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Abstract—We consider the problem of designing a joint con-
gestion control and scheduling algorithm for multihop wireless
networks. The goal is to maximize the total utility and achieve low
end-to-end delay simultaneously. Assume that there are m flows
inside the network, and each flow has a fixed route with Hm hops.
Further, the network operates under the one-hop interference
constraint. We develop a new congestion control and scheduling
algorithm that combines a window-based flow control algorithm
and a new distributed rate-based scheduling algorithm. For any
ε, εm ∈ (0, 1), by appropriately choosing the number of backoff
mini-slots for the scheduling algorithm and the window-size of
flow m, our proposed algorithm can guarantee that each flow m
achieves throughput no smaller than rm(1−ε)(1−εm), where the
total utility of the rate allocation vector ~r = [rm] is no smaller
than the total utility of any rate vector within half of the capacity
region. Furthermore, the end-to-end delay of flow m can be upper
bounded by Hm/(rm(1−ε)εm). Since a flow-m packet requires at
least Hm time slots to reach the destination, the order of the per-
flow delay upper bound is optimal with respect to the number
of hops. To the best of our knowledge, this is the first fully-
distributed joint congestion-control and scheduling algorithm
that can guarantee order-optimal per-flow end-to-end delay and
utilize close-to-half of the system capacity under the one-hop
interference constraint. The throughput and delay bounds are
proved by a novel stochastic dominance approach, which could be
of independent value. Our algorithm can be easily implemented
in practice with a low per-node complexity that does not increase
with the network size.

I. INTRODUCTION

The joint congestion control and scheduling problem in
multihop wireless networks has been extensively studied in
the literature [1], [2]. Often, each user is associated with a
non-decreasing and concave utility function of its rate, and
a cross-layer utility maximization problem is formulated to
maximize the total system utility subject to the constraint
that the rate vector can be supported by some scheduling
algorithm. One optimal solution to this problem is known to be
the max weight back-pressure scheduling algorithm combined
with a congestion control component at the source [1], [2].
Further, significant progresses have been made in designing
distributed scheduling algorithms with provable throughput
and lower complexity than the back-pressure algorithm [3]–
[10]. However, most of the existing works on joint congestion
control and scheduling have only considered the throughput
performance metric and not accounted for delay performance

Fig. 1. A wireless network with linear topology.

issues. Although for flows with congestion control (e.g., file
transfer) the throughput is often the most critical performance
metric, packet delay is very important as well because practical
congestion control protocols need to set retransmission time-
out values based on the packet delay, and such parameters
could significantly impact the speed of recovery when packet
loss occurs. Packet delay is also important for multimedia
traffic, some of which have been carried on congestion-
controlled sessions.

There are two major issues on the delay-performance of the
back-pressure algorithm. Firstly, for long flows, the end-to-end
delay may grow quadratically with the number of hops. The
reason can be best explained by the following example [11].
Consider a long flow traverses a fixed route with H hops.
For each link that the long flow traverses, there is a short
flow that competes with the long flow as shown in Fig. 1.
Under the back-pressure algorithm, for the long flow to be
scheduled on a link, the queue difference of the long flow must
be larger than the queue length q of the competing short flow.
Therefore, when the joint congestion and scheduling algorithm
converges, the queue length of the long flow at each hop must
be around Hq, (H − 1)q, · · · , q, which leads to the total end-
to-end backlog of order O(H2). It then follows from Little’s
law that the end-to-end delay will also be of the order O(H2).
Secondly, under the back-pressure algorithm it is difficult to
control the end-to-end delay of each flow. The main parameter
to tune a joint congestion control and scheduling algorithm
based on the back-pressure algorithm is the step size in the
queue update. A larger step size may lead to smaller queue
length; however, a smaller step size is needed to ensure that the
joint congestion control and scheduling algorithm converges to
close-to-optimal system throughput. Although one may use the
step sizes to tune the throughput-delay tradeoff, a change of
the step size on one node will likely affect all flows passing
through the node. Hence, it is difficult to tune the throughput-
delay tradeoff on a per-flow basis.
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In this paper, we will provide a new class of joint congestion
control and scheduling algorithms1 that can achieve both
provable throughput and provable per-flow delay. Consider m
flows in a multihop network under the one-hop interference
model, and each flow m is given a fixed route with Hm hops.
Our algorithm consists of three main components: window-
based flow control, virtual-rate computation, and scheduling.
The main ideas are to tightly control the number of packets
inside the network and to schedule the packets by a rate-
based scheduling algorithm rather than a queue-length-based
algorithm. The key difficulty in analyzing the end-to-end
throughput and delay for window-based flow control is that
the services at different links are correlated. Hence, a Markov
chain analysis will no longer provide a closed-form solution.
We employ a novel stochastic dominance technique to circum-
vent this difficulty and derive closed-form bounds on the per-
flow throughput and delay. Specifically, for any ε, εm ∈ (0, 1),
by appropriately choosing the number of backoff mini-slots
for the scheduling algorithm and the window size of flow m,
our algorithm can guarantee that each flow m will achieve a
throughput no less than rm(1 − ε)(1 − εm), where the total
utility of the rate allocation vector ~r = [rm] is no smaller than
the total utility of any rate vector within half of the system
capacity region. Further, the end-to-end expected delay of flow
m can be upper bounded by Hm/(rm(1− ε)εm). Simulation
results show that when Hm ≥ 2, with a reasonable choice of
ε = 0.22 and εm = 0.33 the actual throughput is typically
larger than rm. Therefore, our scheme can utilize a provable
fraction of the total system utility with per-flow expected delay
that increases linearly with the number of hops. Since a flow-m
packet requires at least Hm time slots to reach the destination,
the order of the per-flow delay upper-bound is optimal with
respect to the number of hops. Our proposed algorithm is fully-
distributed and can be easily implemented in practice. Further,
the delay-throughput tradeoff of each flow can be individually
controlled. To the best of our knowledge, this is the first fully-
distributed cross-layer control solution that can both guarantee
order-optimal per-flow delay and utilize close-to-half of the
system capacity under the one-hop interference constraint.

Recently, there have been a number of papers that quantify
the delay performance of wireless networks with or without
congestion control [11], [13]–[22]. In [11], [13], the authors
propose methods to reduce the delay of the back-pressure
algorithm. The algorithm proposed in [11] is a shadow back-
pressure algorithm, which maintains a single FIFO queue at
each link and uses multiple shadow queues to schedule the
transmissions. This method decouples the control information
from the real queues and hence reduces the delay. In our
simulation, this algorithm seems to achieve linear delay after
the algorithm converges. However, at the transient period, the
real queues will still follow the shadow queues, which leads to
a large queue backlog (see Fig. 4(c) in this paper and figures

1A related delay bound can also be shown for the scheduling algorithm
without congestion control, which will appear as a one-page abstract in [12].
However, the delay for joint congestion control and scheduling in this paper
is more difficult due to the closed-loop feedback.

in [11]). In [13], the authors propose another mechanism to
decouple the control signal from the real queues by injecting
dummy packets into the queues. However, until the algorithm
converges, it will be difficult to know the correct number of
dummy packets. Hence, the backlog at the transient period is
still difficult to control. In contrast, our proposed algorithm
tightly controls the end-to-end backlog at all times.

Our result is also different from other works in providing a
linear-order per-flow delay bound. First, [14], [15] only prove
delay bounds for single-hop flows rather than multihop flows.
Second, [16]–[18] consider the delay among all the flows
rather than the per-flow delay. Similarly, the results in [19] can
be used to construct a bound on the delay averaged over all
flows. However, it is still not a per-flow delay bound. Third, a
per-flow delay bound is provided in [20], but the bound scales
with the size of the network. Fourth, a single flow end-to-end
delay analysis is given in [21] based on an approximation of
the departure process for each hop. However, it is unclear how
to extend the analysis to multiple flows.

Our result is perhaps most comparable to that in [22],
where the authors provide a per-flow delay bound that scales
with the number of hops without considering congestion
control. However, the algorithm in [22] has a factor 5 loss
of throughput under the one-hop interference constraint, and
the algorithm is much more complicated, e.g., the per-node
complexity is O(N), where N is the number of nodes. In
contrast, our algorithm only requires O(1) complexity per-
node and can utilitze close-to-half of the capacity.

Our contributions can be summarized as follows.

• We provide a new joint congestion control and scheduling
algorithm that can utilize close to half of the system
capacity, i.e., a factor 2 loss of throughput, and guarantee
a per-flow expected delay upper bound that increases
linearly with the number of hops.

• The congestion control algorithm is based on window
flow control. For each flow, this method determinis-
tically bounds the end-to-end backlog within the net-
work and prevents buffer overflows. Further, each flow’s
throughput-delay tradeoff can be individually controlled.

• Our algorithm is fully distributed and can be easily
implemented in practice with a low per-node complexity
that does not increase with the network size.

• We use a novel stochastic dominance method to analyze
the end-to-end delay. This method is new and can be
applied to general interference constraints.

The remainder of this paper is organized as follows. The
system model is presented in Section II. In Section III, we
propose the joint congestion control and scheduling algorithm
and present the main analytical results on per-flow throughput
and delay. Section IV is dedicated to the proof of a key
proposition by a novel stochastic dominance method. Imple-
mentation issues are discussed in Section V, and simulation
results are reported in Section VI. Then we conclude.
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II. SYSTEM MODEL

We model a wireless network by a graph G = (V, E), where
V is the set of nodes, and E is the set of links. Each link ` ∈ E
consists of a transmitter node b(`) and a receiver node d(`).
Two nodes are one-hop neighbors if they are the end-points
of a common link. Two links are one-hop neighbors if they
share a common node. For each node v, let N(v) denote the
set of links that connect to the one-hop neighbors of node v.

We assume a time-slotted wireless system, where packet
transmissions occur within time slots of unit length. The
capacity of any link is normalized to 1. We say two links
interfere with each other, if they can not transmit data at the
same time slot. For ease of exposition, we assume that a link
will interfere with all its one-hop neighboring links (i.e., one-
hop interference constraint). This constraint has been used to
model wireless networks in [5], [6], [23], [24]. (We note that
our approach can be extended to a more general interference
model, where an interference set for each link is given, and a
link interferes with any other link in its interference set.) In our
system, there are M flows, and each flow is associated with
a source node, a destination node, and a fixed route between
them. The routes are given by the matrix [L`

m], where L`
m = 1

if flow m passes through link `, and L`
m = 0 otherwise.

We assume that each flow always has packets to transmit.
The congestion control algorithm will then determine the rate
with which packets are injected into the network [1]. Each
flow is associated with a utility function Um(Rm) [25], which
reflects the “satisfactory level” of user m with injection rate
Rm. We assume that Um(·) is strictly concave, non-decreasing,
and continuously differentiable. The capacity region Ω of a
wireless network is the set of all rate vectors ~R = [Rm]
such that there exists a network control policy to stabilize
the network. We then model the joint congestion control and
scheduling problem as:

max
Rm≥0

∑
m

Um(Rm), ~R ∈ Ω. (1)

The exact capacity region Ω is often difficult to characterize.
It is also well known that, under the one-hop interference
model, Ψ0/2 ⊆ Ω ⊆ Ψ0, where

Ψ0 =





~R
∑

`∈N(v)

∑
m

L`
mRm ≤ 1, for all nodes v



 . (2)

Note that equation (2) simply states that, for each node v, the
total load must be no larger than 1. This is because a wireless
node can only communicate with one other node at a time slot.
In Section III, we will describe how we utilize the relationship
between Ω and Ψ0 to approximately solve problem (1). Since
we assume infinite backlog, the delay of a packet is computed
from the time it is injected to the network to the time it reaches
the destination. We are interested in the per-flow average delay.

III. JOINT CONGESTION CONTROL AND SCHEDULING
ALGORITHM

As we discussed in Section I, there are many approaches
available in the literature to solve problem (1), and most

of them do not consider delay performance. A typical opti-
mal solution can be obtained by a duality approach which
results into the back-pressure algorithm and a congestion-
control component at the source node [1], [2]. Further, a
considerable amount of effort has focused on developing low-
complexity and distributed scheduling algorithms that can
replace the centralized back-pressure algorithm and yet still
achieve provable good throughput performance [3]–[10]. Like
the back-pressure algorithm, these low-complexity scheduling
algorithms are usually also queue-length-based. The drawback
of these approaches, however, is that the end-to-end delay of
the resulting queue-length-based scheduling algorithm is very
difficult to quantify, and there are evidence that, under certain
cases, the back-pressure can have poor delay performance [11],
[26]. In this paper, we will use a window-based flow control
algorithm and a rate-based scheduling algorithm that are very
different from back-pressure. Our solution strategy is to first
approximately solve problem (1) and compute the decision
vector ~r = [rm]. However, the decision variables rm are NOT
directly used as the rates to inject flow-m packets. For this
reason, we refer to these variables rm as “virtual rates”. We
will use these virtual rates as the control variables in a new
class of rate-based scheduling algorithms. The actual end-to-
end throughput under our algorithm will be denoted as Rm.
As readers will see, for each flow, this new joint congestion
control and scheduling algorithm will guarantee both provable
throughput (close to rm) and provably-low delay. Also, they
are fully distributed and easy-to-implement in real systems.

A. Virtual-Rate Computation

We first briefly describe how to approximately solve prob-
lem (1). Since the true capacity region Ω is of a complex form,
instead of solving problem (1) directly, we solve the following
optimization problem: (we will make precise the relationship
between optimization problems (1) and (3) in Section III-D.)

max
rm≥0

∑
m

Um(rm), ~r ∈ Ψ0/2. (3)

Note that the optimization problem (3) is very similar to
the standard convex-optimization problem in wireline network
with linear constraints [27], [28]. Therefore, it is easy to apply
the approaches in [27], [28] to problem (3). We will not
elaborate on all the possible approaches to solve problem (3).
Instead, we only present one well-known distributed solution.
Specifically, associate a Lagrange multiplier (the dual variable)
λv ≥ 0 to each constraint in (3). Let cvm = 2 if v is an
intermediate node of flow m, cvm = 1 if v is the source node
or destination node of flow m, and cvm = 0 otherwise. The
objective function of the dual problem of (3) becomes:

D(~λ) := max
rm≥0

∑
m

Um(rm)−
∑

v

λv

(∑
m

rmcvm − 1
2

)
.

We can then use the following gradient algorithm to minimize
D(~λ) and compute the optimal virtual-rates.
Virtual-Rate Computation Algorithm: At each time t,
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1) The source node of flow m updates rm by equation:

rm(t) = U ′−1
m (

∑
v∈m

λv(t)cvm),

where v ∈ m indicates that node v is on flow m’s route.
2) Each node updates the dual variables by equation:

λv(t + 1) =

[
λv(t) + γv

( ∑
m:v∈m

rm(t)cvm − 1
2

)]+

,

where γv > 0 is the step size, and [·]+ denotes the
projection to [0,∞).

Using similar techniques as [27], one can show that as
long as γv are sufficiently small, the above algorithm will
converge to the optimal solution of (3). Note that as in [27],
this algorithm requires passing λv and rm among nodes in
the network. We will give a simple protocol to exchange
such information in Section V. As we emphasized earlier, the
variables rm are “virtual rates”, and they are not directly used
to inject flow-m packets under our proposed algorithm. We
choose not to directly use the virtual rates as the real injection
rates due to the following reasons. First, optimization problems
(1) and (3) are formulated as if the rates are immediately
passed to all links at the same time. In reality, a packet must
traverse the links in a hop-by-hop fashion, and a flow-control
algorithm is needed to regulate this hop-by-hop packet flow.
Second, the low-complexity virtual-rate computation algorithm
did not produce the schedule for link transmission. We still
need a scheduling algorithm to compute the schedule that can
support the virtual rate vector ~r = [rm].

Readers who are familiar with the literature will realize that
the back-pressure algorithm can again be used to answer the
above flow control and scheduling questions. However, we
would then return to our starting point that the end-to-end
delay of back-pressure is difficult to quantify and may be poor
[11], [26]. Hence, in the sequel, we will use very different
scheduling and flow-control components, for which we can
quantify both the throughput and the end-to-end delay on a
per-flow basis.

B. Scheduling Algorithm

We now present the scheduling algorithm, which is a modifi-
cation of the low-complexity distributed scheduling algorithm
in [10]. Each time slot consists of a scheduling slot and
a transmission slot. The links that are to be scheduled are
selected in the scheduling slot, and the selected links transmit
their packets in the transmission slot. The scheduling slot is
further divided into F mini-slots. Let a`(t) =

∑
m L`

mrm(t),
which is the sum of the virtual rate over link `, and let

x`(t) = max


 ∑

e∈N(b(`))

ae(t),
∑

e∈N(d(`))

ae(t)


 .

Rate-based Scheduling Algorithm: At each time t,
1) Each link ` first computes P` = log(F )a`(t)/x`(t).
2) Each link then randomly picks the number of backoff

mini-slots (B) with distribution: P{B = F +1} = e−P`

and P{B = f} = e−P`
f−1

F − e−P`
f
F , f = 1, · · · , F . If

F +1 is picked by link `, it will not attempt to transmit
in this time slot.

3) When the backoff timer for a link expires, it begins
transmission unless it has already heard a transmission
from one of its interfering links. If two or more links that
interfere begin transmissions simultaneously, a collision
occurs, and both transmissions fail.

4) If a link begins transmission, it will randomly choose a
passing flow m to serve with probability rm(t)/a`(t).

Note that this scheduling algorithm only uses virtual rates
to compute P`, which is different from the queue-length-based
algorithm studied in [10]. For simplicity, our performance
analysis will be based on this scheduling algorithm. On the
other hand, note that this algorithm can be easily improved
by letting each link attempt only if it has packets to transmit,
and if it starts transmission, it will randomly serve a flow
m with positive backlog (i.e., Qm`(t) > 0) with probability

rm(t)∑
{m:Qm`(t)>0} L`

mrm(t)
, where Qm`(t) is the number of flow-

m packets at link ` at time t. It is easy to see that this improved
version will lead to higher throughput. Hence, the bound we
derive in Section IV also holds for this improved version.

C. Window-based Flow Control Algorithm

Now, we describe the congestion control component. Our
approach is to use window-based flow control. For each flow,
we maintain a window Wm at the source node, and we only
inject new packets to the queue at the source node when the
total number of packets for this flow inside the network is
smaller than the window size. This can be achieved by letting
the destination node send an acknowledgement (ACK) back
to the source node whenever it receives a packet. There are
two advantages for this approach. First, for each flow, we
can tightly control the maximum number of packets in each
intermediate node along the route. This will prevent buffer
overflows, which is an important issue as addressed in [19].
Second, as we will show in Section IV, each flow’s tradeoff
between throughput and delay can be individually controlled
by the window size. Note that when we present the analysis
in Section IV, we assume that there is a feedback channel
from the destination node to the source node at each time
slot. Through this feedback channel, the destination node can
send the ACK to the source node, and the source node can
then decide if it is possible to inject another packet at the next
time slot. In reality, each ACK will also go through the entire
route hop-by-hop in the reverse direction to reach the source
node. In Section V, we will discuss how this can be achieved
by piggy-backing the ACK after each packet transmission. As
readers will see, this method can be analyzed with the same
approach presented in Section IV, and this extra ACK delay
does not change the delay order of our result.

D. Performance Analysis

In this subsection, we will present the main steps of the
analysis and the bounds on the throughput and delay of
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the above proposed scheme. We first present a relationship
between optimization problems (1) and (3). Let [r∗m] be the
optimal solution of (3), and let [r′∗m] be the optimal solution
of the following optimization problem:

max
rm≥0

∑
m

Um(rm), ~r ∈ Ω/2. (4)

Lemma 1:
∑

m Um(r∗m) ≥ ∑
m Um(r′∗m).

Proof: Since r∗m is the optimal solution of (3), the total
utility of r∗m will be larger than any rate vector in Ψ0/2. Also,
by Ω ⊆ Ψ0, we have that Ω/2 ⊆ Ψ0/2. As a result, r′∗m is a
rate vector in Ψ0/2, and

∑
m Um(r∗m) ≥ ∑

m Um(r′∗m).
In other words, if each flow achieves a throughput equal to

the optimal virtual rate r∗m, then the total system utility will
be no less than the maximum utility within Ω/2. Further, we
can show the following property of the scheduling algorithm.

Lemma 2: For any ε ∈ (0, 1), if flow m passes through link
`, we can choose F large enough such that the probability
that link ` will schedule flow m at time t is no smaller than
rm(t)(1− ε)/(2x`(t)).

Proof: The proof of this lemma is similar to the proof of
Lemma 1 in [10]. Let E` be the union of the interference set
of link `. Also, in the following proof, we drop the index t
from the notation P`(t) when there is no cause of confusion.
Let E` be the event that link ` is scheduled. By equation (17)
in [10], we have that

P (E`) ≥ (e
P`
F − 1)

F∑

f=1

e
− f

F

∑
h∈E`

Ph
. (5)

We first find an upper bound for the term
∑

h∈E`
Ph in

equation (5). Let α = log(F ). At time t, we have that
∑

h∈E`

Ph = α
∑

h∈E`

ah(t)

max


 ∑

e∈N(b(h))

ae(t),
∑

e∈N(d(h))

ae(t)




≤ α




∑

h∈N(b(`))

ah(t)∑

e∈N(b(`))

ae(t)
+

∑

h∈N(d(`))

ah(t)∑

e∈N(d(`))

ae(t)




≤ 2α.
(6)

From (5) and (6), we know that

P (E`) ≥ (e
P`
F − 1)

F∑

f=1

e−2α f
F ≥ P`

F

F∑

f=1

e−2α f
F

=
P`

F

1− e−2α

1− e−
2α
F

e−
2α
F

Since α = log(F ) and F > 1, we can see that α
F /(1 −

e−2α/F ) ≥ 1/2, e−2α/F ≥ 1− 2 log(F )/F , and 1− e−2α =
1− 1/F 2. Hence,

P (E`) ≥ a`(t)
2x`(t)

(1− 2F log(F )+1
F 2 )

> a`(t)
2x`(t)

(1− ε),
(7)

where F is chosen such that ε > 2F log(F )+1
F 2 . We can then

conclude that

P (link ` is scheduled to transmit a flow m packet)
= P (flow m is scheduled|E`)P (E`)
≥ rm(t)

a`(t)
a`(t)
2x`(t)

(1− ε)

= rm(t)
2x`(t)

(1− ε).

This lemma implies that the scheduling algorithm will start
serving flow-m packets even before the virtual-rate computa-
tion algorithm converges. After the virtual-rate computation
algorithm converges2, the value of rm(t) will be equal to
the optimal solution r∗m. Furthermore, we have from the
constraints of optimization problem (3) that x`(t) ≤ 1/2. It
then follows from Lemma 2 that every hop along the path of
flow m will serve flow m with probability no smaller than
r∗m(1 − ε) independent across time slots. This observation
allows us to isolate flow m out of the network and view the
flow-m packets as passing through a virtual tandem network
of Hm queues. Intuitively, if the window size of flow m is
large, the end-to-end throughput of flow m, i.e., Rm, will be
at least r∗m(1− ε); however, the end-to-end packet delay will
also be large. If we reduce the window size, although the delay
will decrease, the throughput of flow m will also decrease.
Clearly, the key is then to analyze the throughput and delay
as a function of the window size. The following proposition,
which will be proved in Section IV, is the key result of the
paper. Note that this analysis is difficult because Lemma 2 only
provides a lower-bounded marginal probability for services.
Further, the exact statistics of the correlation among links is
hard to characterize because of the interference constraint.

Proposition 3: After the virtual-rate computation algo-
rithm converges, for each flow m, our congestion control
and scheduling algorithm can achieve average throughput
r∗m(1−ε)Wm

Wm+Hm−1 , where Wm is the window size of flow m, and
ε is chosen as in Lemma 2. Moreover, the average delay is
upper bounded by Wm+Hm−1

r∗m(1−ε) .
This proposition has the following two implications. First,

for any εm ∈ (0, 1), let Wm be the smallest positive integer
such that Wm > (Hm − 1)(1 − εm)/εm. This implies that
Wm/(Wm +Hm−1) > (1−εm). It then follows from Propo-
sition 3 that the average throughput Rm will be lower bounded
by r∗m(1−ε)(1−εm), which can be arbitrary close to r∗m. Note
that by Lemma 1, the total utility of the rate vector ~r∗ = [r∗m]
is no smaller than the total utility of any rate vector within
half of the capacity region. Second, since Wm is the smallest
positive integer such that Wm > (Hm − 1)(1 − εm)/εm, we
have that Wm ≤ (Hm − 1)(1− εm)/εm + 1. Thus,

Wm + Hm − 1
r∗m(1− ε)

≤ Hm + εm − 1
r∗m(1− ε)εm

<
Hm

r∗m(1− ε)εm
.

2We note that a comparable bound on the probability of scheduling flow
m on link ` can also be obtained by assuming that rm(t) is within some
small neighborhood fo r∗m. For ease of exposition, we do not pursued this
direction further in this paper.
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It then follows from Proposition 3 that the delay will be upper
bounded by Hm/(r∗m(1−ε)εm). As discussed in Section I, this
implies that our per-flow delay upper-bound is order optimal.

IV. PROOF OF PROPOSITION 3
Assume that the virtual-rate computation algorithm has

converged at time t. Thus, rm(t) = r∗m for the following time
slots. This implies that, for a particular flow, its service at every
hop is identically and independently distributed (i.i.d.) across
time. Furthermore, for ease of presentation, we assume that
there is a feedback channel from the destination node to the
source node for the window flow control at each time slot as
discussed in Section III-C. (This assumption will be removed
in Section V.) Now, we focus on a particular flow m. The
analysis for other flows is the same. To ease the notation,
we drop the index m from the notations Wm and Hm. We
can then model this flow as a H-hop closed tandem network.
Label the link along the route from 1 to H , where 1 is the link
closest to the source node. By the discussion after Lemma 2,
we know that

µ` ≥ µ , r∗m(1− ε), (8)

where µ` is the probability that link ` will serve a flow-
m packet. Since we use window flow control, and flow
m always has packets to transmit, the number of flow-m
packets in the network will be W at each time slot. We can
thus use the discrete time Markov Chain (MC) analysis to
study the closed tandem network for flow m. Specifically, let
~Q(t) = (Q1(t), · · · , QH(t)) be the system state, where Qi(t)
is the number of flow-m packets at ith hop at the beginning
of time t. Furthermore, let ~S(t) = (S1(t), · · · , SH(t)) be
the random schedule vector for flow m at time t, where
Si(t) = 1{link i is scheduled at time t}. Since ~S(t) is i.i.d. across
time slots, the state at time t + 1 will only depend on the
current state ~Q(t) and the schedule ~S(t). It can be verified
that this MC is ergodic.

Lemma 4: The MC induced by algorithm 2 is ergodic, i.e.,
irreducible, positive recurrent, and aperiodic.

Proof: It is easy to see that the Markov Chain is irre-
ducible because, for each link ` that flow m passes by, there
is a nonzero probability that only this link will serve flow m’s
packets. As a result, all states can communicate with each
other. Since the Markov Chain only has a finite number of
states, by Theorem 3.3 in [29], it is positive recurrent. Consider
the state that the number of packets in the first queue is equal
to W . Because there is a nonzero probability that only link 2
will be scheduled, there is a nonzero probability for this state
to go back to itself in one step. Hence, this state is aperiodic.
By Proposition 4.2.2 in [30], the Markov Chain is aperiodic.

Fig. 2 illustrates an example of the MC for a 3-hop closed
tandem network with 5 packets. If the MC is in steady state,
we can compute the actual throughput Rm as follows:

Rm = µH [1− P{QH = 0}]. (9)

If we can compute the throughput, then the delay can be
obtained by Little’s law. Unfortunately, it appears impossible

Fig. 2. Left: The incoming and outgoing transitions to and from state
(2, 1, 2). Right: The distribution of the random schedule vector ~S(t).

to directly solve the MC. The reason is because the services
of different links are correlated. For example, link 1 and
link 2 will never be scheduled together due to interference,
and there is a chance that link 1 and link 3 will be served
together. Further, the exact statistics of such correlation is hard
to characterize. All that we know (from Lemma 2) is a lower-
bounded marginal probability µ that link ` is activated to send
a flow m packet. Hence, it is difficult to solve the MC directly.
To circumvent this difficulty, we next use a novel stochastic
dominance approach to derive the throughput lower-bound.

A. Overview of the Approach

We start with some definitions and assumptions. In the rest
of this section, when we refer to a particular system, we
mean a version of the H-hop closed tandem network with
window flow control and window size W . For each system, the
random schedule vector is always i.i.d. across time. Further, for
different systems, the initial condition for the packet placement
is the same. However, within a time slot, the distribution of the
schedule vector is different depending on the system that we
refer to. Since the only difference between two systems is the
distribution of the schedule, we abuse the notation and denote
a system by ~S(·) when the corresponding random schedule
vector is denoted by ~S(t). Furthermore, we denote T (~S(·))
and D(~S(·)) as the throughput and delay of system ~S(·).

Consider a system ~S(1)(·). Let the probability distribution
of ~S(1)(t) be P{~S(1)(t) = ~xi} = p′i, i = 0, · · · , I , where ~xi =
(xi1, · · · , xiH) is the ith schedule vector, xij = 1 if link j is
activated under the ith schedule vector, and xij = 0 otherwise.
We use the convention that ~x0 = ~0. Let A` = {i|xi` = 1}.
Notice that µ′` ,

∑
i∈A`

p′i is the marginal probability that link
` is scheduled at one time slot. Assume that system ~S(1)(·)
satisfies the following property. (We will discuss in Section
IV-C how to treat the case when property (10) is not satisfied.)

∑

`

µ′` =
∑

`

∑

i∈A`

p′i ≤ 1, and µ′` ≥ µ′. (10)

Recall that the key difficulty of analyzing the system is the
correlation of the services among links. We now introduce
a splitting procedure that convert a given system to another
system where links are less likely to be scheduled together.

Construct system ~S(2)(·) as follows. First, pick a schedule
vector of ~S(1)(t) with positive probability such that more than
two links are scheduled. Assume that this schedule vector is
~x1. Next, choose the smallest ` such that x1` = 1. Let ~e` be
the schedule that only schedules link `, and let ~x1 − ~e` be
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the schedule that removes link ` from ~x1. The distribution of
~S(2)(t) is:

P{~S(2)(t) = ~x1 − ~e`} = p′1, P{~S(2)(t) = ~e`} = p′1,
P{~S(2)(t) = ~x0} = p′0 − p′1, P{~S(2)(t) = ~xi} = p′i, i ≥ 2.

Note that the schedule ~x1 is now splitted into two schedules
~e` and ~x1 − ~e`. Let |~xi| be the number of links scheduled by
~xi, and recall that |~x1| ≥ 2. We can then show that

p′0 − p′1 = 1−∑
i6=0 p′i − p′1 ≥ 1−∑

i 6=0 |~xi|p′i
= 1−∑

`

∑
i∈A`

p′i ≥ 0,

where the last inequality follows from the fact that ~S(1)(·)
has property (10). Thus, the probability distribution of ~S(2)(t)
is valid. We call ~S(2)(·) a split version of ~S(1)(·). The key
relationship between ~S(1)(·) and ~S(2)(·) is as follows.

Theorem 5: If we have an ergodic system ~S(1)(·) with
property (10), and an ergodic system ~S(2)(·), which is the
split version of system ~S(1)(·), then T (~S(1)(·)) ≥ T (~S(2)(·)).
Moreover, ~S(2)(·) has property (10).

In other words, with the same window-based flow control,
splitting will not increase the average throughput. To the best
of our knowledge, this important relationship has not been
reported in the literature. Clearly, if Theorem 5 holds, we
can iteratively perform further splitting procedures on system
~S(2)(·). After finite number of iterations, we will reach a
system ~S(3)(·) such that each schedule vector only schedules
one link! The distribution of ~S(3)(t) is P{~S(3)(t) = ~e`} =
µ`, ` = 1, · · · , H and P{~S(3)(t) = ~x0} = 1 − ∑

` µ`. We
have the following corollary.

Corollary 6: T (~S(1)(·)) ≥ T (~S(3)(·)).
Proof: If we can find a sequence of ergodic systems ~Si(·),

1 ≤ i ≤ K. ~S1(·) is a split version of ~S(1)(·), ~Si+1(·) is a split
version of ~Si(·), and ~SK(·) = ~S(3)(·). Then this corollary can
be proved by Theorem 5. Recall that when we do the split
procedure for a system, we pick a realization with the number
of scheduled links (k) no smaller than 2 and replace it by two
schedules with the number of scheduled links equal to k − 1
and 1. Since the total number of schedules is finite, our split
process will end up with a system ~SK(·) in a finite number of
steps K when the schedule distribution only has realizations
serving one link. Moreover, by Theorem 5, the splitting
procedure will preserve the marginal probability of scheduling
a link. It implies that, for system ~SK(·), P{~SK(t) = ~e`} = µ′`.
As a result, the distribution of ~SK(t) is equal to the distribution
of ~S(3)(t), which means that system ~SK(·) = ~S(3)(·). Finally,
the ergodicity of system ~Si(·) can be proved by the same
argument as Lemma 4.

As we will see in Section IV-C, the lower bound of
T (~S(3)(·)) can be more easily calculated.

B. Proof of Theorem 5

To prove Theorem 5, we use a specific stochastic ordering
called supermodular ordering. We review the basic definitions
used in our proof, and readers are referred to [31], [32] for
other definitions and basic properties of stochastic ordering.

Definition 7: (Supermodular Function) A function φ(~x) :
Rn →R is said to be supermodular if, for any n-dimensional
vectors ~x1, ~x2, it satisfies that

φ(~x1) + φ(~x2) ≤ φ(~x1 ∧ ~x2) + φ(~x1 ∨ ~x2), (11)

where ∧ and ∨ mean componentwise minimum and maximum.
Definition 8: (Supermodular Ordering) Let F be the

class of all supermodular functions from Rn into R. For
two n-dimensional random vectors ~X and ~Y , ~X is said to
be smaller than ~Y in the supermodular order (denoted by
~X ≤sm

~Y ) if E[φ( ~X)] ≤ E[φ(~Y )], for all φ ∈ F .
An important relationship between ~S(1) and its split version

~S(2) is the following.
Lemma 9: If we have a system ~S(1)(·) with property (10),

and another system ~S(2)(·), which is the split version of system
~S(1)(·), then ~S(1)(t) ≥sm

~S(2)(t).
Proof: Consider a supermodular function φ : RH → R.

Without loss of generality, assume that P{~S(1)(t) = ~xi} =
p′i, i = 0, · · · , I , and the distribution of ~S(2)(t) is:

P{~S(2)(t) = ~x1 − ~e`} = p′1, P{~S(2)(t) = ~e`} = p′1,
P{~S(2)(t) = ~x0} = p′0 − p′1, P{~S(2)(t) = ~xi} = p′i, i ≥ 2.

Recall that ~x0 = ~0. Then, we have that

E[φ(~S(1)(t))]− E[φ(~S(2)(t))]
=

∑
i φ(~xi)p′i − φ(~x1 − ~e`)p′1 − φ(~e`)p′1

−φ(~x0)(p′0 − p′1)−
∑

i≥2 φ(~xi)p′i
= φ(~x1)p′1 + φ(~x0)p′1 − φ(~x1 − ~e`)p′1 − φ(~e`)p′1
≥ 0,

where the last equality follows from the definition of a
supermodular function and the fact that ~x1 = {~x1 − ~e`} ∨ ~e`,
and ~x0 = {~x1 − ~e`} ∧ ~e`.

Proof of Theorem 5: Fix a packet placement at time 0.
Under window flow control with window size W , let f be a
function that maps a given sequence of schedule vectors to the
total number of packets leaving queue H at the end of time t.
To prove Theorem 5, we first show that f is a supermodular
function with respect to the schedule vector at time 1.3 In other
words, let Ti(t) = f(~zi, ~y(2), ~y(3), · · · , ~y(t)), i = 1, · · · , 4,
where ~z1 = ~z3 ∨ ~z4, ~z2 = ~z3 ∧ ~z4, and ~y(2), ~y(3), · · · , ~y(t)
are a sequence of deterministic schedules. We would like to
show the following lemma.

Lemma 10: For any time t, T1(t) + T2(t) ≥ T3(t) + T4(t).
Proof: The proof is given in Appendix A.

With this lemma, we have the following theorem.
Theorem 11:

E[f(~S(2)(1), · · · , ~S(2)(k − 1), ~S(1)(k), · · · , ~S(1)(t))]
≥ E[f(~S(2)(1), · · · , ~S(2)(k), ~S(1)(k + 1), · · · , ~S(1)(t))]

, for any k = 1, 2, . . . , t.
Proof of Theorem 11: To ease the presenta-

tion of the proof, denote ~S(i)(t1, t2) as the sequence

3Readers why not show directly that f is a supermodular function with
respect to the entire sequences. Unfortunately, we can construct counter
examples to show that this is not true. One example will be given in Appendic
C
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~S(i)(t1), · · · , ~S(i)(t2) for system ~S(i)(·). We first show the
following inequality.

E[f(~S(2)(1, k − 1), ~S(1)(k, t))|~S(2)(1, k − 1), ~S(1)(k + 1, t)]

≥ E[f(~S(2)(1, k), ~S(1)(k + 1, t))|~S(2)(1, k − 1), ~S(1)(k + 1, t)]
(12)

If (12) holds, take expectation of (12), we have that

E[f(~S(2)(1, k − 1), ~S(1)(k, t))]

≥ E[f(~S(2)(1, k), ~S(1)(k + 1, t))], (13)

which is exactly what we want to prove.
To show (12), assume that ~S(2)(1, k − 1) is equal to a

sequence of fixed schedules ~y(1, k−1) and that ~S(1)(k+1, t) is
equal to a sequence of fixed schedules ~y(k+1, t). Assume that
the distribution of ~S(1)(k) is P{~S(1)(k) = ~xi} = p′i. Since
system ~S(2)(·) is a split version of ~S(1)(·), the distribution of
~S(2)(k) is:

P{~S(2)(k) = ~x1 − ~e`} = p′1, P{~S(2)(k) = ~e`} = p′1,
P{~S(2)(k) = ~x0} = p′0 − p′1, P{~S(2)(k) = ~xi} = p′i, i ≥ 2.

Denote φ(~z) = f(~y(1, k − 1), ~z, ~y(k + 1, t)). We have that

E[f(~S(2)(1, k − 1), ~S(1)(k, t))|~S(2)(1, k − 1), ~S(1)(k + 1, t)]

− E[f(~S(2)(1, k), ~S(1)(k + 1, t))|~S(2)(1, k − 1), ~S(1)(k + 1, t)]

=
∑

i

φ(~xi)p′i − φ(~x1 − ~e`)p′1 − φ(~e`)p′1

− φ(~x0)(p′0 − p′1)−
∑

i≥2

φ(~xi)p′i

= φ(~x1)p′1 + φ(~x0)p′1 − φ(~x1 − ~e`)p′1 − φ(~e`)p′1 ≥ 0.

The last inequality is an application of Lemma 10. Notice that
~x0 = {~x1 − ~e`} ∧ ~e`, ~x1 = {~x1 − ~e`} ∨ ~e`, and ~y(1, k − 1)
will generate an arbitrary initial packet placement. Let φ(~x1),
φ(~x0), φ(~x1−~e`), and φ(~e`) be the throughput of systems Y1,
Y2, Y3, and Y4. Then we can apply Lemma 10 to have the last
inequality.

This theorem can be used to show the following theorem.
Theorem 12:

E[f(~S(1)(1), ~S(1)(2), · · · , ~S(1)(t))]
≥ E[f(~S(2)(1), ~S(2)(2), · · · , ~S(2)(t))].

Proof of Theorem 12:

E[f(~S(1)(1), ~S(1)(2), · · · , ~S(1)(t))]
≥ E[f(~S(2)(1), ~S(1)(2), · · · , ~S(1)(t))]
≥ E[f(~S(2)(1), ~S(2)(2), ~S(1)(3) · · · , ~S(1)(t))]

≥ ...
≥ E[f(~S(2)(1), ~S(2)(2), · · · , ~S(2)(t))].

Each inequality is due to the application of Theorem 11 by
changing a random schedule vector at a particular time t1 from
~S(1)(t1) to ~S(2)(t1).

We continue the proof of Theorem 5. Our next step is to
show that

lim
t→∞

f(~S(1)(1), ~S(1)(2), · · · , ~S(1)(t))/t = T (~S(1)(·)). (14)

Let Q be the set of all states. Furthermore, define function
g : Q2 → R as follows. g( ~Q(t), ~Q(t + 1)) = 1 if there is a
arriving packet to the destination node for the transition from
state ~Q(t) to ~Q(t + 1) and 0 otherwise. Therefore,

f(~S(1)(1), ~S(1)(2), · · · , ~S(1)(t))/t =
1
t

t∑

k=1

g( ~Q(k), ~Q(k+1)).

By the ergodic theorem [29, corollary 4.1],

lim
t→∞

1
t

t∑

k=1

g( ~Q(k), ~Q(k + 1)) =
∑

i0,i1

g(i0, i1)π(i0)pi0i1 ,

where π(i0) is the stationary distribution, and pi0i1 is the
transition probability form state i0 to i1. It is not hard to verify
that

∑

i0,i1

g(i0, i1)π(i0)pi0i1 = µ′HP (QH 6= 0) = T (~S(1)(·)).

Hence, we have proved (14). Similarly,

lim
t→∞

f(~S(2)(1), ~S(2)(2), · · · , ~S(2)(t))/t = T (~S(2)(·)). (15)

We also know that |f(~S(1)(1), ~S(1)(2), · · · , ~S(1)(t)/t| ≤ 1
because there are at most one outgoing packet at any given
time. By bounded convergence theorem [33, Theorem 16.5],

E[ lim
t→∞

f(~S(1)(1), ~S(1)(2), · · · , ~S(1)(t))/t]

= lim
t→∞

E[f(~S(1)(1), ~S(1)(2), · · · , ~S(1)(t))/t].
(16)

This implies that

lim
t→∞

E[f(~S(1)(1), · · · , ~S(1)(t))]/t = T (~S(1)).

With the same argument, we can also show that
limt→∞E[f(~S(2)(1), · · · , ~S(2)(t))]/t= T (~S(2)). Now,
we have from Theorem 12 that

E[f(~S(1)(1), ~S(1)(2), · · · , ~S(1)(t))/t]
≥ E[f(~S(2)(1), ~S(2)(2), · · · , ~S(2)(t))/t].

(17)

Let t go to infinity. We can then conclude that T (~S(1)(·)) ≥
T (~S(2)(·)) Because the marginal probability of scheduling link
` in ~S(1)(·) and ~S(2)(·) are the same for each `, it is easy to
see that ~S(2)(·) still has property (10). This ends the proof of
Theorem 5.

C. Throughput Lower Bound and Delay Upper Bound

As discussed in Section IV-A, we can use Theorem 5 to
show that T (~S(1)(·)) ≥ T (~S(3)(·)). Consider another system
~S(4)(·). The distribution of ~S(4)(t) is P{~S(4)(t) = ~e`} =
µ′, ` = 1, · · · ,H and P{~S(4)(t) = ~x0} = 1−Hµ′. It can be
verified that T (~S(3)(·)) ≥ T (~S(4)(·)).

Theorem 13: T (~S(3)(·)) ≥ T (~S(4)(·)).
Proof: The proof is given in Appendix B.

This result is intuitive because, for every link `,
P{~S(3)(t) = ~e`} ≥ P{~S(4)(t) = ~e`}. Thus, the throughput
of system ~S(3)(·) should be no smaller than the throughput
of system ~S(4)(·). The throughput of system ~S(4)(·) has a
closed-form solution.
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Lemma 14: T (~S(4)(·)) = µ′W/(W + H − 1).
Proof: Consider the Markov Chain of system ~S(4)(·) and

a particular state ~n = (n1, · · · , nH), where ni is the number
of packets at queue i. Since the only possible schedule for
system ~S(4)(·) is ~e` for all link `, there are the same number
of incoming states and outgoing states for an arbitrary state ~n.
If we assume that P (~n) = x for any state ~n, then it will satisfy
the global balance equation. Therefore, to obtain the solution
of this stationary Markov Chain, we only need to normalize∑

P (~n) = 1. Hence,

x =
1

number of possible states
=

1(
W+H−1

W

) .

We can then show that

P (QH = 0) = x(
∑

~n

1nH=0) =

(
W+H−2

W

)
(
W+H−1

W

) =
H − 1

W + H − 1
,

and

T (~S(4)(·)) = µ′[1− P (QH = 0)] = µ′
W

W + H − 1
.

This lemma implies that we have a throughput lower bound
for system ~S(3)(·). Note that the MC for system ~S(4)(·)
is similar to that of a closed tandem M/M/1 queues with
identical service rates [34].

Until this point, we have assumed that system ~S(1)(·)
satisfies property (10). We now discuss how to treat the case
when the original system ~S(·) does not satisfy property (10).
Suppose that the distribution of ~S(t) is P{~S(t) = ~xi} =
pi, i = 0, · · · , I . Define system ~S(1)(·) as follows. For i 6= 0,
let p′i = pi/(

∑
` µ`), and p′0 = 1−∑

i 6=0 p′i. The distribution
of ~S(1)(t) is P{~S(1)(t) = ~xi} = p′i, i = 0, · · · , I . Recall that
A` = {i|xi` = 1}. We can then show that

∑
` µ′` =

∑
`

∑
i∈A`

p′i =
∑

`

∑
i∈A`

pi/(
∑

j µj)
=

∑
` µ`/(

∑
j µj) ≤ 1.

We also have from (8) that µ′` = µ`/
∑

i µi ≥ µ/
∑

i µi ,
µ′. Thus, system ~S(1)(·) has property (10). The relationship
between T (~S(·)) and T (~S(1)(·)) is given by the following
lemma.

Lemma 15: T (~S(·)) = (
∑

` µ`)T (~S(1)(·)).
Proof: By (9),

T (~S(·)) = µH [1− PS(QH = 0)]

and
T (~S(1)(·)) = µ′H [1− PS(1)(QH = 0)]

If we can show that system ~S(·) and system ~S(1)(·) have the
same probability for queue H to be zero, this lemma can
be proved by µH = µ′H(

∑
` µ`). To show that system ~S(·)

and system ~S(1)(·) have the same probability for queue H
to be zero, notice that, by changing system ~S(·) to system
~S(1)(·), for each state, we divide each incoming or outgoing
transition probability by

∑
` µ`. Since the global balance

equation will not change after the transition probability divided

by a constant, system ~S(·) and ~S(1)(·) will have the same
steady state distribution, which implies that the probability
for queue H to be zero is the same.

From this lemma and T (~S(1)(·)) ≥ T (~S(4)(·)) =
µ′W/(W + H − 1), we have that

T (~S(·)) = (
∑

`

µ`)T (~S(1)(·)) ≥ µW

W + H − 1
.

By Little’s law, W = T (~S(·))D(~S(·)). Thus,

D(~S(·)) ≤ (W + H − 1)/µ.

This finishes the proof of Proposition 3.

V. IMPLEMENTATION ISSUES

In this section, we discuss some practical issues for imple-
menting our algorithm. We will address three components of
our scheme: window-based flow control, virtual-rate compu-
tation, and scheduling. First, the window-based flow control
requires a backward channel for communicating the ACKs.
This backward channel can be easily implemented as follows.
Immediately after a link transmits a flow m packet, the
receiving node will respond with an acknowledgement, which
piggy-backs an ACK for flow m that it has received from
the destination in the past. With this mechanism, each link
can be modelled as an upper queue for the forward direction
and a lower queue for the backward direction. The window-
based flow control for a given flow m can then be modelled
as a 2Hm-hop closed queueing network in Fig. 3. Note that
both the upper queue and the lower queue will be served with
probability bounded by Lemma 2. It is then easy to see that
we can again use the technique of Section IV to derive the
throughput and delay bounds. The only difference is that the
number of hops is changed from Hm to 2Hm, which does not
affect our order-optimal delay result.

Fig. 3. Upper (resp. Lower) tandem queues store packets (resp. ACKs).

Second, in the virtual-rate computation algorithm, each node
needs to collect the virtual-rate of each flow that passes
through itself, and each source node needs to collect the sum of
the dual variables along its route. In practice, such information
exchange can be easily achieved by piggy-backing the virtual-
rate information on each packet sent by the source node and
piggy-backing the sum of the dual-variables on each ACK sent
by the destination node. Note that although the virtual rates
and dual variables are updated asynchronously, our window-
based flow control algorithm guarantees an upper bound on
the expected delay of such information exchange. Hence, we
expect that the virtual-rate computation algorithm will still
converges with suitable choices of the step sizes [27], [35].
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Finally, in the scheduling algorithm, each transmitting node
must collect the virtual-rates around the receiving node. Again,
this information can be piggy-backed on data packets and
ACKs. We note that the transmitter may now attempt with
outdated information, but it will not affect our delay bound.
This is because, after the virtual-rate computation algorithm
converges, the virtual-rate will not change significantly.

Readers can see that under our proposed algorithm, each
node only needs to perform a constant number of operations
with a constant time of F mini-slots. This complexity is
significantly lower than the algorithm in [22], which requires
O(N) per-node operations.

VI. SIMULATION RESULTS

We simulate our proposed algorithm using the linear topol-
ogy in Fig. 1 with H links under the one-hop interference
constraint. We use the improved version of our scheduling
algorithm as discussed in Section III-B and set the number of
backoff mini-slots F = 32. The window sizes of each short
flow and the long flow are 2 and 2H , respectively. The utility
function is H log(·) for the long flow and 5 log(·) for each
short flow. Hence, when we increase the number of hops, the
optimal rate assignment for the flows will be the same. This
will help us to observe the relationship between average delay
and the number of hops at a fixed throughput.

We first compare the performance of our proposed algorithm
with the standard back-pressure algorithm (for different step
sizes) and the shadow back-pressure algorithm proposed in
[11]. Fig. 4(a) shows that the average delay of our algorithm
increases linearly with the number of hops. On the other
hand, at all step sizes, the average delay of the back-pressure
algorithm increases quadratically with the number of hops.
Therefore, our algorithm outperforms the back-pressure algo-
rithm in the delay performance when H ≥ 7 even though the
back-pressure also utilizes centralized computation. Moreover,
our average delay curve is below the delay upper bound
derived in Section IV. This verifies our delay analysis result.

In Fig. 4(b), we plot the corresponding long-flow throughput
of our algorithm versus back-pressure and SBP. We can see
that the throughput of our distributed algorithm is indeed more
than half of the centralized and high-complexity back-pressure
algorithm. Another interesting observation is that when the
step size is large (BP-16), the throughput differs significantly
from that at smaller step sizes. This indicates that the delay
reduction (in Fig. 4(a)) of the back-pressure algorithm at such
a large step size is at the cost of losing its optimal contorl
capability. In contrast, the step size in our proposed algorithm
does not directly affect the delay. Finally, note that although
the average delay curve of shadow back-pressure algorithm
also shows linear-scaling, it requires roughly 10000 time slots
for the whole algorithm to converge, and the total queue length
inside the network will first rise to a very large value as shown
in Fig. 4(c). Therefore, the average delay of the first 1000
outgoing packets of the long flow is nearly 1000. In contrast,
because of the window-based flow control, the total queue

backlog of our algorithm is consistently the lowest throughout
the simulation at all time (even at the transient period).

In Fig. 4(d), we demonstrate the per-flow controllability of
our scheme. We first plot the throughput-delay curve for the
long flow by letting the window size of each short flow be 2
and varying the window size of the long flow. As the window
size increases, the average throughput of the long flow will
approach to the limit, and the delay will increase linearly with
window size. This curve shows that when the window size is
equal to 2H , we can achieve a good throughput-delay tradeoff.
Next, we plot the throughput-delay curve for the long flow by
letting the window size of the long flow be 2H and varying
the window size of the short flows. As shown in Fig. 4(d), all
points are concentrated around a small region, which implies
that the performance of the long flow does not change when
the window size of the short flows changes.

VII. EXTENSIONS TO GENERAL INTERFERENCE
CONSTRAINTS

In this section, we discuss how to extend our joint con-
gestion and scheduling algorithm to the wireless networks
under the general interference constraints, i.e., every link ` will
interfere with a given set of other links. We will first present
a joint congestion control and scheduling algorithm, which
guarantees a lower bounded flow m scheduling probability
for all the links that flow m passes by. Then the stochastic
dominance method can again be applied.

Let E` be the interference set of link `. We adopt the
convention that ` ∈ E`, i.e., E` = {`} ∪ {`′ : `′ ∈
E and `′ interferes with `}. Assume that the interference re-
lationship is symmetric, i.e., if k ∈ E` then ` ∈ Ek. Now,
adopt the definition of interference degree. The interference
degree of a link ` is the maximum number of links within its
interference range that can be activated simultaneously without
interfering with each other. The interference degree K of a
network is the maximum interference degree over all links.

Let Ω′ be the capacity region for the network. We have that
Ψ′0/K ⊆ Ω′ ⊆ Ψ′0 [10], where

Ψ′0 =

{
~r

∑

`∈Ek

∑
m

L`
mrm ≤ K, for all links k

}
.

A. Virtual-Rate Computation

We first solve the following optimization problem.

max
rm≥0

∑
m

Um(rm), ~r ∈ Ψ′0/K. (18)

Specifically, associate a dual variable λk ≥ 0 to each constraint
in problem (18). Let ckm be the number of flow m’s passing
links that interfere with link k. The objective function of the
dual problem of (18) becomes:

D(~λ) := max
rm≥0

∑
m

Um(rm)−
∑

k

λk

(∑
m

rmckm − 1

)
.

We can then use the following gradient algorithm to minimize
D(~λ) and compute the optimal virtual-rates.
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(a) (b) (c) (d)

Fig. 4. BP-α represents the back-pressure algorithm with step size α. SBP-α represents the shadow back-pressure algorithm with step size α. Numbers
along the curve of 4(d) are the window size of the long flow.

Virtual-Rate Computation Algorithm: At each time t,
1) The source node of flow m updates rm by equation:

rm(t) = U ′−1
m (

∑

k∈m

λk(t)ckm),

where k ∈ m indicates that link k interferes with at least
one of flow m’s passing links.

2) Each node updates the dual variables by equation:

λk(t + 1) =

[
λk(t) + γk

( ∑

m:k∈m

rm(t)ckm − 1

)]+

,

where γk > 0 is the step size, and [·]+ denotes the
projection to [0,∞).

Since the constraints in problem (18) are still linear, using
similar techniques as [27], one can show that as long as γk

are sufficiently small, the above algorithm will converge to the
optimal solution of (18).

B. Scheduling Algorithm

The scheduling algorithm is as follows. Let a`(t) =∑
m L`

mrm(t) be the sum of the virtual rate over link `, and
let x`(t) = maxi∈E`

(∑
k∈Ei

ak(t)
)
.

Rate-based Scheduling Algorithm: At each time slot t,
1) Each link ` first computes P` = log(F )a`(t)/x`(t).
2) Each link then randomly picks a backoff time (B) with

distribution: P{B = F + 1} = e−P` and P{B = f} =
e−P`

f−1
F − e−P`

f
F , f = 1, · · · , F . If F + 1 is picked by

link `, it will not attempt to transmit in this time slot.
3) When the backoff timer for a link expires, it begins

transmission unless it has already heard a transmission
from one of its interfering links. If two or more links that
interfere begin transmissions simultaneously, a collision
occurs, and both transmissions fail.

4) When a link begins transmission, it will randomly
choose a passing flow m to serve with probability
rm(t)/a`(t).

C. Performance Analysis

Let r∗m be the optimal solution of (18), and let r′∗m be the
optimal solution to the following optimization problem:

max
rm≥0

∑
m

Um(rm), ~r ∈ Ω′/K. (19)

We have the following lemma.
Lemma 16:

∑
m Um(r∗m) ≥ ∑

m Um(r′∗m).
Proof: Since r∗m is the optimal solution of (18), the total

utility of r∗m will be larger than any rate vector in Ψ′0/K. Also,
by Ω′ ⊆ Ψ′0, we have that Ω′/K ⊆ Ψ′0/K. Thus, r′∗m is a rate
vector in Ψ′0/K, and

∑
m Um(r∗m) ≥ ∑

m Um(r′∗m).
Lemma 17: For any ε ∈ (0, 1), if flow m passes through

link `, we can choose F large enough such that the probability
that link ` will schedule flow m at time slot t is no smaller
than rm(t)(1− ε)/x`(t).

Proof: The proof of this lemma is similar to the proof of
Lemma 1 in [10]. In the following proof, we drop the index t
from the notation P`(t) when there is no cause of confusion.
Let E` be the event that link ` is scheduled. By equation (17)
in [10], we have that

P (E`) ≥ (e
P`
F − 1)

F∑

f=1

e
− f

F

∑
h∈E`

Ph
. (20)

We first find an upper bound for the term
∑

h∈E`
Ph in

equation (20). Let α = log(F ). At time t, we have that
∑

h∈E`

Ph = α
∑

h∈E`

ah(t)

max
i∈E`

(∑

k∈Ei

ak(t)

) ≤ α. (21)

From (20) and (21), we know that

P (E`) ≥ (e
P`
F − 1)

F∑

f=1

e−α f
F ≥ P`

F

F∑

f=1

e−α f
F

=
P`

F

1− e−α

1− e−
α
F

e−
α
F .

Since α = log(F ) and F > 1, we can see that α
F /(1 −

e−α/F ) ≥ 1, e−α/F ≥ 1− log(F )/F , and 1−e−α = 1−1/F.
Hence,

P (E`) ≥ a`(t)
x`(t)

(1− log(F )+1
F )

> a`(t)
x`(t)

(1− ε),
(22)

where F is chosen such that ε > log(F )+1
F . We can then

conclude that
P ( link ` is scheduled to transmit a flow m packet)

= P (flow m is scheduled|E`)P (E`)
≥ rm(t)

a`(t)
a`(t)
x`(t)

(1− ε)

= rm(t)
x`(t)

(1− ε).
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After the virtual-rate computation algorithm converges, the
value of rm(t) will be equal to the optimal solution r∗m.
Furthermore, we have from the constraints of optimization
problem (18) that x`(t) ≤ 1. It then follows from Lemma 17
that every hop along the path of flow m will serve flow m with
probability no smaller than r∗m(1−ε), independent across time
slots, where ε is a small positive constant that only depends
on F . With the same stochastic dominance technique, it is
easy to see that the bounds provided in Proposition 3 will still
hold. Therefore, our algorithm can utilize the capacity with a
factor K loss of throughput and have a per-flow delay bound
that only increases linearly with the number of hops under
the general interference constraints. Define the in-degree and
out-degree of a node v as the number of links in E that ends
in v and orginates from v. The directed degree of a link ` is
the sum of the out-degree of b(`) and in-degree of d(`). The
maximum directed link degree in G, 4G, is the maximum
directed degree of any link in E. The value of K can be upper
bounded by max(4G − 2, 1) [8]. Note that in [22], under
the two-hop interference constraint their algorithm requires a
factor 442 loss of throughput to achieve linear delay bound,
where 4 is the maximum degree of the vertices. We know
4G ≤ 24. Thus, our throughput loss factor is again smaller.

VIII. CONCLUSION

In this paper, we propose a low-complexity and distributed
algorithm for joint congestion control and scheduling in
multihop wireless networks under the one-hop interference
constraint. The main ideas of the proposed algorithm are to
control the congestion with window-based flow control and
to use both virtual-rate information and queue information
(rather than just queue information) to perform scheduling.
Our scheduling algorithm is fully distributed and only requires
a constant time (independent of network size) to compute
a schedule [10]. We prove that our congestion control and
scheduling algorithm can utilize nearly half of the capacity
region and provide a per-flow delay bound that increases
linearly with the number of hops. Our analysis uses a novel
stochastic dominance approach to compare the throughput of
our system with another system, which we can compute the
exact throughput. We then use Little’s law to derive a per-
flow delay upper-bound. The methodology in this paper can
also be extended to more general interference models defined
by interference sets (see [29] for details). In our future work, it
will be interesting to know if it is possible to design solutions
that can achieve the same delay order with an even smaller
sacrifice of capacity region.

APPENDIX A
PROOF OF LEMMA 10

We first give a series of definitions and lemmas required
for Lemma 10. Since we only care about the total number
of outgoing packets for each system, the service discipline of
each queue is not very important. Assume that each queue will
use FIFO discipline.

Definition 18: (Packet Label) For a closed tandem network
with H hops, consider an arbitrary initial placements for the
W packets in the system. We label packets from 1 to W
according to their distance to the destination and their position
in the current queue. A packet has smaller index if it is closer
to the destination or it will be served earlier at the current
queue.
An example of initial packet label for a closed tandem network
with 3 hops and 5 packets is given in Fig. 5

12345

Fig. 5.

Note that our packet label ensures that the outgoing packet
sequence will be 123 · · ·W123 · · ·W · · · and so on.

Definition 19: (Packet Round) For a closed tandem net-
work with H hops, define R(i, t) as the number of times that
packet i has been served by queue H at the end of time t.

By looking at the outgoing packet sequence, we know that
the packet with a smaller index will always have more rounds,
i.e.,

R(i, t) ≥ R(j, t), if i < j. (23)

Also, the round difference between packets with different
indices will be bounded by 1, i.e.,

R(j, t) + 1 ≥ R(i, t), if i < j. (24)

Notice that at the end of time t, the total number of outgoing
packets will be

∑
j R(j, t). If the value of R(i, t) is known

for some packet i, we then have from (23) and (24) that
∑

j R(j, t) ≤ (i− 1)(R(i, t) + 1) + (W − i + 1)R(i, t)
= R(i, t)W + i− 1.

(25)
Definition 20: (Packet Position) For a closed tandem net-

work with H hops, index the queues as 0, · · · ,H − 1 starting
from the source node. Define P (i, t) as the index of the queue,
which packet i stays at the end of time t.

Note that for packet position, we use the convention that if
packet i stays at queue q, the packet position is q − 1. In the
following, when we refer to a particular queue, we mean this
relabelled index. According to the definition, 0 ≤ P (i, t) ≤
H−1, ∀ i, t. Also, by our packet label and FIFO discipline, if
we know the packet rounds of two packets, we can deduce the
relationship of packet positions, and vice versa. To ease the
presentation of this property, we have the following definition.

Definition 21: At time t, a packet i is said to be ahead of
packet j if P (i, t) > P (j, t) or P (i, t) = P (j, t), but packet
i will be served earlier than packet j by its current staying
queue.

For example, in Fig. 5, packet 1 is ahead of packet 2 and
packet 3. Then we have the following lemma.

Lemma 22: Assume that i < j. At time slot t,
(i) R(i, t) = R(j, t) if and only if packet i is ahead of

packet j.
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(ii) R(i, t) > R(j, t) if and only if packet j is ahead of
packet i.

Proof: This result is an immediate consequence of our
packet label and FIFO discipline.

Definition 23: (Packet Relative Position) For a closed
tandem network with H hops, define RP (i, t) as the relative
position of packet i at the end of time t. Its value is determined
by the value of P (i, t) and R(i, t) by the following equality,
RP (i, t) = R(i, t)H + P (i, t).

A simple fact for the relative position of packet i is that

RP (i, t) ≤ RP (i, t + 1) ≤ RP (i, t) + 1. (26)

This is true because the relative position will increase by at
most 1 at one time slot and never decrease. Unlike packet
position, the order of relative packet positions between two
packets never changes.

Lemma 24: If i < j, RP (i, t) ≥ RP (j, t), for all t.
Proof: We have from (23) and (24) that R(i, t) = R(j, t)

or R(i, t) = R(j, t)+1. If R(i, t) = R(j, t)+1, we can show
that

RP (i, t)−RP (j, t) = H + P (i, t)− P (j, t) ≥ 0.

On the other hand, if R(i, t) = R(j, t), it follows from Lemma
22 (i) that P (i, t) ≥ P (j, t). Hence,

RP (i, t)−RP (j, t) = P (i, t)− P (i, t) ≥ 0.

The relationship of relative packet positions between two
packets is also very similar to the relationship of packet
positions. For example, the difference of packet positions is
bounded by H−1. A similar result for packet relative position
is presented as follows.

Lemma 25: RP (W, t) ≥ RP (1, t)−H .
Proof: We have from (23) and (24) that R(1, t) =

R(W, t) or R(1, t) = R(W, t) + 1. If R(1, t) = R(W, t), we
can show that

RP (1, t)−RP (W, t) = P (1, t)− P (W, t) ≤ H.

On the other hand, if R(1, t) = R(W, t) + 1, it follows from
Lemma 22 (ii) that P (1, t) ≤ P (W, t). Hence,

RP (1, t)−RP (W, t) = H + P (1, t)− P (W, t) ≤ H.

Now, consider the following four deterministic systems Yi,
i = 1, · · · , 4. They have the same initial packets placement.
For system Yi, from time 1 to some time t, it has a sequence
of deterministic schedules, ~zi, ~y(2), · · · , ~y(t). It is easy to see
that the only difference for these four deterministic systems is
the schedule at the first time slot. Furthermore, ~z1, ~z2, ~z3, and
~z4 satisfy the following set of equalities.

~z2 = ~z3 ∧ ~z4, ~z1 = ~z3 ∨ ~z4. (27)

Notice that ~z2 4 {~z3, ~z4} 4 ~z1, where 4 means component-
wise smaller.

Let Tk(t) be the total number of outgoing packets (i.e., the
number of packets that leaves the last queue) at the end of time
t in system Yk. Let Pk(i, t), Rk(i, t), RPk(i, t) be the position,
round, and relative position of packet i for system Yk at the end
of time t. The proof of Theorem 11 is closely connected with
the throughput comparison of these four deterministic systems.
Since, for a system, the number of outgoing packets can be
computed by the packet rounds, the first step of the comparison
is to find the relationship of packet rounds between different
systems.

Lemma 26: For system Yk, Yw, k,w = 1, · · · , 4, and packet
i, j,

(i) if RPk(i, t) ≥ RPw(j, t) − nH , then Rk(i, t) ≥
Rw(j, t)− n.

(ii) if RPk(i, t) = RPw(j, t) − nH , then Rk(i, t) =
Rw(j, t)− n and Pk(i, t) = Pw(j, t).

Proof: We prove (i) by contradiction. Assume that
Rw(j, t)−Rk(i, t) ≥ n + 1. Thus,

RPw(j, t)−RPk(i, t)
= Rw(j, t)H + Pw(j, t)−Rk(i, t)H − Pk(i, t)
≥ (n + 1)H + Pw(j, t)− Pk(i, t)
≥ (n + 1)H + 0− (H − 1) ≥ nH + 1.

We have a contradiction.
Now we prove (ii). From RPk(i, t) = RPw(j, t)−nH , we

know that

nH + [Rk(i, t)−Rw(j, t)]H = Pw(j, t)− Pk(i, t).

This implies that Pw(j, t)−Pk(i, t) can be divided by H . Since
−(H−1) ≤ Pw(j, t)−Pk(i, t) ≤ H−1, we can conclude that
Pw(j, t)−Pk(i, t) = 0. This implies that Rk(i, t) = Rw(j, t)−
n.

Note that Lemma 26 is still true if k = w or i = j. This
lemma shows that if we can establish the order of relative
packet positions between different systems, this order will be
preserved for packet rounds. This implies that the problem of
comparing throughput is intuitively the same as the problem
of comparing relative positions, which is resolved by Lemmas
27, 29, and 31. The throughput comparison between the four
systems is then presented in Lemmas 28, 30, and 32. We
first present Lemma 27. This lemma is intuitive because if
a system has more services than the other system, then the
relative position of packet i should be no smaller than that of
the other system.

Lemma 27: Consider system Yk, Yw. For any time t and
packet i, if ~zk < ~zw, then RPk(i, t) ≥ RPw(i, t)

Proof: We prove this lemma by induction on time t.
At time 0, RPk(i, 0) = RPw(i, 0) because system Yk and
system Yw have the same initial packet placements. At time
1, since the initial schedule ~zw is componentwise smaller
than ~zk, if packet i moves to the next queue in system Yw,
then packet i will also moves to the next queue in system
Yk. This implies that if RPw(i, 1) = RPw(i, 0) + 1, then
RPk(i, 1) = RPk(i, 0) + 1. Thus, RPk(i, 1) ≥ RPw(i, 1).
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Assume that RPk(i, t) ≥ RPw(i, t) for all packet i and
t ≥ 1. We would like to show that

RPk(i, t + 1) ≥ RPw(i, t + 1). (28)

Note that we can assume that{
RPk(i, t) = RPw(i, t),
RPw(i, t + 1) = RPw(i, t) + 1.

(29)

Otherwise, (28) will hold by the facts that the relative position
increases by at most 1 at one time slot, and the relative position
is a non-decreasing function of time.

Consider the following two cases.
Case 1: i = 1. Since RPk(1, t) = RPw(1, t), we have from

Lemma 26 (ii) that

Rk(1, t) = Rw(1, t) and Pk(1, t) = Pw(1, t). (30)

Furthermore, we have from RPw(1, t + 1) = RPw(1, t) + 1
that for system Yw, packet 1 must have been at the front of
queue Pw(1, t) at the end of time t, and the queue is served
at time t+1. Otherwise, it is impossible for packet 1 to move
to the next queue at time t + 1. Consider system Yk. Suppose
at time t packet 1 is also at the front of queue Pk(1, t). Since
Pw(1, t) is served at time t + 1, and system Yw and Yk have
the same schedule after time 1, we have that RPk(1, t + 1) =
RPk(1, t) + 1. This finishes the proof. Suppose not, then, for
system Yk, packet W is at queue Pk(1, t) at time t because
the next packet in front of packet 1 must be packet W . This
implies that packet W is ahead of packet 1 and Pk(1, t) =
Pk(W, t). We then have from Lemma 22 (ii) that Rk(1, t) >

W1system Yk

1system Yw

Fig. 6. For system Yk , packet W may or may not be served at time t + 1.

Rk(W, t). Thus,

RPk(1, t) = RPk(W, t) + H. (31)

From induction hypothesis, we also know that

RPk(W, t) ≥ RPw(W, t). (32)

It then follows from (31), (32), Lemma 25, and (29) that

RPk(1, t) = RPk(W, t) + H
≥ RPw(W, t) + H ≥ RPw(1, t) = RPk(1, t).

Hence, RPw(W, t) + H = RPw(1, t), and we have from
Lemma 26 (ii) that Rw(W, t) = Rw(1, t)−1 and Pw(W, t) =
Pw(1, t). From Lemma 22 (ii), it follows that, for system Yw,
packet W is ahead of packet 1. Since Pw(W, t) = Pw(1, t),
packet 1 will not be served at time t+1. This contradicts with
(29).

Case 2: i 6= 1. The proof for this case is similar to Case
1. The only difference is that when we consider the packet
ahead of packet i, its index will be smaller than i. With similar
approach of Case 1, we have that

Rk(i, t) = Rw(i, t) and Pk(i, t) = Pw(i, t). (33)

Also, for system Yw, packet i is at the front of queue Pw(i, t)
and served at time t+1. For system Yk, packet i− 1 is ahead
of packet i, and Pk(i − 1, t) = Pk(i, t). We then have from

i-1isystem Yk

isystem Yw

Fig. 7. For system Yk , packet i−1 may or may not be served at time t+1.

Lemma 22 (i) that Rk(i− 1, t) = Rk(i, t). Thus,

RPk(i, t) = RPk(i− 1, t). (34)

From induction hypothesis, we also know that

RPk(i− 1, t) ≥ RPw(i− 1, t). (35)

It then follows from (34), (35), Lemma 24, and (33) that

RPk(i, t) = RPk(i− 1, t)
≥ RPw(i− 1, t) ≥ RPw(i, t) = RPk(i, t).

Hence, RPw(i−1, t) = RPw(i, t), and we have from Lemma
26 (ii) that Rw(i−1, t) = Rw(i, t) and Pw(i−1, t) = Pw(i, t).
From Lemma 22 (i), it follows that, for system Yw, packet i−1
is ahead of packet i. Since Pw(i − 1, t) = Pw(i, t), packet i
will not be served at time t+1. This contradicts with (29).

Lemma 28: Consider system Yk, Yw. For any time t, if ~zk <
~zw, then Tk(t) ≥ Tw(t).

Proof: By Lemma 27, RPk(i, t) ≥ RPw(i, t). Therefore,
we have from Lemma 26 (i) that Rk(i, t) ≥ Rw(i, t). This
implies that

Tk(t) =
∑

i

Rk(i, t) ≥
∑

i

Rw(i, t) = Tw(t).

Now, we show that, for the system with less service, the
relative position of packet i (resp. W ) can bound the relative
position of packet with index i+1 (resp. 1) in another system.
This is because for different systems, the schedule are only
different at the first time slot. Therefore, for the system with
more service, the relative position of packet i+1 (resp. 1) will
only lead the packet with the same index in another system,
but it will not pass the packet with the index i (resp. W ) in
another system. Note that the additional −H term when we
compare packet 1 and W comes from the fact that at time
zero the difference of packet 1 relative position and packet W
relative position is at most H − 1.

Lemma 29: Consider system Yk, Yw. For any time t and
packet i, if ~zk < ~zw, then RPw(i, t) ≥ RPk(i + 1, t), i =
1 · · ·W − 1, and RPw(W, t) ≥ RPk(1, t)−H .

Proof: We prove this lemma by induction on time t. At
time 0,

RPk(1, 0)−RPw(W, 0) = Pk(1, 0)− Pw(W, 0)
≤ H − 1.

(36)

For i 6= W , since system Yk and Yw have the same initial
packet placements, we have that RPw(i, 0) = RPk(i, 0).
Furhtermore, by Lemma 24, RPk(i, 0) ≥ RPk(i+1, 0). Thus,

RPw(i, 0) ≥ RPk(i + 1, 0). (37)
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At time 1, four systems have different schedule, but we can
still prove the inequalities. To see this, note that by (26) and
(36),

RPk(1, 1) ≤ RPk(1, 0) + 1 ≤ RPw(W, 0) + H
≤ RPw(W, 1) + H.

For i 6= W at time 1, if RPk(i + 1, 1) = RPk(i + 1, 0), by
(26) and (37),

RPw(i, 1) ≥ RPw(i, 0) ≥ RPk(i + 1, 0) = RPk(i + 1, 1).

If
RPk(i + 1, 1) = RPk(i + 1, 0) + 1, (38)

we know that, for system Yk, packet i+1 must be at the front
of queue Pk(i+1, 0). Hence, packet i is not at the same queue.
Because packet i is ahead of packet i + 1, and they are not in
the same queue at the end of time 0, Pk(i, 0) > Pk(i + 1, 0).
Therefore, we have that

RPk(i, 0) > RPk(i + 1, 0). (39)

Moreover, because the two systems have the same packet
initial placement, RPw(i, 0) = RPk(i, 0). Combined with
(39), we have that

RPw(i, 0) > RPk(i + 1, 0). (40)

It then follows from (26), (40), and (38) that

RPw(i, 1) ≥ RPw(i, 0) ≥ RPk(i+1, 0)+1 = RPk(i+1, 1).

Now, suppose the inequalities hold at time t, i.e.,
{

RPw(i, t) ≥ RPk(i + 1, t), i 6= W,
RPw(W, t) ≥ RPk(1, t)−H.

(41)

We would like to show that they hold at time t+1. This would
be proved in three steps.

Step 1: Prove RPw(W, t + 1) ≥ RPk(1, t + 1)−H. From
(41), we only need to consider the case when

{
RPw(W, t) = RPk(1, t)−H,
RPk(1, t + 1) = RPk(1, t) + 1.

(42)

In all the other cases, RPw(W, t + 1) ≥ RPk(1, t + 1) − H
because the relative position increases by at most 1 at one time
slot, and the relative position is a non-decreasing function of
time. Since RPw(W, t) = RPk(1, t)−H , by Lemma 26 (ii),
we know that

Pw(W, t) = Pk(1, t). (43)

Since RPk(1, t + 1) = RPk(1, t) + 1, for system Yk packet 1
must be at the front of queue Pk(1, t), and queue Pk(1, t) is
served at time t+1. By (43) and the fact that two systems have
the same schedule after time 1, if, for system Yw packet W is
also at the front of queue Pw(W, t), we then have RPw(W, t+
1) ≥ RPk(1, t + 1) − H . Suppose not, then for system Yw

packet W −1 is at queue Pw(W, t) because the next packet in
front of packet W is packet W − 1. This implies that packet
W − 1 is ahead of packet W , and Pw(W − 1, t) = Pw(W, t).

1system Yk

W-1system Yw W

Fig. 8. For system Yw , packet W − 1 may or may not be served at time
t + 1.

By Lemma 22 (i), we know that Rw(W−1, t) = Rw(W, t).
Thus,

RPw(W − 1, t) = RPw(W, t). (44)

We then have from (44), (41), Lemma 25, and (42) that

RPw(W, t) = RPw(W − 1, t)
≥ RPk(W, t) ≥ RPk(1, t)−H = RPw(W, t).

Therefore, RPk(W, t) = RPk(1, t) − H . From Lemma 26
(ii), we have that Rk(W, t) = Rk(1, t) − 1 and Pk(W, t) =
Pk(1, t). It then follows from Lemma 22 (ii) that, for system
Yk, packet W must be ahead of packet 1. Since Pk(W, t) =
Pk(1, t), packet 1 will not be served at time t + 1. This
contradicts with (42).

Step 2: Prove RPw(1, t + 1) ≥ RPk(2, t + 1). With similar
approach of Step 1, we only need to consider the case when

{
RPw(1, t) = RPk(2, t),
RPk(2, t + 1) = RPk(2, t) + 1,

(45)

and we have that

Rw(1, t) = Rk(2, t) and Pw(1, t) = Pk(2, t). (46)

Furthermore, for system Yk, packet 2 is at the front of queue
Pk(2, t) and served at time t + 1. For system Yw, packet W
is ahead of packet 1, and Pw(1, t) = Pw(W, t).

2system Yk

Wsystem Yw 1

Fig. 9. For system Yw , packet W may or may not be served at time t + 1.

From Lemma 22 (ii), we know that Rw(W, t) = Rw(1, t)−1.
Thus,

RPw(1, t) = RPw(W, t) + H. (47)

We then have from (47), (41), Lemma 24, and (45) that

RPw(1, t) = RPw(W, t) + H
≥ RPk(1, t) ≥ RPk(2, t) = RPw(1, t).

Therefore, RPk(1, t) = RPk(2, t). From Lemma 26 (ii), we
have that Rk(1, t) = Rk(2, t) and Pk(1, t) = Pk(2, t). It then
follows from Lemma 22 (i) that, for system Yk, packet 1 must
be ahead of packet 2. Since Pk(1, t) = Pk(2, t), packet 2 can
not be served at time t + 1. This contradicts with (45).

Step 3: Prove RPw(i, t+1) ≥ RPk(i+1, t+1), 1 < i < W .
With similar approach of Step 1, we only need to consider the
case when{

RPw(i, t) = RPk(i + 1, t),
RPk(i + 1, t + 1) = RPk(i + 1, t) + 1,

(48)
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and we have that

RPw(i, t) = RPk(i + 1, t) and Pw(i, t) = Pk(i + 1, t). (49)

Also, for system Yk, packet i + 1 is at the front of queue
Pk(i + 1, t) and served at time t + 1. For system Yw, packet
i− 1 is ahead of packet i, and Pw(i− 1, t) = Pw(i, t).

i+1system Yk

i-1system Yw i

From Lemma 22 (i), we know that Rw(i−1, t) = Rw(i, t).
Thus,

RPw(i, t) = RPw(i− 1, t). (50)

We then have from (50), (41), Lemma 24 and (48) that

RPw(i, t) = RPw(i− 1, t)
≥ RPk(i, t) ≥ RPk(i + 1, t) = RPw(i, t).

Therefore, RPk(i, t) = RPk(i+1, t). From Lemma 26 (i), we
have that Rk(i, t) = R(i + 1, t) and Pk(i, t) = Pk(i + 1, t). It
then follows from Lemma 22 (i) that, for system Yk, packet i
must be ahead of packet i + 1. Since Pk(i, t) = Pk(i + 1, t),
packet i + 1 can not be served at time t + 1. This contradicts
with (48).

Lemma 30: Consider systems Yk, Yw. For any time t, if
~zk < ~zw, then Tw(t) ≥ Tk(t)− 1.

Proof: At the beginning of time slot t + 1, suppose that
packet i is the next outgoing packets at the last queue for
system Yw, which means that it is ahead of other packets in
the system Yw. Therefore,

Tw(t) = Rw(i, t)W + (i− 1) (51)

Consider the following two cases.
Case 1: i 6= W . From Lemma 29, we know that

RPw(i, t) ≥ RPk(i + 1, t). We then have from Lemma 26
(i) that

Rw(i, t) ≥ Rk(i + 1, t). (52)

By (51), (52), and (25), we conclude that

Tw(t) = Rw(i, t)W+(i−1) ≥ Rk(i+1, t)W+i−1 ≥ Tk(t)−1.

Case 2: i = W . From Lemma 29, we know that
RPw(W, t) ≥ RPk(1, t) − H . We then have from Lemma
26 (i) that

Rw(W, t) ≥ Rk(1, t)− 1. (53)

By (51), (53), and (25), we conclude that

Tw(t) = Rw(W, t)W +(W−1) ≥ Rk(1, t)W−1 ≥ Tk(t)−1.

Lemma 31: For any time t and any packet i, RP2(i, t) ≥
min[RP3(i, t), RP4(i, t)].

Proof: We prove this lemma by induction on time
t. At time 0, for system Y2, Y3, and Y4, they have the
same initial packet placement. Furthermore, we know that

R2(i, 0) = R3(i, 0) = R4(i, 0) = 0. We then have that
RP2(i, 0) = RP3(i, 0) = RP4(i, 0).

At time 1, we know that ~z2 = ~z3∧~z4. If a link is scheduled
by ~z2, and a packet i is served, then, for system Y2, the relative
position of packet i will increase by 1. Since, for system
Y3 and Y4, the relative position of packet i will increase at
most 1. We have that RP2(i, 1) ≥ min[RP3(i, 1), RP4(i, 1)].
If a link ` is not scheduled by ~z2, either ~z3 or ~z4 will not
schedule link `. Suppose that packet i is at the front of queue
`. If RP4(i, 1) = RP4(i, 0) + 1, then RP3(i, 1) = RP3(i, 0).
Similarly, if RP3(i, 1) = RP3(i, 0) + 1, then RP4(i, 1) =
RP4(i, 0). This implies that min[RP3(i, 1), RP4(i, 1)] =
min[RP3(i, 0), RP4(i, 0)], and the inequality will hold at time
1.

After time 1, system Y2, Y3, and Y4 will have the same
schedules at every time slot. Assume that the inequality holds
at time t, we want to prove that it holds at time t + 1. Notice
that if RP2(i, t + 1) = RP2(i, t) + 1 then the inequality will
hold trivially at time t + 1. Therefore, we only consider the
case when

RP2(i, t + 1) = RP2(i, t). (54)

Assume that packet i is at queue ` for system Y2.
Consider the following three cases.
Case 1: i = 1 and link ` is scheduled at time t + 1. Since

RP2(1, t + 1) = RP2(1, t), packet 1 is not scheduled by link
`. Therefore, packet W is ahead of packet 1, and P2(W, t) =
P2(1, t). We then have from Lemma 22 (ii) that R2(W, t) =
R2(1, t)− 1. Thus,

RP2(1, t) = RP2(W, t) + H. (55)

From the induction hypothesis, RP2(W, t) ≥
min[RP3(W, t), RP4(W, t)]. Without loss of generality,
assume that min[RP3(W, t), RP4(W, t)] = RP3(W, t).
Therefore,

RP2(W, t) ≥ RP3(W, t). (56)

From (55), (56), Lemma 25, and Lemma 27, we have that

RP2(1, t) = RP2(W, t) + H ≥ RP3(W, t) + H
≥ RP3(1, t) ≥ RP2(1, t). (57)

Hence, RP3(W, t)+H = RP3(1, t). From Lemma 26 (ii), we
know that R3(W, t) = R3(1, t) − 1 and P3(W, t) = P3(1, t).
It then follows from Lemma 22 (ii) that, for system Y3, packet
W is ahead of packet 1. Since P3(W, t) = P3(1, t), packet 1
can not be served at time t + 1. Therefore,

RP3(1, t + 1) = RP3(1, t). (58)

From (54), (57), and (58), we conclude that

RP2(1, t + 1) = RP2(1, t) = RP3(1, t) = RP3(1, t + 1)
≥ min[RP3(1, t + 1), RP4(1, t + 1)].

Case 2: i 6= 1 and link ` is scheduled at time t + 1. Since
RP2(i, t+1) = RP2(i, t), packet i is not scheduled by link `.
Therefore, packet i−1 is ahead of packet i, and P2(i−1, t) =



17

P2(i, t). We then have from Lemma 22 (i) that R2(i− 1, t) =
R2(i, t). Thus,

RP2(i, t) = RP2(i− 1, t). (59)

From the induction hypothesis, RP2(i− 1, t) ≥ min[RP3(i−
1, t), RP4(i − 1, t)]. Without loss of generality, assume that
min[RP3(i− 1, t), RP4(i− 1, t)] = RP3(i− 1, t). Therefore,

RP2(i− 1, t) ≥ RP3(i− 1, t). (60)

From (59), (60), Lemma 24, and Lemma 27, we have that

RP2(i, t) = RP2(i− 1, t) ≥ RP3(i− 1, t)
≥ RP3(i, t) ≥ RP2(i, t).

(61)

Hence, RP3(i − 1, t) = RP3(i, t). From Lemma 26 (ii), we
know that R3(i− 1, t) = R3(i, t) and P3(i− 1, t) = P3(i, t).
It then follows from Lemma 22 (i) that, for system Y3, packet
i−1 is ahead of packet 1. Since P3(i−1, t) = P3(i, t), packet
i can not be served at time t + 1. Therefore,

RP3(i, t + 1) = RP3(i, t). (62)

From (54), (61), and (62), we conclude that

RP2(i, t + 1) = RP2(i, t) = RP3(i, t) = RP3(i, t + 1)
≥ min[RP3(i, t + 1), RP4(i, t + 1)].

Case 3: link ` is not scheduled at time t + 1. From
the induction hypothesis, we know that RP2(i, t) ≥
min[RP3(i, t), RP4(i, t)]. Without loss of generality, as-
sume that min[RP3(i, t), RP4(i, t)] = RP3(i, t). Therefore,
RP2(i, t) ≥ RP3(i, t). From Lemma 27, we have that
RP3(i, t) ≥ RP2(i, t). Thus,

RP3(i, t) = RP2(i, t). (63)

We then have from Lemma 26 (ii) that

R3(i, t) = R2(i, t) and P3(i, t) = P2(i, t). (64)

Since link ` is not scheduled, and system Y2 and Y3 have
the same schedule after time 1, we have from (64) that, for
system Y3, the corresponding queue of packet i will also not
be scheduled at time t+1. Hence, for systems Y2 and Y3, the
relative positions of packet i will not increase at time t + 1,
i.e.,

RP2(i, t + 1) = RP2(i, t), and RP3(i, t) = RP3(i, t + 1)
(65)

From (65) and (63), we conclude that

RP2(i, t + 1) = RP2(i, t) = RP3(i, t) = RP3(i, t + 1)
≥ min[RP3(i, t + 1), RP4(i, t + 1)].

Lemma 32: For any time t, 2T2(t) + 1 ≥ T3(t) + T4(t).
Proof: At the beginning of time slot t + 1, suppose that

packet i is the next outgoing packets at the last queue for
system Y2, which means that it is ahead of other packets in
the system Y2. Therefore,

T2(t) = R2(i, t)W + i− 1. (66)

Without loss of generality, assume that
min[RP3(i, t), RP4(i, t)] = RP3(i, t). From Lemma 31,
we know that RP2(i, t) ≥ RP3(i, t). We then have from
Lemma 26 (i) that

R2(i, t) ≥ R3(i, t). (67)

From (66), (67), and (25), we have that

T2(t) = R2(i, t)W + i− 1 ≥ R3(i, t)W + i− 1 ≥ T3(t).

Furthermore, we have from Lemma 30 that T2(t)+1 ≥ T4(t).
Thus, we conclude that

2T2(t) + 1 ≥ T3(t) + T4(t).

Proof of Lemma 10: We prove this lemma by contradic-
tion. Suppose that at time t,

T1(t) + T2(t) < T3(t) + T4(t). (68)

From Lemma 32, we know that

T3(t) + T4(t) ≤ 2T2(t) + 1.

Thus,
T1(t) < T2(t) + 1.

From Lemma 28, we have that T1(t) ≥ T2(t), and it implies
that T1(t) = T2(t). From Lemma 28, we also know that
T1(t) ≥ T3(t) ≥ T2(t). Hence, T3(t) = T2(t). Similarly, we
can show that T4(t) = T2(t). We then conclude that

2T2(t) = T1(t) + T2(t) = T3(t) + T4(t).

This contradicts with (68).

APPENDIX B
PROOF OF THEOREM 13

The proof of this theorem is very similar to the proof of
Theorem 5 with only a small difference. Recall the probability
distribution of ~S(3)(·) and ~S(4)(t) are

P{~S(3)(t) = ~e`} = µ′`, P{~S(3)(t) = ~x0} = 1−
∑

`

µ′`,

and

P{~S(4)(t) = ~e`} = µ′, P{~S(4)(t) = ~x0} = 1−
∑

`

µ′.

Notice that µ′` ≥ µ′. To prove this theorem, we also prove the
counter part of Theorem 11 first.

Theorem 33:

E[f(~S(4)(1), · · · , ~S(4)(k − 1), ~S(3)(k), · · · , ~S(3)(t))]
≥ E[f(~S(4)(1), · · · , ~S(4)(k), ~S(3)(k + 1), · · · , ~S(3)(t))]

, for any k = 1, 2, . . . , t.
Using similar technique of Theorem 12 and Theorem 5, we

can then show that

E[f(~S(3)(1), · · · , ~S(3)(t))] ≥ E[f(~S(4)(1), · · · , ~S(4)(t))],

and T (~S(3)(·)) ≥ T (~S(4)(·)).
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Proof of Theorem 33: To ease the presenta-
tion of the proof, define ~S(i)(t1, t2) be the sequence
~S(i)(t1), · · · , ~S(i)(t2) for system ~S(i)(·). We first show the
following inequality.

E[f(~S(4)(1, k − 1), ~S(3)(k, t))|~S(4)(1, k − 1), ~S(3)(k + 1, t)]

≥ E[f(~S(4)(1, k), ~S(3)(k + 1, t))|~S(4)(1, k − 1), ~S(3)(k + 1, t)]
(69)

If (69) holds, then Theorem 33 can be proved by conditional
expectation. To show (69), assume that ~S(4)(1, k−1) equal to
a sequence of fixed schedules ~y(1, k − 1), and ~S(3)(k + 1, t)
equal to a sequence of fixed schedules ~y(k + 1, t). Denote
φ(~z) = f(~y(1, k − 1), ~z, ~y(k + 1, t)). We have that

E[f(~S(4)(1, k − 1), ~S(3)(k, t))|~S(4)(1, k − 1), ~S(3)(k + 1, t)]

− E[f(~S(4)(1, k), ~S(3)(k + 1, t))|~S(4)(1, k − 1), ~S(3)(k + 1, t)]

=
∑

`

φ(~e`)µ′` + φ(~x0)

(
1−

∑

`

µ′`

)

−
∑

`

φ(~e`)µ′ − φ(~x0)

(
1−

∑

`

µ

)

=
∑

`

(µ′` − µ′)(φ(~e`)− φ(~x0)) ≥ 0.

The last inequality is a application of Lemma 28. Notice that
~e` < ~x0 and ~y(1, k−1) will generate an arbitrary initial packet
placement. Let φ(~e`) and φ(~x0) be the throughput of system
Y1 and Y2. Then we can apply Lemma 28 to have the last
inequality.

APPENDIX C
COUNTER EXAMPLE

In this appendix, We will give a example to show that
f is not a supermodular function with respect to the whole
sequence of schedules. Consider a 3-hop tandem network with
2 packets. Let Ti(t), i = 1, · · · , 4, be the total number of
departing packets from queue H for system Yi at the end of
time t. Further, let ~xi(t), i = 1, · · · , 4, be the schedule for
system Yi at time t. The four deterministic systems are given
as follows.

System Y1:
time 1 2 3 4 5
state (2, 0, 0) (1, 1, 0) (0, 1, 1) (1, 0, 1) (1, 1, 0)
~x1(t) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)
T1(t) 0 0 1 2 2

System Y3:
time 1 2 3 4 5
state (2, 0, 0) (1, 1, 0) (1, 0, 1) (1, 1, 0) (1, 0, 1)
~x3(t) (1, 0, 1) (0, 1, 0) (1, 0, 1) (0, 1, 0) (1, 0, 1)
T3(t) 0 0 1 1 2

System Y4:
time 1 2 3 4 5
state (2, 0, 0) (2, 0, 0) (1, 1, 0) (1, 0, 1) (1, 1, 0)
~x4(t) (0, 1, 0) (1, 0, 1) (0, 1, 0) (1, 0, 1) (0, 1, 0)
T4(t) 0 0 0 1 1

System Y2:
time 1 2 3 4 5
state (2, 0, 0) (2, 0, 0) (2, 0, 0) (2, 0, 0) (2, 0, 0)
~x2(t) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)
T2(t) 0 0 0 0 0

From the above example, we know that T1(5) = 2,
T2(5) = 0, T3(5) = 2, and T4(5) = 1. Hence, T1(5)+T2(5) <
T3(5) + T4(5). Since at any time t ~x1(t) = ~x3(t) ∨ ~x4(t),
and ~x2(t) = ~x3(t) ∧ ~x4(t), we conclude that f is not a
supermodular function with respect to the whole sequece of
schedule vectors.
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