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Abstract—We investigate competitive online algorithms for
online convex optimization (OCO) problems with linear in-stage
costs, switching costs and ramp constraints. While OCO problems
have been extensively studied in the literature, there are limited
results on the corresponding online solutions that can attain small
competitive ratios. We first develop a powerful computational
framework that can compute an optimized competitive ratio
based on the class of affine policies. Our computational frame-
work can handle a fairly general class of costs and constraints.
Compared to other competitive results in the literature, a key
feature of our proposed approach is that it can handle scenarios
where infeasibility may arise due to hard feasibility constraints.
Second, we design a robustification procedure to produce an
online algorithm that can attain good performance for both
average-case and worst-case inputs. We conduct a case study
on Network Functions Virtualization (NFV) orchestration and
scaling to demonstrate the effectiveness of our proposed methods.

I. INTRODUCTION

We study online convex optimization (OCO) with switching
costs and ramp constraints, which has become an important
tool for modeling many classes of practical decision problems
with uncertainty, including machine learning [1], network-
ing [2], cloud computing [3] and cyber-physical systems [4].
In the type of OCO problem that we are interested in, at
each time t, the environment (or adversary) reveals the input
A(t). The decision maker then must choose the decision X(t)
from a convex set and incurs a linear cost Ct(X(t), A(t)).
Additionally, there is a switching cost that penalizes the change
|X(t) − X(t − 1)| for each time t and/or a ramp constraint
on the magnitude of the change X(t)−X(t− 1). The goal is
to minimize the overall cost, which is non-linear (and convex)
due to the switching cost. Further, since future inputs, i.e.,
A(t + 1), A(t + 2), ..., A(T ), are not revealed at time t, this
problem becomes an online decision problem. Clearly, this
formulation is general and can model many important online
decision problems. For example, in the Network Functions
Virtualization (NFV) orchestration and scaling problem [5], a
data center operator must decide where to instantiate Virtual-
ized Network Functions (VNFs) on virtual machines (VMs)
or containers such as Docker [6] running on servers in order
to process incoming traffic. Here, A(t) represents the traffic
load, which can be uncertain before time t; X(t) represents

the mapping from VNFs to VMs or containers; the linear cost
Ct(X(t), A(t)) represents VM/container cost and/or distance
cost (e.g., latency) [7]. Finally, the switching cost captures
the overhead for migrating demand/state among different VNF
instances and the cost of instantiating and tearing down
VNF instances. As another example, in the real-time dispatch
problem in power systems [8], the system operator needs
to decide how to adjust the power level of the generators
to balance the electricity demand. Here, A(t) represents the
uncertain demand and renewable supply revealed on different
buses at time t; X(t) represents the dispatch decisions of
the generators; the linear cost Ct(X(t), A(t)) represents the
generation cost of the dispatch decisions. Finally, generators
have ramp constraints so that their power output level can at
most change by a given value each time.

In this paper, we aim to develop online algorithms with
low competitive ratios for this type of OCO problem. Here,
the competitive ratio is the maximum ratio of the cost of
an online algorithm to that of the offline optimal solution
(the latter assuming that all inputs are known in advance),
taken over all possible input sequences. Despite the importance
of OCO, there are limited results in the literature on the
corresponding competitive online algorithms. Most studies of
OCO focus on the regret [1], [9], [10], which is the difference
between the cost of the online algorithm and the cost of
the optimal static decision chosen in advance. Such a static
decision, however, does not respond to inputs dynamically, and
thus is not a useful reference for comparison in application
scenarios such as NFV and power systems. Among those
that study competitive performance against the dynamic offline
optimal solution, the references [11] and [12] show that the
competitive difference of their proposed algorithms are upper
bounded, which implies that the competitive ratio may also
be upper bounded under certain conditions. However, they do
not provide a way to optimize the competitive ratio, and thus
the resulting competitive ratio may still be fairly large. To the
best of our knowledge, there is no systematic framework to
optimize the competitive ratio of online algorithms for the type
of OCO problems that this paper studies.

To address this open question, our first contribution (in
Sec. III) is to develop a general and tractable framework that



allow us to find online algorithms with optimized competitive
ratios for this type of OCO problem. Capitalizing on the ideas
from robust optimization [13], we consider the case where
the future uncertain inputs, A(1), A(2), ..., A(T ), are from an
uncertainty set U . In practice, such an uncertainty set U can be
obtained from imprecise forecasts and historical data [8], [14].
Yet, searching among all possible online decisions appears
to be intractable. Instead, in order to obtain simpler policies
with reasonably good performance, we focus on affine policies,
where the decision X(t) at time t is an affine function of the
input A(t), i.e., X(t) = η(t) + H(t)A(t). Thus, designing
an online algorithm boils down to designing the parameters
η(t) and H(t) (which depends only on the uncertainty set U
but not the actual inputs). Through this restriction to affine
policies, we can formulate the problem of optimizing the
competitive ratio as a minmax optimization problem. We
call the resulting online algorithm the Robust Affine Policy
(RAP). Since this optimization problem is still non-convex, we
propose approximations that effectively convexify the problem
and make it tractable. In this way, our proposed computational
framework can be used to design online algorithms with
optimized competitive ratios for OCO problems with fairly
complex structures and constraints. We note that the idea of
affine policies has been used in adjustable robust optimiza-
tion [15] to minimize the worst-case cost. In contrast, our
approach applies affine policies to minimize the competitive
ratio. This approach has not been studied before and gives rise
to new technical difficulties as we discuss in Sec. III.

A key feature of our proposed approach is that it can
gracefully handle situations where infeasibility may arise due
to hard feasibility constraints in the OCO problem. By “hard
feasibility constraints,” we refer to situations where, after the
input A(t) is revealed at time t, no feasible decision X(t)
can be found. This situation usually arises when there are
both ramp constraints and demand-supply balance constraints.
Specifically, due to the ramp constraint, the decision X(t) at
time t cannot differ too much from X(t − 1). Thus, when
the demand is too high at time t, but X(t − 1) was not
properly chosen, there may not exist any X(t) that can meet
the demand. Such a problem can occur in both power systems
and NFV. In contrast, the studies in [11] and [12] do not
consider such hard feasibility constraints because they do not
simultaneously enforce ramp constraints and demand-supply
balance constraints. As a result, their competitive guarantees
would not hold when there were hard feasibility constraints. To
the best of our knowledge, our proposed approach is the first
to give online algorithms with optimized competitive ratios
with or without such constraints.

Our second key contribution (in Sec. IV) is to resolve
a dilemma between the worst-case and average-case perfor-
mance. Note that while our proposed Robust Affine Policy
(RAP) is optimized for the worst-case competitive ratio, it may
be too conservative and thus incur high costs for average-case
inputs. Other heuristic algorithms (such as RHC, i.e., Receding
Horizon Control [12], discussed in Sec. V) may perform well
for the average case, but produce inferior competitive ratios

for worst-case scenarios. Thus, an open question is whether
one can get the best of both worlds. We address this dilemma
by providing a “robustification” procedure. Given any online
algorithm π0 that is perceived to have good average-case per-
formance, we intelligently combine π0 with RAP to produce
a new online algorithm with the same worst-case competitive
ratio as RAP while still attaining comparable average-case
performance to π0. We note that this “robustification” idea
was first introduced in our earlier work [14]. However, our
OCO problem formulation is much more general, requiring
a new robustification procedure to be developed. We use
Network Functions Virtualization (NFV) [5] as a case study
and simulate the robustified version of RHC. Our simulation
results in Sec. V show that the robustified-RHC algorithm
performs close to RHC when the uncertainty is low. When the
uncertainty is high, the robustified-RHC algorithm performs
significantly better, especially for worst-case inputs.

As discussed above, our work is related to robust op-
timization [13], [15], but differs in that we focus on a
different objective of competitive ratios rather than worst-
case costs. Our NFV case study is also related to the lit-
erature of NFV orchestration and scaling. However, most
existing studies either assume a static model [7], [16]–[18],
or provide heuristic online algorithms without any perfor-
mance guarantees [19], [20]. The references [21] and [22]
study online NFV orchestration and scaling, although they
do not consider the distance cost (e.g., latency), which is an
important cost component, especially when optimizing over
multiple data centers. More recently, the reference [23] uses
the regularization method to develop online algorithms for
NFV orchestration and scaling over multiple data-centers. One
of the key differences of our work is that we utilize partial
future knowledge, i.e., in the form of an uncertainty set U ,
to obtain potentially smaller competitive ratios. In contrast,
it is unclear how to generalize the approaches in [21]–[23]
to utilize such partial future knowledge. Further, in deriving
their competitive ratios, the studies in [21] and [23] do not
consider constraints on the number of servers available or
ramp constraints on the rerouting decisions. NFV orchestration
and scaling is also related to the FL (facility location) [24]
and GAP (generalized assignment problem) [25], for which
competitive online algorithms have been developed. However,
in NFV, the demand fluctuates (both increases and decreases)
over time in both the online and offline settings. In contrast,
online FL and GAP problems usually assume that new demand
is sequentially added over time towards a final offline setting
where all demand is present. Further, the cost constraints
of OCO problems are usually more general, e.g., involving
switching costs and ramp constraints. Thus, it is unclear how
to apply the competitive results from this literature to OCO
and online NFV orchestration and scaling problems.

II. PROBLEM FORMULATION

We now present our model for online convex optimization
(OCO) problems with linear in-stage costs, switching costs
and ramp constraints.



A. OCO with Linear In-Stage Costs

In the OCO problem that we consider, there are T
rounds of decisions, t = 1, 2, ..., T . There is a cost-function
Ct(X(t), A(t)) for each time t, which is a function of the input
A(t) ∈ RM (e.g., traffic load) revealed by the environment at
time t, and the action X(t) ∈ RN taken by the decision maker
(e.g., system administrator) at time t. Throughout this paper,
we assume that Ct(·, ·) is a linear function of (X(t), A(t)).
Further, there is a switching cost β|X(t) − X(t − 1)| that
penalizes the change of decision at time t (hence the transpose
of β is a given vector in RN ). The action X(t) must be
chosen to satisfy certain constraints. We assume that one set
of constraints Xt(A(t)), which may depend on the input A(t),
can be written as a linear inequality in (X(t), A(t)) i.e.,

D1X(t) +D2A(t) ≤ 0, ∀ t, (1)

where the transposes of D1 and D2 are in RN and RM ,
respectively. (As in Real Analysis, we use “∀” for “for all”,
and use “∃” for “there exists”.) Further, there may be ramp
constraints

|Xn(t)−Xn(t− 1)| ≤ ∆n
X , ∀ n, t, (2)

where Xn is the n-th element of X . As we will illustrate with
a case study, this construction can model several types of costs
and constraints. Let A(t1:t2) denote the input sequence A(t)
from t = t1 to t2. Define X(t1:t2) similarly.

At each time t, the environment reveals A(t) first. Then the
decision maker picks the action X(t) and incurs the in-stage
cost Ct(X(t), A(t)) and the switching cost β|X(t)−X(t−1)|.
Note that although Ct(·, ·) is linear, the switching cost still
makes the whole problem convex. Further, this problem is an
online problem because the decision maker does not know the
future values of A(t+ 1), A(t+ 2), ..., A(T ) when she makes
the decision X(t).

As we discussed in the introduction, the combination of
the linear constraint (1) and the ramp constraint (2) may lead
to infeasibility. If X(t − 1) is not properly chosen, the ramp
constraint limits how far X(t) can deviate from X(t − 1).
Then, there may not exist a feasible point that simultaneously
satisfies (1) and (2). For example, this infeasibility can occur
when the demand increases suddenly and the traffic cannot
be rerouted as quickly to serve the demand. Thus, a key
contribution of our work is to be able to deal with cases with
or without such “hard infeasibility constraints.”

B. Uncertainty Set

Recall that the input A(t) is unknown to the online algo-
rithm until time t. Intuitively, if A(t) can vary in arbitrary
ways, one may have to take the most conservative decisions
to avoid future infeasibility. Thus, in order to make the online
decision problem practically more interesting, we introduce
an uncertainty set to model the set of uncertain inputs that
we care about. Specifically, we assume that the trajectory
A(1), A(2), ..., A(T ) chosen by the environment must be from
an uncertainty set U . We expect that this uncertainty set U can

be constructed from prediction and historical data [8], [14].
Next, we describe three ways (that can be used in combination)
to formulate the uncertainty set U .

(i) Day-ahead prediction: Let ADAP(1:T ) denote a predicted
trajectory of A(1:T ). We may assume that the real trajectory
A(1:T ) must be within a neighborhood around ADAP(1:T ),

Amlower(t) ≤ Am(t) ≤ Amupper(t), ∀ m, t, (3)

where the upper/lower bounds are given by

Amupper(t) = (1 + εm(t))×AmDAP(t), ∀ m, t, (4)

Amlower(t) = max{0, (1− εm(t))×AmDAP(t)}, ∀ m, t, (5)

and εm(t) is the uncertainty level for time t.
(ii) Demand changing speed: Often, demand (e.g., traffic

or renewable energy) may not change arbitrarily fast. We can
model such knowledge by imposing

|Am(t)−Am(t− 1)| ≤ ∆m
A , ∀ m, t. (6)

(iii) The different elements of A(t) may not hit the upper
or lower bounds in (3) simultaneously. Thus, we can impose
the following constraint (known as the “budget” constraint in
the robust optimization literature [13, p. 47]),

M∑
m=1

|Am(t)−AmDAP(t)|
εm(t)×AmDAP(t)

≤ Γ, ∀ t. (7)

Clearly, if Γ = 0, the uncertainty set only contains the
day-ahead prediction ADAP(1:T ). Thus, the model becomes
deterministic. As Γ increases, more uncertainty will be taken
into consideration.

The uncertainty set U that we use in this paper is specified
by a combination of the above constraints. We note that
the constraint (6) introduces temporal coupling of the inputs,
which can be used to refine the near-term future uncertainty.
Specifically, at any time t, A(1:t) has already been revealed to
the online algorithm. Thus, the future uncertainty remaining
in the interval [t+ 1, T ] can be written as

UA(1:t) = {A(t+ 1 : T ) | ∃A
′
(1:T ) ∈ U , such that,

A
′
(1:t) = A(1:t), A

′
(t+ 1 : T ) = A(t+ 1 : T )}.

(8)

C. The Performance Metric

As we discussed earlier, the total cost incurred by the
decision maker is given by

C(X(0), X(1:T ), A(1:T )) =

T∑
t=1

{Ct(X(t), A(t))

+ β|X(t)−X(t− 1)|}.
(9)

For an online algorithm π, at each time t the decision X(t)
can only be based on the already-known inputs A(1:t) and
knowledge about the future uncertainty given by (8). Let
Cπ(A(1:T )) be the total cost of algorithm π. We compare
it with an offline solution that is assumed to know the entire
input A(1:T ) ahead of time. We denote the cost of the optimal



offline solution as COPT(A(1:T )), which is the optimal value
of the following optimization problem,

min
X(0:T ):(1),(2)

C(X(0), X(1:T ), A(1:T )). (10)

Then, the competitive ratio of algorithm π, given by

CRπ , max
A(1:T )∈U

Cπ(A(1:T ))

COPT(A(1:T ))
, (11)

is the worst-case ratio between the online cost and the offline
optimal cost, over all possible inputs from the uncertainty set.

We are thus interested in online solutions to OCO with small
competitive ratios. Although the notions of uncertainty sets
and affine policies (used later) are from the robust optimization
literature [13], our objective in (11) is quite different. In the
robust optimization literature, the objective is usually to mini-
mize the worst-case (absolute) cost, i.e., max

A(1:T )∈U
Cπ(A(1:T )).

Our objective of competitive ratio, which is commonly used in
the CS literature, instead focuses on a relative ratio comparing
with the offline optimal solution. This difference leads to new
technical difficulties in the optimization problem. In some way,
competitive ratios can be viewed as less conservative than
robust optimization because we do not only care about the
worst-case cost.

D. A Case Study

We now use the Network Functions Virtualization (NFV)
orchestration and scaling problem [5] as a case study to
illustrate how our model can be used to study practical costs
and constraints. We will also use it in our numerical evaluation
in Sec. V. Nonetheless, the computational framework that we
present later can be used for other problems, such as in power
system operation [8].

We first follow the simplified NFV model in [7] (without
precedence constraints). The network is modeled as a graph
G(V,E). There are S servers, each of capacity Ws occupy-
ing some node in V , s = 1, 2, ..., S. There are L clients,
l = 1, 2, ..., L, each of which generates traffic at some node
in V . Each client requires one or more Virtualized Network
Functions (VNFs), e.g., firewalls, intrusion detection systems,
caches and load balancers. Each VNF is indexed by a positive
integer f in the set F = {1, 2, ..., F}. We use afl (t) to denote
the processing need for function f at time t due to the traffic
generated by client l. Note that we can set afl (t) = 0 if client
l does not need function f .

Decisions and constraints: The NFV system administrator
maps the VNFs to physical servers to serve the incoming
demand. Let yfs (t) denote the size (resource requirements) of
VNF f at server s at time t. Let xfl,s(t) denote the amount of
demand from client l that is routed to server s for processing
of function f at time t. The decision X(t) in our general
OCO model then corresponds to a vector [xfl,s(t), y

f
s (t)]. These

actions must satisfy the following constraints. First, all the
arriving demand needs to be served. Therefore, we must have

S∑
s=1

xfl,s(t) ≥ a
f
l (t), ∀ l, f, t. (12)

Second, when the demand arrives at the server s, the size of
the corresponding functions that are placed on server s must be
able to meet the demand. Assume that each unit-size function
can serve one unit-size demand. Thus, we must satisfy

L∑
l=1

xfl,s(t) ≤ y
f
s (t), ∀ s, f, t. (13)

Third, resources on each server s must be able to support
all functions placed there [26]. Assume that each unit-size
function f needs wfs amount of resources at server s. Thus,
we have

F∑
f=1

yfs (t)wfs ≤Ws, ∀ s, t. (14)

The above constraints form the linear constraint set Xt(A(t)).
In-stage Costs: There are costs for resource consumption of

VNFs, and distance costs for routing the demand of clients,
i.e.,

Φ(X(1:T )) =

T∑
t=1

S∑
s=1

F∑
f=1

pfsy
f
s (t)+

T∑
t=1

L∑
l=1

S∑
s=1

F∑
f=1

dl,sx
f
l,s(t)

(15)
where pfs is the cost of hosting a unit of virtualized function
f on server s, and dl,s is the distance (e.g., latency) cost of
routing a unit of traffic load from client l to server s.

The model so far is similar to [7], which focuses on each
snapshot in time, and assumes perfect knowledge of demand.
In contrast, in this paper we wish to model decisions under
uncertain and dynamic demand. Thus, we use an uncertainty
set U as in Sec. II-B to model demand uncertainty. Note that a
key benefit of NFV is that virtualized functions can be instan-
tiated and torn down on-demand, and service can be moved
across VNF instances as needed. However, such changes
still incur non-negligible overhead. Specifically, because most
VNFs are stateful, rerouting traffic from one VNF instance to
another requires state migration [27]. Further, instantiating and
tearing down VNFs incurs significant overhead. Therefore, we
introduce the following additional costs and constraints.

Ramp Constraints: We may impose ramp constraints on the
changes in routing decisions. If a certain amount of network
bandwidth is reserved for state migration, rerouting cannot
occur too fast. Such a constraint can be written as

|xfl,s(t+ 1)− xfl,s(t)| ≤ ∆f
X,l,s, ∀ l, s, f, t. (16)

Switching/Migration Costs: There is overhead for state
migration and changes in instantiation, i.e.,

Ψ(X(0), X(1:T )) =

T∑
t=1

L∑
l=1

S∑
s=1

F∑
f=1

βf1,l,s|x
f
l,s(t)

− xfl,s(t− 1)|+
T∑
t=1

S∑
s=1

F∑
f=1

βf2,s|yfs (t)− yfs (t− 1)|,

(17)

where βf1,l,s and βf2,s are cost parameters for state migration
in rerouting and for the overhead in instantiating and tearing-
down VNF instances, respectively. (Note that the absolute



values |x| may also be replaced by max{x, 0} and one can
still apply the proposed methodology in this paper.)

Hence, in our online NFV orchestration and scaling prob-
lem, the cost function is the sum of (15) and (17). Note
that our model is more general than [21]–[23] because we
simultaneously consider the distance costs, constraints on the
available server capacity, and the ramp constraints, when we
study the competitive performance.

III. A COMPUTATIONALLY TRACTABLE FRAMEWORK

In this section, we introduce a computationally tractable
framework to attain small competitive ratios for general OCO
problems with linear in-stage costs, switching costs and ramp
constraints. Note that a key benefit for online decisions is
that the decision at time t can be adjusted based on the new
input A(t) just revealed. Thus, they can be more efficient than
classical robust optimization where all decisions must be made
ahead of time. This adjustability is similar to the adjustable
robust optimization [13, p. 355], [15], where some decisions
are made in a “wait-and-see” manner. However, searching
among all possible online decisions is usually an intractable
problem: each action X(t) can be an arbitrary function of the
past A(1:t), and searching over such a functional space is very
difficult when the problem size is large [13, p. 363], [15].
Instead, next we will borrow the idea of affine policies
from [13, p.368] and [15] in order to obtain a computationally
tractable framework.

Specifically, in our proposed robust affine policy (RAP), we
restrict X(t) to be an affine function of A(t), i.e.,

X(t) = η(t) +H(t)A(t), ∀ t, (18)

where η(t) ∈ RN and H(t) ∈ RN×M are determined before
hand. Note that once η(t) and H(t) are determined, the
online decision (18) becomes extremely simple. Instead, the
complexity moves to the pre-calculation of η(t) and H(t)
based on the knowledge of the uncertainty set U .

Given η(t) and H(t), the cost of the online decisions can
be readily calculated as

CRAP(A(1:T )|X(0),η,H) = C(X(0), X(1:T ), A(1:T )),

where X(1:T ) is given by (18). However, the online decisions
must still satisfy both (1) and (2). In other words, we need that

(1), (2) hold for all A(1:T ) ∈ U , given (18). (19)

We can thus formulate the optimization problem for minimiz-
ing the competitive ratio as

min
{X(0),η,H:(19)}

max
A(1:T )∈U

CRAP(A(1:T )|X(0),η,H)

COPT(A(1:T ))
. (20)

Although affine policies have been used in [13, p. 368] and
[15], using a similar approach as in the optimization problem
(20) introduces new technical difficulties. Note that for each
A(1:T ) ∈ U , the ratio CRAP(A(1:T )|X(0),η,H)

COPT(A(1:T )) is convex in η, H
and X(0). Thus, the inner maximization produces a convex
objective in η, H, X(0) for outer minimization. However, it
is unclear how to solve the inner maximization problem itself

because it involves a ratio of convex functions. Next, we will
show step-by-step how to optimize an upper bound of (20) via
a tractable convex optimization problem.

Step-1: Even without considering the ratio, the numera-
tor CRAP(A(1:T )|X(0),η,H) in (20) is convex in A(1:T ).
Maximizing a convex function is in general intractable. We
resolve this issue by introducing a linear upper bound on
CRAP(A(1:T )|X(0),η,H) (see also [28, p. 228]). Specifically,
note that the only non-linearity in CRAP(A(1:T )|X(0),η,H)
is from the switching cost β|X(t) − X(t − 1)| = β|η(t) +
H(t)A(t)− η(t− 1)−H(t− 1)A(t− 1)|. We now introduce
a new variable µ(t) ∈ RN that upper-bounds each element of
this switching cost for all A(1:T ) ∈ U , i.e.,

µ(t) ≥ β|η(t) +H(t)A(t)− η(t− 1)

−H(t− 1)A(t− 1)|, ∀ t > 1

µ(1) ≥ β|η(t) +H(t)A(t)−X(0)|

 ∀A(1:T )
∈U. (21)

Let C̃RAP(A(1:T )|η,H,µ) =
∑T
t=1{Ct(X(t), A(t)) + µ(t)},

where X(t) is given by (18). Then, CRAP(A(1:T )|X(0),η,H)
≤ C̃RAP(A(1:T )|η,H,µ) for all A(1:T ) ∈ U . Hence, we
can obtain an upper bound of (20) by solving the following
optimization problem instead

min
{X(0),η,H,µ:(19),(21)}

max
A(1:T )∈U

C̃RAP(A(1:T )|η,H,µ)

COPT(A(1:T ))
. (22)

Note that the numerator is now a linear function in A(1:T ).
Step-2: The ratio in the inner maximization problem in (22)

is usually not a concave function of A(1:T ). Thus, it is still
not obvious how to maximize the ratio. Using the following
lemma from our earlier work [14], we now show that this
inner maximization problem can be converted to an equivalent
convex problem.

Lemma 1: For fixed B ∈ RM×N , b ∈ RM , c ∈ R1×N and
α ∈ R, suppose that the following conditions are simultane-
ously satisfied:

(a) f(x) is a convex function of x ∈ RN ;
(b) f(x) > 0 in the constrained region of Bx ≤ b;
(c) There exists x satisfying Bx ≤ b and cx+ α > 0.
Then, sup

x,y
{ cx+αy : y = f(x),Bx ≤ b} = sup

x′ ,u

{cx′ + αu :

1 ≥ uf(x
′

u ),Bx
′ ≤ bu, u > 0}.

A detailed proof is given in Appendix A. Note that the
second supremum is a convex problem because uf(xu ) is a
convex function whenever f(x) is convex [29, p. 89]. The
result of this lemma is somewhat similar to the convex trans-
formation of linear-fractional program [29, p. 89]. However,
here the denominator is non-linear, and thus Lemma 1 is more
general.

We now verify that the conditions of Lemma 1 hold for
(22). For condition (a), we note that COPT(A(1:T )) is the
minimum of a convex function C(X(0), X(1:T ), A(1:T ))
over X(0:T ) in a convex set. Thus, COPT(A(1:T )) is a convex
function of A(1:T ) [29, p. 87]. For conditions (b) and (c),
COPT(A(1:T )) and C̃RAP(A(1:T )|η,H,µ) are both positive,
so these conditions trivially hold. Hence, based on Lemma 1,



we can convert the inner maximization of (22) to an equivalent
convex optimization problem. We note that although this
transformation has been used in [14], the step-1 from (20) to
(22) is also crucial because otherwise the numerator of (20)
is not linear and thus Lemma 1 cannot be applied.

Step-3: Note that the inner maximization of (22) can be
converted to a convex program, we can then focus on the
outer minimization. As we discussed earlier, the objective
of the outer minimization is convex in η, H and X(0). It
remains to check its constraints. These constraints are of the
form that some inequalities must hold for all A(1:T ) ∈ U . It
turns out that these constraints are also convex in η, H and
X(0), and can be converted to linear constraints (See [15] for
related techniques). We take a part of the constraint (19) as
an example. Note that by (19), the linear inequality (1) must
hold for all A(1:T ) ∈ U . For any η, H, the inequality (1) for
each t becomes,

D1[η(t) +H(t)A(t)] +D2A(t) ≤ 0, ∀ A(1:T ) ∈ U
⇔ max

A(1:T )∈U
{D1[η(t) +H(t)A(t)] +D2A(t)} ≤ 0

⇔ max
A(1:T )∈U

{[D1H(t) +D2]A(t)} ≤ −D1η(t).

(23)

Note that A(1:T ) ∈ U can be written as a set of linear
constraints1, thus the left-hand-side of (23) is of the form
maxCTA, subject to EA ≤ b where A corresponds to
A(1:T ), and η, H enter into the matrix C. By duality [29],

max
EA≤b

CTA = min
ETλ≥C

bTλ, (24)

where CT , bT , ET are the transposes of C, b, E, respectively.
Thus, (23) is equivalent to: there exists λ such that{

bTλ ≤ −D1η(t)
ETλ ≥ C , (25)

which is a convex constraint in λ, η(t) and C (i.e., η, H).
(See Appendix C for further details.)

In summary, through the above three steps, we have ob-
tained a convex problem (22), which can be effectively solved
to obtain η and H. (See Appendix D for details of the
optimization algorithms that we used.) Let CR be the optimal
value of (22). Then, the competitive ratio of RAP (18) based
on the optimal η and H is no larger than CR.

Remark: Although the solution approach in this section
assumes continuous decision variables, it can be generalized to
deal with certain integer constraints. For example, in the NFV
case study in Sec. II-D, yfs (t) may be restricted to integers in
practice. What we can do is to round the affine decision of (18)
to the ceiling of yfs (t). However, this rounding may affect the
capacity constraints and switching costs. The above approach
can be extended to overcome the resulting discrepancy. We
expect that the overall impact of such integer constraints will
be small when the server capacity is large. Due to page limits,
we refer readers to Appendix E for details.

1Note that U may involve absolute values, but can still be converted to a
linear form (see Appendix B for details).

IV. ALGORITHM ROBUSTIFICATION

In Sec. III, we developed a tractable computational frame-
work to calculate an optimized competitive ratio CR among
the class of affine policies. Let the corresponding robust
affine policy (RAP) be denoted by π∗RAP, which will attain a
competitive ratio no larger than CR. However, as is often the
case with competitive online algorithms in the literature, the
policy π∗RAP may be too conservative in nature. For example,
consider the scenario where the uncertainty set U is given
by a predicted input trajectory plus/minus possible errors. In
order for π∗RAP to attain the competitive ratio CR, it must
“defend” against the worst case where the input is far away
from the prediction. Specifically, it may have to over-provision
resources. As a result, if the input is actually very close to the
prediction (which usually corresponds to a larger probability
mass on average), π∗RAP may incur a higher cost than necessary.
In contrast, a popular method in the literature to deal with
sequential decisions under uncertainty is RHC (Receding
Horizon Control) [12]. At each time t, RHC assumes that the
future demand is exactly the same as the most-recent near-term
prediction, which is based on revealed demand, day-ahead
prediction and possible constraints, e.g., (3), (6), (7). Then,
RHC minimizes the cost over the entire future horizon and
commits to the first decision X(t). Intuitively, if the input is
close to the prediction (which we refer to as the average case),
RHC may actually perform very well. The problem, of course,
is that RHC cannot guarantee as low a competitive ratio as
CR. In summary, we see a dilemma between worst-case and
average-case performance. In this section, we will address
this dilemma by significantly generalizing the “robustification”
procedure of our earlier work [14] to obtain good performance
for both worst-case and average-case inputs.

In our proposed robustification procedure, we begin with an
online algorithm π0 that is believed to achieve good average-
case performance (e.g., π0 could be a variant of RHC from
[12]). We are also given the competitive ratio CR, which is
optimized among the class of affine policies as in Sec. III. We
aim to produce a new online policy π that attains comparable
average-case performance as π0, but at the same time the
worst-case competitive ratio CR. Our basic idea for this new
policy π is to follow the decisions of π0 as much as possible,
unless doing so will violate the competitive ratio CR. Our first
step is thus to develop a way to check whether the decision
of π0 will violate the competitive ratio CR.

Toward this end, let us focus on a time t. Note that the
decisions of this algorithm π before time t have already been
made. The algorithm π0 now produces a decision Xπ0(t) for
time t. In order to verify whether this new decision will still
attain the competitive ratio CR, we need to check whether the
following holds:

Cπ(A(1:T )) ≤ CR · COPT(A(1:T )),

∀ A(t+ 1 : T ) ∈ UA(1:t),
(26)

where UA(1:t) is given in (8). Let Cπ(A(1 : t − 1)) denote
the past cost of the online algorithm π from time 1 to t− 1,



excluding the switching cost from time t−1 to t. (Again, this
cost is known at time t, regardless of whether or not π has
followed π0 before time t.) Based on the decision Xπ0(t) of
algorithm π0, let Cπ0

(A(t)) = Ct(Xπ0
(t), A(t))+β|Xπ0

(t)−
Xπ(t − 1)|. Further, let Cπ(A(t + 1 : T )) denote the future
cost from time t + 1 to time T (including the switching cost
from Xπ0

(t) to Xπ(t+ 1)). Then, because we want to follow
the decision Xπ0(t), (26) is equivalent to checking

Cπ(A(1 : t− 1)) + Cπ0
(A(t)) + Cπ(A(t+ 1 : T ))

− CR · COPT(A(1:T )) ≤ 0,∀A(t+1 : T ) ∈ UA(1:t).
(27)

However, the difficulty of checking (27) is that not only the
future input has not been revealed yet, we do not even know
what decision the algorithm π will take on these future inputs!
To circumvent this difficulty, we estimate Cπ(A(t + 1 : T ))
based on affine policies. In this case, the affine policy can be
written as

X(t′) = η(t′) +H(t′)A(t′), t′ = t+ 1, t+ 2, ..., T. (28)

Note that in general this pair of (η, H) may be different from
those calculated in the previous section. Let CRAP(A(t + 1 :
T )|η,H) denote the future cost Cπ(A(t+1 : T )) if π follows
the affine policy (28). We can then formulate the following
optimization problem:

ζ
′

1,t , min
{η,H:(19) restricted

to A(t+1:T )∈UA(1:t)}

max
A(t+1:T )
∈UA(1:t)

{Cπ(A(1 : t− 1))

+ Cπ0
(A(t)) + CRAP(A(t+ 1 : T )|η,H)

− CR · COPT(A(1:T ))}.

(29)

Similar to Step-1 of Sec. III, (29) may be intractable because
the maximization part is a non-convex problem. Nonetheless,
we can use the technique in Step-1 of Sec. III [see (21)]
to introduce a new set of variables µ that upper-bounds the
switching costs in (29). In this way, we can obtain an upper
bound of ζ

′

1,t via a convex program, given by

ζ1,t , min
{η,H,µ:(19),(21)
(31) restricted to

A(t+1:T )∈UA(1:t)}

max
A(t+1:T )
∈UA(1:t)

{Cπ(A(1 : t− 1))

+ Cπ0
(A(t)) + C̃RAP(A(t+ 1 : T )|η,H,µ)

− CR · COPT(A(1:T ))}

(30)

where C̃RAP(A(t+1:T )|η,H,µ)=
∑T
t′=t+1{Ct′(X(t′), A(t′))+

µ(t′)}, X(t′) is given by (28), and the additional constraint
(31) is given below by

µ(t+ 1) ≥ β|η(t+ 1) +H(t+ 1)A(t+ 1)−Xπ0
(t)|

∀A(t+ 1) ∈ UA(1:t).
(31)

Thus, if ζ1,t ≤ 0, we can be assured that following the decision
of algorithm π0 at time t will retain the same competitive ratio
CR.

We still need to determine what to do if ζ1,t > 0. In that
case, we no longer follow the decision of algorithm π0 at time

t. Instead, we find X(t) as well as a different affine policy
based on the following optimization problem

ζ2,t , min
{X(t),η,H,µ:(19),
(21) restricted to

A(t+1:T )∈UA(1:t)}

max
A(t+1:T )
∈UA(1:t)

{Cπ(A(1 : t− 1))

+ Ct(X(t), A(t)) + β|X(t)−Xπ(t− 1)|
+ C̃RAP(A(t+ 1:T )|η,H,µ)− CR · COPT(A(1:T ))}.

(32)

Note that as long as ζ2,t ≤ 0, we can use the decision X(t)
from the optimization problem (32) at time t, and we are
assured that following the corresponding affine policy will
attain the competitive ratio CR. Thus, at time t, if ζ1,t > 0,
our new algorithm π will follow X(t) from the optimization
problem (32). The detailed robustification procedure is shown
in Algorithm 1.

Algorithm 1 Robustification Procedure

Input: CR, U , and Algorithm π0
Output: π: Robustified version of π0
FOR t = 1 : T
Update UA(1:t), Cπ(A(1 : t − 1)), Xπ0

(t) and Cπ0
(A(t)).

Solve (30) to get ζ1,t
if ζ1,t ≤ 0 then
Xπ(t)← Xπ0

(t)
else

Solve (32) to get a new optimal X(t)
Xπ(t)← X(t)

end if
END

Intuitively, if we can show that ζ2,t ≤ 0 at all time t, then
Algorithm 1 will attain the same competitive ratio CR. This
can be shown by induction: if at the previous time we already
verify ζ1,t−1 ≤ 0, it implies that the corresponding affine
policy should make the objective of (32) ≤ 0. Thus, optimizing
(32) will only produce an even lower ζ2,t ≤ 0. We then obtain
the following result.

Theorem 1: Algorithm π is CR−competitive, that is, for
all A(1 : T ) ∈ U ,

Cπ(A(1 : T )) ≤ CR · COPT(A(1 : T )). (33)

The proof is available in Appendix F.

V. SIMULATION RESULTS

In this section, we use the NFV orchestration and scaling
problem in Sec. II-D as a case study to evaluate the perfor-
mance of our proposed competitive online algorithm. Since
there is little public data on NFV topologies and traces, we
use synthetic scenarios. There are 100 clients (L = 100), 10
servers (S = 10), and 10 different VNFs (F = 10). Other
parameters are listed in Table I.2 In Table I, U [a, b] denotes
the uniform distribution in the interval [a, b].

2Note that with container technology (such as Docker [6]), the granularity
of VNF resource allocation is much finer [6] than with VMs. Hence, we use
a large value of Ws for the server capacity.



TABLE I: Simulation Parameters.

Time horizon T 24
Resources needed for a unit of VNF f wf

s U[0,1]
on server s
Resources available on server s Ws 5000
Distance cost of routing a unit of traffic dl,s U[0,10]
load from client l to server s
Cost of host resources consumed by a pfs U[0,50]
unit of VNF f on server s
Uncertainty level εfl (t) 0.2
Parameter of the ramp constraint ∆f

X,l,s U[1,5]

Parameter of the demand changing speed ∆f
A,l 20

Parameter of the budget constraint Γ 15

We will compare our proposed online algorithm π with both
the offline optimal solution and RHC (Receding Horizon Con-
trol). Note that [11] proposes an extended enhanced version
of RHC, called AFHC (Averaging Fixed Horizon Control),
which is shown to attain a bounded competitive difference.
However, AFHC assumes a perfect look-ahead window with
size ω, i.e, at each time t, the immediate future inputs in a
window of size ω is assumed to be known. In practice such a
perfect look-ahead window is often not available. Hence, we
do not compare with AFHC with ω > 1. On the other hand,
RHC may be viewed as a special case of AFHC with ω = 1.
RHC is often found to exhibit good average-case performance
[12]. Thus, we can use it as the online algorithm π0, which
we will robustify as in Sec. IV.

In order to evaluate these solutions, we generate random
demand as follows. First, we generate the predicted trajectory
ADAP(1:T ). The predicted value for ADAP(1 : T ) is uniformly
distributed in [10,15] for time 1-6 and time 20-24, in [20,30]
for time 7 and time 19, in [30,40] for time 8 and time 18,
in [40,60] for time 9-17. Second, we generate the uncertain
demand A′real(1:T ) around ADAP(1:T ) by adding i.i.d white
Gaussian noise with variance σfl (t)2 = (εfl (t) ·AfDAP,l(t) ·ρ)2,
where we call ρ the “variability” of the demand sequence.
When ρ is large, the demand sequence fluctuates more signif-
icantly in time and is more likely to hit the extreme cases in
the uncertainty set U . On the other hand, the uncertainty set U
is given independent of ρ, and hence the value of CR is also
independent of ρ. Thus, the demand trajectory A′real(1:T ) may
not always obey the constraints imposed on the uncertainty
set U , including (3), (6), (7). Hence, we further adjust it to
obtain the “real” demand iteratively in time. Specifically, for
each t, if A′real(t) (along with Areal(t−1)) does not satisfy the
constraints of U , we change it to the closest value that satisfies
the constraints of U . (See Appendix G for details.)

Note that the offline optimal solution is assumed to know
Areal(1:T ) in advance. In contrast, at each time t, our proposed
policies and RHC only know the real demand up to time
t, as well as the predicted demand for t + 1, ..., T . As we
mentioned in Sec. I, RHC may cause infeasibility due to the
hard feasibility constraints. Here, whenever RHC finds no
feasible solution at time t, we allow it to violate the ramp
constraint (2) by paying another high penalty of 103 for each
unit of violation of the ramp constraint. Note that our proposed

algorithms never pay this penalty because they always respect
the ramp constraints.

In Fig. 1, we report the competitive ratio CR of our
proposed robust affine policy π∗RAP. As we vary the uncertainty
level ε of U , the competitive ratio increases almost linearly.
Note that even when ε = 0.6, i.e., the real demand may vary
60% from the predicted value, the competitive ratio is around
2.5, which is relatively small.

The value of CR reported above is the theoretical upper
bound of the competitive ratio over all inputs. We also col-
lect the empirical competitive ratio (ECR) under the random
demand trajectory that we generated, which is the ratio of the
total cost of an online algorithm π to that of the optimal offline
solution for each generated trajectory.

We plot in Fig. 2 the empirical CDF (Cumulative Distri-
bution Function) of the value of ECR over 20 trials, where
ECRRAP, ECRRHC and ECRRobustified-RHC correspond to RAP,
RHC and the robustified version of RHC, respectively. We
first observe that at all values of variability ρ, the ECR of our
proposed robustified-RHC algorithm never exceeds the value
of CR (which is 1.2786 when ε = 0.2). In contrast, the ECR
of RHC increases as ρ increases, and it exceeds CR for a
significant fraction of trials when ρ = 1 and ρ = 20. Clearly,
RHC fails to control the worst-case competitive ratio when
the future demand is highly variable. Specifically, due to the
ramp constraint, such high variability may lead to infeasibility
for RHC, which produces the high online costs. On the other
hand, π∗RAP incurs much higher ECR than both robustified-
RHC and RHC when ρ = 1

30 . This suggests that RAP is too
conservative when the prediction turns out to be quite accurate.
In summary, what is particularly appealing for our proposed
robustified-RHC policy is that it not only attains much smaller
ECR than RHC when ρ is large, but also attains almost the
same performance as RHC when ρ is small.

In Fig. 3, we plot how CR varies with the magnitude
of switching costs. Intuitively, when the parameter β of the
switching cost is large, the online decisions become more
difficult, and thus the competitive ratio will increase. This is
shown in Fig. 3. For example, when β = 10, Fig. 3a shows
that the total amount of switching cost (17) is almost 60%
of the in-stage cost (15). From Fig. 3b, the corresponding
competitive ratio increases to about 3. However, when β
further increases, the switching cost dominates (See Fig. 3a),
and our competitive ratio further increases. We note that for
certain online problems (e.g., [30]), constant competitive ratios
may be obtained even when the switching cost is arbitrarily
high. This suggests that there may be room to improve our
online algorithms, e.g., by integrating ideas from ski-rental
problems [2], [30], to obtain even better competitive ratios.

VI. CONCLUSION

We study competitive online algorithms for OCO problems
with linear in-stage-costs, switching costs and ramp con-
straints. First, we present a powerful computational framework
to obtain an optimized competitive ratio given an uncertainty
set. Second, we provide a robustification procedure to obtain
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robustified online algorithms with both good average-case per-
formance and an optimized competitive ratio. We demonstrate
the power of our proposed approach through a case study for
NFV. The robustified version of a popular heuristic algorithm
RHC is shown to attain good performance for both average-
case and worst-case inputs. For future work, we plan to study
matching lower bounds for the optimal competitive ratio and
compare that with ours. For NFV, we are also interested
in generalizing our methodology to incorporate precedence
constraints [21], [22].
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APPENDIX A
PROOF OF LEMMA 1

The proof is originally from the technical report referred
to in our earlier work [14]. For the sake of completeness, we
include the proof here.

Proof: We let Λ1 = sup
x,y
{ cx+αy : y = f(x), Bx ≤ b} and

Λ2 = sup
x′,u
{cx′ + αu : 1 ≥ uf(x

′

u ), Bx′ ≤ bu, u > 0}.

To prove: Λ1 = Λ2, we need to prove
(i) Λ2 ≥ Λ1;
(ii) Λ1 ≥ Λ2.
To prove (i), by definition of the supremum, for any ε >

0, there exists (xε, yε) ∈ {(x, y)|y = f(x), Bx ≤ b}, such
that (cxε + α)/yε > Λ1 − ε. Note that yε = f(xε) > 0 (by
condition (b) of Lemma 1). Let x′ = xε/yε, u = 1/yε. Then,
we have (x′, u) ∈ {(x′, u)|1 ≥ uf(x

′

u ), Bx′ ≤ bu, u > 0}
and cx′ + αu = (cxε + α)/yε > Λ1 − ε. Therefore, Λ2 ≥
cx′ + αu > Λ1 − ε. Letting ε → 0, we then have Λ2 ≥ Λ1.
Further, according to the conditions (b) and (c) of Lemma 1,
it is easy to check that Λ1 > 0. Hence, Λ2 ≥ Λ1 > 0.

Similarly, to prove (ii), for any 0 < ε < Λ2, there exists
(x′ε, uε) ∈ {(x′, u)|1 ≥ uf(x

′

u ), Bx′ ≤ bu, u > 0}, such that
cx′ε + αuε > Λ2 − ε > 0. Note that uε > 0. Let x = x′ε/uε,
y = 1/uε. Then, it is easy to check that y ≥ f(x), and Bx ≤ b.
Let y0 = f(x) ≤ y. Then

cx+ α

y0
≥ cx+ α

y
= cx′ε + αuε > Λ2 − ε.

Therefore, Λ1 ≥ cx+α
y0

> Λ2− ε. Letting ε→ 0, we then have
Λ1 ≥ Λ2.

Combining the above two conclusions, we then have Λ1 =
Λ2. �

APPENDIX B
LINEAR FORM OF THE UNCERTAINTY SET U

Recall that the uncertainty set U in this paper is specified
by a combination of the day-ahead prediction (3), the demand
changing speed constraint (6) and the budget constraint (7).

(i) Day-ahead prediction: Eq. (3) is obviously in a linear
form.

(ii) Demand changing speed: Eq. (6) is equivalent to

Am(t)−Am(t− 1) ≤ ∆m
A ,

−Am(t) +Am(t− 1) ≤ ∆m
A ,

}
∀m, t. (34)

and (34) is linear.

(iii) Budget constraint: Let zm(t) =
|Am(t)−Am

DAP(t)|
εm(t)×Am

DAP(t)
. Then,

Eq. (7) is equivalent to
M∑
m=1

zm(t) ≤ Γ, ∀ t,

zm(t) ≥ Am(t)−AmDAP(t)

εm(t)×AmDAP(t)
, ∀m, t,

zm(t) ≥ −A
m(t) +AmDAP(t)

εm(t)×AmDAP(t)
, ∀m, t.


(35)

These are all linear constraints.
Hence, the uncertainty set U can be converted to an equiva-

lent linear form, which is a combination of Eqs. (3), (34) and
(35).

APPENDIX C
VERIFICATION OF THE CONVEXITY OF THE OUTER-LOOP

CONSTRAINTS

Here, we provide details for checking the convexity of the
constraints of the outer minimization problem. Note that we
have converted the original formulation of the uncertainty set
U to an equivalent linear form in Appendix B. Therefore, we
can directly use Eqs. (3), (34) and (35) for the uncertainty set
U .

First, by applying Eq. (24), we can show that (23) is
equivalent to

M∑
m=1

{
Amupper(t)λ

m
11(t)−Amlower(t)λ

m
12(t) + ∆m

A (λm13(t)

+ λm14(t)) + Γλm15(t) +AmDAP(t)λm16(t)−
AmDAP(t)λm17(t)

}
≤ −D1η(t),

λm11(t)− λm12(t) + λm13(t)− λm14(t) + λm16(t)− λm17(t)

≥ D1H
m(t) +Dm

2 , ∀m,
−λm13(t) + λm14(t) ≥ 0,∀m,
λm15(t)− εm(t)AmDAP(t)λm16(t)− εm(t)AmDAP(t)λm17(t)

≥ 0,∀m,
λm11(t), λm12(t), λm13(t), λm14(t), λm15(t), λm16(t), λm17(t)

≥ 0,∀m,

where Hm(t) is the m-th column of H(t), Dm
2 is the m-

th entry in the vector D2, λm11(t) and λm12(t) are Lagrange
multipliers (LMs) of the constraint (3), λm13(t) and λm14(t) are
LMs of the constraint (34), λm15(t), λm16(t) and λm17(t) are LMs
of the constraint (35).

Second, for the second part of the constraint (19), by
opening the absolute value, we have that, for each n and t,

Xn(t)−Xn(t− 1) ≤ ∆n
X , ∀ A(1:T ) ∈ U , given (18), (36)

−Xn(t) +Xn(t− 1) ≤ ∆n
X , ∀ A(1:T ) ∈ U , given (18).

(37)
The constraint (36) is equivalent to

max
A(1:T )∈U

{Hn(t)A(t)−Hn(t− 1)A(t− 1)}

≤ ∆n
X − ηn(t) + ηn(t− 1),

https://see.stanford.edu/materials/lsocoee364b/01-subgradients_notes.pdf
https://see.stanford.edu/materials/lsocoee364b/01-subgradients_notes.pdf
https://www.docker.com/what-container


where Hn(t) is the n-th row of H(t), ηn(t) is the n-th
entry in the vector η(t). Thus, applying Eq. (24), we have
the equivalent convex constraints as following

M∑
m=1

{
Amupper(t)λ

m
21(t)−Amlower(t)λ

m
22(t) + ∆m

A (λm23(t)

+ λm24(t)) + Γλm25(t) +AmDAP(t)λm26(t)−
AmDAP(t)λm27(t)

}
≤ ∆n

X − ηn(t) + ηn(t− 1),

λm21(t)− λm22(t) + λm23(t)− λm24(t) + λm26(t)− λm27(t)

≥ Hn,m(t),∀m,
−λm23(t) + λm24(t) ≥ −Hn,m(t− 1),∀m,
λ25(t)− εm(t)AmDAP(t)λm26(t)− εm(t)AmDAP(t)λm27(t)

≥ 0,∀m,
λm21(t), λm22(t), λm23(t), λm24(t), λm25(t), λm26(t), λm27(t)

≥ 0,∀m,

where Hn,m(t) is the entry in the n-th row and m-th column of
H(t), λm21(t) and λm22(t) are LMs of the constraint (3), λm23(t)
and λm24(t) are LMs of the constraint (34), λm25(t), λm26(t) and
λm27(t) are LMs of the constraint (35). Similarly, the equivalent
convex constraints of (37) are

M∑
m=1

{
Amupper(t)λ

m
31(t)−Amlower(t)λ

m
32(t) + ∆m

A (λm33(t)

+ λm34(t)) + Γλm35(t) +AmDAP(t)λm36(t)−
AmDAP(t)λm37(t)

}
≤ ∆n

X − ηn(t) + ηn(t− 1),

λm31(t)− λm32(t) + λm33(t)− λm34(t) + λm36(t)− λm37(t)

≥ −Hn,m(t),∀m,
−λm33(t) + λm34(t) ≥ Hn,m(t− 1),∀m,
λ35(t)− εm(t)AmDAP(t)λm36(t)− εm(t)AmDAP(t)λm37(t)

≥ 0,∀m,
λm31(t), λm32(t), λm33(t), λm34(t), λm35(t), λm36(t), λm37(t)

≥ 0,∀m,

where λm31(t) and λm32(t) are LMs of the constraint (3), λm33(t)
and λm34(t) are LMs of the constraint (34), λm35(t), λm36(t) and
λm37(t) are LMs of the constraint (35).

The constraints in (21) can be treated in a similar manner.

APPENDIX D
DETAILS FOR SOLVING (22)

We have shown that the problem (22) can be converted into
a convex form. In this appendix, we provide some details of
the optimization algorithms that we use to solve it.

First, we provide additional details of applying Lemma 1 to
convert the formulation of the inner maximization problem in
(22) into an equivalent convex form. As in Lemma 1, we use
the following change of variables,

Ãm(t) =
Am(t)

COPT(A(1 : T ))
,

u =
1

COPT(A(1 : T ))
.

(38)

According to Lemma 1 and the change in (38), we get the
following constraint for the new variables

uCOPT(
Ã(1 : T )

u
)− 1 ≤ 0. (39)

Further, based on the change in (38), the constraints for the
uncertainty set U become

Amlower(t)u ≤ Ãm(t) ≤ Amupper(t)u, ∀m, t,
|Ãm(t)− Ãm(t− 1)| ≤ ∆m

Au, ∀m, t,∑
m

|Ãm(t)−AmDAP(t)u|
εm(t)×AmDAP(t)

≤ Γu, ∀t.

 (40)

Therefore, the form of uncertainty set in the equivalent opti-
mization problem is

Ũ = {Ã(1 : T )|(40)}. (41)

In summary, the equivalent optimization problem has the
inner loop optimizing over Ã(1:T ) and u, with the outer loop
optimizing over X(0), η, H, and µ. The overall problem (22)
is then equivalent to

min
{X(0),η,H,µ:(19),(21)}

max
{Ã(1:T )∈Ũ,u>0,(39)}{ T∑

t=1

{Ct(X(t), Ã(t)) + µ(t)u}
}
,

(42)

where Ct(X(t), Ã(t)) is with the same expression as
Ct(X(t), A(t)), except that the variable A(t) is replaced by
Ã(t).

We then use the Interior Point Method (IPM) [29, p. 561]
to solve the problem (42). There is an inner loop that solves
the inner maximization problem, and an outer loop that solves
the outer minimization problem. However, there are two new
technical issues regarding the subgradients that IPM needs to
use. We will show how to solve them one-by-one below.

(i) To apply IPM to the outer loop, we need the subgradient
of the outer-loop objective function, which is by itself the
solution to the inner maximization problem. In other words,
the outer-objective is of the form h(y) = max

x
g(x, y), which

maximizes the function g(x, y) over the variable x. The
following lemma shows how to calculate ∂h(y) after the inner
maximization problem is solved. This lemma is also available
in [31, p. 4]. We provide the proof here for completeness.

Lemma 2: Suppose that h(y) = max
x

g(x, y). Then, the
subgradient of h(y) is given by

∂h(y) =
∂g(x∗, y)

∂y
, (43)

where x∗ is the point that maximizes g(x, y).



Proof: Given y, we have that for all ∆y such that y+∆y ∈
domh ∩ domg, the following holds,

h(y + ∆y) = max
x

g(x, y + ∆y)

≥ g(x∗, y + ∆y)

≥ g(x∗, y) +
∂g(x∗, y)

∂y
·∆y

= h(y) +
∂g(x∗, y)

∂y
·∆y,

where the first inequality is because x∗ may not be the
optimal solution to max

x
g(x, y + ∆y), and the second in-

equality comes from the definition of the subgradient. Hence,
∂h(y) = ∂g(x∗,y)

∂y . �
(ii) To apply IPM to the inner loop, we need the subgradient

of the function COPT(·) in (39), over each variable in A(1:T ).
Note that COPT(·) is by itself the optimal solution to an
minimization problem in the form that

h(a1, ..., aI) = min
~x
f0(~x)

subject to: fi(~x) ≤ ai, i = 1, ..., I,
(44)

where the variables in A(1 : T ) enter the right-hand-side of the
above constraints. Lemma 3 shows how to calculate ∂h

∂ai
after

this minimization problem is solved. The result is standard
[29, p. 249].

Lemma 3: Suppose that f∗( ~A) = min{f0(~x)|fi(~x) ≤
ai, i = 1, ..., I}, where ~A is the transpose of the row vector
[a1 a2 ... aI ]. Let ~λ∗ be the transpose of the row vector
[λ∗1 λ

∗
2... λ

∗
I ], where λ∗i is the optimal dual value for the i-th

constraint. Then we have, for all ~∆A (the transpose of the row
vector [∆a1 ∆a2 ... ∆aI ]),

f∗( ~A+ ~∆A) ≥ f∗( ~A)− ~λ∗T ~∆A, (45)

where ~λ∗T denotes the transpose of ~λ∗.
In other words, the subgradient of COPT(·) is simply given

by
∂COPT(A(1 : T )) = −~λ∗OPT, (46)

where ~λ∗OPT is the optimal dual vector of the loop that solves
COPT(·).

We conclude this section by describing how to manage the
multiple loops when using IPM to solve (42). Note that the
solution to (42) involves three loops, one for solving COPT(·),
one for solving the inner maximization problem, and one for
solving the eventual outer minimization problem. IPM needs
infinite number of iterations to solve an optimization problem
with perfect accuracy. However, in practice, we can only take
a finite number of iterations in an inner loop before we take
an iteration of the outer loop.

We control the termination of each loop as follows. Suppose
the optimization problem is

min
~x

f0(~x)

subject to: fi ≤ 0, i = 1, ..., I.
(47)

In IPM, we replace the objective function f0(~x) by

min
~x
{f0(~x)− 1

θk
·
I∑
i=1

log[−fi(~x)]}. (48)

The parameter θk > 0 controls the amount of penalty of the
logarithmic barrier when fi(~x) approaches 0. As θk → +∞,
the minimizer of (48) approaches the solution to the original
optimization problem. From [29, p. 566], we know that even
if we solve (48) precisely, the duality gap of the original
problem (47) is still bounded by I

θK
, where I is the number of

constraints in the loop, θK is the final value of the parameter
θk until the end of the iteration. Further, if we stop the search
of the optimal value of (48) at ~x, we can estimate the gap to
the optimal value of (48) by ‖∇f0(~x)− 1

θK

∑I
i=1

∇fi(~x)
fi(~x)

‖∞.
Thus, we terminate the iteration of each loop when

I

θK
+ ‖∇f0(~x)− 1

θK

I∑
i=1

∇fi(~x)

fi(~x)
‖∞ < ε, (49)

where ε is a small positive value that controls the accuracy of
each loop.

APPENDIX E
DEALING WITH INTEGER CONSTRAINTS

When yfs must be integer values, our basic idea is to round
yfs to its ceiling dyfs e. However, we need to control the change
in the objective value and constraints after this rounding.
For the capacity constraint, e.g., (14), we can replace it by∑F
f=1(yfs (t) + 1)wfs ≤ Ws. In this way, for any continuous

value of yfs that satisfies this resource constraint, the rounded
value will also satisfy the original constraint (14). On the other
hand, for the switching cost βf2,s|yfs (t) − yfs (t − 1)|, we can
upper bound the switching cost of the rounded decision by
βf2,s(|yfs (t) − yfs (t − 1)| + 1). These changes can be made
in the numerator of (22). However, the denominator of (22)
can still take continuous values of yfs because such relaxation
produces a lower bound on the true offline optimal cost.

In summary, such changes still allow us to compute an
optimized competitive ratio even when yfs is constrained to
be an integer. We believe that when the value of yfs is large,
the loss due to the rounding will be small. This is particularly
relevant with the more recent container technology [32], when
the number of containers in each server can be very large.

APPENDIX F
PROOF OF THEOREM 1

We start from two lemmas that capture the significance of
having ζ1,t ≤ 0 and ζ2,t ≤ 0.

Lemma 4: For any t, let η∗1,t, H
∗
1,t and µ∗1,t be the optimal

solution to (30) at time t. If ζ1,t ≤ 0, we must have

Cπ(A(1:t− 1)) + Cπ0
(A(t)) + CRAP(A(t+ 1:T )|η∗1,t,H∗1,t)

≤ CR · COPT(A(1 : T )), ∀A(t+ 1 : T ) ∈ UA(1:t).
(50)

Further, the RAP using η∗1,t and H∗1,t meets constraints (19)
and (21) for all A(t+ 1 : T ) ∈ UA(1:t).



Proof: Since ζ1,t ≤ 0, at the optimal solution η∗1,t, H
∗
1,t and

µ∗1,t, the maximum for the inner loop must be no greater than
0. Hence, for all A(t+ 1 : T ) ∈ UA(1:t), we must have

Cπ(A(1 : t− 1)) + Cπ0
(A(t))

+ C̃RAP(A(t+ 1 : T )|η∗1,t,H∗1,t,µ∗1,t)
≤ CR · COPT(A(1 : T )).

(51)

Since C̃RAP(A(t+1 : T )|η∗1,t,H∗1,t,µ∗1,t) ≥ CRAP(A(t+1 :
T )|η∗1,t,H∗1,t) for all A(t+ 1 : T ) ∈ UA(1:t), (50) then holds.
The last part of the lemma follows from the formulation of
the constraints of (30). �

Following the same idea as in the proof of Lemma 4, we
can obtain Lemma 5.

Lemma 5: For any t, let X∗2,t(t), η∗2,t, H
∗
2,t and µ∗2,t be the

optimal solution to (32) at time t. If ζ2,t ≤ 0, we must have

Cπ(A(1:t− 1)) + Ct(X
∗
2,t(t), A(t)) + β|X∗2,t(t)−Xπ(t− 1)|

+ CRAP(A(t+ 1 : T )|η∗2,t,H∗2,t) ≤ CR · COPT(A(1 : T )),

∀A(t+ 1 : T ) ∈ UA(1:t).
(52)

Further, the RAP using X∗2,t(t), η∗2,t and H∗2,t meets con-
straints (19) and (21) for all A(t+ 1 : T ) ∈ UA(1:t).

The next lemma is crucial for the overall proof (using
mathematical induction).

Lemma 6: For any t, if ζ1,t ≤ 0 or ζ2,t ≤ 0, then ζ2,t+1 ≤ 0.
Proof: If ζ1,t ≤ 0, let η∗1,t, H

∗
1,t and µ∗1,t be the optimal

solution to (30) at time t. Then, at time t + 1, by letting
X(t+ 1) = η∗1,t(t+ 1) +H∗1,t(t+ 1)A(t+ 1) and η2,t+1(t′) =
η∗1,t(t

′), H2,t+1(t′) = H∗1,t(t
′), µ2,t+1(t′) = µ∗1,t(t

′) for t′ =
t + 2, ..., T , we also obtain a feasible solution to (32). The
corresponding objective value of (32) at this feasible solution
is equal to ζ1,t ≤ 0. Since (32) further minimizes the objective
value, we have

ζ2,t+1 ≤ ζ1,t ≤ 0.

Similarly, we can show that ζ2,t ≤ 0 implies ζ2,t+1 ≤ 0. �
Lemma 7: Following Algorithm 1, after choosing decisions

Xπ(t) at time t, there must exist a Robust Affine Policy for
time t+1, t+2, ..., T , with coefficients η∗t+1 and H∗t+1, such
that

Cπ(A(1 : t)) + CRAP(A(t+ 1 : T )|η∗t+1,H
∗
t+1)

≤ CR · COPT(A(1 : T )), ∀A(t+ 1 : T ) ∈ UA(1:t).
(53)

Proof: We will prove (53) by mathematical induction.
First, for t = 1, note that
(i) If ζ1,t ≤ 0, Algorithm 1 will set Xπ(1) = Xπ0

(1). (53)
then follows from Lemma 4.

(ii) If ζ1,t > 0, Algorithm 1 will set Xπ(1) = X∗2,1(1),
where X∗2,1(1) is the solution to (32) at time t = 1. By the
definition of CR given in (22), we let η∗, H∗ and µ∗ be
the optimal solution to (22). Then, at time t = 1, by letting
X(1) = η∗(1) + H∗(1)A(1), η2,1(t′) = η∗(t′), H2,1(t′) =
H∗(t′) and µ2,1(t′) = µ∗(t′) for t′ = 2, ..., T , we also obtain
a feasible solution to (32) at time t = 1. The objective of (32)
at this feasible solution must be no greater than 0 because the

objective value of (22) is equal to CR at η∗, H∗ and µ∗. Since
(32) further minimizes its objective value, we have ζ2,1 ≤ 0
at time t = 1. Hence, by Lemma 5, we have

Ct(X
∗
2,1(1), A(1)) + β|X∗2,1(1)−X∗2,1(0)|

+ C̃RAP(A(1 : T )|η∗2,1,H∗2,1) ≤ CR · COPT(A(1:T )),

∀ A(2 : T ) ∈ UA(1).

Thus (53) holds at time t = 1.
Induction Step (t > 1): Suppose (53) is true for time t, we

wish to show that it also holds for time t+ 1. Note that
(i) If ζ1,t+1 ≤ 0, Algorithm 1 will set Xπ(t+1) = Xπ0

(t+
1). (53) then follows from Lemma 4.

(ii) If ζ1,t+1 > 0, Algorithm 1 will set Xπ(t + 1) =
X∗2,t+1(t + 1). Using similar techniques as in the proof of
Lemma 6, we can show that, since (53) holds at time t, we
must have ζ2,t ≤ 0. Then, by Lemma 6, we have ζ2,t+1 ≤ 0.
Thus, by Lemma 5, we have

Cπ(A(1 : t)) + Ct(X
∗
2,t+1(t+ 1), A(t)) + β|X∗2,t+1(t+ 1)

−Xπ(t)|+ CRAP(A(t+ 2 : T )|η∗2,t+1,H
∗
2,t+1)

≤ CR · COPT(A(1 : T )), ∀A(t+ 2 : T ) ∈ UA(1:t+1).

Therefore, (53) holds for time t+ 1.
We can then conclude that (53) holds for all time t. �
Proof of Theorem 1:
Letting t = T in (53), we thus have that by following

Algorithm 1, Cπ(A(1 : T )) ≤ CR · COPT(A(1 : T )) for all
A(1 : T ) ∈ U . �

APPENDIX G
METHOD TO GENERATE THE REAL TRAJECTORY

As we discussed in Sec. III, the constraints for U can be
expressed in a linear form EA ≤ b. Thus, if EA′real(1:T ) ≤ b
holds, we let Areal(1:T )=A′real(1:T ). If EA′real(1:T ) = b′ �
b, we solve the tractable convex optimization problem of the
form min

Eτ>b′−b
‖τ‖ to get the optimal solution τ∗. Then, we let

Areal(1:T )=A′real(1:T )− τ∗. The following lemma shows that
the obtained real trajectory Areal(1 : T ) will always satisfy the
constraints.

Lemma 8: EAreal(1 : T ) ≤ b.
Proof: If EA′real(1 : T ) ≤ b, the conclusion holds trivially

since Areal(1 : T ) = A′real(1 : T ).
If EA′real(1 : T ) = b′ � b, we have
Areal(1 : T ) = A′real(1 : T )− τ∗

⇒ EAreal(1 : T ) = EA′real(1 : T )− Eτ∗

≤ EA′real(1 : T )− b′ + b

= b.

(54)

�
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