utilize the complementary characteristics
of these two types of resources and support a higher level
of uncertainty. However, there may be fewer storage units
(e.g., pumped hydro) than generators. This fact motivates us
to consider the case of storage sharing, where storage units
can be split into multiple virtual storage units to pair up with
generators to form virtual generator-storage pairs (VGSPs).
After the pairing, the future uncertainty is sent to each VGSP,
and its reliability requirement can be checked using our one-
generator-storage-pair result in Section III.

1) Creating VGSPs: In [10], we have proposed the condi-
tions for splitting physical generators into virtual generators.
Using the same approach, we can split generator g into
multiple virtual generators ĝvg,s, one for each storage unit s.
Let Pmax

ĝvg,s
, Pmin

ĝvg,s
and Rĝvg,s denote the capacity and ramp

limit of these virtual generators. Similarly, we split each
storage unit s into multiple virtual storage ŝvg,s, one for each
generator g. Denote Qmax

s and Qinit
s as total storage capacity

and initial storage level, respectively, of storage unit s. Define
Qmax
ŝvg,s

, Qinit
ŝvg,s

and Φŝvg,s as the storage capacity, initial storage
level and power limit for the virtual storage ŝvg,s. Note that
the aggregated capabilities (e.g., storage capacity and power
limits, generator capacity and ramp limits) of all virtual units
from the same physical unit cannot exceed the corresponding

physical capability [10]. Specifically, the virtual generators
must satisfy∑
s∈S

Pmax
ĝvg,s

= Pmax
g ,

∑
s∈S

Pmin
ĝvg,s

= Pmin
g and

∑
s∈S

Rĝvg,s = Rg.

(35)

Also, virtual storage units must satisfy, for ∀s ∈ S∑
g∈G

Qmax
ŝvg,s

= Qmax
s ,

∑
g∈G

Qinit
ŝvg,s

= Qinit
s and

∑
g∈G

Φŝvg,s = Φs.

(36)
Each virtual storage ŝvg,s is then paired with virtual generator
ĝvg,s to form a VGSP, denoted VGSPg,s = (ĝvg,s, ŝ

v
g,s). Thus,

there are g × s number of such pairs in total. Notice that the
physical storage unit where ŝvg,s is associated might be located
at a different bus as virtual generator ĝvg,s. This global sharing
of storage capacity leads to higher efficiency of our algorithm.

2) Demand Splitting for VGSP: Consider the following
affine policy. At each time t′ ≥ t, we separate the net-demand
Db(t

′) into two parts:
i Main part: Dmain

b (t′) = (Dmax
b (t′) +Dmin

b (t′))/2;
ii Uncertain part: Duncer

b (t′) = Db(t
′)−Dmain

b (t′).
Then, we dispatch the VGSPs to meet the two parts of the
net-demand separately. For the main part, denote the part of
demand allocated to VGSPg,s as Pmain

VGSPg,s
(t′). The dispatch

policy requires

Nb∑
b=1

Dmain
b (t′) =

Ns∑
s=1

Ng∑
g=1

Pmain
VGSPg,s(t

′). (37)

For the uncertain part, we introduce a splitting factor
{ηb,g,s}b∈B,g∈G . For each bus b, ηb is a vector where each
element is the fraction of uncertain net-demand to be sent to
VGSPg,s. The split is valid when ηb satisfies∑

s∈S

∑
g∈G

ηb,g,s = 1,∀b ∈ B. (38)

Therefore, the total amount of net-demand allocated to
VGSPg,s would be

DVGSPg,s(t
′) = Pmain

VGSPg,s(t
′)+
∑
b∈B

ηb,g,s(Db(t
′)−Dmain

b (t′)).

(39)
3) Transmission-line Constraints with VGSP: The trans-

mission constraint (8) must hold for all net-demand at all
t′ > t. It turns out that this constraint is convex with respect
to the virtualization and splitting decisions, and hence can be
converted to a linear form. See Appendix D for details.

4) Safe Dispatch Subset FVGSP(D(1 : t)): We are now
ready to define safe dispatch subset FVGSP(D(1 : t)). So
far, we have obtained the parameters to characterize all the
splitting among VGSPs. Denote A(t) as the set of parameters
to identify the VGSPs and their associated splitting, i.e.,

{ηb,g,s, Pmax
ĝvg,s

, Pmin
ĝvg,s

, Rĝvg,s , Q
max
ŝvg,s

, Qinit
ŝvg,s

,Φŝvg,s , P
main
VGSPg,s(t

′)}.

Then, we can use the sufficient conditions (18)-(19), (22)-(23)
and (28)-(30) to check whether the safe dispatch set for each



VGSPg,s, denoted by FA(t)
g,s (D(1 : t)), is non-empty. Notice

that each of this FA(t)
g,s (D(1 : t)) is a collection of 2-tuples

(Pĝvg,s(t), Qŝvg,s(t− 1)), where the second entry is the storage
level of the virtual storage associated with virtual generator
ĝvg,s at the beginning of time t.

After obtaining a non-empty safe dispatch set for each
VGSP, we need to perform an additional step to map the
dispatch decisions of all virtual generators and storage units
back to the physical units through

∑
g∈G Qŝvg,s(t) = Qs(t) and∑

s∈S Pĝvg,s(t) = Pg(t). In this way, the dispatch decision of
all physical units {Pg(t), Qs(t)|g ∈ G, s ∈ S} after mapping
will provide the same power output to the grid to balance the
demand. Therefore, the safe dispatch subset FVGSP(D(1 : t))
can be defined as follows:

FVGSP(D(1 : t)) = {[P(t),Q(t− 1)]|there exists A(t) sati-
sfying all conditions (37)-(38) and transmission constraints,

and there exists (Pĝvg,s(t), Qŝvg,s(t− 1)) ∈ FA(t)
g,s (D(1 : t))

for all g ∈ G, satisfying the mapping in previous paragraph}.

We note that most of the constraints in the above definition
are convex except two conditions in Theorem 7, for which we
develop another convexification method to obtain a sufficient
condition for FV GSP (D(1 : t)) 6= ∅. For details, see
Appendix E.

5) RAC and Real-time Dispatch: With the above character-
ization of the subset FVGSP(D(1 : t)), we can then perform
both RAC decision and real-time dispatch as described in
Section III-C.

V. SIMULATION RESULTS

In this section, we conduct MATLAB simulation to evaluate
the performance of our proposed algorithm on a standard IEEE
30-bus power system [13]. The system contains 24 fossil-fuel
generators, 1 wind farm (at Bus 3), 1 hydroelectric energy
storage unit (at Bus 3), 2 loads (at Bus 2 and Bus 3), and 41
transmission lines.

The 24 traditional generators are of 4 different types. The
detailed information about the generators is listed in Table
I below. We assume that Bus 1, 2, 13, 22, 23 and 27 are

TABLE I
LISTS OF GENERATORS

Type Generator Limit Ramping Rate Energy Price
A 540-1080MW 4.05MW/15min 48$/MWh
B 378-540MW 0.675MW/15min 40$/MWh
C 342-810MW 4.05MW/15min 48$/MWh
D 0-180MW 13.5MW/15min 60$/MWh

generation buses, each of which might have one or multiple
generators on it. (See Table II for details.) in Table II.

We use the load data and wind data from the grid database
of Elia, Belgium’s electricity transmission system operator
[11]. For the load (around 7200MW), we evenly split the
load data into two parts, and then feed into Bus 2 and Bus
3 accordingly (see Fig. 3). For the renewable, we feed Bus
3 with wind data for the same time period. As load data

TABLE II
LOCATIONS OF GENERATORS

Generation Bus Amount and Types of Generators

Bus 1 2 Type-A, 2 Type-D
Bus 2 1 Type-B, 2 Type-D

Bus 13 2 Type-B, 2 Type-C
Bus 22 2 Type-B, 2 Type-C, 2 Type-D
Bus 23 1 Type-C, 2 Type-D
Bus 27 4 Type-D

Fig. 3. Load data.

is generally more predictable than wind data in the scale of
ISO operation, we assume that the load is perfectly known
at the RAC stage, and the uncertainty is entirely from wind
availability. The uncertainty set is modeled by (1) and (2),
where the uncertainty parameters are derived from Elia’s
day-ahead prediction data. Specifically, the wind uncertainty
bounds are shown in Fig. 4. Our data for transmission line
limits are originally from Matpower 5.1 IEEE 30-bus case file
[14]. In order to fit in the scale of renewable and load data
(i.e., that of an entire ISO), we increase the limit for each
transmission line by 50 times.

In the rest of the section, we conduct our numerical study on
two scenarios: one with renewable curtailment and the other
without. As system safety is our top concern, we compare our

Fig. 4. The uncertainty bounds for wind.



(a) (b) (c)

Fig. 5. (a) The minimum storage size comparison, without renewable curtailment. (b) Renewable utilization levels with curtailment under the affine policy
[9]. (c) The fraction of renewable uncertainty sent to storage unit is low under the affine policy [9].

approach with the state-of-art affine policy from [9].
1) When Renewable Curtailment is not Allowed: As men-

tioned earlier, curtailment of renewable energy wastes natural
resources and degrades system economy. Thus, in this section,
we assume that renewable curtailment is not allowed. We then
use the proposed method to calculate the minimum storage
capacity needed so that FV GSP (∅) 6= ∅. We also modified
the formulation of [9] to disallow renewable curtailment, and
find the minimum storage capacity so that there exists an affine
policy that satisfies all robust constraints. Fig. 5a compares the
minimum storage size needed to ensure reliable grid operations
with varying time horizons. For the affine policy [9], we
clearly see a drastic increase in storage size as the operation
horizon increases. While the storage size needed for VGSP
algorithm is rather stable. This result is consistent with our
previous discussion (see Section III-C) that storage is better
utilized when paired with generators.

2) When Renewable Curtailment is Allowed: When renew-
able curtailment is allowed, the storage need of the affine
policy in [9] will decrease. However, this reduction is usually
at the cost of significant renewable curtailment. To illustrate
this, we set the storage capacity on Bus 3 to be 1250MWh,
which is sufficient for reliable grid operations under our
proposed VGSP algorithm. We then simulate the affine policy
of [9] with renewable curtailment.

TABLE III
TOTAL DISPATCH FUEL COST VS RENEWABLE SCALE

Renewable Scale 0.5 0.8 1
Affine($) 853,304 798,373 760,119
VGSP($) 827,494 762,156 723,128
Savings 3.02% 4.54% 4.86%

Fig. 5b shows the renewable utilization level for each time
slots under two possible trajectories of renewable realization:
one where renewable stays at the upper bound and the other
where renewable stays at the lower bound. We can clearly
see that, if renewable realization is at its upper bound, the
renewable utilization is about 60% most of the time, while all
renewable can be utilized if the renewable realization is at the

lower bound. This observation suggests that the affine policy in
[9] essentially reduces the renewable uncertainty by curtailing
renewable when the supply is high. While this curtailment
enhances grid reliability, it reduces the utilization level of
renewable. As we explained in Section III, this problem will
likely be more severe when the time-horizon is long. This
observation is further confirmed in Fig. 5c, where we show the
fraction of the uncertain part of renewable output that is sent
to storage according to the affine policy in [9]. This fraction is
close to zero for most time-slots, indicating that the storage is
not utilized effectively to overcome renewable uncertainty. In
contrast, at the same storage level, our proposed approach can
ensure grid reliability with no curtailment.Finally, Table III
show that, even with a simple economy dispatch algorithm,
our proposed VGSP algorithm leads to lower fuel costs.
The economy dispatch algorithm picks a operation point
(P(t),Q(t)) that minimizes the fuel-cost in current operating
interval (no look-ahead window is implemented) while satisfy-
ing all the robust constraints specified by our proposed VGSP
algorithm (see Section IV-5) or the affine policy in [9]. For the
affine policy in [9], day-ahead policy parameters (w,W) are
computed based on renewable uncertainty in Fig. 4. In real-
time dispatch, the affine policy is guided by the day-ahead
computed parameters.

VI. CONCLUSION

We study robust online multi-stage strategies under high
renewable uncertainty for power systems with both gener-
ators and storage units. For a single-bus system with one
generator-storage pair, we characterize necessary conditions
and sufficient conditions of “safe dispatch set,” which are tight
under certain circumstances. For the more general multi-bus
scenario, we develop a computationally-efficient approach to
obtain a proper subset of the exact safe dispatch set using the
idea of VGSP pairing and demand splitting. Our numerical
study shows that the proposed VGSP algorithm outperforms
the state-of-the-art affine policy in [9]. For future work, we
will extend the approach to more general system settings, e.g.,
with time-varying ramping limits. Further, we will study how



to directly account for economy in the online decisions for
both unit-commitment and economic dispatch.
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APPENDIX A
PROOF OF LEMMA 4

We first prove (24), and (25) can be shown similarly. We can
prove the lemma by contradiction. Let ε > 0. We will show
that there exists T0 such that when T > t + T0, the system
cannot be safe. Towards this end, suppose that the storage size
is strictly less than RHS of (24), i.e.,

Q̂max
s <

Gap(t)2

2

( 1

Rg − β
− 1

∆− β
)
− ε. (40)

Let the current net-demand be D(t) = Dmin(t). Let us
consider a possible net-demand sequence that increases from
Dmin(t) to meet the net-demand upper bound at the fastest
rate ∆. As shown in Fig. 1c, it takes Ttop = Gap(t)

Rg−β for
the generator to ramp from Dmin(t) up to the demand upper
bound. Notice that the term Q∗ = Gap(t)2

2

(
1

Rg−β −
1

∆−β
)

is
the storage size needed if the generator operates at Dmin(t).
Now, for the storage size specified in (40), there exists δε such
that δε

2Gap(t)−δε
2(Rg−β) = ε. Then, the generator g has to operate

at Pg(t) ≥ Dmin(t) + δε so that the area enclosed by the
line with slope ∆ and the line with slope Rg in Fig. 1c is
no greater than the RHS of (40). Now, denote the shortest
time for the generator to ramp up from Pg(t) = Dmin(t) + δε
to net-demand upper bound as T̂top. Then, we have T̂top =
Gap(t)−δε
Rg−β . Note that, under linear and symmetric net-demand

bounds, Dmax(t′) ≥ Dmax(t) and Gap(t′) ≥ Gap(t),∀t′ > t.
Thus, as long as T > t′ + T̂top, we must also have

Pg(t
′) ≥ Dmin(t) + δε, t

′ > t.

On the other hand, D(t′) = Dmin(t), t′ > t is also
a possible future demand sequence. As the generator must
operate at Pg(t′) ≥ Dmin(t)+δε, the storage status will always
be charging if D(t′) = Dmin(t) for all t′ > t. Thus, the storage
size in (40) can at most operate for a period of length

Tc =
Q̂max
s

δε
<

Gap(t)3

2ε(Rg − β)
(

1

Rg − β
− 1

∆− β
).

As a result, for T0 > Tc + Ttop, the system will be unsafe,
which contradicts with our hypothesis. Thus, we have proved
(24), i.e., the first part of lemma. As shown in Fig. 1c, (25)
follows from (24).
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By the flat-top/flat-bottom assumption, the set h(D(1 :
t), Qs(t− 1)), and thus F ′ must be non-empty. Suppose that
a vector (Pg(t), Qs(t)) is chosen from F ′. It follows from the
equality Q(t) = P (t)+Q(t−1)−D(t) that any decision pair
(Pg(t), Qs(t)) can balance the net-demand D(t) at time t. We
next show the reliability for all future t′ > t by constructing
a causal real-time dispatch algorithm π that is robust given
D(1 : t). Consider the algorithm π as follows.

Algorithm π: At any time t′ > t, first pick any dispatch level
for the generator inside the set P (t′) ∈ h(D(1 : t′), Q(t′ −
1))
⋂
C(P (t′ − 1)), and then determine the storage dispatch

decision according to Q(t′) = P (t′)+Q(t′−1)−D(t′). Here,
the set h(D(1 : t′), Q(t′ − 1)) is defined in the same way as
in (26), and C(P (t′−1)) is the possible range of the dispatch
level that can be reached by the generator given the dispatch
level in the previous time slot, i.e.

C(P (t′ − 1)) =
[
P (t′ − 1)−Rg, P (t′ − 1) +Rg

]
. (41)

In other words, Algorithm π cannot just pick any P (t′) ∈
h(D(1 : t′), Q(t′−1)), but P (t′) must also be reachable from
the previous level P (t′ − 1). According to the definition of
Algorithm π, as long as we can show that h(D(1 : t′), Q(t′−
1))
⋂
C(P (t′ − 1)) is always non-empty for ∀t′ > t, and the

storage charing/discharging power Φ(t′) = Q(t′)−Q(t′ − 1)
is always in the range of [−Φs,Φs], Algorithm π will balance
the demand D(t′) for all t′ > t, and thus guarantee the safety
of the system. Hence, we prove the above algorithm is robust
given D(1 : t) and P(t) based on the following claims:

C1. h(D(1 : t′), Q(t′ − 1)) 6= ∅,∀t′ ≥ t;
C2. −Φs ≤ Q(t′)−Q(t′− 1) ≤ Φs, and Q(t′) ∈ [0, Qmax];
C3. h(D(1 : t′), Q(t′ − 1))

⋂
C(P (t′ − 1)) 6= ∅,∀t′ > t.

To see why C1-C3 is sufficient , note that C1 and C2 guarantee
the supply-demand balance constraint (7), while C3 ensures
that the generator ramping constraints (4) are obeyed.



A. Proof of Claim C1

Based on (26), we can check the non-emptiness of h(·, ·)
by comparing the interval boundaries. Thus, it is sufficient to
show that the following inequalities hold:

i) ξmin
t1 (D(1 : t′), Q(t′ − 1)) ≤ ξmax

t2 (D(1 : t′), Q(t′ −
1)), for ∀t1, t2 ≥ t′

ii) ξmin
t1 (D(1 : t′), Q(t′ − 1)) ≤ γmax

t2 (D(1 : t′)),∀t1 ≥ t′;
iii) ξmax

t2 (D(1 : t′), Q(t′ − 1)) ≥ γmin
t1 (D(1 : t′)),∀t2 ≥ t′.

1) Proof of i): Recall that maxt1 γ
min
t1 (D(1 : t′), Q(t′−1))

and mint2 γ
max
t2 (D(1 : t′), Q(t′ − 1)) are the left and right

boundaries, respectively, of the “leaf-region” when Q = Q(t′−
1). Thus, (i) follows if we can find P such that (P,Q(t′−1))
belongs to the “leaf-region”. This existence follows from the
flat-top/flat-bottom conditions, i.e., (26) holds for Qs(t−1) =
Qmax
s and Qs(t−1) = 0, and the fact that the leaf-region is a

convex set. Specifically, by the flat-top condition, there exists
Pfull such that

max
t1

ξmin
t1 (D(1 : t′), Qmax) ≤ Pfull ≤ min

t2
ξmax
t2 (D(1 : t′), Qmax).

Similarly, from the flat-bottom condition, there exist Pempty

such that

max
t1

ξmin
t1 (D(1 : t′), 0) ≤ Pempty ≤ min

t2
ξmax
t2 (D(1 : t′), 0).

Let α = Q(t′−1)
Qmax . Note that 0 ≤ α ≤ 1. Let P = αPfull +

(1− α)Pempty). Then (P,Q(t′ − 1)) must also belong to the
convex leaf-region. Property (i) then follows.

2) Proof of ii) and iii): As the “cropped leaf-region” is
flat-top and flat-bottom, the following inequalities will hold:

max
t1

ξmin
t1 (D(1 : t′), 0) ≤ min

t2
γmax
t2 (D(1 : t′)),

min
t2

ξmax
t2 (D(1 : t′), Qmax) ≥ max

t1
γmin
t1 (D(1 : t′)).

From (20), it implies that, for ∀Q(t′ − 1) ∈ [0, Qmax],

max
t1

ξmin
t1 (D(1 : t′), Q(t′ − 1)) ≤ max

t1
ξmin
t1 (D(1 : t′), 0)

≤ min
t2

γmax
t2 (D(1 : t′)),

which is precisely ii).
Similarly, iii) can be shown by

min
t2

ξmax
t2 (D(1 : t′), Q(t′ − 1)) ≥ min

t2
ξmax
t2 (D(1 : t′), Qmax)

≥ max
t1

γmin
t1 (D(1 : t′)).

B. Proof of Claim C2

As mentioned above, under storage power limit Φs, the
generator dispatch level at t′ has to satisfy

max
t1

γmin
t1 (D(1 : t′)) ≤ P (t′) ≤ min

ts
γmax
t2 (D(1 : t′)).

From the expression of γmin
t1 (·) and γmax

t2 (·), when t1 = t2 =
t′, the above inequality implies that,

D(t′)− Φs ≤ P (t′) ≤ D(t′) + Φs,

For time t′, supply-demand has to be balanced by

P (t′) +Q(t′ − 1)−Q(t′) = D(t′).

Thus, the inequalities follows

−Φs ≤ Q(t′ − 1)−Q(t′) ≤ Φs,∀t′ ≥ t.

To see Q(t′) ≤ Qmax, notice that by Pg(t
′) ∈ h(D(1 :

t), Qs(t − 1)), (15) must hold. Thus, the following is true
at time t′,

P (t′) ≤ −Q(t′ − 1) +Qmax +D(t′)

We then have

Q(t′) = P (t′) +Q(t′ − 1)−D(t′)

≤ Qmax.

Similarly, (20) implies that Q(t′) ≥ 0, and Claim C2 follows.

C. Proof of Claim C3

In order to show that

h(D(1 : t′), Q(t′ − 1))
⋂
C(P (t′ − 1)) 6= ∅,∀t′ > t, (42)

we use mathematical induction. Define C(P (t − 1)) =
[Pmin
g , Pmax

g ] to be entire power range of the generator. Then,
the induction is described as follows.
• Initial Step: when t′ = t, the intersection is just h(D(1 :
t), Q(t−1)), which is non-empty as shown in Claim C1.
Hence, the statement (42) holds trivially;

• Induction Step: suppose that at time t′ − 1 ≥ t, h(D(1 :
t′−1), Q(t′−2))

⋂
C(P (t′−2)) 6= ∅. We next show that

the statement (42) is also true for time t′, i.e., at time t′,
we need to show that

h(D(1 : t′), Q(t′ − 1))
⋂
C(P (t′ − 1)) 6= ∅.

To show the induction step, we can equivalently prove that

P (t′−1) +Rg ≥ max
{

max
t1

{
ξmin
t1 (D(1 : t′), Q(t′−1))

}
,

γmin
t1 (D(1 : t′ − 1))

}
, (43)

and

P (t′ − 1)−Rg ≤ min
{

min
t2

{
ξmax
t2 (D(1 : t′), Q(t′ − 1))

}
,

γmax
t2 (D(1 : t′ − 1))

}
. (44)

Once we show that the above two inequalities hold for any
P (t′ − 1) ∈ h(D(1 : t′ − 1), Q(t′ − 2)), we can guarantee
that, given decision P (t′ − 1), the generator is able to ramp
to some P (t′) ∈ h(D(1 : t′), Q(t′ − 1)). Here, we only focus
on proving (43). Inequality (44) can be proved in similar way.
Hence, it is sufficient to show that

max
{

max
t1≥t′−1

{
ξmin
t1 (D(1 : t′−1), Q(t′−2))

}
, γmin
t1 (D(t′−1))

}
+Rg ≥ max

{
max
t1≥t′

{
ξmin
t1 (D(1 : t′), Q(t′−1))

}
, γmin
t1 (D(1 : t′))

}
.

(45)



To prove (45), notice that we can compare ξmin
t1 (·) term and

γmin
t1 (·) term separately. Hence, it is sufficient to show that

max
t1≥t′

{
ξmin
t1 (D(1 : t′ − 1), Q(t′ − 2))

}
+Rg

≥ max
t1≥t′

{
ξmin
t1 (D(1 : t′), Q(t′ − 1))

}
, (46)

and

max
t1≥t′

{
γmin
t1 (D(1 : t′−1)

}
+Rg ≥ max

t1≥t′
γmin
t1 (D(1 : t′)).

(47)

We first prove (46). For ∀t1 ≤ t′, it suffices to prove

P (t′ − 1) +Rg ≥ ξmin
t1 (D(1 : t′), Q(t′ − 1)), (48)

where

P (t′ − 1) ≥ ξmin
t1 (D(1 : t′ − 1), Q(t′ − 2)). (49)

Multiplying both sides by (t1 − t′ + 1), (48) is equivalent to

t1∑
τ=t′

(P (t′ − 1) +Rg)

≥ −
t1∑
τ=t′

(τ − t′)Rg −Q(t′ − 1) +

t1∑
τ=t′

max
D(τ)∈Dτ|D(1:t′)

D(τ),

which is in turn equivalent to

t1∑
τ=t′

[
(P (t′ − 1) +R) + (τ − t′)R

]
+Q(t′ − 1)

=

t1∑
τ=t′

[
P (t′ − 1) + (τ − t′)R

]
+Q(t′ − 1)

≥
t1∑
τ=t′

max
D(τ)∈Dτ|D(1:t′)

D(τ).

(50)

Similarly, (49) is equivalent as

t1∑
τ=t′−1

[
P (t′− 1) + (τ − t′+ 1)R

]
+Q(t′− 2)−D(t′− 1)

≥
t1∑

τ=t′−1

max
D(τ)∈Dτ|D(1:t′−1)

D(τ). (51)

As Q(t′ − 1) = P (t′ − 1) +Q(t′ − 2)−D(t′ − 1), we have

LHS of (50) =

t1∑
τ=t′

[
P (t′ − 1) + (τ − t′ + 1)R

]
+ P (t′ − 1) +Q(t′ − 2)−D(t′ − 1)

=

t1∑
τ=t′−1

[
P (t′ − 1) + (τ − t′ + 1)R

]
+Q(t′ − 2)−D(t′ − 1)

≥
t1∑

τ=t′−1

max
D(τ)∈Dτ|D(1:t′−1)

D(τ)−D(t′ − 1)

(Using (51))

≥
t1∑

τ=t′−1

max
D(τ)∈Dτ|D(1:t′)

D(τ)−D(t′ − 1)

≥
t1∑
τ=t′

max
D(τ)∈Dτ|D(1:t′)

D(τ),

where the second-to-last inequality holds because the uncer-
tainty of D(τ) reduces as time evolves from t′ − 1 to t′, i.e.,
Dτ |D(1:t′) ⊂ Dτ |D(1:t′−1). Thus we have proved (50), which
implies (46).

The remaining inequality (47) can be shown as follows, for
∀t1 ≥ t′,

γmin
t1 (D(1 : t′))

= max
D(t′)∈Dt′|D(1:t)

{D(t′)} − (t1 − t′)Rg − Φs

≤ max
D(t1)∈Dt1|D(1:t′−1)

{D(t′)} − (t1 − (t′ − 1))Rg − Φs +Rg

= γmin
t1 (D(1 : t′ − 1)) +Rg.

Thus, we have proved (43), and (44) can be shown in similar
way. By induction, we have proved Claim C3, which com-
pletes the entire proof.
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We can prove the theorem in the following two steps:
i) the original uncropped “leaf-regions” given by (20) and

(21) for every D(t) is both flat-top and flat-bottom;
ii) the “cropped leaf-region” cut by (22) and (23) will retain

the flat-top/flat-bottom property.
The results of Lemma 8 and Lemma 9 precisely show these
two steps. Once we prove the lemmas, the correctness of the
theorem follows. Next, we proceed to prove the lemmas.

Lemma 8. Given the uncertainty set D with symmetric bounds
(parameterized by β), the uncropped “leaf-region” for every
D(t) is “flat-top” and “flat-bottom” if the storage size satisfies
the minimum requirement

Qmax
s ≥ Gap(t)2

2

( 1

Rg − β
− 1

∆− β
)
. (52)

.



Fig. 6. An illustration of the movement of A and B according to net-demand
increase δ.

Proof. Suppose the bounds of net-demand Dmax(·) and
Dmin(·) are changing at rate β and −β, respectively. We first
prove “flat-top”, and the “flat-bottom” part can be shown easily
by symmetric argument.

Flat-top proof: Given the uncertainty set D and generator
ramping speed Rg , the “leaf-region” at time t′ is determined by
D(t′) ∈ Dt′|D(1:t) through constraints (18) and (19). Thus the
“flat-top” statement can be proved by showing the following:

i) The “leaf-region” for D(t′) = min{Dt′|D(1:t)} is “flat-
top”;

ii) If the “leaf-region” regarding any D(t′) ∈ Dt′|D(1:t) is
“flat-top”, then with arbitrarily small increase δ in net-
demand, the “leaf-region” for (D(t′) + δ) is “flat-top”.

One can easily see that i) is true using the interpretation
of curves from condition (18) and (19) when the minimum
storage requirement in (52) is met. As mentioned before,
every point on red concave curve represents an operation point
where the storage has just enough space to accommodate
decreasing net-demand. Thus, (Dmin(t′),Qmax

s ) will belong to
red concave curve because the future decreasing net-demand
can be met by just ramping down the generator. Also, point
(Dmin(t′),Qmax

s ) will be on or above blue convex curve. Note
that if (52) is met with an equal sign, we get a barely “flat-top”
case where Q(t−1) = Qmax

s line only intersects “leaf-region”
at one point (Dmin(t′),Qmax

s ).
The next proof of ii) is the key component of the theorem.

Suppose that the uncertainty bounds is increasing, i.e. β > 0.
The decreasing-bound case is a symmetric scenario and can be
proved using same approach. As shown in Fig. 1b, let A and B
denote the points where Q(t′ − 1) = Qmax

s line intersects the
red concave curve and blue convex curve, respectively. Since
the “leaf-region” corresponding to D(t′) is flat-top, point A is
to the right of point B. If net-demand increases, both points A
and B will move along the Q(t−1) = Qmax

s line to the right.
In order to establish property ii), it suffices to show that, with
tiny increase δ in net-demand, the speed that A moves to the
right is quicker than the speed of B.

The interpretation of point A is the operation point that the
storage does not require any charge-in space for the future
decreasing demand. As shown in Fig. 6, the point A refers
to an operation point such that the two red triangles have the
same area. Thus the generator power level PA at point A will
satisfy

1

2

(D −Dmin)
2

∆− β
=

1

2

(PA −Dmin)
2

Rg − β
. (53)

To get the rate of change on PA with respect to D, we can
differentiate on both sides and get

dPA
dD

=
D −Dmin

PA −Dmin

Rg − β
∆− β

eqn (53)
=

√
∆− β
Rg − β

Rg − β
∆− β

=

√
Rg − β
∆− β

.

(54)

Now we look at the rate of change of point B. The interpreta-
tion of point B is the operation point that the storage has just
enough energy to support increasing net-demand. In Fig. 6, it
is represented as the area of blue shaded region being equal
to Qmax, i.e.

1

2

(Dmax − PB)
2

Rg − β
=

1

2

(Dmax −D)
2

∆− β
+Qmax. (55)

Similar to (54), we can differentiate on both sides of (55) and
get

dPB
dD

=
Dmax −D
Dmax − PB

Rg − β
∆− β

≤ Rg − β
∆− β

,

(56)

where the last inequality comes from the fact that PB ≤ D,
and thus Dmax−D

Dmax−PB ≤ 1. As 0 ≤ β ≤ R ≤ ∆, we have the
following chain of inequalities:

dPB
dD

≤ Rg − β
∆− β

≤

√
Rg − β
∆− β

=
dPA
dD

,

and the statement ii) is true. The result of the theorem then
follows.

With power limit of the storage, the feasible range within the
“leaf-region” will be cropped to contain only those operation
points with Pg(t) ∈ [maxt1 γ

min
t1 (D(1 : t)),mint2 γ

max
t2 (D(1 :

t))]. However, such cutting still retains the “top&bottom-
flatness” of the “leaf-region”, as we will prove in the following
lemma.

Lemma 9 (Top&bottom Flatness with Storage Power Limit).
Given the uncertainty set D with symmetric bounds (param-
eterized by β), if the uncropped “leaf-region” is always flat-
top/flat-bottom, Qmax

s satisfies (52) and Φs satisfies

Φs ≥ Gap(t)
∆−Rg
∆− β

, (57)



the “cropped leaf-region” due to storage power limit Φs is
still flat-top and flat-bottom.

Proof. We first prove the “flat-top” part, and the “flat-bottom”
statement can be proved in a similar way. Similar to the
proof of Lemma 8, we define point C as (Pc, Q

max
s ), where

PC = maxt1 γ
min
t1 (D(1 : t)). We can then show the lemma by

comparing the rate of change of point A (defined in the proof
of Lemma 8) and that of point C, as the current net-demand
D(t) = D increases. Specifically, to show that the uncropped
“leaf-region” is flat-top, it is sufficient to show that

dPC
dD

≤ dPA
dD

. (58)

As shown in Fig. 6, it takes tC time for demand to increase
from D(t) = D to meet its upper bound, where

tC =
Dmax −D

∆− β
.

By the definition of PC , at time t+ tC , the power limit Φs of
the storage must satisfy

Φs = D − PC + (∆−Rg)tC

= D − PC +
∆−Rg
∆− β

(Dmax −D).

To get the rate of change of PC with respect to D, we can
differentiate on both sides and get

dPC
dD

= 1− ∆−Rg
∆− β

=
Rg − β
∆− β

≤

√
Rg − β
∆− β

(since Rg ≤ ∆, hence Rg−β
∆−β ≤ 1)

=
dPA
dD

. (using (54))

APPENDIX D
TRANSMISSION CONSTRAINTS FOR MULTI-BUS SCENARIO

In the DC power model, the power flow on transmission
line l is a linear combination of the net bus injection on each
bus, i.e.

|fl(t′)| =
∣∣∣∣ Nb∑
b=1

Sl,b

(
Db(t

′)−
∑
g∈Gb

Pg(t
′)−

∑
s∈Sb

Φs(t
′)
)∣∣∣∣ ≤ TLl.

Note that we need to ensure that the above inequality holds for
any splitting of demand to the virtual generator-storage pair.
There are in fact two levels of splitting. To see this, consider
the bus injection on bus b at t′,

Jb(t
′) = Db(t

′)−
∑
g∈Gb

Pg(t
′)−

∑
s∈Sb

Φs(t
′)

= Db(t
′)−

∑
(g,s):g∈Gb

Pĝvg,s(t
′)−

∑
(g,s):s∈Sb

Φŝvg,s(t
′).

(59)

For each V GSPg,s, the following must hold

DV GSPg,s(t
′) = Pĝvg,s(t

′) + Φŝvg,s(t
′). (60)

From (59) and (60), we can see that there are two layers of
splitting happening in the system: 1) the first layer splits net-
demand onto VGSPs, i.e., DV GSPg,s ; and 2) the second layer
splits each VGSP demand onto the virtual generator and the
virtual storage unit, i.e., between Pĝvg,s(t

′) and Φŝvg,s(t
′). Both

of them will affect the bus injection (59).
While the first level of splitting is determined by the linear

function (39), the second level of splitting is determined by
the dispatch decision of each generator-storage pair, and is an
undetermined function. The only thing that we know for the
second level of splitting is that Φŝvg,s(t

′) ≤ Φŝvg,s . Thus, we
seek to ensure that the transmission constraint (8) will hold
for any demand splitting DV GSPg,s(t

′) and Φŝvg,s(t
′) ≤ Φŝvg,s .

Next, we first deal with all possible Φŝvg,s(t
′) ≤ Φŝvg,s .

Theorem 10. One side of the transmission constraint fl(t′) ≤
TLl holds if

∑
b∈B

Sl,b
{
Db(t

′)−
∑

(g,s):g∈Gb

DV GSPg,s(t
′)
}

+ αg,s ≤ TLl,

for all D(1 : t) ∈ D, (61)

where αg,s =
∑

(g,s)

∣∣∣Sl,B(g)−Sl,B(s)

∣∣∣Φŝvg,s , and B(·) returns
the bus index where the generator or storage unit locates.

Proof. Using (59) and (60), the constraint fl(t′) ≤ TLl can
be written as

Nb∑
b=1

Sl,b

(
Db(t

′)−
∑
g∈Gb

Pg(t
′)−

∑
s∈Sb

Φs(t
′)
)

=

Nb∑
b=1

Sl,b

(
Db(t

′)−
∑

(g,s):g∈Gb

Pĝvg,s(t
′)−

∑
(g,s):s∈Sb

Φŝvg,s(t
′)
)

=

Nb∑
b=1

Sl,b

[
Db(t

′)−
∑

(g,s):g∈Gb

(
DV GSPg,s(t

′)− Φŝvg,s(t
′)
)

−
∑

(g,s):s∈Sb

Φŝvg,s(t
′)

]

=

Nb∑
b=1

Sl,b

(
Db(t

′)−
∑

(g,s):g∈Gb

DV GSPg,s(t
′)
)

+
∑
b∈B

Sl,b
∑

(g,s):g∈Gb

Φŝvg,s(t
′)−

∑
b∈B

Sl,b
∑

(g,s):s∈Sb

Φŝvg,s(t
′)

=

Nb∑
b=1

Sl,b

(
Db(t

′)−
∑

(g,s):g∈Gb

DV GSPg,s(t
′)
)

+
∑
(g,s)

[
Sl,B(g) − Sl,B(s)

]
Φŝvg,s(t

′) ≤ TLl.

(62)



Note that only the second summation term depends on Φŝvg,s .
Since Φŝvg,s(t

′) ≤ Φŝvg,s , it is sufficient if we can ensure that

Nb∑
b=1

Sl,b

(
Db(t

′)−
∑

(g,s):g∈Gb

DV GSPg,s(t
′)
)

+
∑
(g,s)

∣∣Sl,B(g) − Sl,B(s)

∣∣Φŝvg,s ≤ TLl,
which is exactly (61). Finally, (61) must hold for all D(1 :
t) ∈ D. The result of the theorem then follows.

Theorem 11. The other side of the transmission constraint,
i.e.,

fl(t
′) ≥ −TLl,

holds if

Nb∑
b=1

Sl,b

(
Db(t

′)−
∑

(g,s):g∈Gb

DV GSPg,s(t
′)
)
−αg,s ≥ −TLl,

for all D(1 : t) ∈ D, (63)

where αg,s and B(·) are defined in the same way as in Theorem
10.

Proof. Theorem 11 can be shown in a similar way as Theorem
10. Hence, here the proof is omitted for concision.

Then, we still need to check that (61) and (63) holds
for all possible D(t′) ∈ Dt′|D(1:t). We note that, for each
D(1 : t), (61) and (63) are convex with respect to the
virtualization and demand splitting parameters A(t). Hence,
the intersection over all D(1 : t) is also a convex constraint,
although in a more complex form. To simplify, note that
if there is only one uncertainty source in the system, i.e.,
D(t′) ∈ [Dmin(t′), Dmax(t′)], the conditions can be verified
by checking the extreme case when D(t′) = Dmin(t′) or
D(t′) = Dmax(t′). If there are more than one renewable
sources, the number of extreme cases become exponential in
the number of renewable sources. Still, we can use a duality
based approach in [8] to dualize the conditions in (61) and
(63). This approach replaces each transmission constraint by
a polynomial number of equivalent dualized constraints. See
Section 4.1 in [8] for further details.

APPENDIX E
CONVEXIFICATION OF CONDITIONS IN THEOREM 7

The conditions in Theorem 7, i.e., equations (52) and (57),
are not convex constraints. To see this, we can rewrite (52) as

Qmax
s ≥ Gap(t)2

2(Rg − β)
− Gap(t)2

2(∆− β)
. (64)

Notice that each term on the RHS of the above equation is
convex separately, as it is in a quadratic-over-linear form.
However, the difference of two convex terms is usually not
convex. Instead, we can use the following steps to obtain a
sufficient condition to (52) that is convex. Note that

Gap(t)2

2

( 1

Rg − β
− 1

∆− β
)

=
1

2

Gap(t)2

Rg − β
∆−Rg
∆− β

.

Thus, (64) holds when

∆−Rg ≤ C(∆− β), (65)

and
Qmax ≥ 1

2

Gap(t)2

Rg − β
C. (66)

Note that by our formulation, ∆ ≥ Rg ≥ β. Thus, it implies
that the constant C satisfies C ∈ [0, 1]. Now, the conditions
(65) and (66) are convex constraints for any given constant C.
Then, we can iterate over C to improve the gap between (52)
and its convex relaxation (65)-(66). The constraint (57) can be
treated similarly.


