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Abstract—CSMA algorithms have recently received a significant
amount of interest in the literature for designing efficient wireless
control algorithms. CSMA algorithms are attractive because they
incur low computation complexity and communication overhead,
and can be shown to achieve the optimal capacity under certain
assumptions. However, it has also been observed that CSMA
algorithms suffer the starvation problem and incur large delay
that may grow exponentially with the network size. In this
paper, we propose a new algorithm, called Virtual-Multi-Channel
(VMC-) CSMA, that can dramatically reduce delay without
sacrificing the high capacity and low complexity of CSMA. The
key idea of VMC-CSMA to avoid the starvation problem is to use
multiple virtual channels to emulate a multi-channel system and
compute a good set of feasible schedules simultaneously (without
constantly switching/re-computing schedules). Under the protocol
interference model and a single-hop utility-maximization setting,
our proposed VMC-CSMA algorithm can approach arbitrarily
close to the optimal total system utility, with both the number
of virtual channels and the computation complexity increasing
logarithmically with the network size. The VMC-CSMA algorithm
inherits the distributed nature of CSMA algorithms. Further,
once our algorithm converges to the steady-state, the expected
packet delay for each link equals to the inverse of its long-term
average rate, and the distribution of its head-of-line (HOL) waiting
time can also be asymptotically bounded. Our simulation results
confirm that the proposed VMC-CSMA algorithm indeed achieves
both high throughput and low delay. Further, it can quickly adapt
to network traffic changes.

I. INTRODUCTION

A central problem to the design of wireless control algo-
rithms is how to schedule the link transmissions in the presence
of interference. Among the many design goals for wireless
scheduling, there are three of them that are perhaps the most
important. First, in order to support the increasing amount of
the traffic placed on wireless networks, the control algorithm
should achieve high capacity. Second, the packet delay should
be small to meet the applications’ service requirements. Last
but not least, for large networks, it is important that the con-
trol algorithms are of low computational complexity and low
communication overhead, and preferably can be implemented
in a distributed manner.

Existing algorithms in the literature achieve different trade-
offs among capacity, delay, and complexity. It is well known
that max-weight types of algorithms [1] can attain the largest
capacity region of the network, based on which a large number
of wireless cross-layer control algorithms have been devel-
oped to optimize various performance objectives such as the
system throughput, utility/fairness, and power efficiency [2,3].
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However, for many problem settings the max-weight algorithm
incurs exponentially high computational complexity as the
network size increases. Further, it is a centralized algorithm
that requires global information. There are a number of low-
complexity algorithms that can be viewed as approximations
to the max-weight schedule (see [2] and the reference within.)
However, these algorithms can only guarantee a fraction of
the optimal system capacity. Recently, a class of CSMA (Car-
rier Sense Multiple Access) algorithms were studied in [4,5].
CSMA algorithms are very attractive in the sense that they
incur low computational complexity and are fully distributed,
and can be shown to achieve the optimal capacity under certain
assumptions. However, CSMA algorithms have been observed
to have large delay that may grow exponentially with the
network size [6,7], which makes the usefulness of the capacity
gain questionable because most applications (even as simple as
web-browsing) require some level of low delay.

odd schedule even schedule

Fig. 1. A torus interference graph with the odd and even schedules.

In this paper, we are interested in developing improved ver-
sion of the CSMA algorithms that can significantly reduce the
delay without sacrificing the high capacity and low complexity.
This remains a challenging problem in spite of a number of
recent works that attempt to improve the delay of CSMA
algorithms [5,7]–[14]. The main difficulty of reducing the
delay of CSMA may be explained by the following example.
Consider an interference graph in the form of an n-by-n torus
as shown in Fig. 1, where each circle represents a unit-capacity
link, and the edge between two circles means that these two
links can not transmit simultaneously. Suppose that the target
rates of all links are 0.5. In a typical discrete-time version of
the standard CSMA algorithms [5], it is possible to change the
parameters so that the CSMA algorithms will stay at either the
even schedule or the odd schedule (as shown in Fig. 1) with
equal probability close to 0.5 to attain the target rates. However,
once CSMA finds either the even or the odd schedule, it will be
“locked” to this schedule for a long time before it can switch
to the other schedule [7], and the corresponding inactive links
will be starved of service in this period. This problem is known
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as the “starvation” problem for CSMA. Hence, it is difficult for
CSMA to attain low delay.

To resolve this problem, we will propose a new algorithm,
called Virtual-Multi-Channel (VMC-) CSMA, that can achieve
both high capacity and low delay with low complexity. The
main novelty of our proposed algorithm to significantly reduce
delay is to take advantage of multiple (physical- or virtual-)
channels. This main idea can be explained as follows. Suppose
that there are two separate channels for the same topology in
Fig. 1, each with half the bandwidth of the original system.
We can simply let one channel use the odd schedule and let
the other channel use the even schedule. Obviously, each link
can then achieve both the target rate of 0.5 as well as low
delay (because each link is served at a constant rate at all time-
slots). Note that the key idea here is to compute a set of good
schedules for multiple channels at once, rather than computing
one schedule at a time and constantly switching/recomputing
schedules. Thus, the starvation problem is avoided. Note that
although this idea seems to be quite natural, there are three
main difficulties to generalize it to arbitrary networks. First, in
many systems, we may only have one physical channel. How
can we still reduce delay by using multiple channels? Second,
even if we have more than one channels, how can we design a
low-complexity and distributed algorithm to compute the right
multi-channel schedules? Third, the number of channels in the
above example is two, but it may not be sufficient for general
topologies. Will the number of channels required to approach
near-optimal performance be exceedingly large, which will then
increase the complexity to a prohibitive level?

Our proposed VMC-CSMA algorithm precisely addresses
these difficulties. First, for systems with only one physical
channel, we introduce the notion of ”virtual channels.” Specif-
ically, there are C virtual channels, and each virtual channel
can have a different schedule. By randomly choosing a virtual
channel and using the corresponding schedule at each time
slot, we can then emulate the behavior of multiple physical
channels. (See Section III-B for the corresponding distributed
implementation.) Second, assuming that each link ℓ has a utility
function Uℓ(Rℓ) of its rate Rℓ, our proposed VMC-CSMA
algorithm iteratively updates the schedules across all virtual
channels to optimize the total system utility. Further, it only
requires local information exchange and incurs a low complex-
ity that increases linearly with the number of virtual-channels
C. Third, we quantify the throughput and delay performance of
the VMC-CSMA algorithm with respect to C. Specifically, for
an arbitrary network topology, let L denote the total number
of links. We show that when ϵ ≤ 0.1 and the number of
virtual-channels C is larger than 2 logL

3ϵ2 , our algorithm can
allocate an expected rate vector R⃗ = [Rℓ] to each link such that∑L

ℓ=1 Uℓ(Rℓ) ≥ (1−ϵ)
∑L

ℓ=1 Uℓ([R
∗
ℓ−ϵ]+), where R⃗∗ = [R∗

ℓ ]
is the rate vector with maximum system utility. Thus, our
algorithm can achieve close-to-optimal system utility with the
number of channels (and hence the corresponding complexity)
increasing very slowly (O(logL)) with the network size. For
delay, we show that, once our algorithm converges to the

steady-state, the expected packet delay of link ℓ equals to
1/Rℓ, and the distribution of its head-of-line (HOL) waiting
time can also be asymptotically bounded (see Lemma 5 for
details). Our simulation results confirm that the proposed VMC-
CSMA algorithm indeed achieves both high throughput and low
delay. Further, it can quickly adapt to network traffic changes.
In summary, the proposed VMC-CSMA algorithm achieves
dramatically low delay without sacrificing the high capacity
and low complexity of standard CSMA algorithms.

There have been a number of recent studies that try to
quantify and improve the delay performance of CSMA algo-
rithms [7]–[14]. However, none of them can attain the same
level of throughput/delay performance as we reported here. The
work in [13] compares the delay performance as one tunes
the parameter of a class of CSMA algorithms. However, it
is unclear whether such tuning will fundamentally alter the
exponential order of the starvation time. CSMA algorithms with
deadline constraints are studied under the setting of a complete
graph in [12] (where each link interferes with every other link).
In another work [7], the authors propose to periodically reset
or “unlock” the schedule to an initial empty schedule. They
show that, for a torus interference graph like Fig. 1, the delay
can be made independent of the network size. However, it
seems difficulty to generalize the results from [7,12] to arbitrary
network topologies. [10,11] show that, if the offered load is
sufficiently small (as a function of the maximum degree of
the interference graph), both the starvation time and the delay
of CSMA can be reduced to O(logL) [10] or even O(1)
[11]. However, for such results to hold, the offered load must
be reduced significantly from the optimal capacity. Similarly,
[14] considers using multiple physical channels for CSMA, but
under the constraint that each link can occupy at most one
channel. Thus, the resulting capacity could also be far from
optimal. Our idea of using multiple channels is also inspired
by [15]. However, it is difficult to modify the algorithm to
optimize global system utility. In [9], the authors propose to
effectively partition the network into (random) pieces with finite
size and run CSMA in each piece. Hence, the expected packet
delay can be bounded by a function of the size of each piece
and is independent of the network size. However, in order to
approach the optimal capacity, the size of each partition must
be large. Thus, the actual delay in each partition may still be
large. Finally, [8] shows that, for an open-loop setting (i.e.,
without congestion control), there exists worst-case topologies
such that, in order to even support a small fraction of the
optional system capacity, either the computational complexity
or the delay must grow exponentially with the network size. Our
results do not contradict with that of [8] because both our notion
of delay (steady-state delay vs. transient delay) and our system
setting (with vs. without congestion control) are different (see
the end of Section III-C for detailed discussions).

The rest of the paper is organized as follows. The system
model is presented in Section II. In Section III, we present the
VMC-CSMA algorithm along with the performance analysis.
We discuss the implementation issues in Section IV and the
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simulation results in Section V. Then we conclude.

II. SYSTEM MODEL

We consider a wireless network with N nodes and L links,
where each node represents a communication device, and each
link corresponds to a pair of transmitting node and receiving
node. We assume the so-called protocol interference model, i.e.,
two links interfere with each other if they can not transmit data
at the same time. We let Eℓ be the set of links that interfere
with link ℓ. We will call two links ℓ1 and ℓ2 neighbors if ℓ1 and
ℓ2 interfere with each other. We consider a time-slotted system,
where each slot has unit length. We assume that the wireless
network has only one physical channel. The capacity of each
link is assumed to be 1, i.e., each link can transmit one unit-
sized packet in one time slot if there are no interfering links
transmitting at the same time. At each time slot, we define the
term schedule as the set of links that transmit packets. We say
that a schedule is feasible if no two links in the set interfere
with each other. To represent a schedule, we will use a L-
dimension vector such that the ℓth element is 1 if link ℓ is
included in the schedule, and is 0 otherwise.

Associated with each link is a one-hop flow, i.e., packets of
the flow will immediately leave the network after it traverses the
single link. We assume that each flow is infinitely backlogged,
i.e., at the application layer it always has packets to send.
Further, each one-hop flow at link ℓ has a utility function
Uℓ(·) associated with it. If the long-term average rate of
link ℓ is Rℓ, then Uℓ(Rℓ) represents the satisfactory level
of the corresponding flow [2]. We assume that each utility
function is positive, non-decreasing, strictly concave, and twice
differentiable [16]. Further, we assume that it is bounded on the
domain D = [0, 1]. Let U(R⃗) =

∑L
ℓ=1 Uℓ(Rℓ). Let Ω denote

the capacity region of the wireless network, which is given by
the set of all rate vectors R⃗ = [Rℓ] such that there exists a
control policy that can support the long-term average rate Rℓ

at all links ℓ.
As we discussed in the introduction, we are interested in

both high capacity and low delay. For high capacity, we aim to
solve the following optimization problem that maximizes the
total system utility.

max
Rℓ≥0

L∑
ℓ=1

Uℓ(Rℓ), R⃗ = [Rℓ] ∈ Ω. (1)

Let R⃗∗ = [R∗
ℓ ] be the optimal solution of the above opti-

mization problem. Note that this problem is known to be a
cross-layer control problem [2] because it involves two control
mechanisms. First, the application layer of the flow at each link
ℓ needs to determine how packets can be injected at the long-
term average rate of R∗

ℓ , which can be viewed as a congestion
control component. Second, at the MAC layer, the system must
determine how to schedule the link transmissions to support
the long-term average rate R∗

ℓ at all links. As we discussed in
Section I, although this problem has been extensively studied
in the literature, existing solutions suffer either from high
complexity, low capacity (i.e., low utility), or large delay.

To define the delay in this infinite-backlog setting, we note
that, for each packet, there is a time when the congestion
control component at the transport layer decides to inject the
packet into the buffer of the corresponding link. Then, at a
later time, this packet is transmitted by the link. We define
the delay of the packet as the difference between these two
time instants. In other words, the packet delay is defined as
the number of time-slots that a packet needs to stay in the
buffer before being served. Although this definition seems to
be a natural definition of delay, it unfortunately does not fully
capture the effect of the possible starvation problem [7]. For
example, consider a queue with a single buffer. A new packet is
added to the buffer immediately after the old packet is served.
Suppose that the time to serve each packet follows the pattern
below. For every 1000 packets, it takes only one time-slot to
serve each of the first 999 packets. However, the 1000th packet
suffers starvation for 1000 time-slots. In this case, the expected
packet delay (average over all packets) is a low value of 1.99.
Thus, the effect of the starvation problem is not obvious. Due to
this reason, we introduce another notion of delay as follows. At
a given time t, we study the time that the head-of-line (HOL)
packet has waited in the system. In the above example, the
expected HOL waiting time at any given time would be around
250. Hence, the negative impact of the starvation problem is
more obvious. In this paper, by low delay, we mean that both
the packet delay and the HOL waiting time should be small.
Thus, the goal in this paper is to develop low-complexity and
distributed control algorithms that can achieve both provably
high system utility and provably low delay.

III. VMC-CSMA ALGORITHM DESIGN AND ANALYSIS

In this section, we propose a new low-complexity Virtual-
Multi-Channel (VMC-) CSMA algorithm, with provable high
capacity and low delay. Since our algorithm is motivated by
the standard CSMA algorithm, we will first briefly describe a
discrete time version of the standard CSMA algorithm [2,5]
for solving problem (1) and discuss its weakness. We will then
introduce the new VMC-CSMA algorithm.

A. The Standard CSMA algorithm

Let Qℓ(t) be the number of packets of link ℓ at the beginning
of time slot t. Let S⃗(t) = [Sℓ(t)] be the schedule chosen by
the scheduling algorithm at time t. Define a set S of decision
schedules such that every element in S is a feasible schedule.
Further, each link must be scheduled by at least one schedule in
S. Let wℓ(t) be an suitable increasing function of Qℓ(t) as in
[5]. For example, wℓ(t) = log(αQℓ(t)), where α is a positive
constant. The following CSMA algorithm is known to solve
problem (1) under certain assumptions.
CSMA Algorithm: At each time t,

• Decision Phase: Choose a decision schedule S⃗D(t) =
[SD

ℓ (t)] randomly in S. Only links scheduled in S⃗D(t)
may change their schedules in the following step.

• Scheduling Phase: For each link ℓ, if SD
ℓ (t) = 1 and

Sℓ′(t) = 0 for every link ℓ′ ∈ Eℓ, the state of Sℓ(t) is
determined with random distribution: P ({Sℓ(t) = 1}) =
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exp(wℓ(t))
1+exp(wℓ(t))

and P ({Sℓ(t) = 0}) = 1
1+exp(wℓ(t))

. Other-
wise, let Sℓ(t) = Sℓ(t− 1).

• Congestion Control: Each link ℓ injects a random number
of packets according to a Poisson random variable with
mean rℓ = argmax

r≥0
{Uℓ(r) − βQℓ(t)r}, where β is a

positive constant.
It can be shown that, under a time-scale separation assump-

tion [5], if β is sufficiently small, r⃗ = [rℓ] will converge to
values close to the optimal solution of (1) [2]. In practice, the
above time-scale separation assumption must be approximated
by a small value of α. However, when α and β are small,
Qℓ(t) and wℓ(t) tend to grow to large values. In that case, the
algorithm will likely to be stuck in one good schedule for a
long time before it switches to another good schedule [7] (as
we discussed in Section I). In the worst case, one can show
that the starvation time and the delay may grow exponentially
with the network size [6].

B. Virtual-Multi-Channel CSMA Algorithm

We now introduce our proposed VMC-CSMA algorithm that
overcomes the above difficulties of starvation problem and
large delay. As we have mentioned in Section I, the key to
achieve both high capacity and low delay is to take advantage
of C multiple channels and simultaneously compute C feasible
schedules over all channels. Once a good set of C feasible
schedules are found, we can then avoid constantly switching
schedules (and hence the starvation problem). To make this idea
feasible in wireless systems with only one physical channel,
next we will use the concept of “virtual channels.” Specifically,
there are C virtual channels for each link ℓ. For each link
ℓ, we use V⃗ℓ = [Vℓ1, · · · , VℓC ] to denote its schedule in all
virtual channels, where Vℓk = 1 if link ℓ is scheduled in the
kth virtual channel, and Vℓk = 0 otherwise. We use V⃗ = [V⃗ℓ]
to denote the global schedules of all virtual channels and all
links. When we focus on a specific virtual-channel k, there is
a feasible schedule S⃗(V⃗ )k = [V1k, · · · , VLk] for the network.
Note that given the global schedule V⃗ , the total number of
virtual channels used by link ℓ is given by xℓ(V⃗ ) =

∑C
k=1 Vℓk.

To use these schedules, at each time slot, the network randomly
chooses a virtual-channel k(t) uniformly from 1 to C, i.i.d.
across time-slots. All links in the network then use the feasible
schedule S⃗(V⃗ )k(t) in this time-slot, i.e., each link ℓ transmits
a packet if Vℓ,k(t) = 1.1 Note that each link only needs to
know its own schedules V⃗ℓ. Further, the randomization of the
virtual-channel k(t) can be achieved in a distributed manner
if all links are synchronized, and they have the same random-
number generator with a common-seed, which only needs to
be agreed upon at the beginning of the system operation. With
this implementation, each link ℓ will be scheduled for actual
transmission with probability equal to rℓ(V⃗ ) = xℓ(V⃗ )/C, i.i.d.
across time-slots. Thus, the long-term average rate of link ℓ

1We note that the idea of using a random schedule has some similarity to the
stationary randomized policy [3] that has been used to analyze the throughput
optimality of other algorithms. However, there are no low-complexity methods
of computing the right stationary randomized policy.

will be equal to rℓ(V⃗ ), and the inter-service time is 1/rℓ(V⃗ ).
Hence, the delay will likely be small as we will show below.

It remains to develop a low-complexity and distributed
algorithm for computing the global schedule V⃗ that leads to
high total system utility. Specifically, we seek solution to the
following optimization problem, which can be viewed as an
approximation to the original optimization problem (1):

max
V⃗

L∑
ℓ=1

Uℓ(rℓ(V⃗ )),

S⃗(V⃗ )k is a feasible schedule, k = 1, 2, · · · , C.

(2)

Our hope is that, when C is sufficient large, the optimal solution
of (2) will be close to that of (1).

We next describe our proposed low-complexity VMC-CSMA
algorithm for solving (2). Later in Section III-C, we will study
its throughput and delay as the number of virtual-channels
C varies. Because VMC-CSMA algorithm updates the global
schedule V⃗ iteratively over time, we will use the notation V⃗ (t),
V⃗ℓ(t), and Vℓk(t) to denote their corresponding values at time
slot t. Similar to the standard CSMA algorithm, we define a set
S of decision schedules such that it satisfies the following three
conditions: (1) each decision schedule is a feasible schedule.
(2) each link ℓ must be scheduled by at least one decision
schedule in S. Note that these two conditions are the same
as those in the standard CSMA algorithm [5]. (3) each link
scheduled by a decision schedule can broadcast C bits to its
neighbors in a time slot. We will discuss in Section IV how to
implement the decision schedules at each time slot. Now, we
describe our algorithm.
Virtual-Multi-Channel CSMA Algorithm: At each time t,

• Decision Phase: Choose a decision schedule S⃗D(t) =
[SD

ℓ (t)] randomly in S.
• Update Phase: For each link ℓ, if SD

ℓ (t) = 0, let V⃗ℓ(t) =

V⃗ℓ(t−1). Otherwise, (i.e., SD
ℓ (t) = 1), choose a permuta-

tion (nℓ
1, n

ℓ
2, · · · , nℓ

C) of the set {1, 2, · · · , C} uniformly
at random. Start with i = 1. Let x1

ℓ =
∑C

k=1 Vℓk(t − 1).
Then, the link ℓ updates its own virtual-channel schedules
V⃗ℓ sequentially for i = 1, · · · , C:
Step 1: Consider virtual-channel nℓ

i . We check all the links
ℓ′ ∈ Eℓ. If Vℓ′,nℓ

i
(t − 1) = 1 for any link ℓ′ ∈ Eℓ, let

Vℓ,nℓ
i
(t) = Vℓ,nℓ

i
(t − 1), and go to step 3. Otherwise, if

Vℓ′,nℓ
i
(t− 1) = 0 for all links ℓ′ ∈ Eℓ, go to step 2.

Step 2: Let fℓ(x) = exp(αUℓ(
x
C )). The value of Vℓ,nℓ

i
(t)

is determined with the random distribution:

P ({Vℓ,nℓ
i
(t) = y})

=
fℓ(x

i
ℓ+y−V

ℓ,nℓ
i
(t−1))

fℓ(xi
ℓ−V

ℓ,nℓ
i
(t−1))+fℓ(xi

ℓ+1−V
ℓ,nℓ

i
(t−1))

,
(3)

where y = 0 or 1.
Step 3: If i ≤ C−1, let xi+1

ℓ = xi
ℓ+Vℓ,nℓ

i
(t)−Vℓ,nℓ

i
(t−1),

and go back to step 1.
Step 4: After all channels are updated, link ℓ scheduled
by S⃗D(t) will broadcast V⃗ℓ(t) to all of its neighbors.
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• Scheduling Phase: A common virtual-channel k(t) is cho-
sen by all links in the network uniformly at random from
1 to C, and each link ℓ transmits a packet if Vℓ,k(t)(t) = 1.

• Congestion Control: All links ℓ use the window-based
flow-control algorithm with window-size 1, i.e., a new
packet is injected to link ℓ only if a packet is served.

We note a key difference between the VMC-CSMA and
the standard CSMA. Under the VMC-CSMA (correspondingly
standard CSMA) algorithm, the random distribution for up-
dating the schedule of link ℓ is a function of its own utility
Uℓ(xℓ/C) (correspondingly its own queue length Qℓ(t)). The
significance of this key difference is as follows. Consider (3)
and Vℓ,nℓ

i
(t− 1) = 0 for an example, we have

P ({Vℓ,nℓ
i
(t) = 1}) = fℓ(x

i
ℓ+1)/fℓ(x

i
ℓ)

1+fℓ(xi
ℓ+1)/fℓ(xi

ℓ)
≈ exp( α

C U ′
ℓ(

xi
ℓ

C ))

1+exp( α
C U ′

ℓ(
xi
ℓ

C ))

(4)
Recall that the utility is an increasing and strictly concave
function. Hence, if a link has a larger value of xi

ℓ, it will
be less likely to activate itself in a new virtual channel, and
vice versa. Thus, the schedules across virtual channels are
in fact coordinated to reach a global schedule V⃗ with total
system utility close to the optimal value. Hence, VMC-CSMA
do not constantly change the schedule based on the queue
length and avoid the starvation problem. An additional benefit
is that we can use the simple window-based flow-control as
the congestion control component, which further controls the
packets buffered in the system and reduces the delay.

C. Utility Optimality and Delay Performance

In this subsection, we study the capacity/utility and delay
performance when our VMC-CSMA algorithm reaches steady
state. Note that, under the VMC-CSMA algorithm, the global
schedule V⃗ (t) behaves as a Markov chain. Hence, we will also
refer to V⃗ (t) as the state. Let V be the state space of the
Markov chain. We first introduce a proposition that describes
the stationary distribution of the Markov chain.

Proposition 1: The stationary distribution of the Markov
chain V⃗ (t) is given by P (V⃗ ) = 1

Z exp(α
∑L

ℓ=1 Uℓ(rℓ(V⃗ ))),

where Z is a normalization constant for all V⃗ ∈ V .
Proof: The proof is given in Appendix A

Proposition 1 implies that the state V⃗ with larger value of
total system utility has a higher chance to be visited. Further,
since α appears in the exponent in the stationary distribution,
as α increases, the probability of reaching the state with the
largest utility, which is the solution to the approximate problem
(2), will approach 1. However, due to the quantization effect
with a finite C, the optimal utility in (2) may be smaller than
the optimal utility of the original optimization problem in (1).
Hence, the key question is how many virtual-channels C we
need such that the two optimal-utility values are close. We note
that this is an important question because the complexity of our
algorithm also increases with C. In practice, we would prefer a
smaller value of C. A first thought for solving this question is
to use the Carathodory’s theorem [17]. Specifically, since the
capacity region of the optimization problem in (1) is a convex

hull of all the feasible schedules, the Caratheodory’s theorem
tells us that the optimal solution to (1) can be written as the
convex combination of L + 1 feasible schedules. As a result,
we may guess that we need C to be at least Θ(L) so that the
optimal solution to (1) can be approximated by a valid global
schedule V⃗ . Somewhat surprisingly, by allowing a small margin
ϵ for error and using a novel probabilistic argument, we can
reduce the order of C to O(logL). This nice result is presented
in the following proposition. Recall that R∗

ℓ is the optimal rate
of link ℓ.

Proposition 2: If ϵ ≤ 0.1 and C > 2 logL
3ϵ2 , then there exists

a state V⃗ s in the state space V of the Markov chain such that
rℓ(V⃗

s) ≥ R∗
ℓ − ϵ, for all link ℓ.

Proof: The proof is given in Appendix B
Note that since the rate is always bigger than zero, it then
follows from rℓ(V⃗

s) ≥ R∗
ℓ−ϵ that rℓ(V⃗ s) ≥ max(R∗

ℓ−ϵ, 0) ,
[R∗

ℓ−ϵ]+. With the help of Proposition 2, we can prove the first
main theorem in this paper. Recall that U(r⃗) =

∑L
ℓ=1 Uℓ(rℓ).

Theorem 3: Under our VMC-CSMA algorithm, for any ϵ ≤
0.1, we can choose C > 2 logL

3ϵ2 and α large enough such that
P{U(r⃗(V⃗ (t))) ≥

∑L
ℓ=1 Uℓ([R

∗
ℓ − ϵ]+)} ≥ 1− ϵ, where R⃗∗ is

the optimal solution of problem (1).
Proof: Consider a fixed C. Let V⃗ max be the solution to

(2). Then U(r⃗(V⃗ max)) ≥ U(r⃗(V⃗ )), for all V⃗ ∈ V . Define
the set A = {V⃗ ∈ V|U(r⃗(V⃗ )) = U(r⃗(V⃗ max))}. Denote
f(V⃗ ) = exp(αU(r⃗(V⃗ ))). Let fmax = f(V⃗ max). Note that
f(V⃗ ) = fmax for all V⃗ ∈ A. Since V is finite for a fixed
C, there must exist ϵ′ > 0 such that f(V⃗ ) ≤ fmaxe−αϵ′ for
all V⃗ /∈ A. Using Proposition 1 and this inequality, we can

then show that P ({V⃗ ∈ A}) =
∑

{V⃗ ∈A} f(V⃗ )∑
{V⃗ ∈A} f(V⃗ )+

∑
{V⃗ /∈A}f(V⃗ )

≥
fmax|A|

fmax|A|+fmaxe−αϵ′ (|V|−|A|) . This implies that for any ϵ, there

exists α such that P ({V⃗ ∈ A}) > 1−ϵ. Further, from Proposi-
tion 2, for any ϵ ≤ 0.1, we can choose a fixed C > 2 logL

3ϵ2 , such
that for V⃗ ∈ A, U(r⃗(V⃗ )) ≥ U(r⃗(V⃗ s)) ≥

∑
ℓ Uℓ([R

∗
ℓ − ϵ]+).

The results then follows.
Theorem 3 leads immediately to the following corollary on the
average throughput and expected packet delay for each link ℓ.

Corollary 4: Let P (V⃗ ) be steady state probability when the
state of the Markov chain V⃗ (t) is V⃗ . The average throughput
Rℓ of link ℓ is Rℓ =

∑
{V⃗ ∈V} P (V⃗ )rℓ(V⃗ ), and the expected

packet delay is 1/Rℓ. Further, U(R⃗) ≥ (1− ϵ)U([R⃗∗ − ϵ]+).
Proof: To calculate the throughput of link ℓ, we have to

consider the real schedule which is determined both by V⃗ (t)
and the common virtual channel that we choose at each time
slot. Let k(t) be the common virtual channel chosen at time slot
t. Note that P{k(t) = k} = 1/C, k = 1, · · · , C, and k(t) is
i.i.d. across time-slots and is independent of V⃗ (t). The average
throughput of link ℓ can then be derived as follows.∑

V⃗ ∈V
∑C

k=1 P{k(t) = k, V⃗ (t)

= V⃗ }Vℓk =
∑

V⃗ ∈V
∑C

k=1
1
CP{V⃗ (t) = V⃗ }Vℓk

=
∑

V⃗ ∈V P{V⃗ (t) = V⃗ }rℓ(V⃗ )

(5)

Further, since we use the window-based congestion control with
window size 1, by Little’s law the average steady state delay
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is 1/Rℓ for each link ℓ.
Now, combining Theorem 3 and the fact that U(·) is a

concave function, we can have that

U(R⃗) ≥
∑
V⃗

P (V⃗ )U(r⃗(V⃗ )) ≥ (1− ϵ)(U([R⃗∗ − ϵ]+)).

This concludes the proof.
As we have mentioned in Section II, we use the HOL

waiting time as a measure to capture the effect of starvation.
The following lemma shows that under our algorithm, the tail
distribution of the HOL waiting time will decay quickly.

Lemma 5: Under our VMC-CSMA algorithm, for a fixed
integer d > 0 and any ϵ > 0, there exists sufficiently large α
so that, for each link ℓ, P{HOL waiting time ≥ d} ≤ (1 −
rmin
ℓ )d+ ϵ, where rmin

ℓ = min
{V⃗ ∈V,U(r⃗(V⃗ ))=U(r⃗(V⃗ max))}

rℓ(V⃗ ) and

V⃗ max is the solution to (2).
Proof: Define the set A = {V⃗ ∈ V|U(r⃗(V⃗ max)) =

U(r⃗(V⃗ ))}. From the proof of Theorem 3, we can find α
such that P{V⃗ (t) /∈ A} ≤ ϵ/d. Let E be the event that
V⃗ (t1) ∈ A, t1 = t − d + 1, · · · , t. Hence, by the union
bound, P (Ec) ≤ d ϵ

d = ϵ. Let wℓ(t) be the HOL waiting
time for link ℓ at time t. We have that P{wℓ(t) ≥ d|E} =
P{link ℓ is not served for t− d+ 1 to t|E} ≤ (1 − rmin

ℓ )d.
Use this inequality, we can then show that P{wℓ(t) ≥ d} =
P{wℓ(t) ≥ d|E}P{E}+ P{wℓ(t) ≥ d|Ec}P{Ec} ≤
(1− rmin

ℓ )d + ϵ. This concludes the proof.
Note that, for each link ℓ, both the expected packet delay and
the distribution of the HOL waiting time only depend on Rℓ

and rmin
ℓ , and are otherwise independent of the network size.

It may still be possible for rmin
ℓ to be small. For example, if

the utility function of a link ℓ has a much smaller derivative
than others, then this link may be assigned a very small rate
in the optimal solution of (1). However, we believe that his
effect has more to do with the system setting than the control
algorithms. For reasonable topologies and utility functions, we
would expect that rmin

ℓ will not grow arbitrarily small as the
network size grows. For instance, consider the torus interfere
graph introduced in Fig. 1. It is easy to see that R∗

ℓ = 0.5
for all links if all links have the same utility function. Thus,
as long as the number of virtual channels are even, we must
have rℓ(V⃗

max) = 0.5. Hence, both the expected delay and the
distribution of the HOL waiting time do not deteriorate with
the network size.

We note that, in [8], the authors show that, for open-loop
systems, even at an offered load that is a small fraction of
the optimal capacity, there exists network topologies such that
either the complexity or the delay must grow exponentially
with the network size. We note that our result differs from [8]
in two important aspects. First, the delay definition is different.
We are interested in the steady state delay, i.e., after the Markov
chain converges to the stationary distribution. The convergence
time (which we did not capture in this paper) may still be
exponential in the network size. In contrast, the delay in [8]
is the worst-case delay across time and hence also captures
the transient phase. Second, we use a closed-loop system (with

congestion control) in contrast to an open-loop system in [8].
Hence, our results do not contradict with that of [8]. On the
other hand, we believe that a low value of delay as we defined
under the setting in this paper is useful in practice. Thus, the
results in this paper suggests that the impossibility results in
[8] may not prevent us to develop low-complexity, low-delay
and high-capacity algorithms that are useful in practice.

D. Computational Complexity and Communication Overhead

In this subsection, we discuss the computational complexity
and communication overhead of the VMC-CSMA algorithm. It
is easy to see that, for each link, the computational complexity
of the VMC-CSMA algorithm is O(C). This is because, for
each link, it only needs to go through the C virtual channels.
Further, finding the random permutation in the “update phase”
is of complexity O(C) through the use of the Fisher-Yates
shuffle [18]. Note that all of the computations can be carried out
in parallel at all links. Regarding the communication overhead,
note that each link ℓ can use a C-bit vector to denote its
schedule V⃗ℓ across all virtual channels. In each time-slot, a link
scheduled by S⃗D(t) may need to broadcast this C-bit vector
to all of its neighbors. Hence, the communication overhead is
also O(C). From Theorem 3 and Corollary 4, we can see that
C = O(logL), which grows very slowly with the network
size. Hence, our algorithm is scalable to large networks. In
practice, all C bits may be put into a single control packet
in one time-slot. For example, if the size of a control packet
is 250 bytes, it can accommodate C = 2000 virtual channels.
Even for a large network with L = 1000 links, C = 2000
virtual channels are sufficient to reduce ϵ to be as small as
0.05 (see Theorem 3). Hence, the corresponding capacity/utility
reduction will be very small. If a data packet of length 2000
bytes (like in 802.11) is transmitted in each time-slot, such
a control packet corresponds to a low overhead of 12.5%. In
practice, this overhead can be further reduced by performing
the VMC-CSMA updates once several time-slots. For example,
if we perform the operation in the update phase every 5 time-
slots, the communication overhead is further reduced to 2.5%.
Note that, at each time-slot, we can still randomly choose a
virtual channel and use its schedule for transmission. Thus,
reducing the frequency of the VMC-CSMA updates will only
affect the convergence of the algorithm, but it will not affect
the capacity and delay once the Markov chain converges to its
stationary distribution.

IV. IMPLEMENTATION

In this section, we discuss two implementation issues. We
start with an improved scheduling algorithm. It is well known
that, for CSMA algorithms, there is a trade-off between opti-
mality and convergence speed, depending on the value of α.
In practice, we want to choose a suitable α that is not too
large to shorten the convergence time. However, when α is not
very large, we also observe a common source of performance
degradation, which can be explained as follows. Suppose that
the Markov chain has found the optimal state V⃗ max, and a link
ℓ is active in virtual channel k. When α is not very large,
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there is a substantial probability that link ℓ will turn itself
off in virtual channel k. If all other links in its neighborhood
have interfering links that are active in virtual channel k, no
neighboring links can be turned on in this virtual channel.
Hence, link ℓ may turn itself on again in virtual channel k later,
and, for link ℓ, the transmission opportunities during this period
are lost unnecessarily. Such performance degradation can be
easily avoided with the following improved algorithm. We call
the schedule computed by VMC-CSMA as the soft schedule. In
addition, we now introduce hard schedule as follows. Whenever
a link ℓ is turned on in virtual channel k by the soft schedule
(i.e. Vℓk = 1), we also turn on link ℓ in virtual channel k in
the hard schedule. However, even if Vℓk = 0, we will only turn
off link ℓ in the virtual channel k in the hard schedule when a
neighboring link of link ℓ decides to use virtual channel k (i.e.,
it turns itself on in virtual channel k by the soft schedule). As a
result, the hard schedule will give up transmission opportunities
until the last minute. Not only that our earlier throughput/delay
results still hold, we can avoid the throughput loss due to the
reason described above.

Now, we formally describe this simple fix. We define an
additional hard virtual schedule Hℓk for all virtual channel
schedule Vℓk, and we will call Vℓk the soft virtual channel
schedule or simply the virtual channel schedule. The update of
soft virtual schedule Vℓk will remain the same, and the update
of hard virtual schedule Hℓk is as follows.
Update Hard Virtual Schedule: At each time t, for every link
ℓ

• If Vℓk(t) = 1, we let Hℓk(t) = 1.
• If Vℓk(t) = 0, we let Hℓk(t) = 0 when link ℓ receives a

broadcast from any link ℓ′ with Vℓ′k(t) = 1, and ℓ′ ∈ Eℓ.
Otherwise, we let Hℓk(t) = Hℓk(t− 1).

Now, we modify the scheduling phase as follows.
Scheduling Phase: At time t, a common virtual channel k is
chosen by all links in the network uniformly at random, and
each link ℓ uses Hℓk(t) as the real schedule at time t.

Note that it is easy to see that each hard virtual channel
schedule will eventually become a maximal schedule. Recall
that a maximal schedule must be feasible, and we can not add
more links to the schedule without interfering with the links
that has been scheduled. The reason is that for the kth hard
virtual schedule of all the links, i.e., (H1k,H2k, · · · , HCk),
once it becomes a maximal schedule, it will remain as a
maximal schedule in the rest of the time because each link only
relinquishes the transmission opportunity when it is necessary
to maintain a feasible schedule. Further, the kth hard virtual
schedule of all the links will have a trend to become a maximal
schedule starting from time 0. This confirms our claim that
we can avoid the waste of transmission opportunity when the
soft virtual schedule V⃗ (t) jumps in the Markov chain. It is
easy to see that the throughput performance of this improved
scheduling algorithm using hard schedule is always better than
the algorithm described in Section III-B. Hence, the analytical
result in Section III-C still holds.

Second, we briefly discuss how to choose the decision sched-

ule at each time slot. Recall in Section III-B that, at each time
slot, we choose a decision schedule S⃗D with a fixed probability
distribution from a set S of decision schedules. Further, the
set S of decision schedules should meet the following three
conditions: (1) A decision schedule is a feasible schedule.
(2) Each link ℓ must be scheduled by at least one decision
schedule. (3) Each link scheduled by the decision schedule can
broadcast C bits to its neighbors. Note that, for the standard
CSMA algorithms [5], the authors provide a random backoff
algorithm for computing decision schedules that satisfy the
first two conditions. There are a number of ways to satisfy
the remaining third condition. One possibility is to assume
that there is a separate control channel (e.g. using CDMA).
On the other hand, if such a separate control channel is not
available, the other possibility is to make the decision schedule
more sparse. Specifically, not only that two active links in the
decision schedule do not interfere with each other (and hence
the decision schedule is a feasible schedule), but the two active
links do not share any common neighbors. As a result, if a link
is not scheduled by the decision schedule, it will not receive
more than one broadcast transmission. Such a decision schedule
can still be computed in each time-slot via a random-backoff-
based algorithm similar to that of [5], with additional signaling
message to resolve conflicts at common neighbors.

data transmissionC bitsF sub-slot

2 mini-slot

one time slot

Fig. 2. The composition of a time slot.

The detail of the algorithm is as follows. We first describe the
composition of a time slot as shown in Figure 2. The time slot is
composed by three phases. The first phase includes F sub-slot,
and each sub-slot has two mini-slots. A decision schedule will
be selected distributively in the first phase. The second phase
is the time required for each link scheduled by the decision
schedule to broadcast the C bits of information for the updated
virtual channel schedules. The third phase is the actual data
transmission. Now, at the beginning of each time slot, we assign
each link a mark bit equal to 0. Each link will choose a sub-slot
from 1 to F to attempt to be included in the decision schedule.
If a link chooses the F th sub-slot, it will not attempt at all.
Suppose that a link ℓ chooses the ith sub-slot, i ≤ F−1. If link
ℓ hears any successful transmission attempts before sub-slot i,
it will set its mark bit to 1, and it will not attempt to be included
in the decision schedule in this time-slot. On the other hand,
if link ℓ does not hear any successful transmission attempts
before sub-slot i, it transmits a message in the first mini-slot.
This message indicates to its neighbors that the link attempts
to be included in the decision schedule. For any other link k
that does not choose ith sub-slot, it sends a signal in the second
mini-slot under two conditions: (1) if there is a conflict because
its mark bit is 1, and it senses any message transmissions in the
first mini-slot, or (2) it senses a conflict due to more than one
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message transmissions in the first mini-slot. At the end of the
ith sub-slot, if link ℓ collides with other transmissions in the
first mini-slot, the attempt fails. Also, if link ℓ hears any signals
in the second mini-slot, the attempt fails. Otherwise, link ℓ is
included in the decision schedule. This algorithm ensures that
the links selected in the decision schedule do not have common
neighbors, and hence their neighboring links can receive the
C-bits broadcasts without interference. Further, each link has
a positive probability to be selected in the decision schedule
because there is a positive probability that all the neighboring
links will not attempt to be included in the decision schedule.

V. SIMULATION

In this section, we report simulation results of our VMC-
CSMA algorithm. We use the improved scheduling algorithm
and a random backoff-based decision-schedule algorithm dis-
cussed in Section IV. We first study a 8-by-8 torus interference
graph as described in Section I and compare our algorithm with
the standard CMSA algorithm.2 We set the utility function of
each link as log(10−5+ ·)− log(10−5), which ensures that the
utility function is positive. Note that, because of symmetry, the
optimal rate R∗

ℓ for each link under this setting will be 0.5.
For the standard CSMA algorithm, the weight is chosen as
wℓ(t) = 0.5Qℓ(t), and the parameter β for congestion control
is 0.1. For our VMC-CSMA algorithm, we let C = 30 and
α = 29. The corresponding ϵ = 0.3.3 We denote the node in
the top left corner of the torus as node 0 and the node right
next to it as node 1. Note that node 0 is active in the odd
schedule, and node 1 is active in the even schedule (See Fig.
1). The average throughput, average delay across packets, and
average HOL waiting time across the time slots for node 0 are
presented in the following table.

throughput delay HOL waiting time
CSMA 0.427 159 372.8

VMC-CSMA 0.479 2.09 2.10
The result shows that our algorithm can indeed achieve through-
put close to the optimal rate. Further, the delay performance
is exactly equal to the inverse of the average throughput. In
contrast, both the packet delay and the HOL waiting time of
the standard CSMA algorithm are 80 and 170 times larger,
respectively.4 In Figure 3(a), we plot the tail distribution of the
HOL waiting time under both algorithms. The HOL waiting
time of our algorithm decays quickly, which confirms Lemma
5 and explains why the average HOL waiting time is small. In
contract, the HOL waiting time of CSMA decays slowly (see
Fig. 3(b)) due to the starvation problem.

2Note that we use this simple and symmetric topology first because it allows
us to easily compare with the optimal solution.

3Note that Theorem 3 requires ϵ = 0.1 and a corresponding C = 277.
In this simulation setting, we intentionally choose a small C to show that in
reality we can also use small C to achieve good performance.

4Note that the two expected values may differ significantly should not be
surprising. The expected packet delay is an average over packets, and the
expected HOL waiting time is an average across time. As in the classical
Inspector’s Paradox [19], these two ways of taking expectation will lead to
different values when the inter-service time is not memoryless, which is the
case for the standard CSMA algorithm.

To give a sense of the convergence time of our algorithm, in
Fig. 3(c) we plot the time evolution of the instantaneous system
utility

∑L
ℓ=1 Uℓ(rℓ(V⃗ (t))) under different α. The simulation

results show that the utility approaches very close to the optimal
utility after 100 time slot. Further, the utility is larger than the
lower bound given by (1− ϵ)U([R⃗∗ − ϵ]+) (Corollary 4) even
for a small value of C. Note that when α is larger, the utility
value after convergence is also closer to the optimal value of
(1). However, larger α also incurs longer convergence time as
shown in Fig. 3(c).

Before we proceed to a larger topology, we comment on the
choice of α for different C. Through our simulation results, we
observe that a rule of thumb is to choose α to be proportional
to C. The reason can be explained by equation (4). For a
fixed value of rℓ =

xi
ℓ

C , as the number of virtual channels C
increases, in order to maintain the same probability of adding
another virtual channel, we should increase α proportional to
C. Our simulation studies indicate that, as long as the ratio
α/C is fixed, the tradeoff between convergence and optimality
is roughly the same for different values of C. As this ratio
increases, the optimality is improved at the cost of a longer
convergence time. Thus, we will use this rule of thumb also in
the following simulation results.

Next, we simulate our algorithm under a larger random
topology with 100 nodes and 100 links. We set the maximum
node degree to be 4, and under this constraint, each link is
generated by randomly choosing two nodes.5 We assume that
each link will interfere with the links that are two-hop away
(i.e., the two-hop interference model), and there are traffic on
all links. Further, we set the utility function of each link as
log(10−5 + ·)− log(10−5). In addition to the standard CSMA
algorithm, we will also compare our algorithm with two other
algorithms: the constant-time (CT) distributed algorithm [20]
and the well-known maximum weighted matching algorithm
(MWM) [2]. We caution however that, since these algorithms
incur very different computational complexity and communi-
cation overhead, it is difficult to conduct a completely fair
comparison. Because our proposed VMC-CSMA algorithm,
the standard CSMA algorithm, and the CT algorithm require
only one round of local control-message exchange (including
channel sensing) in each iteration, we will compare their
performance directly. On the other hand, the MWM algorithm
is a centralized algorithm that requires the queue length infor-
mation of all links. Further, its complexity may be exponential
under the two-hop interference model. In order to make the
comparison slightly more fair, we simulate a version of the
MWM algorithm that exchanges queue length information and
computes the schedule once every 100 time-slots. We call this
algorithm LMWM (Low-frequency MWM). Note that even at
the reduced frequency, the LMWM algorithm is still very costly
to implement due to its high complexity and the requirement
of collecting global queue length information.

In Fig. 4(a), we report the throughput and delay tradeoff of

5We set a maximum on the node degree simply to prevent the case that the
optimal rate of a node is very small.
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(a) (b) (c)

Fig. 3. The simulation results for the 8-by-8 torus graph.

(a) (b) (c)

Fig. 4. The simulation results for a random network with 100 nodes and 100 links.

each algorithm. Specifically, the y-axis is the average packet
delay, and the x-axis is the average error percentage of the rate
vectors computed by these algorithms under various parameter
setting. The error percentage for each link is defined by
max[optimal rate − allocated rate, 0]/optimal rate. Thus, the
most desirable algorithm will correspond to a point close to
the origin, where it attains both high capacity and low delay.
As we can see in Fig. 4(a), for the VMC-CSMA algorithms,
when we vary C (which is labeled next to each point) and set
α = C ∗0.48, the VMC-CSMA consistently achieves low error
percentage and low delay. On the other hand, the performance
curves for CSMA and LMWM (each point is labeled with the
value of β, the step size used in the congestion control) are
significantly worse. For CT algorithm, the curve (each point
is labeled with the value of the backoff window size) exhibits
large error percentage because CT can only achieve a fraction
of the capacity region. Similar to the torus interference graph,
we also report the tail distribution of the HOL waiting time.
Specifically, we let C = 100 and choose a node where the
optimal allocated rate is 0.2177. The result is shown in Fig.
4(b). It shows that the tail distribution under our algorithm again
decays quickly. In contrast, the tail distribution of the HOL
waiting time under CSMA algorithm does not decay even after
100. Finally, we simulate our algorithm under the possibility of
traffic changes and observe how our algorithm adapts with the
change. Specifically, we let C = 100 and α = 48. Further, we
will turn off the traffic on half of the links after 4000 time-slots

and turn on the traffic after 8000 time-slots. Then, we record
the evolution of the total utility compared with the optimal
utility computed offline. The result is shown in Fig. 4(c). We
can see our algorithm adapts well to the traffic changes and the
instantaneous utility quickly approaches to the optimal utility.

VI. CONCLUSION

In this paper, we propose a virtual-multi-channel (VMC-)
CSMA algorithm to improve the delay performance of the stan-
dard CSMA algorithms for wireless networks under the proto-
col interference model and a single-hop utility-maximization
setting. The key idea of VMC-CSMA is to resolve the star-
vation problem of standard CSMA algorithms by emulating a
multi-channel system with C virtual channels and computing
multiple feasible schedules simultaneously. VMC-CSMA in-
herits the distributed nature of CSMA, and the complexity of
each link grows linearly with C. We use a novel probabilistic
argument to show that VMC-CSMA can approach arbitrarily
close to the optimal total system utility with C (and hence the
complexity) increasing logarithmically with the network size.
Further, after our algorithm converges to the steady-state, the
expected packet delay for each link equals to the inverse of its
long-term average rate, and the distribution of its head-of-line
(HOL) waiting time can also be asymptotically bounded. Our
simulation results show that VMC-CSMA significantly improve
the delay performance of CSMA algorithms. In the future work,
we will study how to extend this novel idea to the wireless
networks with arrivals and multi-hop traffic.



10

APPENDIX A
PROOF OF PROPOSITION 1

It is easy to verify that the Markov Chain is irreducible
and aperiodic. The reason is that every feasible state V⃗
can communicate with state 0⃗, and the period of state zero
is 1. By [19, Theorem 4.3.3], if we can find a stationary
distribution of the Markov chain, This stationary distribution
will be the unique distribution. Now, we will show that
P (V⃗ ) = 1

Z exp(
∑L

ℓ=1 Uℓ(
xℓ(V⃗ )

C )) is the correct distribution.
We will demonstrate the correctness by verifying the local
balance equations. Consider two states V⃗ 1 and V⃗ 2. If V⃗ 1 has a
transition to V⃗ 2, it implies that there exists a decision schedule
S⃗D such that for every link ℓ that is scheduled by S⃗D, it is
feasible to change the state from V⃗ 1

ℓ to V⃗ 2
ℓ . Further, if link ℓ

is not scheduled by S⃗D, then V⃗ 1
ℓ = V⃗ 2

ℓ . Otherwise, there is no
transition from V⃗ 1 to V⃗ 2. Now, based on these conditions, we
also know that there is a transition from V⃗ 2 to V⃗ 1. The reason
is that for every link ℓ that is scheduled by the same decision
schedule S⃗D, it is feasible to change the state from V⃗ 2

ℓ to V⃗ 1
ℓ .

Further, if link ℓ is not scheduled by S⃗D, then V⃗ 2
ℓ = V⃗ 1

ℓ . Note
that there may be multiple decision schedules that can be used
to change the state from V⃗ 1 to V⃗ 2. We will call these decision
schedules “feasible decision schedules”. Further, for any link ℓ
that is scheduled by the decision schedule, any permutation can
be used to change the state from V⃗ 1

ℓ to V⃗ 2
ℓ . Now, let P (S⃗D)

be the probability that decision schedule S⃗D is chosen, and let
n⃗ℓ = (nℓ

1, · · · , nℓ
C) be a vector represent a permutation of the

set {1, 2, · · · , C}. To verify the local balance equations, we
only need to show that

P (V⃗ 1)
∑

{feasible S⃗D}

P (S⃗D)
∏

{ℓ∈S⃗D}

(
∑
n⃗ℓ

Pℓ,nℓ
1
· · ·Pℓ,nℓ

C

C!
)

= P (V⃗ 2)
∑

{feasible S⃗D}

P (S⃗D)
∏

{ℓ∈S⃗D}

(
∑
n⃗ℓ

P ′
ℓ,nℓ

1
· · ·P ′

ℓ,nℓ
C

C!
).

(6)
Note that Pℓ,nℓ

i
is the probability of changing V 1

ℓ,nℓ
i

to V 2
ℓ,nℓ

i
,

which is the ith iteration of updating the virtual channel sched-
ules from V⃗ 1

ℓ to V⃗ 2
ℓ with permutation n⃗ℓ. Similarly, P ′

ℓ,nℓ
i

is the
probability of changing the state from V 2

ℓ,nℓ
i

to V 1
ℓ,nℓ

i
, which is

the ith iteration of updating the virtual channel schedules from
V⃗ 2
ℓ to V⃗ 1

ℓ with permutation n⃗ℓ. Let fℓ(x) = exp(αUℓ(
x
C )).

Also, let x2
ℓ = xℓ(V⃗

2), and x1
ℓ = xℓ(V⃗

1). Recall that for any
ℓ that is not scheduled by S⃗D, we have that V⃗ 2

ℓ = V⃗ 1
ℓ . It

implies that x2
ℓ = x1

ℓ if ℓ is not scheduled by S⃗D. We can
plug in P (V⃗ i) = 1

Z exp(α
∑L

ℓ=1 Uℓ(
xi
ℓ

C )), i = 1, 2, and rewrite
equation (6) to the following equation:∑

{feasible S⃗D}

P (S⃗D)

Z

∏
{ℓ∈S⃗D}

(
∑
n⃗ℓ

Pℓ,nℓ
1
· · ·Pℓ,nℓ

C

C!
)fℓ(x

1
ℓ)

=
∑

{feasible S⃗D}

P (S⃗D)

Z

∏
{ℓ∈S⃗D}

(
∑
n⃗ℓ

P ′
ℓ,nℓ

C
· · ·P ′

ℓ,nℓ
1

C!
)fℓ(x

2
ℓ),

(7)

If we can show that given any permutation n⃗ℓ =
(nℓ

1, · · · , nℓ
C), we have that

fℓ(x
1
ℓ)Pℓ,nℓ

1
· · ·Pℓ,nℓ

C
= P ′

ℓ,nℓ
C
· · ·P ′

ℓ,nℓ
1
fℓ(x

2
ℓ), (8)

then equation (7) will be true, and we could finish the proof.
Now, we show that equation (8) is true.

By equation (3), Pℓ,nℓ
1

and P ′
ℓ,nℓ

C
can be described by frac-

tions, and we will show that the denominator (resp. numerator)
on the left hand side of equation (8) is equal to the denominator
(resp. numerator) on the right hand side of equation (8). We
first focus on at the numerator. Note that the number of virtual
channels activated by link ℓ, i.e., xℓ, determines the probability
of updating the schedule of the virtual channel. Further, note
that the product operation on the left hand side of equation
(8) implies that we proceed the operation with the order
depending on the permutation vector (nℓ

1, · · · , nℓ
C). Similarly,

for the right hand side of equation (8), we proceed the product
operation with the order depending on the permutation vector
(nℓ

C , · · · , nℓ
1). Hence, we know that for the left hand side of

equation (8), the value of xℓ right before updating the schedule
of virtual channel nℓ

k is

x1
ℓ +

k−1∑
i=1

(V 2
ℓ,nℓ

i
− V 1

ℓ,nℓ
i
). (9)

Similarly, for the right hand side of equation (8), the value of
xℓ right before updating the schedule of virtual channel nℓ

k is

x2
ℓ +

k+1∑
i=C

(V 1
ℓ,nℓ

i
− V 2

ℓ,nℓ
i
). (10)

Also, we have the equality between x1
ℓ and x2

ℓ

x2
ℓ = x1

ℓ +
C∑
i=1

(V 2
ℓ,nℓ

i
− V 1

ℓ,nℓ
i
). (11)

From equations (9) and (10), we know that the numerator on
the left hand side of equation (8) is equal to

fℓ(x
1
ℓ)

C∏
k=1

fℓ(x
1
ℓ +

k∑
i=1

(V 2
ℓ,nℓ

i
− V 1

ℓ,nℓ
i
)). (12)

Similarly, we know that the numerator on the right hand side
of equation (8) is equal to

fℓ(x
2
ℓ)

1∏
k=C

fℓ(x
2
ℓ +

k∑
i=C

(V 1
ℓ,nℓ

i
− V 2

ℓ,nℓ
i
)). (13)

It then follows from equation (11) that equation (12) equals to
equation (13). Hence, the numerator on the left hand side of
equation (8) equals to the numerator on the right hand side of
equation (8). Now, we focus on the denominator of equation
(8). We will show that the denominator of Pℓ,nℓ

k
equal to that

of P ′
ℓ,nℓ

k

for all 1 ≤ k ≤ C. Specifically, from equations (9)
and (10), we know that the denominator of Pℓ,nℓ

k
is

fℓ(x
1
ℓ +

∑k−1
i=1 (V

2
ℓ,nℓ

i
− V 1

ℓ,nℓ
i
))

+ fℓ(x
1
ℓ +

∑k−1
i=1 (V

2
ℓ,nℓ

i
− V 1

ℓ,nℓ
i
) + 1{V 1

ℓ,nℓ
k

=0} − 1{V 1

ℓ,nℓ
k

=1}),

(14)
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and the the denominator of P ′
ℓ,nℓ

k

is

fℓ(x
2
ℓ +

∑k+1
i=C(V

1
ℓ,nℓ

i
− V 2

ℓ,nℓ
i
))

+ fℓ(x
2
ℓ +

∑k+1
i=C(V

1
ℓ,nℓ

i
− V 2

ℓ,nℓ
i
) + 1{V 2

ℓ,nℓ
k

=0} − 1{V 2

ℓ,nℓ
k

=1}).

(15)
Let y = x1

ℓ +
∑k−1

i=1 (V
2
ℓ,nℓ

i
− V 1

ℓ,nℓ
i
). We can rewrite equation

(14) as

fℓ(y) + fℓ(y + 1{V 1

ℓ,nℓ
k

=0} − 1{V 1

ℓ,nℓ
k

=1}) (16)

By equation (11), we can also rewrite equation (15) as

fℓ(y+V 2
ℓ,nℓ

k
−V 1

ℓ,nℓ
k
)+fℓ(y+V 2

ℓ,nℓ
k
−V 1

ℓ,nℓ
k
+1{V 2

ℓ,nℓ
k

=0}−1{V 2

ℓ,nℓ
k

=1})

(17)
It is then easy to show that under all four possible conditions,
i.e, (V 2

ℓ,nℓ
k

, V 1
ℓ,nℓ

k

) = (0, 0), (0, 1), (1, 0), or (1, 1), equation (16)
is equal to equation (17). Hence, the denominator of Pℓ,nℓ

k
is

equal to that of P ′
ℓ,nℓ

k

.
Now, we have proved that the denominator of Pℓ,nℓ

k
is equal

to that of P ′
ℓ,nℓ

k

for all 1 ≤ k ≤ C. Since the numerator on the
left hand side of equation (8) is also equal to the numerator
on the right hand side of equation (8), we know that equation
(8) is true. This implies that equation (6) is true, and we have
verified the local balance equations. This concludes the proof.

APPENDIX B
PROOF OF PROPOSITION 2

We first prove several lemmas that are required for proving
Proposition 2.

Lemma 6: If 0 < ϵ ≤ 0.1, 3r2 − (3 + 2ϵ)r + 1 + ϵ > 0,∀r.
Proof: Let f(r) = 3r2 − (3 + 2ϵ)r + 1 + ϵ. Since

f ′′(r) = 6 > 0, we know that there is a global minimum.
Solving f ′(r) = 0, we can get that r = 3+2ϵ

6 will lead to the
minimum value. Hence,

min
r

f(r) =
3− 4ϵ2

12
> 0,

where the inequality follows from ϵ ≤ 0.1. We can then
conclude that 3r2 − (3 + 2ϵ)r + 1 + ϵ > 0.

Lemma 7: If 0 < ϵ, log( 1−2ϵ
1+2ϵ ) + 4ϵ < 0.

Proof: Let f(ϵ) = log( 1−2ϵ
1+2ϵ ) + 4ϵ. We know that f ′(ϵ) =

−4
1−4ϵ2 + 4. Hence, f ′(ϵ) < 0 if ϵ > 0. Further, since f(ϵ) is
continuous and differentiable, by the mean-value theorem, for
any ϵ > 0, we have that

f(ϵ) = f(ϵ)− f(0) = f ′(δ)ϵ, 0 < δ < ϵ.

Hence, f(ϵ) < 0, and we finish the proof.

Lemma 8: If 0 < ϵ ≤ 0.1 and ϵ < r < 1,

(1− r + ϵ) log(
1− r + ϵ

1− r
) + (r − ϵ) log(

r − ϵ

r
) >

3

2
ϵ2

Proof: Let

f(r) = (1− r + ϵ) log(
1− r + ϵ

1− r
) + (r − ϵ) log(

r − ϵ

r
).

We can also rewrite f(r) as

f(r) = log(
1− r + ϵ

1− r
) + (r − ϵ) log(

(r − ϵ)(1− r)

r(1− r + ϵ)
). (18)

To show f(r) > 3
2ϵ

2, if ϵ < r < 1. We need to show that

min
ϵ<r<1

f(r) >
3

2
ϵ2. We first observe that

f ′′(r) =
ϵ2[3r2 − (3 + 2ϵ)r + 1 + ϵ]

(r − ϵ)(1− r + ϵ)(1− r)2r2
.

It then follows from Lemma 6 and ϵ < r < 1 that f ′′(r) > 0.
Hence, f(r) is strictly convex on (ϵ, 1), and there is a global
minimum. Now, we can derive that

f ′(r) = log(
(r − ϵ)(1− r)

(1− r + ϵ)r
) +

ϵ

r(1− r)
. (19)

Let rmin = argmin
r

f(r). Note that by Lemma 7, f ′( 12 ) =

log( 1−2ϵ
1+2ϵ ) + 4ϵ < 0. Since f ′(r) is continuous, we can find a

y > 0 such that if 0 < δ < y then f ′( 12 − δ) < 0. Hence, for
any ϵ < x < 1

2 − δ, we can use the first order condition of
strictly convex function to show that

f(x)− f(
1

2
− δ) > f ′(

1

2
− δ)(x− 1

2
+ δ) > 0.

As a result, the minimum point rmin must be greater than 1
2 .

Now, since f ′(rmin) = 0, we can show that

log(
(rmin − ϵ)(1− rmin)

(1− rmin + ϵ)rmin
) = − ϵ

rmin(1− rmin)
, (20)

which is equivalent to

log(
1− rmin + ϵ

1− rmin
) = log(

rmin − ϵ

rmin
) +

ϵ

rmin(1− rmin)
. (21)

Pluggin equation (20) into the second term of equation (18)
and equation (21) into the first term of equation (18), we can
then show that

min
ϵ<r<1

f(r) = log(1− ϵ
rmin

) + (1− rmin + ϵ) ϵ
rmin(1−rmin)

= log(1− ϵ
rmin

) + ϵ
rmin

+ ϵ2

rmin
+ ϵ2

1−rmin

> log(1− ϵ
rmin

) + ϵ
rmin

+ ϵ2

rmin
+ 2ϵ2,

where the last inequality follows from rmin > 1
2 . If we can

show
log(1− ϵ

rmin
) +

ϵ

rmin
+

ϵ2

rmin
+

ϵ2

2
> 0, (22)

then f(r) ≥ f(rmin) > 3
2ϵ

2, and we would finish the proof.
Let g(ϵ) = log(1− ϵ

rmin
) + ϵ

rmin
+ ϵ2

rmin
+ ϵ2

2 . We know that

g′(ϵ) = ϵ
rmin(rmin−ϵ) [(2 + rmin)(rmin − ϵ)− 1]

> ϵ
rmin(rmin−ϵ) (

1
4 − 5ϵ

2 ) ≥ 0,

where we have used rmin > 1
2 and ϵ ≤ 0.1 for the last two

inequalities. Hence,

g′(ϵ) > 0, if 0 < ϵ ≤ 0.1. (23)

Since g(ϵ) is continuous and differentiable, by mean value
theorem, we know that g(ϵ) = g(ϵ) − g(0) = g′(δ)ϵ, for
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some 0 < δ < ϵ. It then follows from equation (23) that
g(ϵ) > g(0) = 0 if 0 < ϵ ≤ 0.1, and equation (22) is true.

Now, we can prove Proposition 2.
Proof of Proposition 2: Recall that R⃗∗ = [R∗

ℓ ] is
the optimal rate allocation of the system. By Caratheodory’s
Theorem [17], R⃗∗ can be represented as a convex combi-
nation of L + 1 feasible schedules S⃗1, S⃗2, · · · , S⃗L+1, i.e.,
R⃗∗ =

∑L+1
i=1 αiS⃗i, where αi ≥ 0 and

∑L+1
i=1 αi = 1. Now,

consider the following random system. There are C trials, for
each k = 1, · · · , C choose a S⃗ from S⃗1, · · · , S⃗L+1 based on
the probability distribution P ({S⃗ = S⃗i}) = αi, for all i,
independently across k. Let rsℓ be the number of times link
ℓ is scheduled by this random set of C schedules divided
by C. Then, in order to show that there exists V⃗ s such that
rℓ(V⃗

s) ≥ R∗
ℓ − ϵ, for all link ℓ, it is sufficient to show

that the following event occurs with a positive probability:
R∗

ℓ − rsℓ ≤ ϵ for all links ℓ. Note that by union bound we
have P (

∩
ℓ{R∗

ℓ − rsℓ ≤ ϵ}) ≥ 1 −
∑L

ℓ=1 P (R∗
ℓ − rsℓ > ϵ).

Hence, it is sufficient to show that

P (R∗
ℓ − rsℓ > ϵ) <

1

L
, for all links ℓ. (24)

Consider a fixed link ℓ. Intuitively, since the probability that
link ℓ is active in each trial is equal to R∗

ℓ , i.i.d. across trials,
(24) should hold when C is sufficiently large. Precisely, note
that (24) holds trivially if R∗

ℓ ≤ ϵ. Further, if R∗
ℓ = 1, then link

ℓ will be activated by all schedules S⃗i, and P (R∗
ℓ−rsℓ > ϵ) = 0.

Hence, we only need to consider the possibility that

ϵ < R∗
ℓ < 1. (25)

Let h be a random variable that represents the number of times
that link ℓ is activated by the series of C random schedules,
and rsℓ = h

C . Note that h is a Binomial random variable, and its
moment generating function is E[e−

ht
C ] = (R∗

ℓe
− t

C +1−R∗
ℓ )

C .
Using the Chernoff bound, we then have, for all t > 0,

P (R∗
ℓ − rsℓ > ϵ) = P (− h

C > ϵ−R∗
ℓ )

≤ et(R
∗
ℓ−ϵ)E[e−

ht
C ] = ef(t),

(26)

where f(t) = t(R∗
ℓ − ϵ) + C log(R∗

ℓe
− t

C + 1 − R∗
ℓ ), ∀t > 0.

To get the best bound, we solve the minimum of

f(t) = t(R∗
ℓ − ϵ) + C log(R∗

ℓe
− t

C + 1−R∗
ℓ ), ∀t > 0.

We first observe that

f ′′(t) =
R∗

ℓ

C e−
t
C (1−R∗

ℓ )

(R∗
ℓe

− t
C + 1−R∗

ℓ )
2
> 0, ∀t > 0,

which follows from equation (25). Therefore, f(t) is strictly
convex, and there is one global minimum. Hence, we find the
minimum by solving

f ′(t) = (R∗
ℓ − ϵ) +

−R∗
ℓ e

− t
C

R∗
ℓ e

− t
C +1−R∗

ℓ

= 0

⇔ e−
t
C =

(1−R∗
ℓ )(R

∗
ℓ−ϵ)

R∗
ℓ (1−R∗

ℓ+ϵ) .
(27)

Substituting (27) into (26), we can then show that

P (R∗
ℓ−rsℓ > ϵ) ≤

[(
R∗

ℓ − ϵ

R∗
ℓ

)−(R∗
ℓ−ϵ) (

1−R∗
ℓ

1−R∗
ℓ + ϵ

)1−R∗
ℓ+ϵ

]C

.

(28)
Hence, a sufficient condition of (24) to hold is

C > logL

(1−R∗
ℓ+ϵ) log(

1−R∗
ℓ
+ϵ

1−R∗
ℓ

)+(R∗
ℓ−ϵ) log(

R∗
ℓ
−ϵ

R∗
ℓ

)
. (29)

It then follows from C > 2 logL
3ϵ2 , Lemma 8, equation (29), and

equation (28) that P (R∗
ℓ − rsℓ > ϵ) < 1

L if ϵ < R∗
ℓ < 1. Hence,

equation (24) is true, and we finish the proof.
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