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Abstract

Opportunistic scheduling of delay-tolerant traffic has been shown to substantially improve spec-

trum efficiency. To encourage users to adopt delay-tolerant scheduling for capacity-improvement, it

is critical to provide guarantees in terms of completion time. In this paper, we study application-level

scheduling with deadline constraints, where the deadline is pre-specified by users/applications and

is associated with a deadline violation probability. To address the exponentially-high complexity due

to temporally-varying channel conditions and deadline constraints, we develop a novel asymptotic

approach that exploits the largeness of the network to our advantage. Specifically, we identify a

lower bound on the deadline violation probability, and propose simple policies that achieve the

lower bound in the large-system regime. The results in this paper thus provide a rigorous analytical

framework to develop and analyze policies for application-level scheduling under very general

settings of channel models and deadline requirements. Further, based on the asymptotic approach,

we propose the notion of Application-Level Effective Capacity Region, i.e., the throughput region

that can be supported subject to deadline constraints, which allows use to quantify the potential

gain of application-level scheduling.

I. INTRODUCTION

Today’s mobile Internet is facing a grand challenge to meet the exponentially increasing

demand for mobile broadband services. However, not all traffic is created equal. While
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some applications require instant access, many other applications may be willing to tolerate

delay from minutes to hours [1, 2]. By opportunistically scheduling delay-tolerant transmis-

sion when the network condition is more favorable, we can significantly improve network

utilization.

In this context, delay is a key performance metric that is directly tied to the users’ overall

experience. Unless the network can set a clear expectation for the completion time, the user

may fear that his/her traffic could be delayed for too long. Therefore, providing predictable

completion time is critical for encouraging users to adopt delay-tolerant scheduling for

capacity improvement. In this paper, we consider a model where each transmission task

is associated with a user- or application-specific deadline, which is the maximum delay that

the application can tolerate and ranges from minutes to hours depending on the applications.

The goal of the network is then to schedule as many users as possible before their deadlines.

We refer to this problem as the application-level scheduling problem, and will discuss its

differences from classical opportunistic scheduling [3–5] in detail in Section II.

When there is a single base-station, the above problem can be mapped to a single-server

job scheduling problem with deadlines. When there is no channel variation, it is well-known

that simple policies such as earliest-deadline-first (EDF) are optimal in underloaded systems

[6]. Unfortunately, such a deadline-constrained scheduling problem is known to be extremely

difficult when there are channel variations because of the difficult trade-off between serving

more urgent users and serving users with better channel conditions. In the special case with

two-state channels, variants of EDF have been proposed to deal with this trade-off, e.g.,

the Feasible-Earlier-Due-Date (FEDD) policy in [7] and the Earliest Positive-Debt Deadline

First (EPDF) policy in [8]. However, for more general multi-state channel models, we are

not aware of a tractable methodology to find optimal scheduling policies subject to strict

deadline constraints.

Under such multi-state channel models, although recently-developed optimization-based

approaches to wireless control have been very successful for maximizing long-term through-

put and stability [9–11], they are of limited capability in maximizing capacity subject to

deadline constraints. For instance, the Best-Rate (BR) [10] and Delay-driven MaxWeight [11]

policies are shown to be throughput optimal for flow-level scheduling, but may perform poorly

in the case with deadline constraints. Similarly, even though the Lyapunov-function based

method developed in [12] can produce order-optimal capacity-delay tradeoffs, the attainable

capacity at a finite deadline constraint could still be far from optimum [1]. Finally, stochastic
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decision theory such as Markov Decision Process (MDP) can be used to solve the optimal

decision subject to deadline constraints. However, as the number of users increases, such a

stochastic decision problem is known to incur exponentially-high complexity (known as “the

curse of dimensionality” for MDP).

In this paper, we develop a novel approach to this open problem. Our key idea is that

when the system is large, significant simplicity will arise, which will enable us to develop

simple policies that are close-to-optimal. In other words, instead of suffering from the curse-

of-dimensionality when the problem size is large, we exploit the largeness of the system to

our advantage. Specially, we consider the large-system regime where both the arrival rate

and the capacity increase proportionally to infinity. We show that when the system size is

large, with appropriately-designed scheduling policies, the interactions between users can be

decoupled in two aspects: the deadline violation probability of each user is mainly determined

by its own connectivity, while the traffic carrying capacity of the overall system is mainly

determined by the average load aggregated over all users. Based on such insights, we can

then design policies that are not only provably optimal in the large-system regime, but also

perform very well for medium-sized systems.

For readers familiar with the large-system asymptotics [13], the intuition that the com-

petition between users becomes less dominant in large-system regime may seem somewhat

natural. However, as we will elaborate in the rest of the paper, when there is channel variation,

it is non-trivial to design scheduling policies that correctly exploit this intuition. Specifically,

if one simply generalizes policies from the case of no channel variations (e.g., EDF), these

policies may in fact perform poorly even if the system size is large. In contrast, the results

in this paper provide a rigorous analytical framework to develop and analyze the correct

scheduling policies in such settings.

In summary, the main contributions of this paper are:

• We first present a lower bound on the deadline violation probability for application-level

scheduling with deadline constraints under a given network capacity (Section III-A).

Moreover, we show that this lower bound is tight in the large-system regime as it can be

achieved by appropriately designed scheduling schemes. We note that this result holds

under very general channel models that may have multiple transmission rates and even

temporal correlation patterns.

• We then develop new scheduling policies, called Maximum-Total-On-users (MTO) and

its work-conserving enhancement (MTO-WCE) (Sections III-B to III-C). They are not
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only asymptotically optimal in the large-system regime, but also achieve superior perfor-

mance for medium-sized systems. We demonstrate that it is non-trivial to design good

policies, e.g., the variants of EDF and Delay-driven MaxWeight in fact perform poorly

even when the system size is large.

• We generalize these results from single-class systems (SectionIII) to multi-class systems

(Section IV), where the performance requirements of different classes can differ signifi-

cantly. Further, based on the above asymptotic approach, we study the Application-Level

Effective Capacity (ALEC), i.e., the maximum throughput that can be supported by the

system with given requirements on the deadline violation probability (Section IV). We

show that our proposed policies asymptotically achieve the optimal ALEC region. By

evaluating the ALEC, we demonstrate the significant potential for capacity improvement

thanks to application-level opportunistic control. Specifically, the ALEC varies greatly

with the deadline constraint, e.g., by a factor more than 6 as shown in Section V.

II. SYSTEM MODEL

A. Network and Traffic Models

Consider a wireless network with a single base-station (BS) operating in a time-slotted

fashion, where t ∈ {0, 1, 2, . . .}. We note that the time-slot length considered throughout

this paper is typically much larger than that in the conventional opportunistic-scheduling

schemes that leverage small-time-scale fading [3, 4]. There, each time-slot is on the order of

milliseconds. In contrast, since the deadlines for application-level scheduling usually range

from minutes to hours [14], we will use time-slot length of tens of seconds to a few minutes.

We focus on the downlink of the BS in this paper although the uplink can be studied

similarly. The BS serves K classes of users. We assume that the arrival processes are

stationary and ergodic, and independent across classes. Let Ak(t) (k = 1, 2, . . . , K) represent

the number of class-k users that arrive during time-slot t. For ease of exposition, we focus on

the case where for each class k, the arrival process Ak(t) is a discrete-time Poisson process

with mean λk = E{Ak(t)}. Denote λ as the aggregated arrival rate, i.e, λ =
∑K

k=1 λk, and

let αk be the ratio of the load contributed by class-k users, i.e, αk = λk/λ.

Let I = {1, 2, . . .} be the index set of all users that enter the system. Each user i ∈ I

requests to download a file of size Fi. We assume that the file size Fi is known as soon as

the task is created. For ease of exposition, in this paper we present the theoretical results

assuming unit-size files, i.e., Fi = 1. However, we note that the results in this paper can
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be easily extended to the scenario where users from the same class request files with i.i.d.

random size, provided that the file sizes are independent of the channel processes. Further,

all simulation results in Section V are based on random file sizes.

Associated with each class-k user is a (relative) deadline Dk, which is the maximum

waiting time that a class-k user can tolerate. For example, for a class-k user arriving in time-

slot t, its transmission task should be completed before t+Dk (absolute deadline). Otherwise,

user i will give up the task and depart the system.

B. Channel Model

For each i ∈ I, let the channel state Si(t) represent the transmission rate (in units of

bits/slot per unit of radio resource) available to user i in time-slot t. We model Si(t) as a

Markov chain over a finite set of the possible transmission rates, i.e., Si(t) ∈ {r1, r2, . . . , rJ},

where J is the number of possible rates, and 0 = r1 < r2 < . . . < rJ .

We assume that users from the same class have the same transition probability matrix,

which is given by

P (k) =
[
p

(k)
j1j2

]
J×J

, k = 1, 2, . . . , K,

where p
(k)
j1j2
∈ [0, 1], 1 ≤ j1, j2 ≤ J , is the transition probability from state j1 to s-

tate j2 for class-k users. In addition, we assume that channel processes are independent

across users. Denote the stationary distribution for the Markov chain of class-k as π(k) =

[π
(k)
1 , π

(k)
2 , . . . , π

(k)
J ],where π(k)

j (1 ≤ j ≤ J) is the stationary probability of state j. We assume

that the channel processes have reached the steady state, i.e., with the stationary distribution

π(k), when transmission tasks are created.

C. Scheduling Model and Performance Objectives

At the beginning of each time-slot t, the BS makes scheduling decisions based on the

network status. We define the system capacity C as the amount of available radio resource,

which is the product of bandwidth and slot-length. We assume that when a user i is selected

to transmit in time-slot t, its download task can be completed within the given time-slot using

Fi/Si(t) units of resource. This assumption is reasonable since the time-slot length is much

larger than that in packet-level scheduling. For example, if we take a time-slot of 30 seconds,

as many as 3 Gbits (when the bandwidth is 20 MHz and the spectrum efficiency is 5 bps/Hz
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[15]) can be transferred in a time-slot. Hence, for a medium file size of a few MBytes, these

files can be easily completed in one time-slot provided that the channel condition is good.

Let Qk(t) represent the number of class-k users waiting for transmission. Note that in

time-slot t, the users departing the system include the users being scheduled and the users

violating their deadlines. Then, for each k ∈ {1, 2, . . . , K}, the queue length Qk(t) evolves

as follows

Qk(t+ 1) = Qk(t)− Zk(t)− Vk(t) + Ak(t),

where Zk(t) and Vk(t) represent the number of completed users and expired users in time-slot

t, respectively. Let Γ be the set of all possible policies. Then for each policy γ ∈ Γ, the

deadline violation probability of class k is defined as

vk,γ(λ, C) = lim sup
T→∞

1

λkT

T−1∑
t=0

E[Vk(t)],

where λ = [λ1, λ2, . . . , λK ] is the arrival rate vector.

In a single-class system, we omit the class index for simplicity and denote the deadline

violation probability by vγ(λ,C). The objective of the BS is to minimize the deadline violation

probability subject to a given load level, i.e.,

min
γ∈Γ

vγ(λ,C).

In a multi-class system, the deadline violation probabilities across different classes are

coupled and the BS needs to trade-off the performance of different classes. In this case, we

are interested in the optimal region of the deadline violation probability, which is defined as

follows.

Definition 1 (Optimal DVP region) Given λ and C, the optimal region for the Deadline

Violation Probability (optimal DVP region) is defined as the set of probability vectors that

can be achieved under certain scheduling policy, i.e.,

V(λ, C) =
{
v ∈ [0, 1]K : ∃γ ∈ Γ,

such that vk,γ(λ, C) ≤ vk for all classes k
}
. (1)

We are then interested in identifying the optimal DVP region and designing policies that

can achieve any point in this region.
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Remark: We note that application-level scheduling studied in this paper differs from typical

packet-level and flow-level scheduling problems in literature. Our model differs from packet-

level scheduling [3, 4] due to two reasons. First, the user population is dynamic (rather than

fixed in [3, 4]) due to user arrivals and departures/expirations. Second, there is a difference

in the time-scale that we are interested in. Specifically, packet-level scheduling focuses on

the small-time-scale channel variations typically due to multi-path fading. In contrast, our

application-level scheduling focuses on exploiting larger time-scale variations, which are

typically due to shadowing and/or users moving further/closer to the BS. This difference

can be seen by our choices of using larger time-slots and of completing a task in one

time-slot. We emphasize that our model does not preclude the BS from using packet-level

opportunistic scheduling schemes [3, 4] when serving the users within one time-slot, and we

assume that the data rate Si(t) already captures such fast-time-scale opportunistic gains. Our

model also differs from flow-level scheduling. In typical flow-level scheduling studies [10,

11, 16], flow-level dynamics and packet-level dynamics are mixed together, i.e., packet-level

scheduling decisions must take into account flow-level statistics (e.g., delay or residual file

size [11]). In contrast, our model can be viewed as a simplification that decouples flow-level

scheduling from packet-level scheduling. The benefit of such simplification is that we can

provide rigorous delay guarantees (in comparison, existing flow-level studies focus only on

stability and throughput optimality [10, 11, 16]).

III. SCHEDULING IN SINGLE-CLASS SYSTEMS

In this section, we study the single-class case, i.e., K = 1, and omit the class index for

simplicity. Recall that the BS aims to minimize the deadline violation probability for a given

system capacity C and arrival rate λ. We first identify a lower bound on the deadline violation

probability by studying an individual decision problem. Then, we propose asymptotically

optimal policies, called MTO and MTO-WCE, which achieve the lower bound in the large-

system regime, i.e., when C and λ proportionally grow to infinity.

A. A Lower Bound on the Deadline Violation Probability

To obtain a lower bound on the deadline violation probability, we first focus on the decision

problem for an individual user: the user decides whether or not to request transmission in

each time-slot based on its waiting time and channel condition. We will show that the optimal
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performance obtained in such an individual decision problem provides a lower bound on the

performance of network-scale scheduling.

Let w ∈ {0, 1, . . . , D − 1} be the waiting time of the user, i.e., the number of time-

slots that the user has waited in the system. Then, a request decision policy for the user

can be represented by an individual decision matrix x = [xw,j]D×J , where xw,j ∈ [0, 1]

(w = 0, 1, . . . , D − 1, j = 1, 2, . . . , J) is the probability that the user requests transmission

when its waiting time is w and its channel state is j. Let X be the set of all possible decision

matrices. Corresponding to each x ∈ X , we define the following two metrics:

• Silent probability p0(x): the probability that the user does not request transmission within

D slots.

• Expected consumed resource c(x): the expected amount of resource consumed by the

user if it ever requests transmission in some time-slot.

Let p∗0 be the optimal value of the following resource-constrained individual decision

problem:

p∗0 = minx∈X p0(x)

subject to c(x) ≤ C

λ
.

(2)

We note that the above problem (2) can be viewed as a constrained MDP and solved by

a Lagrangian relaxation approach as in [17]. In particular, when the channel process is

independent across time, the optimal solution can be shown to follow a threshold structure,

i.e., for each given w, there exists a j0 such that xw,j = 0 for j < j0, xw,j = 1 for j > j0,

and xw,j0 ∈ [0, 1]. In other words, in each time-slot t, the user only requests transmission

when its data rate exceeds a certain threshold j0. If xw,j0 6= 0 or 1, it corresponds to some

randomization at the state j0, which may be necessary to guarantee the equality of resource

constraint in (2). This threshold j0 may depend on the waiting time w. In the case when the

channel is i.i.d. across time, the user will use larger threshold j0 when w is small, and use a

smaller threshold j0 when w is large, i.e., when it is close to expiration. We refer the readers

to [17] for the details of solving this constrained MDP problem.

Next, the following proposition states that p∗0 is a lower bound of the deadline violation

probability.

Proposition 1 Given system capacity C and arrival rate λ, the deadline violation probability

under any scheduling policy γ satisfies vγ(λ,C) ≥ p∗0.
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Remark: Note that in general, a multi-user system is complicated to analyze due to the

coupling across the users. In other words, when one user requests transmission, the system

may not have the capacity to accommodate it if there are many users requesting transmissions

at the same time. However, a key insight from Proposition 1 is that, the deadline violation

probability is bounded by each user’s own random connectivity pattern, while the coupling

across users is captured only through the average resource consumption c(x). Intuitively,

there are on average λ users that should be served in each time-slot, and hence the expected

resource consumption of each user should not be larger than C/λ. Proposition 1 then shows

that (2) indeed gives a lower bound on the minimum deadline violation probability.

Sketch of Proof: The scheduling problem of the whole system can be viewed as a MDP.

Solving this network-scale MDP is extremely challenging as we discussed before, but we

know that there exists an optimal stationary policy for this problem. Then, we bound its

performance by showing that any network-scale stationary policy can be mapped to an

individual decision policy subject to the constraint of (2). Details are available in Appendix A.

B. Achieving the Lower Bound in the Many-source Regime

In this section, we study scheduling policies that are asymptotically optimal in the large-

system regime as the system capacity and arrival rate grow proportionally to infinity.

We consider the following semi-distributed framework. At the mobile-side, each user makes

its own decision on whether or not to request transmission. As discussed in Section III-A,

an individual decision policy is represented by a decision matrix x = [xw,j]D×J . Namely,

for a user with waiting time w and channel condition j, it sends the transmission request

with probability xw,j . A user is referred to as an “ON” user when it sends the transmission

request, and an “OFF” user, otherwise (Note that the notion of ON-OFF users is different

from the notion of ON-OFF channels in [7]: the channel in this paper may still have multiple

rate levels). Again, note that not all ON users can be served if there are too many of them

requesting transmission at the same time. Hence, at the network-side, the scheduler needs

to make decision for serving the “ON” users. Next, we show that the following Maximum-

Total-On-users (MTO) policy performs very well when the system size is large and all users

use appropriate x.

Definition 2 (MTO policy) In each time-slot, every user is considered for scheduling only

when it is ON. Further, the BS serves the users such that the number of served ON users are



10

maximized.

We represent the MTO policy as MTO(x), since it depends on the individual decision

matrix x for each user. We note that the MTO(x) policy exhibits a number of highly desirable

features for ease of implementation. First, each user determines its own individual decision

matrix x, possibly based on its future connectivity patterns. The BS does not need to know

the connectivity patterns of each individual users. Second, to schedule which users should be

served, the BS only needs to know the current channel conditions of those users who request

transmissions. The BS does not need to track the state of all other users. Both features

significantly reduce the amount of signalling overhead between the users and the BS.

Let x∗ be the optimal solution to problem (2), we next show that MTO(x∗) (i.e., using x∗

as the individual decision matrix) is asymptotically optimal in the large-system regime.

Proposition 2 Fix c̄ = C/λ and let x∗ be the optimal solution of problem (2). Then, MTO(x∗)

is asymptotically optimal in the large-system regime, i.e.,

lim
C→∞

vMTO(x∗)(C/c̄, C) = p∗0, (3)

and the convergence speed is at least 1/
√
C.

The proposition indicates that, as the system capacity and the arrival rate grow proportion-

ally to infinity, the deadline violation probability under MTO(x∗) approaches the lower bound.

We note that this result is non-trivial because the lower bound in Proposition 1 implicitly

assumes that all users requesting transmissions can be served immediately. However, due to

randomness, not all ON users can be served even when the average total consumed resource

is no greater than C. Fortunately, when the system size is large, this “fluctuation” effect

becomes less critical. The proof is divided into two parts. First, we consider an even simpler

policy, called FOO, that also has the same asymptotic properties. Then, we show that the

MTO policy dominates the FOO policy with the same individual decision matrix, and thus

has better performance.

1) A Baseline Policy: FOO

We first consider a policy that only serves those users requesting transmission for the first

time after they arrive. Such a user is referred to as a “First-ON” user, and the corresponding

policy is referred to as First-On-Only (FOO) policy.
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Definition 3 (FOO policy) Every user is considered for scheduling only once and only when

the user requests transmission for the first time before they expire in D slots. In each time-slot,

the BS serves as many “First-ON” users as possible.

Similar to MTO(x), we represent the FOO policy as FOO(x), since it also depends on the

individual decision matrix x for each user. We first consider a general individual decision

matrix x. Let ρ(x) = λc(x)/C be the offered load level under x. For a fixed offered load

ρ(x) ≤ 1, we can show that in the large-system regime, almost all “First-ON” users can be

served and the deadline violation probability under FOO(x) approaches the silent probability

p0(x).

Lemma 1 Fix the decision matrix x such that the load level satisfies ρ(x) ≤ 1. Under the

FOO policy, the deadline violation probability approaches the silent probability as C grows

to infinity, i.e.,

lim
C→∞

vFOO(x)(Cρ(x)/c(x), C) = p0(x), (4)

and the convergence speed is at least 1/
√
C.

Sketch of Proof: We prove the lemma by exploiting two critical properties of FOO. First,

since each user is considered to be scheduled only when it is “First-ON”, the candidate

set for scheduling in each time-slot only depends on each user’s own connectivity pattern.

Second, FOO fully utilizes the resource to serve “First-ON” users in each time-slot. Using

these two properties, we can show that as the system size increases, the probability that a

user is “First-ON” but can not be served becomes negligible, with the convergence speed of

at least 1/
√
C by the Central Limit Theorem.

More specifically, let Yj (j = 1, 2, . . . , J) be the number of “First-ON” users with channel

state j. Because the arrival process is a discrete-time Poisson process, we can show that Yj

is a Poisson random variable with mean value π]jλ, where λ = Cρ(x)/c(x) and π]j is the

probability that a user is “First-ON” and its channel state is j. Note that for j = 1, we have

Y1 = 0 because no user can request transmission when its data rate is r1 = 0. For j > 1,

by the Central Limit Theorem, we can show that Yj will deviate from its mean value on the

order of
√
λ. This implies that the expectation of the part of Yj that exceeds its mean value is

on the order of
√
λ, i.e., E[Yj − π]jλ]+ = O(

√
λ), and hence E

{ [Yj−π]
jλ]+

λ

}
= O( 1√

λ
). Recall

that c(x) is the expected consumed resource if the user can be served when “First-ON”.

Hence, ρ(x) ≤ 1 indicates that the expected required resource for all “First-ON” users is
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λc(x) = λ
∑J

j=2 π
]
j/rj ≤ C. Therefore, we can show that most of the “First-ON” users will

be served and the probability that a “First-ON” user is not served (due to too large value of∑J
i=1 Yj) cannot be larger than that

rJ
∑J

j=1[Yj−π]
jλ]+

r22C
, which goes to 0 as 1/

√
λ as λ and C

grow proportionally to infinity. Details are available in Appendix B.

2) Dominance of MTO and Proof of Proposition 2

The FOO policy only allows each user to request transmission once before its deadline.

However, the proposed MTO policy removes this restriction and we can show that with the

same individual decision matrix x, the proposed MTO policy dominates FOO in any time-

slot. Specifically, the candidate set of MTO is a superset of that of FOO in each time-slot,

and thus the number of served users under MTO is no less than that under FOO in any

time-slot. Therefore, Eq. (4) also holds for MTO(x). As a special case, when the individual

decision matrix is x∗, we have ρ(x∗) ≤ 1, and the conclusion of Proposition 2 then follows.

C. Work-Conserving Enhancement of MTO

Under MTO, resource may still be wasted if after serving all ON users, there is still capacity

remaining. In this case, if we allow the BS to serve some of the OFF users, the MTO policy

should perform even better. For example, consider the following policy called MTO with

Work-Conserving Enhancement (MTO-WCE). We consider another version of problem (2)

where the constraint is relaxed to c(x) ≤ (1 + ξ)C/λ, where ξ > 0 is a control factor

that can be used for trading-off between the resource utilization and signaling overhead. We

let x(ξ) be the optimal solution to the relaxed individual decision problem (2). The users

who request transmission based on x∗ are still called ON users, and the users who request

transmission based on x(ξ) are called “secondary-ON” users. The MTO-WCE policy will

serve the ON users first. If there is remaining capacity, the BS then serves the “secondary-

ON” users. Clearly, MTO-WCE must achieve even better performance than MTO because

we always serve the ON users first.

D. Comparison and Discussions

We briefly compare the above policies in Fig. 1. The detailed simulation setting will

be given in Section V. In Fig. 1, we plot the deadline violation probability versus the

system scale C in a single-class setting. As we can observe, FOO, MTO, and MTO-WCE

approach the lower bound when the system size is large. However, FOO leads to a much
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Fig. 1. Convergence of deadline violation probability (D = 10). Detailed settings for the file size and channel processes

are presented in Section V.

larger violation probability in medium-sized system due to the restriction that we discussed

earlier. Further, MTO-WCE outperforms MTO and reduces the violation probability even

further. Other policies, such as Delay-driven MaxWeight (Delay-MW), may not approach the

lower bound even when the system size is larger. Next, we discuss the implications of these

observations.

1) Achieving asymptotic optimality is not trivial: Readers may have the impression that,

since even a policy as simple as FOO achieves the same asymptotic optimality when the

system size is large, perhaps any reasonable policy will be as good as MTO/MTO-WCE.

This apparent triviality could be quite misleading. For example, consider a natural variant of

EDF, called earliest-deadline-ON-user-first (EDOF), where in each time-slot, the BS serves

ON users, i.e., those users requesting transmissions, according to the EDF discipline. As

shown in Fig. 1, even for EDOF with work-conserving-enhancement (EDOF-WCE), the

deadline violation probability is still larger than that under FOO and may not approach the

lower bound p∗0 even when the system is large. What happens is that ON users closer to the

deadline tend to request transmissions even with poor channels. Because EDOF prioritizes

these users, it reduces the overall system performance. Another well-known policy, Delay-

driven MaxWeight [11], does not approach the lower bound either when the system size

is large, as shown in Fig. 1 (which is not surprising because Delay-driven MaxWeight is

only throughput optimal but does not guarantee deadline performance). The above examples
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therefore illustrate that, even when the system size is large, we must carefully design efficient

scheduling policies based on rigorous theoretical principles, in particular, by choosing policies

that dominate FOO.

2) Serving only the ON users (or secondary-ON users) is important: In the single-class

case, one may envision other policies that do not rely on individual decision matrices x∗

or x(ξ). For example, consider the following Less-Resource-First (LRF) policy: all users are

eligible for service and at each time-slot, and the BS gives priorities to the users that require

less resource to be served. For identical-file-size systems, LRF can be viewed as a work-

conserving enhancement of the Best-Rate policy in [10]. One can show that the LRF policy

also dominates FOO and hence is asymptotically optimal in the single-class case. However,

there are two reasons why MTO/MTO-WCE are more preferable than LRF. First, as we will

see later in Section V, it is difficult to extend the LRF policy to the multi-class case because

it is unable to balance the performance across different classes. In contrast, the MTO/MTO-

WCE policies using the optimal individual decision matrices can be shown to be optimal

in the multi-class case as well. Second, MTO and MTO-WCE incur much lower signalling

overhead because only the ON (or secondary-ON) users need to report the channel state to

the BS. In contrast, for LRF the BS needs to know the channel conditions of all users. Hence,

there are both analytical and practical advantages to use MTO/MTO-WCE.

IV. SCHEDULING IN MULTI-CLASS SYSTEMS

In the previous section, we have shown that, when there is a single class, simple MTO

and MTO-WCE policies are not only asymptotically optimal when the system size is large,

but also perform well in medium-sized systems. In this section, we extend the results to

multi-class systems.

In multi-class systems, the design of scheduling policies must be even more careful because

we need to balance the performance across different classes. Due to the inter-class contention,

it is impossible to simultaneously minimize the deadline violation probability of all classes.

Thus, we turn to study the optimal DVP region (Definition 1). We will identify an outer

bound for the optimal DVP region and show that MTO/MTO-WCE can asymptotically attain

any point strictly inside the outer bound in the large-system regime. Further, we quantify the

maximum throughput that can be supported for given requirement on the deadline violation

probabilities, which will show the benefit of application-level scheduling.
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A. Optimal DVP Region

For given system capacity C and arrival rate vector λ, we define the optimal DVP region

V(λ, C) by Eq. (1). However, obtaining the accurate region of V(λ, C) is difficult. Next, we

will establish a simple outer bound for V(λ, C), and show that an appropriately-designed

MTO policy will attain this bound when the system size is large.

In order to obtain an outer bound for V(λ, C) , we first consider the scenario where each

class is separately served with a certain proportion of the resource. Such separation allows

us to use the results obtained in the single-class case. Specifically, let ζ ∈ [0, 1]K satisfy∑K
k=1 ζk = 1, and let ζkC be the resource allocated to class k. By Proposition 1, we know

that the lower bound on the deadline violation probability for each class is given by the

optimal value p∗0,k(ζk) of the following optimization problem:

p∗0,k(ζk) = minxk∈Xk
p0,k(xk)

subject to ck(xk) ≤ ζkC/λk. (5)

As a result, separating the resource according to ζ should allow us to achieve any vector of

deadline violation probability in {v ∈ [0, 1]K : p∗0,k(ζk) ≤ vk ≤ 1}. Taking the union of all

possible ζ, we then obtain the following region:

V̂(λ, C) =
⋃

ζ∈[0,1]K ,
∑K

k=1 ζk=1

{v ∈ [0, 1]K : p∗0,k(ζk) ≤ vk ≤ 1}.

Next, we will show that V̂(λ, C) is an outer bound for the optimal DVP region V(λ, C).

Further, we will show that the MTO policy with appropriately chosen individual decision

matrices is asymptotically optimal in attaining any vector of deadline violation probabilities

in this outer bound when the system size is large. Specifically, suppose that we are given a

vector v = [v1, v2, . . . , vk] ∈ V̂(λ, C). Let x]k(vk) be the optimal solution to the following

individual decision problem:

minxk∈Xk
ck(xk)

subject to p0,k(xk) ≤ vk.
(6)

Further, let x](v) = {x]1(v1),x]2(v2), . . . ,x]K(vK)}. We represent the MTO policy with

individual matrices x](v) as MTO(x](v)). In other words, under MTO(x](v)), class-k users

request transmissions using matrix x]k(vk), and those users from each class requesting trans-

mission are called ON users. As in Section III, in each time-slot, the MTO policy serves as

many ON users as possible, regardless of which class they are from.
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Proposition 3 For given system capacity C and arrival rate vector λ, the optimal DVP

region satisfies V(λ, C) ⊆ V̂(λ, C). In addition, for a fixed amount of average resource

c̄ = C/λ, arrival proportion vector α, and any v ∈ V̂(λ, C), we have

lim
C→∞

vk,MTO(x](v))(Cα/c̄, C) ≤ vk, (7)

Sketch of Proof: The proof for the outer bound is similar to the proof of Proposition 1.

For any achievable vector v under a stationary policy, we can map the system dynamics to

an individual decision matrix for each class and the corresponding value of ζ. Then, based

on the overall resource constraints, we can show that the vector v must belong to V̂(λ, C).

To show the asymptotic optimality of MTO(x](v)), we can first show that with individual

decision matrices x](v), the offered load level must satisfies ρ(x](v)) = 1
C

∑K
k=1 λkc

]
k(vk) ≤

1, where c]k(vk) is the optimal value of problem (6). Otherwise, the vector v cannot be

in V̂(λ, C). Thus, we can show that the conclusion holds for FOO(x](v)) by the similar

approach as in Lemma 1. Then we need to extend the results to MTO(x](v)). However, the

extension is trickier than the single-class case, because even though MTO(x](v)) dominates

FOO(x](v)) in terms of total number of served ON users, it does not dominate FOO(x](v))

in terms of number of served ON users for each class. We need to prove the conclusion

by further examining the upper bound of the number of served ON users for each class.

Specifically, we note that the expected number of served users in each time-slot should not

exceed an upper bound given by the expected number of ON users. Using this upper bound,

we can then show that the deadline violation probability of each class under MTO will

approach a value no greater than vk. The details are available in Appendix C.

Remark: As we discussed earlier for the single-class case, a highly desirable feature of the

MTO policy is that each user computes independently its decision matrix xk, and decides

whether it should be ON or OFF in each time-slot. Then, the BS only needs to schedule as

many ON users as possible. Note that the BS needs not to know the connectivity pattern of

each user, nor its targeted deadline violation probability. Hence, the MTO policy is easy to

implement in a distributed manner. Note also that the individual decision matrices xks play a

crucial role in balancing the performance requirements of different classes of users. Without

such control, it would have been much more difficult for the BS to decide who should be

served. As we will see in the simulation results in Section V, this difficulty is precisely why

policies such as LRF, which performs well for single-class systems, fail in multi-class systems.

In LRF (or in other weight-based policies such as Delay-driven MaxWeight), although one
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can introduce and adjust weights to control the priority of different classes, it is difficult to

predict the achieved deadline violation probabilities in advance, without actually running the

policy. Hence, they are ineffective in guaranteeing the delay performance in the deadline-

constrained scenarios that we are interested in.

We also note that, similar to the single-class case, we can use work-conserving enhancement

to further improve the performance. Specifically, we can solve the problem (2) with relaxed

resource constraint ck(x) ≤ (1+ξ)ck(x
](vk)), and use the solution to decide the “secondary-

ON” users as in Section III-C.

B. Application-Level Effective Capacity Region

Instead of minimizing the deadline violation probability subject to given offered load, a

dual problem would be to maximize the offered load subject to given deadline violation

probabilities. Let ηk be the maximum deadline violation probability for class-k users. Then,

in the single-class system, the objective of the BS is to maximize the throughput while

guaranteeing that the deadline violation probability does not exceed η. We refer to this

maximum throughput as Application-Level Effective Capacity (ALEC), to differentiate it from

the Effective Capacity concept proposed in [18]. In a multi-class system, the ALECs are again

coupled across different classes. Therefore, with given requirement η = [η1, η2, . . . , ηK ], we

define the ALEC region as follows.

Definition 4 (ALEC region) Given system capacity C and required value η of deadline

violation probabilities, the ALEC region is defined as follows,

Λ(η, C) =
{
λ ∈ [0,∞)K : ∃ policy γ ∈ Γ,

such that vk,γ(λ, C) ≤ ηk for all classes k
}

(8)

Similar to the analysis of the optimal DVP region, we consider the outer bound for Λ(η, C).

Define the following region:

Λ̂(η, C) =
{
λ ∈ [0,∞]K ,

K∑
k=1

c]k(ηk)λk ≤ C
}
,

where c]k(ηk) is the optimal value of the constrained optimization problem (6), with the

deadline violation probability vk replaced by ηk. Clearly, Λ̂(η, C) increases linearly in C.

Using the approach in Section IV-A, we can show that Λ̂(η, C) is an outer bound for Λ(η, C)

and is tight in the large-system regime.
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Proposition 4 Given the system capacity C and the required values η of deadline violation

probabilities, the ALEC region satisfies Λ(η, C) ⊆ Λ̂(η, C). In addition, for any λ that is

inside the interior of Λ̂(η, 1), we have

lim
C→∞

vk,MTO(x](η))(λC,C) ≤ ηk. (9)

As a special case of Proposition 4, we conclude that for the single-class case (i.e., K = 1), the

ALEC is upper bounded by C/c](η) and it approaches this upper bound as C grows to infinity.

By evaluating this ALEC in Section V, we will demonstrate the benefit of application-level

scheduling.

V. SIMULATION RESULTS

A. Simulation Setup

We evaluate the performance of the proposed mechanism with typical LTE parameters

[15], which are summarized in Table I. Since we consider application-level scheduling, we

focus on a large time-scale and set the time-slot length to be 30 seconds. The file size of each

user follows truncated lognormal distribution with mean 2 Mbytes, standard deviation 0.72

Mbytes, and maximum size 5 Mbytes [19]. We generate the channel processes based on the

random waypoint (RWP) mobility model [20]. Specifically, we estimate the 1-step transition

probabilities of the channel process for the users traveling in the cell with RWP model with

a velocity of 3 Km/h. Then, the transition probabilities are used to drive a Markov model

that simulates channel realizations.

TABLE I

SYSTEM PARAMETERS

Property Setting

Carrier frequency 2 GHz

System bandwidth 1.25, 2.5, 5, 7.5, 10, 15, 20 MHz

BS Tx power 46 dBm for 10 MHz

Coverage radius 500 m

Path loss 128.1 + 37.6 log10(d[km]) dB,

Penetration loss 20 dB

Shadowing Lognormal, standard deviation 8 dB

Noise power density -170 dBm/Hz

Link adaption Shannon’s equation, clipped at -10 dB and 20 dB
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We evaluate the deadline violation probability and ALEC under application-level schedul-

ing with different disciplines. We use the optimal individual decision matrices for FOO,

EDOF-WCE, and MTO/MTO-WCE. For the work-conserving enhancement, i.e., MTO-WCE

and EDOF-WCE, the control factor is set to ξ = 0.15 (see the definition of ξ in Section III).

We also compare with the LRF (see Section III-C) and Delay-driven MaxWeight (Delay-MW)

[11] policies. In the multi-class case, weight vector is introduced in LRF and Delay-driven

MaxWeight to trade-off between different classes. Specifically, the LRF policy prioritizes

users according to ζkFi/Si(t), and Delay-driven MaxWeight prioritizes users according to

ζkwiSi(t), where 0 ≤ ζk ≤ 1 reflects the additional weight of class-k users and
∑K

k=1 ζk = 1.

B. Deadline Violation Probability

Recall that we have evaluated the deadline violation probability versus the system size

C in Fig. 1, when the relative load λ/C is fixed. Next, we evaluate the deadline violation

probability with fixed C in Fig. 2. In the single-class case, Fig. 2(a) shows the deadline

violation probability as a function of the arrival rate. The minimum silent probability given

by (2) serves as a lower bound of the system, as stated in Proposition 1. We can observe

that the deadline violation probability of MTO-WCE is very close to the lower bound and

dominates all other policies in the whole range presented. When the load is light (e.g.,

λ ≤ 70), all work-conserving policies achieve similar performance because the contention is

low. However, as the load increases, the performance of different scheduling policies starts to

differ. The MTO, MTO-WCE, and LRF policies perform very well, while other policies can

perform significantly worse. For example, the deadline violation probability under Delay-

driven MaxWeight can be much larger than that under MTO-WCE (by two times when

λ = 120). The EDOF-WCE policy results in rather high deadline violation probability in the

range of 85 < λ < 125, likely due to the fact that the EDOF policy tends to serve users

when their channel conditions are not favorable (refer to our discussions in Section III-D).

Fig. 2(b) shows the deadline violation probabilities for the 2-class scenario. For LRF and

Delay-driven MaxWeight, each pair of deadline violation probabilities corresponds to a weight

vector ζ. From the figure, we can see that the proposed MTO-WCE policy achieves close-

to-optimal deadline violation probabilities. Because of the reasons discussed in Fig. 2(a),

EDOF-WCE behaves strangely in certain regions. The deadline violation probability under

LRF and Delay-MW is greater than that under MTO-WCE. Moreover, the exact impact of

weight vector is unpredictable and difficult to tune in practice.
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Fig. 2. Deadline violation probability, (a) single-class scenario with arrival

rate (C = 10 MHz), (b) 2-class scenario (C = 10 MHz, D = [5, 15], and

λ = [15, 20]).

In summary, designing the optimal scheduling policies is non-trivial and some heuristic

policies, e.g., EDOF, may perform rather poorly in certain range. The rigorous theoretical

framework in this paper provides a principled approach to design and analyze the scheduling

policies. Under this framework, the proposed MTO/MTO-WCE policies not only achieve the

optimal bound in the large-system regime, but also perform well in medium-sized systems.

C. Application-Level Effective Capacity

In this section, we evaluate ALEC under different system sizes and requirements. The

ALEC is normalized by the bandwidth and shown as spectrum efficiency (bps/Hz). Because

MTO-WCE consistently outperforms FOO, MTO, and EDOF-WCE in earlier simulations,

we will mainly use MTO-WCE in the rest of the simulations.

Fig. 3 shows the convergence of ALEC in a single-class system as the system size increases.
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Fig. 4. Evaluation of ALEC, (a) ALEC for single-class system with different deadlines

(C = 10 MHz, and η = 0.05), (b) effective throughput region for 2-class system (C = 10

MHz, D = [5, 15], and η = [0.05, 0.05]).
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We can see that under MTO-WCE, the supportable traffic load approaches the upper bound

stated in Proposition 4 (the dashed line). The gap from the upper bound is negligible when

C ≥ 10 MHz, which is a typical value of the bandwidth in cellular networks. Hence, we use

C = 10 MHz for the rest of the simulation.

Fig. 4(a) shows the ALEC in a single-class system as a function of deadline. It clearly

demonstrates the benefit of exploiting the delay tolerance of the traffic. Namely, the capacity

can be significantly improved if the users can tolerate certain delay. For example, if users

require to finish the transmission task within 1 slot (30 seconds), the spectrum efficiency is

about 1 bps/Hz. However, with application-level scheduling, this efficiency can be increased

to more than 6 bps/Hz if the users can tolerate a delay of 10 slots (5 minutes). Comparing

to Delay-driven MaxWeight, we see that although MTO-WCE performs similarly to Delay-

driven MaxWeight when the deadline is small, it clearly outperforms Delay-driven MaxWeight

for larger deadlines. Comparing to the upper bound, we can see that the room for further

improvement over the proposed MTO-WCE policy is very small.

Fig. 4(b) shows the ALEC region for a 2-class system. We can see that MTO-WCE

achieves an ALEC region that is quite close to the outer bound. In contrast, for a given

weight vector ζ, the ALEC regions under Delay-driven MaxWeight and LRF are smaller

than that achieved by MTO-WCE. It is interesting to observe that, if we take the union of

the ALEC region under LRF or Delay-driven MaxWeight over different choices of ζ, the

union becomes closer to the optimal. However, in practice, it is difficult to predict the delay

performance of LRF or Delay-driven MaxWeight in advance. As a result, it is difficult to tune

the parameter ζ for these algorithms under a given mixture of deadline-constrained traffic,

without actually running the algorithms. Therefore, we believe that the theoretical results and

our proposed MTO/MTO-WCE policies are particularly useful for multi-class systems with

different deadline constraints.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we study application-level scheduling mechanisms for delay-tolerant traffic

with deadline requirements. The objective of the network is to minimize the deadline violation

probability for given arrival traffic. We present a lower bound on the deadline violation

probability, and develop simple threshold-based policies, MTO and MTO-WCE, that achieve

the lower bound in the large-system regime, under general channel models and multiple

classes. These schemes also perform well in medium-size systems. We note the insights
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from the analysis are important in the design of scheduling policies as some commonly

studied policies may not perform well in certain regimes. Further, based on the asymptotic

approach, we propose estimation approach for the ALEC region. Numerical results show

that under application-level scheduling, if users can tolerate certain delay, the capacity can

be improved significantly. For example, the capacity can be increased by about 6 times if

the users can tolerate a delay of 10 time-slots (e.g., 5 minutes).

Although the results in the paper focus on the single-cell settings, we believe that the

key insights are applicable to more general settings. For future work, we will study how to

generalize the algorithms and insights into multi-cell settings.
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APPENDIX A

PROOF OF PROPOSITION 1

The scheduling problem of the whole system can be viewed as a MDP. Solving this

network-scale MDP is extremely challenging as we discussed before, but we know that there

exists an optimal stationary policy for this problem. Then, we bound its performance by

showing that any network-scale stationary policy can be mapped to an individual decision

policy subject to the constraint of (2).

Specifically, let Qw,j(t) denote the number of users with waiting time w and channel state

j in time-slot t. Then, the scheduling problem can be viewed as a MDP, where the cost is

the deadline violation probability and the state space is the set of possible values of Qw,j(t)

(w = 0, 1, . . . , D − 1; j = 1, 2, . . . , J). For such a MDP, there exists a stationary policy

that minimizes the deadline violation probability. Note that corresponding to each stationary

policy Π, there is a stationary distribution matrix,

Φ = [φw,j]D×J ,

where φw,j ∈ [0, 1] represents the probability that a user is served when its waiting time

is w and channel state is j. Hence, the deadline violation probability is v(λ,C) = 1 −∑D−1
w=0

∑J
j=1 φw,j . In addition, because of the resource constraint, we must have λ

∑D−1
w=0

∑J
j=2

φw,j

rj
≤

C (φw,1 = 0 since r1 = 0).

On the other hand, by considering a scenario with infinite available resource, each feasible

Φ can be uniquely mapped to an individual decision matrix x as follows.

Φ→ x mapping: Consider a scenario where all users use an identical individual decision

matrix x. In addition, the available resource is infinite and any user sending the request can

be served immediately. Let π′w,j be the ratio of users that still stay in the system after waiting

w slots and is in channel state j. For w = 0, we know that this ratio is equal to the stationary

distribution of the channel process, i.e., π′0,j = πj (j = 1, 2, . . . , J). Then, we can decide

x0,j by solving π′0,jx0,j = φ0,j (for π′0,j = 0, we let x0,j = 0, which will not affect the value

of other variables). For w > 0, we can decide xw,j in an iterative manner. Specifically, after

obtaining xw,j , we can calculate π′w+1,j as

π′w+1,j =
J∑

j′=1

(1− xw,j′)π′w,j′pj′j,

and obtain xw+1,j by solving π′w+1,jxw+1,j = φw+1,j .
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Then, under individual decision matrix x, the expected consumed resource and the silent

probability are equal to their corresponding values under Π. Therefore, the expected consumed

resource must satisfy c(x) =
∑D−1

w=0

∑J
j=2

φw,j

rj
≤ C/λ and the deadline violation probability

satisfies v(λ,C) = p0(x) ≥ p∗0. Note that these expressions precisely correspond to the

constraint and objective of problem (2). Hence, we conclude that v(λ,C) must be greater

than p∗0.

APPENDIX B

PROOF OF LEMMA 1

We prove the lemma by exploiting two critical properties of FOO. First, since each user

is considered to be scheduled only when it is “First-ON”, the candidate set for scheduling in

each time-slot only depends on each user’s own connectivity pattern, which is independent

across users. Second, FOO fully utilizes the resource to serve “First-ON” users in each time-

slot. Using these two properties, we can show that as the system size increases, the probability

that a user is “First-ON” but can not be served becomes negligible, with the convergence

speed of at least 1/
√
C by the Central Limit Theorem.

Consider FOO(x), i.e., the FOO policy with individual decision matrix x. As discussed

above, we only need to focus on an arbitrary time-slot and will omit the slot index for

simplicity. Let Yj (j = 1, 2, . . . , J) be the number of “First-ON” users with channel state j

for a given individual decision matrix x. Further, let φw,j ∈ [0, 1] represent the probability that

a user is served in channel state j at w slots after their arrivals. Note that the “First-ON” users

evolve from the users arriving in the past D slots. Using the property of Poisson variables,

we know that Yj is a Poisson random variable with mean value π]jλ, where π]j =
∑D−1

w=0 φw,j

is the probability that a user is “First-ON” at channel state j within D slots. In addition,

the expected required resource for all “First-ON” users is λc(x) = λ
∑J

j=2 π
]
j/rj , and the

offered load level ρ(x) = λc(x)/C ≤ 1. Note that the summation is calculated from j = 2

because Y1 = 0 since a user cannot request transmission with zero data rate, i.e., r1.

Next we show that since ρ(x) ≤ 1, the probability that a “First-ON” user is unserved due

to overflow tends to 0 as λ and C grow proportionally to infinity, with the convergence speed

at least 1/
√
λ.

Let L(Y1, Y2, . . . , YJ) be the number of ON users that are unserved due to overflow when

the number of ON users at channel state j is Yj . Note that the total amount of resource

exceeding the system capacity satisfies
[∑J

j=2 r
−1
j Yj − C

]+ ≤∑J
j=2 r

−1
j [Yj − π]jλ]+. Thus,
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the number of drop users satisfies

L(Y1, Y2, . . . , YJ) ≤
∑J

j=2 r
−1
j [Yj − π]jλ]+

r−1
J

≤ rJ
r2

J∑
j=2

[Yj − π]jλ]+. (10)

On the other hand, when overflow occurs, i.e.,
∑J

j=2 r
−1
j Yj > C, then

∑J
j=2 Yj > Cr2. Thus,

we can bound the probability that a “First-ON” user is unserved as follows

punserved(C) = E
{L(Y1, Y2, . . . , YJ)∑J

j=2 Yj

}
≤ rJ

r2
2

E
{∑J

j=2[Yj − π]jλ]+

C

}
(11)

For a Poisson random variable Yj with mean value E[Yj] = π]jλ, we have

E[Yj − π]jλ]+ =
∞∑
π]
jλ

(y − π]jλ)(π]jλ)ye−π
]
jλ

y!

= π]jλP
{
π]jλ− 1 ≤ Yj ≤ π]jλ

}
.

Hence,

punserved(C) ≤ rJ
c̄r2

2

J∑
j=2

π]jP
{
π]jλ− 1 ≤ Yj ≤ π]jλ

}
.

(12)

On the other hand, for 2 ≤ j ≤ J , Yj can be viewed as the summation of π]jλ of i.i.d.

Poisson random variables with mean value 1. Therefore, by the Central Limit Theorem, we

know that as C grows to infinity (so does λ), then√
π]jλ
[ Yj
π]jλ
− 1
] dist−→ N (0, 1).

(13)

Thus,

P
{
π]jλ− 1 ≤ Yj ≤ π]jλ

}
≈

∫ 0

−1/
√
π]
jλ

1√
2π
e−y

2/2dy

≤
√

c̄

2ππ]jC
.
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Consequently,

punserved(C) ≤ rJ
c̄r2

2

J∑
j=2

√
c̄π]j
2πC

,

implying that as C grows to infinity, punserved(C) converge to 0, with convergence speed of

at least 1/
√
C. The conclusion of Lemma 1 then follows.

APPENDIX C

PROOF OF PROPOSITION 3

A. Outer bound on the optimal DVP region

The proof for the outer bound is similar to the proof of Proposition 1. Consider any deadline

violation probability v that is achievable, i.e., v ∈ V(λ, C). Using the similar approach as

in Appendix A, we can map v to individual decision matrices xk(vk) (k = 1, 2, . . . , K) and

the silent probability under xk(vk) is vk. Also, corresponding to each xk(vk), there is an

expected consumed resource ck(xk(vk)). Because the achievability of v, we know that the

total expected consumed resource satisfies the resource constraint, i.e.,
∑K

k=1 λkck(xk(vk)) ≤

C. Next, let ρ(v) =
∑K

k=1 λkck(xk(vk))/C and ζk = λkck(xk(vk))
Cρ(v)

. Then, we have
∑K

k=1 ζk = 1,

and the solution of Problem (5) satisfies p∗0,k(ζk) ≤ vk ≤ 1 because ζkC/λ ≥ ck(xk(vk)).

Therefore, the vector v belongs to V̂(λ, C) and hence V(λ, C) ⊆ V̂(λ, C)

B. Achieving the outer bound in the large-system regime with MTO

To show the asymptotic optimality of MTO(x](v)), we can first show that with individual

decision matrices x](v), the offered load level must satisfies ρ(x](v)) = 1
C

∑K
k=1 λkc

]
k(vk) ≤

1, where c]k(vk) is the optimal value of problem (6). Otherwise, the vector v cannot be

in V̂(λ, C). Thus, we can show that the conclusion holds for FOO(x](v)) by the similar

approach as in Lemma 1. Then we need to extend the results to MTO(x](v)). However, the

extension is trickier than the single-class case, because even though MTO(x](v)) dominates

FOO(x](v)) in terms of total number of served ON users, it does not dominate FOO(x](v))

in terms of number of served ON users for each class. We need to prove the conclusion

by further examining the upper bound of the number of served ON users for each class.

Specifically, we note that the expected number of served users in each time-slot should not

exceed an upper bound given by the expected number of ON users. Using this upper bound,

we can then show that the deadline violation probability of each class under MTO will

approach a value no greater than vk.
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Specifically, let Z̄k be the expected number of class-k users receiving service before

expiration, i.e.,

Z̄k = lim
T→∞

1

T

T−1∑
t=0

E[Zk(t)].

Note that for any ζ ∈ [0, 1]K satisfying
∑K

k=1 ζk = 1, we know that ρ
(
x∗(ζ)

)
≤ 1. Using

the similar argument in the proof of Lemma 1, we know that

lim
C→∞

Z̄k,FOO

λ
= αk[1− p∗0,k(ζk)],

and

lim
C→∞

Z̄FOO

λ
=

K∑
k=1

αk[1− p∗0,k(ζk)],

where Z̄FOO =
∑K

k=1 Z̄k,FOO is the expected total number of users being served under FOO.

Now we take the performance of FOO as a benchmark for analyzing MTO. Because in

each time-slot, the candidate user set of FOO is a subset of that for MTO, we know that the

total number of users being served under MTO is no less than FOO. Hence,

lim
C→∞

Z̄MTO

λ
≥ lim

C→∞

Z̄FOO

λ
=

K∑
k=1

αk[1− p∗0,k(ζk)],

where Z̄MTO =
∑K

k=1 Z̄k,MTO is the expected total number of users being served under MTO.

Hence, we have

lim
C→∞

Z̄MTO

λ
= lim

C→∞

∑K
k=1 Z̄k,MTO

λ
.

On the other hand, the expected number of served users from each class is bounded by the

ON probability, i.e.,

lim
C→∞

Z̄k,MTO

λ
≤ αk[1− p∗0,k(ζk)].

Combining with the bound of the expected total served users, we have

lim
C→∞

Z̄k,MTO

λ
= αk[1− p∗0,k(ζk)].

Equation (7) then follows.
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