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Abstract

Cellular networks, while being provisioned according to the peak demand, usually experience

large fluctuations in both traffic load and channel conditions. Embracing these two dimensions of

dynamics allows us to exploit the delay-tolerance of data traffic to alleviate network congestion,

and thus reduce the peak. Existing approaches in the literature have considered how to schedule

delay-tolerant traffic based on either load-variations or channel-variations alone. However, load-

awareness and channel-awareness have never been studied jointly, partly due to the high complexity

of the resulting network-wide scheduling problem. Further, the relative performance of the different

approaches needs to be compared in a unified framework. Our first contribution in this paper is

to develop an optimal solution to the problem of jointly considering load-and channel-awareness

to reduce peak demand subject to deadline constraints. We also present a distributed algorithm

that is practical to implement. Second, we use trace-driven simulations to carefully compare the

performance of the load-only, channel-only, and joint approaches. Our simulation studies reveal the

critical role of channel-awareness in wireless systems and the virtue of the joint approach, especially

in multi-cell scenarios. To the best of our knowledge, this paper is the first work in the literature

that studies load- and channel-awareness in a unified and rigorous manner.
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I. INTRODUCTION

A grand challenge facing today’s mobile service providers is to meet the exponentially

increasing demand for mobile broadband services. This problem is particularly severe at the

so-called “peak”, where the network is highly loaded at specific times and locations. Currently,

wireless providers invest heavily in new spectrum and infrastructure to accommodate the peak

demand, but such efforts are costly and inefficient: since the network traffic at non-peak times

is orders of magnitude lower than peaks, provisioning network capacity for peak demand will

lead to poor utilization of network resources.

An alternative approach is to exploit the delay tolerance of mobile applications to improve

the network utilization. Prior work has identified a class of applications that can tolerant some

delay, ranging from a few minutes to hours [1–4]. For example, the analysis in [3] shows

that more than 55% of multimedia contents in cellular networks are uploaded more than one

day later after their creation time. More recently, the survey conducted in the TUBE project

[1] indicates that users are actually willing to delay their data transmissions if appropriate

incentives are provided, i.e. a discounted price. Motivated by these studies, in this paper we

are interested in finding the best scheduling of delay-tolerant traffic to minimize the network

congestion in wireless networks.

Exploiting delay-tolerance can alleviate network congestion and reduce peak capacity

requirement in two directions: load-awareness and channel-awareness. First, by moving

delay-tolerant traffic to the time and location (e.g., to a Wi-Fi hotspot or a different basestation

(BS)) where the network is less loaded, i.e., being load-aware, the network can alleviate

congestion and carry more traffic overall. This idea is akin to “peak-shedding” [1], where

some of the “peak” traffic is moved to the “valleys” when the demand is low. Second,

mobile Internet access is highly opportunistic in nature. Due to user mobility and wireless

network dynamics, both the network connectivity and signal strength can vary significantly

over time. Thus, by opportunistically scheduling traffic to a later period (or location) when

the channel condition is more favorable, i.e., being channel-aware, the same amount of

data transmission would consume less spectrum resources, which again alleviates network

congestion and reduces peak capacity requirement. This second direction can be viewed as

a form of opportunistic scheduling [5], albeit in a much larger time scale.

Previously, each aforementioned direction has been explorered separately. For example,

the TUBE project [1] studies how to schedule data traffic to less-congested periods based
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on user-specific deadlines and network incentives. However, TUBE does not consider users’

time-varying wireless channels – hence we classify it as a “load-only” approach. In the other

direction, a number of channel-aware scheduling schemes have been proposed at the mobile

device to improve spectrum efficiency [2, 4, 6]. While this line of work takes advantage of

the opportunistic nature of wireless networks, it has been limited to optimizing in a single

mobile device. As a result, these schemes are oblivious to network congestion and hence we

refer to them as “channel-only” approaches.

Clearly, existing cellular networks provide opportunities for both load-aware and channel-

aware approaches. Hence, several questions could be raised. First, conceivably we can com-

bine both load-awareness and channel-awareness. How can we design such a policy that

exploits both load-variations and channel-variations in both single- and multi-cell settings?

Second, how do we compare the performance and complexity of the three approaches? Under

what scenarios will they perform well? The answers to these questions will be very important

from practitioners’ point of view in deciding which approach to adopt for future cellular

networks, if one ever wants to exploit the delay-tolerance of the traffic.

In this paper, we present a unified analytical framework to study various scheduling policies

for delay-tolerant traffics (i.e., load-only, channel-only, and joint approaches). We consider

the scenario of a cellular network with multiple BSs and Wi-Fi hotspots. Each data transfer

request has a pre-specified deadline, which is directly tied to the users’ overall experience.

The network’s objective is to schedule such data transfers intelligently to alleviate the network

congestion and reduce peak demand, subject to the deadline constraints of the data transfers.

We define the network congestion cost as the sum of (strictly-)convex functions of the load at

each BS/WiFi-hotspot and at each time. With the strict-convexity, the cost function naturally

penalizes high peak demand and thus a cost-minimizing solution will tend to smooth out the

traffic load across time and location.

Based on our framework, we further study how to design optimal control policies. Naturally,

the design of optimal policies for the joint approach is the most difficult, because we have

to jointly consider “peak-shedding” and ”opportunistic scheduling”. First, compared to the

channel-only approach that only considers one mobile device [2, 4], here the size of the

problem is very large, as a typical network may have hundreds of thousands of requests and

a large number of BSs and Wi-Fi hotspots. In addition, if a central entity needs to know all

requests and channel evolution statistics for each individual user, it raises concerns on both

signaling overhead and privacy. Second, compared to the load-only approach [1], here the
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channel uncertainty leads to significant difficulty in determining the amount of load that can

be moved under a given policy. In our setting, the amount of traffic that users are willing

to delay depends on their channels and the opportunistic scheduling algorithm, and thus the

functional form is hard to obtain.

We make following contributions in the paper. First, we develop a distributed solution,

referred to as NetSchd, for the joint approach. NetSchd uses a duality approach that addresses

both the complexity issue and the signaling/privacy issues discussed earlier. Under NetSchd,

the network does not need to know the statistics of all requests before hand, but updates a

set of congestion signals based on the aggregated network load. At the same time, each user

executes an individual decision policy based on the congestion signal and its own channel

statistics. Second, somewhat surprisingly, we show the optimality of the dual approach. This

is a non-trivial result given that our problem formulation accounts for a general set of policies

that are complex, and it is not obvious that the corresponding objectives and constraints are

convex with respect to these policies.

Finally, we have performed extensive trace-driven simulations to evaluate the performance

gains of all three approaches. Our simulation results reveal following interesting insights:

First, we find that the channel-only approach outperforms the load-only approach in our

settings. Note that the load-only approach still requires the network to provide congestion

signals, while the channel-only approach can be implemented entirely on the mobile device

(without any network support). Thus, this suggests that channel-awareness is more effective

and practical than load-awareness in wireless systems. Second, we find that in a single-

cell, the joint approach, i.e., NetSchd, only leads to marginal performance gains compared

to the channel-only approach. In other words, given that the channel-only approach defers

transmission to time-instants with good channels, there is already a “spreading” effect across

time that sheds the peak load. Thus, the additional room for NetSchd to further reduce the

peak becomes smaller. In contrast, we find that in multi-cell scenarios, the potential gain

for NetSchd to outperform the channel-only approach can be higher. This is because in a

channel-only solution, it is possible that a congestion-oblivious mobile device may defer

transfer until it moves to a BS with better signal quality. However, if this BS has a heavier

load, such a channel-only approach will likely cause even higher peak at this BS.

In summary, this work makes both theoretical and practical contributions. Theoretically,

the joint approach provides an optimal benchmark for comparition. Practically, we propose

a simple distributed algorithm for optimal joint scheduling that is implementable in real
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systems. Further, our comparative evaluations provide the cellular operators with operation

guidelines to decide their most appropriate approaches among load-only, channel-only, and

joint schemes that balance the gain and complexity.

II. RELATED WORK

Load-awareness. TUBE is a theoretical and experimental study that leverages time-dependent

pricing to alleviate network congestion [1, 7]. Its pilot trial conducted at Princeton with 50

AT&T data users demonstrates the feasibility of using time-dependent pricing to alleviate

network congestion. TUBE leverages network load fluctuation while our work not only

considers network load fluctuation, but also user channel variation.

Channel-awareness. Channel-aware scheduling has been extensively studied to improve

mobile battery performance and to reduce cellular network load. Both Wiffler [6] and Bar-

tendr [4] consider the setting of vehicular systems to offload 3G data traffic to either WiFi

networks or to time-instants when signal strength is stronger. In [2], Lyapunov-optimization-

based algorithm is developed for the access link selection problem to reduce energy con-

sumption of data transfers. The authors of [8] use the context information to form a WiFi

connectivity profile. The authors use mobility model and AP database to yield a WiFi

connectivity forecast in [9]. These channel-only solutions leverage WiFi availability and

signal variability, but do not consider network load fluctuation.

Opportunistic scheduling has been widely studied and standardized in wireless networks

[5, 10, 11], and a large number of scheduling policies, such as Proportional-Fair [10] and

MaxWeight [11], have been proposed. Most existing work focuses on packet-level scheduling,

where the number of users is assumed to be fixed and the performance is defined at the symbol

level. In contrast, in this paper we consider a much larger time scale, e.g., the deadline

can range from minutes to hours. Thus, we need to consider the impact of user arrivals

and departures upon completion. Flow-level scheduling also considers user/flow arrivals and

departures [12–14]. However, most studies of flow-level scheduling focus only on throughput-

optimality, without considering deadlines [12, 15]. However, maximizing the stability region

cannot guarantee the completion time. When users specify an application-dependent deadline,

it becomes more important to maximize the throughput subject to the deadline constraint,

which is the focus of our work.

Deadline-constrained scheduling. Scheduling with deadline constraints has been inves-

tigated in machine-job scheduling literature. When there is no channel variation, simple
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policies such as Earliest-Deadline-First (EDF) have been proposed and shown to be optimal

in underloaded systems, i.e., systems that are schedulable [16]. However, once there is channel

variation, a difficult trade-off arises between serving more urgent users and serving users with

better channel conditions. Only limited results are available for the special case with two-

state channels and a fixed number of users, where variants of EDF are proposed to deal

with this trade-off. In [17], a Feasible-Earlier-Due-Date (FEDD) policy is proposed for two-

state channel models, and shown to be optimal for certain restricted arrival processes, e.g.,

periodic processes. A more recent work [18] proposes a policy called Earliest Positive-Debt

Deadline First (EPDF) for scheduling live video streams without knowing channel states

before transmission. However, for more general channel models and time-dependent traffic,

we are not aware of a tractable methodology to find optimal scheduling policies subject to

strict deadline constraints.

III. PROBLEM STATEMENT

For the ease of exposition, we first consider a cellular network with one BS. The proposed

approach can be generalized to include multiple BSs and WiFi-hotspots, as discussed in

Section IV-E. The problem stated here applies to both the uplink and downlink in cellular

networks.

Assume that time is slotted and indexed by t ∈ {0, 1, . . .}. Let N be the number of time-

slots in each day. A typical time-slot length ranges from tens of seconds to a few minutes.

Because of the large time scale, we assume that a data transfer request will be completed in

one time-slot when the request is accepted, as in [1].

Data Traffic. In cellular networks, mobile users show similar aggregated behavior over

time (e.g, weekdays), as shown in various measurement studies of cellular traffic [19, 20]. For

example, in Fig. 1, real-life load traces of cellular BSs show clear patterns over weekdays

and over weekends/holidays.

Consider a typical day. A sequence of data transfer requests enter the network with user-

specified deadlines. We use the words “user” and “request” interchangeably and a human

user may have multiple requests in a day. The requests depart upon completion or deadline

violation. Let I be the index set of all users entering the system. For each user i ∈ I, the

request is represented by a triple (ai, bi, Di), where ai, bi, and Di denote the arrival time, the

file size (in bits), and the deadline, respectively. All variables ai, bi and Di are i.i.d. across

i and are taken accordingly to some probability distributions that reflect the typical traffic
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Fig. 1. Normalized cellular load from an anonymous mobile network operator in an urban area, obtained from

http://anrg.usc.edu/www/Downloads/.

pattern of the day (see, e.g., Fig. 1). We assume that the file size bi is available as soon as

user i arrives.

Each request i is associated with a user- or application-specific deadline Di, i.e., the

maximum delay that a user can tolerate. The deadline ranges from minutes to hours for delay-

tolerant traffic [1, 3], while is set to zero for real-time traffic. Such a deadline requirement

depends on specific applications and can be set in various ways. For example, it could be

a default setting in an application, e.g., syncing emails every half an hour. Or, it can be

learned from user preference. Typically, a UI can provide users the control and flexibility

of setting the deadline [1]. We can define a deadline constraint either deterministically or

probabilistically, as follows

P{transmission not finished by ai +Di} ≤ ηi, (1)

where ηi ≥ 0 is the predefined maximum deadline violation probability. A small violation

probability is typical in cellular services, although not necessarily explicitly stated. For

example, service providers typically target a deadline violation probability of 1% to 2%

for a balance between user satisfaction and cost. We note that ηi = 0 corresponds to the

special case of deterministic deadline constraint.

Channel Model and Transmission Cost. Each user experiences time-varying network

availability (e.g., WiFi availability) and channel conditions. This is captured by a stochastic
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process Ri(t) (t ∈ {0, 1, 2, . . .}), where Ri(t) ≥ 0 denotes the instantaneous rate per unit

spectrum resource (e.g., a time-frequency block in LTE) at which the BS can transmit to

user i in time-slot t. We assume that Ri(t) is i.i.d. across users but may be correlated to

(ai, bi, Di). Thus, when user i in channel condition Ri(t) is scheduled to transmit a file of size

bi, it consumes bi/Ri(t) units of spectrum resource. We assume that each user can estimate

its current channel condition via measurements of received signal strength and interference

levels. Further, although the future channel condition may be random, the user can learn its

statistics based on historical measurements, as in [4, 6, 8, 9] and as discussed in Section IV-C.

Remark: By assuming that a file can be transmitted in one time-slot, the model in this

paper focuses on exploiting larger time-scale variations, which are typically due to shadowing

and/or users moving further/closer to the BS. Nevertheless, our model does not preclude the

BS from using packet-level opportunistic scheduling schemes [5, 10] when serving the users

within one time-slot. Indeed, we assume that Ri(t) has already captured the effect of fast

time-scale fading.

Scheduling Policy and Base Station Load. Let Γ denote a general scheduling policy

that decides which users to transmit at a given time slot. We consider the set of all casual

policies. Corresponding to each Γ, we let lt(Γ) be the expected aggregate amount of spectrum

resource consumed by the users transmitting in time-slot t under policy Γ. We express lt(Γ)

as

lt(Γ) =
∑
i∈I

ci,t(Γ), t = 0, 1, . . . , N − 1, (2)

where ci,t(Γ) is the expected amount of resource consumed by user i in time-slot t. More

specifically,

ci,t(Γ) = EΓ(1{user i transfers at t}bi/Ri(t)), (3)

where the expectation is with respect to the distribution of users’ random arrival time and

channel conditions. Note that the complexity and generality of the problem is abstracted and

hidden in lt(Γ).

Objective. From the network point of view, the objective of scheduling is to minimize the

total congestion cost in the horizon of N time slots under the deadline violation constraints.

Let f(·) be a general (strictly-)convex congestion-cost function. Our objective is then

(P0) minimize
Γ

F =
∑N−1

t=0 f
(
lt(Γ)

)
,
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subject to the deadline constraint defined in (1) for all users. Note that the convexity of

f(·) penalizes peaks and thus favors load that is smoothed over time, which is desirable for

network operators. In our numerical results, we use the following function f(l) =
(
l/C̄

)ν
,

where C̄ is a positive constant and ν > 1 is a factor for controlling the penalty. For a

sufficiently large ν, e.g., ν = 8 in our simulations, we can penalize the situation when the

load is above C̄ during network operation. It is worth noting that even though f(·) is a convex

function, the general optimization problem may not be convex with respect to policies because

the complex coupling of resource consumptions of users and their channel characteristics.

Challenges. First, the size of the problem is very large, as a typical network may have

hundreds of thousands of jobs, multiple BSs and WiFi hotspots, over a time horizon of a

day. In addition, deadline constraint is notoriously difficult to solve in general because of

the resource coupling over time and among users. Second, the problem formulation assumes

knowledge of all jobs and their detailed channel information. In practice, it is not feasible to

gather such detailed information in a central entity because of both signaling overhead and

privacy concerns. Last, the set of all possible policies Γ is very large. Most of these policies

are complex to analyze because the expression of ci,t(Γ) depends not only on the policy Γ

and the current delay t− ai, but also on the evolution of channel process Ri(t).

IV. ALGORITHM DESIGN

To solve the highly complex problem P0, we resort to a dual decomposition approach,

which allows us to decouple P0 into a network-side problem and multiple user-side problems.

This decomposition approach leads to a distributed algorithm, which addresses both the

complexity and privacy issues. This distributed algorithm is our first contribution. Note that

dual decomposition does not in general guarantee optimality. Our second contribution is to

show the somewhat surprising result on optimality. This is a non-trivial result because P0

consider all causal policies which are general and complex. In this section, we first lay out

the theoretical results of the dual decomposition approach and its optimality. We then present

the distributed implementation and discuss the operations on the mobile users and at the BS.
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A. The Duality Approach

To use dual decomposition, we first introduce auxiliary variables ht ≥ 0 (t = 0, 1, . . . , N−

1), h = {ht, t = 0, 1, . . . , N − 1}, and rewrite problem P0 as

minimize
Γ,h

F =
N−1∑
t=0

f(ht)

subject to lt(Γ) ≤ ht, for all t, (4)

subject to the deadline constraint defined in (1) for all users. Let β = [β0, β1, . . . , βN−1] be

the Lagrange multiplier vector corresponding to the constraint in Eq. (4). It will be clear that

β serves as the congestion signal of the BS over time (in a day). Given β, we formulate and

decompose the Lagrangian as follows:

L(Γ,h,β) =
N−1∑
t=0

f(ht)−
N−1∑
t=0

βt
[
ht − lt(Γ)

]
=

N−1∑
t=0

[f(ht)− βtht] +
∑
i∈I

N−1∑
t=0

βtci,t(Γ). (5)

Let the objective function of the dual problem be g(β), i.e.,

g(β) = inf
Γ,h
L(Γ,h,β). (6)

Because of the linearity of expectation, we can use a distributed policy Γi to minimize the

expected consumed resource of user i such that the latter term in (5) is minimized. Therefore,

for given β, the dual objective function can be obtained by solving the following subproblems:

(SP0) minimizeh≥0

N−1∑
t=0

[f(ht)− βtht],

(SP i) minimizeΓi

N−1∑
t=0

βtci,t(Γi), i ∈ I.

The master dual problem is

(D0) maximizeβ g(β)

subject to β ≥ 0.

Subproblem (SP0) can be easily solved by convex optimization algorithms [21], because

f(·) is convex. For subproblem (SP i), we can view it as a constrained sequential decision

problem and obtain the optimal policy Γi by backward induction [22] (see Section IV-C).

Upon solving (SP i), each user makes transmission decision in each time-slot according
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to policy Γi. The BS then evaluates the aggregated load in each time-slot and updates the

congestion signal β using the (sub-)gradient approach (see Sections IV-B and IV-D). This

iteration process will finally find the optimal β for the dual problem D0.

Optimality of dual approach. For a general optimization problem, dual decomposition

only guarantees weak duality, i.e., the dual solution only provides a lower bound to the

original problem. Somewhat surprisingly, we show below that the duality gap of the above

proposed approach is zero, and hence the algorithms (SP0) and (SP i) combined provides

an optimal solution to P0. This optimality result is summarized as follows.

Proposition 1 Given that the cost function f(·) is convex, the proposed dual decomposition

algorithm provides an optimal solution to P0.

Sketch of Proof: We note that the above optimality result is nontrivial because the policy

Γ can be quite general and it is difficult to obtain the close-form representation of the

performance under Γ. In particular, it is not obvious whether the problem P0 is convex

or not with respect to the policy Γ. In fact, even in the case with temporally-independent

channels, where the optimal solution to (SP i) is a threshold policy (see Section IV-C), one

can verify that the objective function F is not convex with respect to the thresholds.

We address these difficulties by reformulating P0 into an alternative form that exhibits a

convex structure albeit with a prohibitively large number of variables. The alternative form,

named P1, is discussed in detail in the Appendix of [23]. Roughly speaking, P1 assigns a

decision variable for each user in each possible state (a state is a possible combination of all

users’ channel conditions, which is prohibitively huge). These decisions are coupled together

because of the load aggregation, the deadline constraints, and channel state evolution. On the

other hand, because P1 is convex, its dual, called D1, has zero duality gap with P1. We can

then further show that the proposed backward induction approach for (SP i), when combined

with (SP0), is optimal for D1, and thus solves P1 optimally. Because of the equivalence of

P1 and P0, our proposed duality approach is optimal for P0. Details of the proof are available

in the Appendix.

B. Distributed Implementation

Based on the optimality result in Proposition 1, we propose the following distributed

implementation, summarized in Algorithm 1. In this distributed algorithm, the BS decides
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its congestion signal vector in an iterative fashion and each user individually decides its

transmission schedule based on the congestion signal and its channel information.

Algorithm 1 Distributed solution to problem P0.
Init:

set k = 0 and β(0)
t = 1 for all t = 0, 1, . . . , N − 1.

Iteration: (day k)

1) at time t = 0, β(k)
t (t = 0, 1, . . . , N − 1) is announced to all users;

2) Each user i ∈ I solves subproblem SP i as they arrive;

3) For t = 0→ N − 1,

Each makes decision based on its channel states;

The BS serves requested users and observes the load level l(k)t ;

4) The BS solves subproblem SP0 and updates β(k)
t using (7) (see below);

5) Set k ← k + 1 and go to step 1).

In Algorithm 1, we follow a (sub-)gradient method to solve the dual problem D0:

β
(k+1)
t =

[
β
(k)
t + α(k)

(
l
(k)
t − h

(k)
t

)]+
, ∀t (7)

where k is the iteration index, α(k) is the step-size, and [·]+ denotes the projection to

nonegative numbers.

We note that this framework could be applied in both an online and an offline fashion.

In the offline fashion, the BS would use all users’ channel information and terminate the

algorithm if certain stopping criterion is satisfied (e.g., when the duality gap is smaller

than a predetermined threshold). Because the offline solution would require all statistical

information to be available, it may incur high signaling overhead and privacy issues.

On the other hand, we can choose to implement an online solution, where each iteration

represents one day (or weekday) assuming traffic statistics does not change significantly

across days. In this case, the BS only needs to update the congestion signal β(k)
t based on the

observed traffic load. In other words, the BS does not need to know the detailed information

of users, and thus resolves the concerns on signaling overhead and user privacy. Note that

in this case, the value of β(k)
t in (7) should be replaced by its random realization in the

k-th iteration. This modified version of (7) then has the flavor of stochastic approximation

algorithms [5, 24]. When the step-size αk is small, we would expect the modified version to
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also converge to a small neighborhood of the optimal solution. In the rest of the paper, we

focus on the online approach. Next, we discuss the operations on the mobile side and on the

network side, respectively.

C. Mobile-side Operation

On the mobile-side, each user operates independently with three components: 1) main-

taining a detailed record of channel information, 2) deciding an optimal policy based on the

congestion signal and user information, and 3) executing the policy based on the instantaneous

channel condition.

Channel Profile. To make better opportunistic transmission decisions, one needs a detailed

statistical channel profile. A mobile user can collect and build this profile using time-stamped

channel condition information Ri(t) and other contextual information. The rational is that

individual human mobility is repetitive, and therefore historical network profile of each user

can serve as a stochastic model for its future network conditions. There is a significant

amount of research in predicting user mobility and network conditions, e.g., in [4, 6, 8, 9].

For example, Bartendr builds a signal strength profile along popular paths of a user and uses

such information to predict channel conditions [6]. We leverage the existing results in this

area.

For signaling overhead and privacy reasons, it is expected that the channel profile infor-

mation stays only on the mobile device, as in NetSchd.

Policy Generation. For a given β (i.e., the congestion signal), the subproblem SP i under

the deadline constraint in Eq. (1) turns out to be a constrained sequential decision problem

[22]. In particular, one can introduce a cost for a deadline violation. The mobile minimizes

SP i plus the deadline violation cost by using backward induction, where the user makes

decision by comparing the transmission cost in current time-slot and the cost-to-go. We

discuss the deterministic deadline constraint case as follows and refer the readers to [22] for

the probabilistic deadline constraint case.

In the deterministic deadline constraint case when ηi = 0, all data should be transmitted

before expiration. Therefore, for user i arriving at ai, it requires that Γi(ai, Di−1) = Transmit.

To guarantee a finite transmission cost, we assume that for each user,

E{bi/Ri(|ai +Di − 1|N)|Ei,Di−1} < +∞, i ∈ I, (8)

where | · |N is the mod-over-N function and Ei,Di−1 represents the event that user i does

not transmit before ai +Di − 1. In the case with temporally-Markovian channels, using the



14

principle of optimality and taking the multipliers β into account, we can obtain the optimal

decision

Γi(ai, w)

=

Transmit, if
β|ai+w|N

Ri(|ai+w|N )
≤ E[V ∗

i,w+1|Ri(|ai + w|N)]

Wait, otherwise,

(9)

where E[V ∗
i,w+1|Ri(|ai + w|N)] is the expected future cost, which can be calculated by

backward induction:

E[V ∗
i,w+1|Ri(|ai + w|N)]

=



E
[

β|ai+Di−1|N
Ri(|ai+Di−1|N )

∣∣∣∣Ri(|ai +Di − 2|N)
]
for w = Di − 2;

E
[
min

( β|ai+w+1|N
Ri(|ai+w+1|N )

, V ∗
i,w+2

)∣∣∣∣Ri(|ai + w|N)
]
,

for w = Di − 3, Di − 4, . . . , 0.

As a special case of Markovian channels, when the channel process is independent across

time-slots, it is easy to verify that the policy becomes a threshold policy, i.e., there exists a

threshold Tw for each w, each that the transfer occurs if Ri(ai + w) ≥ Tw.

Runtime Execution. The runtime execution of the mobile is simple. It estimates its

instantaneous channel condition and then makes decision using the decision table, as shown

in Eq. (9).

D. Network-side Operation

The network-side operation consists of two components: serving users and updating con-

gestion signals (for the next day). The update mechanism is described in Eq. (7), and thus

we focus on serving users next.

1) Serving without Admission Control: In the ideal case with infinite resource, the BS

serves all “ON” users, i.e., the users who have decided to transmit. In each time-slot t during

the k-th iteration/day, the BS allocates resource to each “ON” user according to its file size and

channel condition, and measures the total consumed resource l(k)t . At the end of the iteration,

the BS solves subproblem SP0 to obtain the optimal h(k)t s, (t = 0, 1, . . . , N − 1). Then, the

BS updates the multiplier vector β using (7) and broadcasts it for the next iteration/day. This
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result can serve as the guideline for network planning (i.e., to quantify the network load). In

the following, we also consider modifications needed for network operation.

2) Serving with Admission Control: For an existing network, the available resource of

the BS is limited. Hence, certain “ON” users should be temporarily declined if the amount

of resource required by all “ON” users exceeds the available capacity. On the other hand,

when there are users waiting to transmit and the resource is not fully utilized, the remaining

resource can be allocated to the other users.

Dealing with overload. When in a given time-slot, the system is overloaded by “ON” users,

the BS serves the requesting users according to a MTB (Maximum-Total-Bits) discipline. In

other words, the BS prioritizes the best channel conditions and serves “ON” users in the

descending order of their data rate.

Dealing with underload. When there are too few “ON” users in a given time-slot, there

may still be resource available after all “ON” users are served. To avoid resource wasting,

the network needs a work-conserving enhancement. We introduce a data rate threshold R̄.

The BS serves the “ON” users first. If there is remaining resource, the BS broadcasts the

threshold R̄, and all users with channel condition exceeding the threshold send requests to

the BS. The BS then serves these users with the remaining resource. Other policies could be

adopted as well.

We note that the approaches to deal with overload and underload are important in handling

bursty traffic. In the proposed architecture, the multiplier vector β is obtained by observing

the accessing history and mainly depends on the mean values of the load and channel process.

However, because of the burstiness, the system may be overloaded or underloaded. Hence,

approaches proposed above are expected to improve the performance under these cases.

E. Multi-cell Networks

For ease of exposition, we have so far focused on the single-cell scenario. Next, we

explain how the proposed algorithm can be easily extended to include multiple BSs and WiFi

hotspots. First, we note that a cellular BS and a WiFi AP have no conceptual difference in

terms of the problem formulation, except that their corresponding congestion cost functions

could differ because of the difference in capacity and cost. Second, to extend from one BS to

multiple BSs, one can expand the objective (i.e., the total congestion cost) to include all BSs’

congestion cost at all time slots. Then, in the duality-based solution, we let each BS have its

own congestion signal for each time slot. Therefore, instead of a congestion signal vector,
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we introduce a congestion signal matrix [βmt], where βmt represents the congestion signal

broadcast by BS m in time-slot t. Similar to Section IV-A, we can use [βmt] to decompose

the primal problem, and rearrange it into the mobile-side and BS-side problems as in SP i

and SP0 (except that there are multiple equations similar to SP0, one for each BS). On

the mobile side, each user maintains a profile of the channel condition with respect to each

BS over time. For example, at 10am, the user may have 80% chance in cell 1 and 20% in

cell 2, and its channel condition may follow a certain distribution depending on the BS that

it connects to. Upon receiving the congestion signals from all BSs that it may connect to,

the user can then compute the decision table regarding when and which BS it may use to

complete the data transfer, while meeting the deadline constraints. The load at each BS is

thus determined by mobile users’ opportunistic decisions. Finally, at the end of the day, after

all mobiles perform their data transfer, each BS updates its congestion signal as in Eq. (7).

In general, different BSs often have different offered load to begin with, as shown in Fig. 1.

With a load-aware scheduling policy, the network would prefer a portion of the data transfers

to be moved from heavily-loaded BSs to lightly-loaded BSs. In our NetSchd solution, at a

given time a heavily-loaded BS will tend to have a larger value for its congestion signal

than a lightly-loaded BS. Therefore, in the mobile-side decision, the threshold to transmit

for the heavily-loaded BS will be correspondingly higher, which serves the goal of moving

an appropriate amount of traffic to other lightly-loaded BSs. In contrast, under channel-only

approaches, mobile devices are only aware of the channel condition at each BS, but not its

congestion signal. Thus, it is possible that a mobile device delays its traffic until it connects

to a BS with a stronger signal, but only finds that the BS has heavy load. In this case, a

channel-only solution may not best alleviate network congestion, while NetSchd performs

better, as shown next in the numerical results.

F. From NetSchd to Load-only/Channel-only approaches

We mainly focus on the joint approach in the previous sections. Under the proposed

framework, we can also investigate the load-only and channel-only approaches, which are

discussed as follows and will be evaluated in Section V.

1) Load-only approach: A load-only approach balances the load without considering the

channel variations. To compare with the best performance of this type of policies, we consider

an optimal offline load-only policy that can be viewed as a modification of TUBE [1]. We

assume that the knowledge of the traffic (e.g., distributions of arrival time and deadline) is
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available by the BS, and the data can be transmitted in any time-slot before the deadline.

Then, the corresponding load-balancing problem can be formulated as a convex optimization

problem and solved by standard algorithms [21]. We note that the TUBE work focuses on

single-cell systems and only temporal load-variations are studied in [1]. If one was to also

consider spacial load-variations, the scheduling problem would be similar to our multi-cell

scenarios. However, in that case at least the user-connectivity profile across multiple cells

must be taken into account. In other words, the load cannot be considered independently

from the connectivity/channel profiles. Due to this reason, similar to [1], we will not study

the load-only approach in the multi-cell setting in Section V.

2) Channel-only approach: When the congestion signals are identical across all time-

slots and all BSs, NetSchd degenerates to a channel-only approach. We consider the optimal

channel-only policy, where each user applies an individual decision policy to minimize the

expectation of the consumed resource based on its own channel condition profile under

the deadline constraint. The Bartendr policy proposed in [4] can be viewed as one of the

channel-only policies, while a fixed threshold is used for any waiting time. The performance

of Bartendr is slightly worse than that of the optimal channel-only policy and will not be

evaluated in Section V for more concise presentation.

V. EVALUATION

We evaluate the performance of load-only, channel-only, and NetSchd approaches via trace-

driven simulations. As a baseline, we also consider ImTrans, where all users immediately

transfer the data when the requests arrive.

A. Simulation Setup

We use a slot length of 10 minutes and each day is divided into 144 time-slots. We consider

both a single-cell scenario and a two-cell scenario, except the load-only policy will only be

evaluated in the single-cell scenario as discussed in Section IV-F.

1) Traffic Arrival Pattern: We assume a time-dependent Poisson arrival process, i.e., the

total number of requests arriving in time-slot t is a Poisson random variable with mean value

λt (t = 0, 1, . . . , N − 1). For the single-cell network, the mean arrival rates are set based on

the weekday traffic profile of the center BS shown in Fig. 1. For the multi-cell network, we

use the weekday traffic profile of the center BS and the neighbor BS 1 (again in Fig. 1).

To capture the delay-tolerance of traffic, we apply the waiting function proposed in [1], and
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use the patience indices for the different traffic classes estimated from the U.S. survey in

[1]. Specifically, for the delay-tolerant traffic (“Time-Dependent Pricing” traffic in [1]), the

probability that user i wants to wait Di slots is proportional to 1
(Di+1)ρ

, where the patience

index ρ is 2.0 for video traffic and 0.6 for others. In addition, the usage distribution of the

different traffic classes is taken from recent estimates [25], where the proportion of video

traffic is about 65%.
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Fig. 2. Distribution of spectrum efficiency.

2) Channel Profile: We collected a set of Received Signal Strength Indication (RSSI)

values from a group of anonymous mobile users to best emulate the spectrum efficiency in

cellular networks. We assume that the interference strength is a constant and thus the RSSI

value represents the SINR, which determines the spectrum efficiency. We follow the LTE-

Advanced standards [26], and map the measured RSSI to the proper modes of Modulation

and Coding Scheme (MCS). We use the 5-bit CQI and the distribution of the corresponding

spectrum efficiency is shown in Fig. 2. To capture time-varying and location-dependent

channel conditions, we use a Markov model where Markovian transitions between adjacent

channel states (RSSI values) are assumed in each time-slot [27]. We assume that all users use

the same channel model. One limitation of the model is that the parameters (e.g., transition

probabilities) do not change over time while real human users may have more time-dependent

behavior (e.g., 2am at home vs. 2pm at work). We hope to further collect real-life channel

profile traces for a more realistic evaluation of real networks in the future.
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3) Performance Metrics: We consider two performance metrics: network load and vio-

lation probability. We first examine the evolution of the network load level, i.e., the total

amount of resource required to serve all user requests in each time-slot. Ideally, we prefer

the network load level to be lowered and smoothed out. Second, we study the violation

probability under a given capacity (i.e., the amount of available resource at each BS). Note

that we do not impose a hard constraint on the resource available at each BS in the problem

formulation. However, in practice the amount of available resource at each BS is finite. If the

load is higher than the available resource, some jobs cannot be served. The BS deals with the

overload issue as discussed in Section IV-D2. We average across time the fraction of users

that are rejected due to resource constraint, and refer to it as the violation probability. This

probability provides a lower bound on the rejected probability in practice since the rejected

users would attempt to transmit in the following time-slots before expiration.

B. Network Load

Fig. 3 shows the network load in one day obtained by different approaches. The three

subfigures represent different settings. Fig. 3(a) and Fig. 3(b) are for single-cell systems with

50% and 75% of load being delay-tolerant, respectively. In contrast, Fig. 3(c) is for a multi-

cell system with 50% of load being delay-tolerant. We can make a number of interesting

observations from Figs. 3(a) and 3(b). Specifically, from Fig. 3(a), we can see that by moving

the delay-tolerant traffic into “valleys”, the peak load obtained by the load-only policy is

about 80% of that under ImTrans. On the other hand, using the channel-only policy, the peak

is reduced to about 75% of ImTrans. A similar observation can be made from Fig. 3(b),

while the peak load reduction is more significant since there is more delay-tolerant traffic.

This finding suggests that channel-awareness can be more effective than load-awareness in

wireless systems.

Further, although NetSchd leads to even lower peak consumption by considering both load-

awareness and channel-awareness, the additional gain compared to the channel-only policy is

relatively marginal in the single-cell setting in Fig. 3(a) and Fig. 3(b) (about 8% reduction in

both figures). We note that, under the channel-only policy, users defer their transmissions

when waiting for good channels. Therefore, a “peak-shedding” effect also occurs under

the channel-only approach. Since the traffic fluctuation is not large, the room for NetSchd

to further move traffic is relatively small. However, the multi-cell simulation in Fig. 3(c)

illustrates different behaviors. By moving the delay-tolerant traffic to the neighbor BS (i.e.,
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BS 2), the peak of network load (corresponding to the load in BS 1 at about 18:00) is reduced

by about 20% by NetSchd compared to the channel-only policy.

C. Violation Probability

Fig. 4 shows the violation probability under different capacity. The simulations assume

50% of delay-tolerant traffic. In the single-cell scenario, as shown in Fig. 4(a), the load-only

and channel-only policies achieve similar violation probability, which is much lower than

that under ImTrans. In comparison, with both load- and channel-awareness, NetSchd leads

to an slightly bigger reduction. For example, for a 2% of violation probability requirement,

NetSchd requires about 315 units of resource, which is 20% reduction compared to ImTrans

and about 7% reduction compared to the channel-only policies). The performance of NetSchd

is close to the channel-only policy in this single-cell setting due to the same reason discussed

in Section V-B.

The relative gain of NetSchd is much higher in Fig. 4(b). Though we consider low mobility

(users stay in the same cell with probability 0.9 in consecutive time slots), NetSchd is able

to move more delay-tolerant traffic to the neighboring cell that has a much lower load. As

a result, the load-awareness brings more significant improvement than that in the single-cell

system. For example, the capacity required for a 2% violation probability is 315 units for

channel-only, and is 260 units for NetSchd (about 17.5% reduction). These results indicate

that, when large traffic fluctuation occurs across BSs, scheduling with both load- and channel-

awareness alleviates network congestion and improve the resource utilization.

In summary, we observe that channel awareness is rather important in wireless networks

and load balancing among multiple cells provides additional gain. Further, we note that the

channel-only approach is easier to implement than the load-only/NetSchd approach in general.

The load-only/NetSchd approaches require the network to provide time-dependent congestion

signals/prices. In contrast, the channel-only approach can be implemented entirely on mobile

devices, without any network support. Based on the optimal benchmark provided by NetSchd,

operators could choose the most suitable options for their specific network environment.

Specifically, when traffic fluctuation is marginal across times and locations, the operator may

choose channel-only for its simplicity. When there exist large load differences among BSs,

the operator may choose the joint approach, i.e., NetSchd, for further performance gains.
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Fig. 3. Load level under different approaches and settings (a) single-cell with 50% elastic traffic, (b) single-cell with 75%

elastic traffic, and (c) multi-cell with 50% elastic traffic.
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Fig. 4. Violation probability vs capacity (50% of delay-tolerant traffic). (a) single-cell system, (b) multi-cell system.

VI. CONCLUSIONS

In this paper, we present a unified framework to study the effectiveness of load- and/or

channel-awareness in deadline-constrained scheduling of delay-tolerant traffic for the purpose

of alleviating cellular network congestion. Despite the high complexity of the joint scheduling

problem with explicit deadline constraints, we develop an optimal solution, called NetSchd,

and propose its distributed implementation.

The results in the paper are of both theoretical and practical values. Theoretically, the joint
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approach provides an optimal benchmark for comparing with other solutions. Practically, our

proposed policy can be implemented in a distributed manner in real systems. Further, our

comparative evaluations provide the cellular operators with operation guidelines to decide

their most appropriate approaches. Specifically, our numerical results suggest that channel-

awareness is rather important in wireless networks. For single-cell systems, channel-only may

be preferred due to its simplicity and relatively good performance. For multi-cell systems

with load variations, NetSchd can attain significant additional gains. Finally, we note that

the relative performance of the three approaches may vary depending on the actual load and

mobility patterns. Hence, for future work it will be highly desirable to use real-life traces

from users within the same set of multiple cells, including their mobility and load variations,

to conduct more comprehensive evaluations.
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VII. APPENDIX

To prove the optimality of the proposed dual decomposition approach, we show that prob-

lem P0 can be reformulated to a convex optimization problem P1, albeit with an exponentially

large number of decision variables. In addition, our proposed threshold policy can optimally

solve the dual of P1, named D1, and thus our scheme is optimal. For simplicity, we assume

the file-size is fixed for each user and the expectation in equation (3) is with respect to the

random arrival times and channel conditions. The results can be directly extend to the case

with random file size.

First, we show that any policy Γ can be represented by a stochastic policy Ψ. Each causal

policy Γ makes decision based on the history of the arrival sequence and channel processes.

To represent the history, for each user i ∈ I, we introduce Ai(t) to represent its present status

in time-slot t. Namely, if user i arrives in time-slot ai (we let ai = N represent the event

that user i does not appear), then Ai(t) = −1 if ai > t, and Ai(t) = ai if ai ≤ t. Recall that

Ri(t) (i = 0, 1, . . . , N − 1) is the channel process of user i. Hence, the history of the system

up to time-slot t is given by

St = [At Rt],

where At = [A1(t), A2(t), . . . , A|I|(t)]
T and

Rt =


R1(0) R1(1) . . . R1(t)

R2(0) R2(1) . . . R2(t)
...

... . . . ...

R|I|(0) R|I|(1) . . . R|I|(t)

 .
Let Ω be the set of possible realizations of arrival sequence and channel processes, i.e., the

possible realization of SN−1. Then each policy Γ can be represented by a stochastic policy

Ψ, which is a Ω 7→ [0, 1]|I|×N mapping: for each s ∈ Ω,

Ψ(s) =


ψ1(s0) ψ1(s1) . . . ψ1(sN−1)

ψ2(s0) ψ2(s1) . . . ψ2(sN−1)
...

... . . . ...

ψ|I|(s0) ψ|I|(s1) . . . ψ|I|(sN−1)

 ,
where st is the history of arrival sequence and channel processes up to time-slot t for the

realization s, and ψi(st) ∈ [0, 1] is the transmission probability of user i in time-slot t. Note

that for the user with ai+Di ≥ N , it may transmit in the following day and the transmission
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probability is represented by ψi(s|ai+w|N ) (w = 0, 1, . . . , Di − 1), where | · |N is a mod over

N function. For these users, st includes the history in the past day. Therefore, the policy Ψ

makes decisions based on the arrival sequence and channel conditions until the current slot

and is thus causal.

Second, we study the expected resource consumed by user i under Ψ(s). For each s ∈ Ω

where user i arrives in time-slot ai, we can calculate the probability that user i transmits in

slot ai + w as follows

φi(st) =



ψi(sai), t = ai

ψi(s|ai+w|N )
∑w−1

w′=0[1− ψi(s|ai+w′|N )],

t = |ai + w|N , 0 < w ≤ Di − 1

0, otherwise.

For given s, the expected consumed resource of user i in time-slot t is

c′i,t(s,Ψ) =
biφi(st)

Ri(t)
.

In addition, note that all users should satisfy the deadline constraint. Hence,
Di−1∑
w=0

φi(s|ai+w|N ) ≥ 1− ηi, s ∈ Ω, i ∈ I. (10)

Moreover, using the relationship between φi(·) and ψi(·), a φi(·) satisfying (10) can be

mapped to a policy Ψ 1.

Consequently, problem P0 is equivalent to

(P1) minimize
Ψ,h′

F =
N−1∑
t=0

f
(
h′t
)
,

subject to
Di−1∑
w=0

φi(s|ai+w|N ) ≥ 1− ηi, s ∈ Ω, i ∈ I,

l′t(Ψ) ≤ h′t, t = 0, 1, . . . , N − 1,

where

l′t(Ψ) =
∑
s∈Ω

∑
i∈I

π(s)c′i,t(s,Ψ). (11)

We can verify that P1 is a convex optimization problem because f(·) is a convex function

and all the constraints are linear constraints. However, we do note that it is impractical to

1If
∑w

w′=0 φi(r̃0:ai+w′) = 1 for some w < Di − 1, then for w′ > w, ψi(ri,w) can be artificially set to be 0, which

will not affect the behavior of Ψ.
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solve P1 directly because of its large number of variables. Recall that there are |I| × N

decision variable for each possible state. Note that there are N |I| possible arrival sequence

and we assume the channel state of each user can be quantized to K values. Then there

are N |I|K |I|×N possible states, and thus |I| ×N ×N |I|K |I|×N decision variables, which is

clearly intractable. We note that the formulation can be considered as a linear representation

of a centralized Markov Decision Policy, which clearly suffers the curve of dimensionality.

Again, we resort to the dual decomposition approach to study P1. Similar to the approach

in Section IV, we can introduce a dual variable for each time slot, and then rearrange the

variables that belongs to each user, resulting the dual problem of P1, called D1. Then we

have a similar format as in SP0 and SP i. We can verify that solving D0 in fact solves D1.

Because of the convexity of P1, D1 has a zero dual-gap, and so does D0.
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