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Abstract

We consider the problem of link scheduling for efficient cergecast in a wireless system. While there have been manlysres
on scheduling algorithms that attain the maximum possiieughput in such a system, there has been few results tbeitipr
scheduling algorithms that are optimal in terms of some ityuaf-service metric such as the probability that the eémend
buffer usage exceeds a large threshold. Using a large amgaramework, we design a novel and low complexity aldponitthat
attains the best asymptotic decay rate of the probabilityuofi-queue overflow as the overflow threshold becomes lalgeugh
simulations, we show that this algorithm has better peréoroe than well known algorithms such as the standard badspre
algorithm and the multihop version of GMM (combined with kgressure). Our algorithm performs better not only in tewh
the asymptotic decay rate at large overflow thresholds, Isotia terms of the actual probability of overflow for praeticange
of overflow thresholds.

|. INTRODUCTION

We consider the link scheduling problem in a wireless maftilmetwork for convergecast. In a convergecast situatiteret
is a central node to which each node in the network forwards. d8e assume that each node uses a fixed path to route data
to the central node. The same path is used irrespective ahehe node is relaying data for other nodes or is transmitts
own data. This scenario results in a tree topology for thealsystem of flows. Such convergecast problems arise cartyno
in sensor networks where there is a central node that celtfata, such as temperature readings or audio/video sigrais
all other nodes in the network.

Since the communication medium is wireless, managingfitence becomes important in order to achieve effectiva dat
transfer. For example, allowing all nodes to transmit atdhme time would lead to a significant number of collisions nebe
allowing only one node to talk at a time will be inefficient.i&duling algorithms play the crucial role of determiningieth
links in the system can be activated at a certain time. A firdeorequirement made on any desirable scheduling algorigh
that of throughput optimality. That is, if the desired schigth algorithm can not stabilize the system for an offeread, then
no other algorithm can stabilize the system for the sameaifoad. There has been a substantial amount of work in ta&s a
of research starting with the seminal work of Tassiulas apdr&mides [1]. The backpressure algorithm [1], [2], exptiz
rule [3], log rule [4], [5] anda-algorithms [6] are several throughput optimal algorithknewn to date.

However, throughput-optimality alone is not sufficient whgerformance metrics such as mean-delay, probability Eyde
violation or probability of buffer overflow are considerdgor example, the well known throughput-optimal back pressu
algorithm suffers from large delays [7], [8]. Many througitypptimal algorithms make their scheduling decisionsedasn the

backlog in the system, which in turn depends on past schegldiecisions and arrival rates. Such cross-dependenclysr@su



system dynamics that are difficult to analyze. Due to thisaaathe behavior of throughput-optimal algorithms in tewhfiner
QoS performance metrics, such as those mentioned befdaificsilt to quantify. Forsingle-hoptraffic several techniques that
have been used in the past are mean-delay analysis [9],H&&yy traffic analysis [3], [11] and large deviations [6]2J2[15].

For multi-hoptraffic, however the problem becomes even more complex dubet@oupling between the departure process
of a node and the arrival process of the node downstreameTdwer few results in this case. [16], [17] study mean-delay
performance in the presence of multi-hop traffic. While [p6jvides lower bounds on the mean-delay, it does not imnelglia
reveal which algorithm is optimal. [17] provides an alglnit that is order-optimal for mean-delay. While the algarithchieves

the optimal order when the number of nodes is large, for sorathoderate size systems, the algorithm may not be close to
optimal. [18] studies a specific tandem network topology pralres sample path optimality of the sum-queue.

Instead of analyzing the mean-delay performance as in [18], we seek to design a scheduling algorithm to minimize th
probability that the sum-queue of the system exceeds a thrgshold. However, it appears difficult to apply the tedluei of
[18] in this more general network topology and to derive tkeot probability for sum-queue overflow. Hence, we employ a
large deviations approximation which captures the asytitptate of decay of this probability as the threshold ineesa[13].

We design a low complexity scheduling algorithm called PEBRalgorithm that attains the maximum rate of decay for the
probability of overflow of the sum backlog. The philosophyhimel the algorithm is to ensure that as much data is driven out
of the system as soon as possible. The algorithm achievebyhgiving priority to links that are closer to the destinatnode
and to links which have a larger capacity. The details of #ifg®rithm are provided in section IV. A non-rigorous ex#aan
of the P-TREE algorithm is the following. The algorithm catess for activation all the links attached to the root, then
considers all the links at depth 2 from the root and so onttiikis reached the deepest leaf nodes. At each depth, théfaigor
first eliminates from consideration all links that mightarfere with links already activated at a lower depth. Theamfthe
remaining links, the algorithm activates those links whidgh lead to a maximum net transfer of data across that dehen
applied to the tandem topology studied in [18], our algenitreduces to the algorithm used in [18]. However, we empkasiz
that our algorithm works for the more general tree topology.

Simulation results show that the algorithm significantiguees the probability of sum-queue overflow even when theflove
threshold is not very large. It performs much better tharhlibe backpressure algorithm and the multi-hop version ef th
low-complexity greedy maximal matching (GMM) algorithmake L to be the number of links in the system. For the scenario
we consider (1-hop interference), it is known that the bagssure algorithm has a complexity@fL?) [19] and the greedy
maximal matching algorithm has a complexity ©{ L log L) [20]. In comparison, the P-Tree algorithm has an even lower
complexity of O(L).

The large-deviations optimality of the P-TREE algorithmbiased on a result from our earlier work that, under suitable
assumptions, an algorithm that minimizes the drift of a Ly@pv function at every time in every fluid sample path is large
deviations optimal for minimizing the probability that thgapunov function overflows [13]. However, as we will dissuater,
it is not trivial to come up with the P-Tree algorithm and taifyethat it minimizes the drift of the sum-queue in every ui
sample paths. As readers will see in Section V, such veiificahvolves novel techniques that uncover non-trivialighss
on the dynamics of the P-Tree algorithm. These techniquesfandependent interest and may be useful for other settisg
well.

The rest of the paper is organized as follows. Section Il riless the system model and the performance objective. @ecti



IV describes the P-TREE scheduling algorithm and in sectipmve carry out the theoretical analysis to show optimality o

the priority algorithm. Section VI provides simulation wvdts.

Il. SYSTEM MODEL

As mentioned in the introduction, the convergecast prodkads to a tree topology for the flows in the network. The root
of the tree is the destination node for all flows in the netwdtich flow in the network originates at some node of the tree
(other than the root) and follows the shortest path to thé. rBlaere can be only one flow originating at each node. All isode
in the tree other than the root and leaf nodes will be refetoeas interior nodes. Each node (except the root) in the rm&two
can be associated with a link that connects the node to iwnpawode. Since this association is a one-to-one mapping, we
will use a unique identifiei to refer to both the link and its corresponding node. We wsé @'(1) to denote the number of
children of nodd andC' to denote the number of children of the root. L&tdenote the set of all links/nodes in the network.

For ease of exposition, we use a veddo identify a link (node), which can be explained through tbkowing recursive
procedure. Consider that we have labeled a node=a$l,, . ..,lp()) (with D(I) denoting the dimension d). Then, the task
of labeling its child nodes is accomplished as follows. Thi#dcnodes are ordered according to their link capacitidse @dne
with the highest link capacity is labelle@,, ...,Ipq), 1), the next is labelled!s, . ..,Ip),2) and so on. In the future, we
will use the notation< I,i > to denote the vectofls, ...,Ipq),i) and< l,i,j > to denote<< 1,7 >, j >. To start off this
procedure, we label the root node with a null vector. Heneeviéctors of dimension one, ile2, ..., C represent the nodes
at depth 1 arranged in decreasing order of their link cajgaciPlease see fig 1 for an example of the labeling scheme.

The interference model we consider is the so-called oneifiteference model [20], [21]. This means that a node cdreeit
receive or transmit during a time-slot but not both. Furtlitecan only receive from one of its children nodes at a timieisT
interference model is useful for Bluetooth, UWB, FH-CDMAsssms [20], [22], [23]. We assume that time is slotted and the
link capacity is fixed at all time. Lef; denote the capacity of link i.e. the amount of data that can be transmitted over link
L in a time-slot isF; provided interfering links are silent.

The queue associated with lidkdenoted byX;(¢), is maintained by node Let F;(¢) denote the amount of data transmitted
over link in time-slott. We impose the constraint thay (t) < X;(t). Let A4;(¢) denote the amount of data generated by node
l in time-slott. We assume that;(¢) is i.i.d in time* and that there is a bountf on the maximum amount of data that any
node can generate in a time-slot. Lgt2 E(A,;(t)) be the expected arrival rate. We assume fhég such that the system is

stabilizable, i.e. there exists some scheduling algorithat can stabilize the system. The queue evolution is theliasvs
c()
Xit+1) = Xu(t) + A(t) + Z B> (1) — Ei(t)
=1

if I is not a leaf

X(t+1) Xy(t) + Ay(t) — Ey(t) if Uis a leaf 1)

Note that the root maintains no queue since it is the degtimaiode for all flows. Further, note thaf;(¢) > 0 for all ¢ and

links 1. From (1), we can derive

C
S xi+1) =3 X0+ > A - B )
=1

lel lel lel

*This assumption can be relaxed. It suffices tHa{t) satisfy a sample path LDP [13].



(2) says that the sum queue is governed by a simple queueirgfieq where the arrival is the sum of the arrivals at each
node in the tree and the service is the sum of service givehetdiriks connected to the root. Note that the service given to

any other link in the system will not change the sum queueesints simply an internal transfer of data.

A. Performance Objective

In this paper, we are interested in designing a scheduliggri#thm to minimize the total buffer occupancy in the netkor
in the following sense. We want to minimize the steady-spatebability that the total buffer occupancy exceeds a tiwkb
B. The precise mathematical quantity that we want to miningzgiven by

P|Y Xi(0)>B

lel
Unfortunately, in general this quantity is mathematicatifractable. We instead use the following large deviatiqnantities

> Xi(0) ) 4)

®3)

-1 £ hm 1nf - 1og <

lec
-J & hmsup — 1og ( ZXL ) (5)
B0 lec
to provide an approximation of (3). Note that for large B, wavé
e—IB+0(B) <P ZXl(O) > B| < e—JB-Q—o(B).
leL

The quantitied andJ can be determined by the so-called fluid-sample-paths (H3Bkdescribed next.
I1l. L ARGE DEVIATIONS
We first define the concept of fluid sample paths.

A. Fluid Sample Paths

For a fixedB and T, define the following scaled quantities in the time interial’, 0]

B(T+t) 1
Z A7), 2 (1) = ZXu(B(T +1)),
1 B(T+t)
e (t) = B Z Ey(7). (6)
7=0

Note that the probabilities in (4) and (5) can now be rewnissP[>", . 2 (t) > 1]. Denote bya”(t) the vectora? ()ic .
The vectorse®(t) ande?(t) are defined similarly. Since the quantiti@s® (¢), x”(t), e®(t)) are Lipschitz continuous, there
exists a subsequence over which they converge uniformlyampact intervals (u.o.c). Any such limit is called a flsdmple-
path (FSP). In other wordsa(t), z(t), e(t)) is called a FSP if for som@& > 0 there exists a sequence® (t),z?(t),e?(t))
that converges to it u.o.c ovéT, 0].

Note that FSPs are different from fluid limits. Fluid limitseaimiting processes to whicta?(t), z?(t),e”(t)) converge
with probability 1. Hence, fluid limits capture themeanbehavior of the system. In contrast, convergence to an F&B not
need to be with probability. Hence an FSP is more general and captures large-deviatédravior that deviates from the

mean.



B. Large deviations principle

Since the arrival process is.d in time, the sequence of scaled process€st) satisfies a sample path large deviations
principle with some rate functiod (-). What this means is the following. Lek,[—T,0] be the space of component-wise
non-decreasing functions(t) on [T, 0] with a(—T') = 0. Let this space be equipped with the essential supremum rim [
pl76]. For any set of trajectories in®,[—T, 0], the probability that the sequence of scaled arrival praass (¢) fall into

the setl’ satisfies:

. 1 B . T
_ I =— .
Jim —logPla”(t) €I = — inf I, (a)

That is, the decay-rate of the probabilBja®(t) € T'] is determined by the trajectory in T' with the least cosf. (a).

Under a given scheduling algorithm, if the mapping from théval processz®(t) to the queue process® (¢) is continuous,
then one can apply the contraction principle [24] and catelthat the sequence of scaled queue proces8¢s satisfies a
large deviations principle as well. That is, the rate of gechthe probability of overflowP[}",_ . = (0) > 1] (either I in
(4) or J in (5)) is determined by the minimum cogf (a) among all trajectories(t) that causes the queue to grow from
a(—T) =0 att = —T to overflow att = 0. The trajectory that attains this minimum-cost-to-overfiisncalled the “most
likely path to overflow.”

However, for the system that we are interested in, this amgr@ncounters several difficulties. First, for many schiegu
algorithms it is very difficult to verify the continuity of thmapping froma®(t) to () and hence the contraction principle
may not hold. Second, even if the contraction principle canapplied, it is difficult to find the minimum-cost-to-ovesiio
because we have to solve a multi-dimensional calculusaag&tions problem. Third, even if we can compute the minimmum
cost-to-overflow for a given algorithm, it is unclear how tptimize across algorithmgo find the optimal algorithm.

In our earlier work [13], we establish a new result (Theorenm §13]) that circumvents these difficulties. This result is
re-stated in this paper as Theorem 3. Roughly speaking,Tthé®rem states that under certain assumptions on a Lyapunov
function V(x), if the scheduling algorithmry minimizes the drift of the Lyapunov functiowi (x(¢)) at each point in time in
every fluid sample path, then the algorithm must be large deviations decay-rate optimal Ri#/ (2 (0)) > 1]. This result
has the following intuitive explanation: For any given FSRler algorithmmr, since the algorithmry minimizes the drift of
the Lyapunov function at every time, it is plausible that &hgorithmm, will also minimize the value of the Lyapunov function
at the end of the FSP. We note however that this statementtirivial to hold: minimizing the drift at each point in time
is a myopic property, which may not always lead to a globafiyiraal behavior! In our prior work [13], we have rigorously
guantified the conditions under which the above statemelash@ee also Theorem 3 in Section V). Once these conditions
are satisfied, we can see that for any FSP that leads to oveusfioer algorithmm, the corresponding FSP (with the same
arrival processi(t) and thus the same co&f (a)) under any other algorithms must also overflow. Hence, th@mim-cost-
to-overflow (and thus the decay rate of the overflow probigdilinder algorithmr, must be no smaller than that under any
other algorithms.

Hence, our problem becomes that of finding an algorithm Algorithm P-Tree in section IV) and verifying that it is
drift-minimizing for the Lyapunov functio/(z(t)) = >_,. . x:(t) at each time in every fluid sample path. This, however,
is not a trivial task. Although it is not difficult to identiffhe minimum drift at a given point in an FSP, it is often much
more difficult to find an algorithnin the original discrete-time systethat attains the minimum drift. This is because drift

minimization in FSP, even over an infinitesimally small it 6, corresponds to the cumulative effect over time inteal



in the original discrete-time system. However, in the or@idiscrete-time system, an algorithm cannot know theutkit in
the intervalB§ before hand. As a result, it is not always easy to design aatéstime algorithm that minimzes the drift in each
time in every FSPThis discrepancy between discrete-time and fluid-scaledirmaous-time was discussed in [25] for fluid
limits, where the authors establish conditions under wighimizing the drift in discrete-time is sufficient for mimizing
the drift in fluid limits. However, our Lyapunov functiol’,. . X;(¢) does not satisfy the conditions in [25], and hence the
techniques there do not apply. Further, as readers willteeeP-Tree algorithm that we will propose in section IV does n
minimize the drift of the Lyapunov functioh,_ . X;(t) in discrete-time either. For instance, if a link has insugfit data,
i.e X;(t) < Fj, then that link is not considered for activation in that tisiet even though serving that link might drain more
packets from the system. Nonetheless, we will develop nelnigues that confirm that the P-Tree algorithm indeed mizes
the drift of the Lyapunov function at each time in every FSRede techniques reveal non-trivial insights on the dynsmofc
the system under the P-Tree algorithm.

Finally, we emphasize that our task of proving the drift miiging property forfluid sample pathss distinct from the
more common proofs in the literature for proving that certaigorithms are drift minimizing for théuid limit. As stated
previously, fluid limits only capture theneanbehavior where-as FSPs capture behaviors that deviatetrermean as well.
Proving an algorithm to be drift minimizing for FSP is inhetly more difficult since drift minimization must be shownrfo

any conceivable system behavior.

IV. P-TREE SCHEDULER

We next describe P-TREE, a simple priority based schedaliggrithm tailored for the tree network. The algorithm iséd
on two guiding principles. First, we give priority to linkkdt are closer to the root (destination) node and secondygive
priority to links that carry more data per timeslot. The itian is that by following the two principles, we hope to modata
out of the network as fast as possible and hence reduce thebtdter occupancy in the network.

Only links that have enough data to fully utilize the capgdite. X;(¢t) > F;, are considered for activation in time-slot
tT. Let the set of such links be denoted bi(¢). To choose the link for activation, the algorithm first catesis linksi of
dimension 1. It chooses to activate liltk= min{/|1 <[ < C,l € A(t)}. Recall that the links of dimension 1 are numbered in
decreasing order of link capacity. Henéejs the link with the largest capacity among links of dimemsiothat are considered
for activation. Then the algorithm considers all interi@des at depth 1, then all interior nodes at depth 2 and soldntids
considered all interior nodes. Each time the algorithm ictars an interior nodé, it performs the following:

If link [ is activated, then none of the linkd,l > (I =1,...,C(l)) will be activated (due to interference). Otherwise link
< I,1* > is activated wheré* = min{l/|1 <1 < C(l), < I,l > A(t)}. Again, if we recall the structure used to label links,
we can see that the above optimization problem is choosiadirtk with the largest capacity among all contending links.

This algorithm can be considered as a generalization of lgarithm 7 specified in [18] where the authors establish that
for a tandem topology (i.e. a tree with no branching) the @llgm is sample path optimal in terms of the sum queue backlog
In comparison, in this work we show that the P-TREE algoritisntarge deviations decay rate optimal in terms of the sum

gueue backlog for the more general tree topology.

TDue to this restriction, the P-Tree algorithm does not asvaynimize the drift ofy ;< Xi(t) in the discrete time.



V. ANALYSIS

Any FSP(a(t),z(t),e(t)) is differentiable almost everywhere in the inter{all’, 0] [13]. Denote the set of time instances
where the FSP is not differentiable & Then7 is of measure). In the rest of this paper, we will restrict discussion
to time ¢ ¢ 7, and we will call such time a regular time. Define the followirglated quantitiesf;(¢t) = F%%az(t) and
pu(t) = 4 ge(t).

We remind the readers théj f;(¢) is different from the mean arrival rafa(t) since we are considering an FSRom the

gueue evolution equation (1) and (2), we can derive theviafig for the FSP

c@)
d
awz(f) = HIfi(t)+ ; Fapispas(t) — Fyu(t),
if I is not a leaf
%xl(t) = Ffi(t)— Fyu(t), if Lis a leaf @)
d c
> Gul) = S RA®) =D Fyult) 8)
lec leL I=1
We now briefly show how we can derive (7) for the case whéna leaf. From (1), we have
] B(T+t) 1
FX(B(T+1) =% Z:; (Ai(r) = Ea(7)) + O(55)-

The termO(4) accounts for the terms; (X;(0) — Ay(B(T +t)) + Ey(B(T +t))). Taking the limit asB — oo along the
subsequence that gives us the FSP, we ha{® = a;(t) — ¢;(t). Differentiating, we obtain (7).
The following proposition captures fundamental constsain a converge-cast for the FSPs under any algorithm.
Proposition 1: For any scheduling algorithm, any F$&(t), x(t), e(t)) must satisfy the following constraints for all regular
time t.

Interference constraint equations:

c
o) < 1 ©)
=1
)
pcrys(t) +m(t) < 1 for all interior noded (10)
=1
w(t) € [0,1] for all nodesl (11)
Flow constraint equations:
v
mt) = A+ 3 =E pes (1) (12)
=1
if ;(t) =0 & L is an interior node
w(t) < fu(t) if z(t)=0& lis a leaf (13)

Remark: If we think of y,;(¢t) as the fraction of time that link is activated, Equations (9)-(11) state that for any set of
interfering links, the sum of the fractions of time that edick in the set is activated must be less than 1. Equation} §h#

(13) state that when the queue backlqgt) at nodel is 0, the net flow of data into the node must exceed the flow out of the

node.



Proof: First we prove the interference constraint equations 12)-(Consider the root node. Due to interference, only one

of the links1,...,C can be active in a time-slot. Hence,

C

Z EZ(T) S 1.
E

=1

for any time-slotr. Summing both sides over= B(T +t) to B(T +t + ¢) and dividing both sides by3, we can derive
¢ B B
e (t+9) —e(t)
<
> 5 <4 (14)
=1
where we have used the fluid scaling notation (6). Note thatitiequality holds for allB and 7', and for alle?(-).

By definition of FSP, there exists (for sorfle> 0) a sequencéa®(t), 2P (t),ef(t)) that converges tda(t), z(t), e(t)).

Since (a®(t),xB(t), e?(t)) satisfies (14), we must have

< et +6) — e(t)
ot —al) o
Fy
=1
Dividing both sides bys and taking the limit a$ — 0, we obtain
C
S owt) < 1.
=1
Next, consider any interior node Due to interference, only one of the links< 1,1 >,..., < l,C(l) > can be active in
a time-slotr. We have cw
Z E5(7) . Ey(7) -
Foygs B~

=1
Applying similar algebraic operations as before, we carivder

c)

Z pers ) +m(t) < 1

=1

Similarly, for any nodd including the root, we have
Ey(7)

0<
T I

<1
for any time-slotr. From this, we can show that
0< () <1

The flow constraints follow from (7) and the fact thatzif(t) = 0 then 4 z;(¢) > 0. [ |

Define the Lyapunov functiol (z(t)) £ Y, z:(t). We will use the results of [13] to prove that the P-TREE altori
is optimal in terms of maximizing the large deviations decate. Specifically, definé, and.J; (correspondingly/,_. and
Jp—t) to be the quantities (4) and (5) when the system is operatitder scheduling algorithm (correspondingly, under
P-TREE). We will show that/,,_; > I for all algorithms=. Hence, the fastest rate of decayB®f_,. . X;(0) > B] is that
obtained under the P-TREE algorithm. Recall for future neffee thatP[>",_ . X;(0) > B] = P[V(”(0)) > 1]. We state
this formally as follows.

Proposition 2: The P-TREE algorithm attains the optimal decay rate, ia@.ahy scheduling algorithm, we have

ZXI(O)ZB>
)

1
lim sup B log (Pp_t

B—oo

lel
> Xi(0)>B

1
< liminf — log <P’T
lec

B—x B




ie., Jp—y > Ir.

To prove Proposition 2, we use the result of Theorem 8 fron} yllich we restate here for reference.

Theorem 3:Let 7y be a scheduling policy that satisfies Assumptions 1, 2, 3, dnd 6 (see appendix A). Let be any
scheduling policy, thetim sup_ ., % log(P™ [V (2”(0)) > 1]) < liminfp_. 3 log(P™[V (2?(0)) > 1]).

Assumptions 1, 2, 3, 5 and 6 are stated in appendix A along thighproof of Lemma 4 which verifies that the P-TREE
algorithm in fact satisfies the stated assumptions.

Lemma 4:The P-TREE algorithm and Lyapunov functiéf(-) satisfy Assumptions 1, 2, 3, 5 and 6 mentioned in [13].

Assumption 4 is stated below.

Assumption 4:For any FSP(a(t), z(t), e(t)), the algorithmm, satisfies the following for all regular time

d

gV (@(?)) = min 2V(a;(t)Jr(f(t) — f)7)

or 7=0
subject to x(t), f(t), v satisfy FSP constraints

in Proposition 1

Assumption 4 states that the scheduling algorittyrminimizes the dnft,dt (z(t)), at each point in time over all possible
scheduling algorithms. This assumption is the key assumgptiat the P-TREE algorithm needs to satisfy for the result
Proposition 2 to hold. The rest of this section will be detBdato verifying that the P-TREE algorithm in fact satisfiesst
assumption.

First we define an optimization problem to obtain a lower wbon the drift of V(x(t)), %V(m(t)), under any scheduling
policy. Note that the drift is given by V (x(t)) = Y, % a(t) where", . L(t) is given in (8).

Itis easy to see that the following optimization problem hdsifrom below the drift,; V (z(t)), of any FSRa(t), z(t), e(t))

of any scheduling algorithm for regular tinte

OptA(f (1), (1)) : (15)

c
min Y R =Y Fyul)
=1

m(t) et
c
sub to Zul(t) <1

Z per s (t) + i (t) < 1 for all interior
nodesl.

wi(t) € [0,1] for all nodesl.
oW

t) < fult +Z Fa, ,LL“>t)if

21(t) =0 & l is an interior node.

w(t) < fi(t) if () =0 & lis a leaf.

To see that (15) provides a lower bound for the drift, note tive objective function of the optimization problema’i%sv(cc(t))
and the constraints are the set of inequalities satisfiechpyF&P as stated in Proposition 1. By minimizing over all fimes

values ofu(t), we obtain a lower bound on the drift under any algorithm.
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The following Lemma formally states that the P-TREE alduoritsatisfies Assumption 4.

Lemma 5:For any FSP(a(t), z(t), e(t)) of the P-TREE algorithm, the drift is given b§: V (z(t)) = optA(f(t), z(t)).

Before we present the proofs, we briefly illustrate where tiee difficulty in verifying that the P-TREE algorithm sdigs
Assumption 4. Note that the drift of the Lyapunov functipry_ . 2; is equal to) ;. I fi — Fiuu. Suppose that link is at
depth1, and it has the largest rate among all links at deptlt a given pointt in an FSP, suppose thaf (¢) > 0, which
means that in the original discrete time system the backidiglo 1 is very large. Then it is easy to see that P-TREE minimizes
the drift because it will always activate link and hence:, (t) = 1. What is more complicated, however, is whey(t) = 0.

In this case, the backlog of link in the original discrete-time system is close to (but notsglsvequal to) zero. Hence, under
the P-TREE algorithm, link will be served for some fraction of time. The exact fractioil wepend on the services at its
children links that feed packets into link The situation will become even more complicated when tlobdielren linksl in
turn havez;(t) = 0 in the FSP. Hence, in order to prove that P-TREE algorithmimizes the drift at time in FSP, we must
carefully account for all possible combinations of the eslu, (¢) (being zero or strictly positive), which makes the analysis
quite complicated. However, we will develop an importargule (Proposition 7) that reveals an interesting structfr¢he
dynamics of the P-TREE algorithm, which successfully adsks the above difficulty.

The rest of the section is dedicated to proving Lemma 5 andvidet! into two subsections. In subsection V-A, we derive
properties of the FSP under the P-TREE algorithm. Then, lisection V-B, we show that the drift under the P-TREE aldonit
achieves the value of opt4(¢), z(t)). Since optAff(t), x(t)) is a lower bound on the drift of any scheduling algorithms th
implies that the P-TREE algorithm satisfies Assumption 4 #nad Lemma 5 holds.

A. Properties of FSPs under P-Tree algorithm

The following lemma proves that whenever the backlog form& s positive or if the backlog is zero but is growing at
a positive rate, then under the P-TREE algorithm this linkstmeceive all remaining service possible after servicelieen
assigned to the higher priority links.

Lemma 6:Any FSP(a(t), z(t), e(t)) under the P-TREE algorithm satisfies the following for regulme ¢:
Forl=1,...,C, if z;(t) > 0 orif ;(t) = 0 and £z, (t) > 0, theny(t) =1 — Zﬁ;} i (t).

For any interior nodd, and! = 1,...,C(1) if x<;;~(t) > 0 or z<;;~(t) = 0 and %x<u>(t) > 0, then e~ (t) =
L= () = Y02y peris ()

Proof: We will prove the equation fot = 1,...,C. The proof forl = 1,...,C(l), wherel is an interior node, follows
similar arguments and hence is omitted.

Considerr;(t) > 0. Sincex(t) is Lipschitz continuous and the convergencé®f (t), 2 (t), e? (t)) to FSP(a(t), z(t), e(t))
is u.o.c (uniform over compact intervals), there exists 0, By > 0 anddy > 0 such that forB > max{By, F;/e} and
0 <0 < do, Xi(B(t +6)) > Be > Fj. Hence, for time-slot- in the interval (B¢, B(t + dy)], the P-TREE algorithm will

activate link/ whenever none of the higher priority links. .., — 1 is activated. Hence, we have
-1

E(r) — Ei(1)
Tl—l—; T

Summing over the time intervdBt, B(t + ¢)] and dividing both sides by, we have

eP(t+6) — el (1) l

Fy

s NPt 0) —eP)
_ ) |

i=1
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Taking the limit asB — oo, dividing both sides by and further taking the limit a8 — 0, we obtaing,;(¢) = 1 — Zﬁ;} wi(t)

Now consider the case when(t) = 0 and £ z,(t) > 0. This means that there exists> 0 and §, > 0 such that for
0 <& < 8o, 71(t+0) > €d. The fact thate? (t) — z;(t) u.o.c implies that for any € [0, e5o/4] we can findB, such that for
B > max{By, F;/¢}, 2P (t +6) > (e5 — )T or in other words,X;(B(t + §)) > B(ed — €)*. Note that fors € [2¢/¢, ], we
thus haveX;(B(t + 0)) > F; and hence the priority algorithm will activate lirkwhenever none of the higher priority links
1,...,1—1is activated. Hence, during timeslotss [B(t + 2¢/¢), B(t + do)] we have

E(r) . X Ein)
2 _1—2 T

Take anyd € [2¢/¢, dg]. Consider
ef(t+0) —ef(t)

F;

_ 1 B(ffs) By (1)
= 3 iz

T=Bt
> 1 B(ié) -y B
- B ) ; F;

T=B(t+2¢/¢€) i=1

-1 B _ B ~

> 5—2€/€—Zei (t+9) ;Z (t—|—2e/e).

N

1=1
Taking the limit asB — oo, we get

et +6) — ey(t) SRt +6) — et + 2¢/e)
% >6—26fe—> N

i=1
Since the above is true for ardye [0, edo/4], we can take the limit a8 — 0. Hence, for any € (0, d¢], we have

-1

el(t —I—ill el(t) >4 ; ei(t+ (;)‘Z el(t).

Dividing by ¢ and taking the limit ag$y — 0, we obtainy,(t) > 1 — Zi;} u;(t). Recall from Proposition 1 that;(t) <

1— 32121 i(t). This concludes the proof. n
We can now prove the following proposition which states tbkofving. If the backlog at a link is positive, then the link

receives all remaining service possible after service e lallocated to higher priority links. If the backlog is aethen it

receives the smaller of two quantities. One is the amountatd flowing in from the children and the other is the maximum

amount of service the link can receive after taking into actdhe amount of service given to higher priority links.
Proposition 7: Any FSP (a(t), z(t), e(t)) of P-TREE algorithm satisfies the following for all reguléame ¢

Forli=1,...,C:

If z;(t) > 0, then the following holds

-1
() =1=3 p(t)
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If 2;(¢) = 0, then the following holds

min (1_21 1/14( ) )
1t + S8 ety (025 )
pa(t) = if 7 is not a leaf.

min (1 S04 (), (1))

if [is a leaf.

For any interior nodé, [ = 1,...,C(l):

If 241~ (t) > 0, then the following holds

preris(t) =1 — pu(t ZH<L i>(t
If 21> (t) =0, then the following holds

min (1 — pu(t) = Y21 pergs (1),
J<ra>(t) + ZCKI =) M<l,l,j>(t)w))

Fera>

peti>(t) = if <1,1> is not a leaf.

min (1 — o (t) — Zi;} p<t j>(t), f<l,l>(t))

if <lI,l>is a leaf.

Remark: The idea expressed by the proposition is the following. @mrdink [ connected to the root (the first set of equations).
If z;(t) > 0, then under any algorithm, the linkcan at most be assigned all the remaining service aftercgehas been
assigned to higher priority links. Hence, we will have thednality u; (t) < 1 — Zl 1 1i(t). What the above proposition says
is that under the P-TREE algorithm, we will have strict egyaloosely speaking, this means that the P-TREE algorithm
uses up all the service. On the other handy,ift) = 0, then the amount of service given to lidknill be constrained by the
additional requirement that the out-flow at a node can notestdhe in-flow into the node (see Proposition 1). For example
if link [ is also a leaf node, then under any algorithm, the servicengte link [ will be determined by which of the two
1-— ZZ 1 1i(t) and f;(t) is smaller. Hence we will have the inequaljty(t) < min (1 - ZZ 1 i(t), fl(t)). Again, what the
proposition says is that the P-TREE algorithm attainstségiality. A similar intuition applies to other parts of theoposition.

Proof: First, consider the links connecting to the robt- 1,...,C. Considerz;(t) > 0. Using Lemma 6, we obtain
MOESED ST}

Now, consider the case;(t) = 0 and assume nodeis not a leaf. Lets assume that
-1

u(t) # min (1 - Zm(f) : (16)

Fl
+Zﬂ<lg> <J>>-
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Due to PrOpOSition 1, we must ha)l@(t) < min (1 — Zi;} luz(t), )\l(t) —+ Z_]C:(ll) ,U<l7j>(t)F<L—]>) Hence the On'y poss|b|||ty
is wi (t) is less than the right-hand-side of (16). There must thest xi- 0 such that (f) < min (1 — S ), N (t) + ZJ ) i<t > (t)

~, or in other words,

1-1 )
min (1 — Z,ui(t) ) + Z peris (t <l,7>>
i=1
> qu(t)+

We will now show that this leads t& x;(¢) > 0. Recall from (7) thatd z;(t) = F, fi(t) +ch:(ll) Fopjs e j>(t) — Fru(t).

We have
-1 c()
d z(t) . Fop >
T > 1- 0 t ) 1 -
a7 Z min ;M()fl'i‘j;lkl,p i3
—pu(t)
> 7>0

Hence, we hav%xl(t) > 0. The consequence of this are the following: by (7) we hay&,) < f; (tHch:(zl) p<t,i>(t) F<jw'lf>

and by Lemma 6 we havey(t) =1 — Zl 1 ! 1i;(t). We then have a contradiction with our initial assumptio6)(and hence
it must be true thaty(t) = min (1 — ZZ L 1a(t), fi(t) + 27 1 u<lj>(t)F<}%) .
The rest of the cases in the statement of the proposition egrdved using similar ideas as outlined above. We omit Betai

for brevity. [ |

B. Proof of Lemma 5

So far, we have only shown that the FSP of the P-TREE algordhtisfies certain properties, which correspond to differen
combinations of the valug,;(¢) (being zero or strictly positive). To prove Prop. 2, we needérify that P-TREE minimizes
the drift at each time in every FSPs. More precisely, we neqatdve that any FSPa(t), z(¢), e(t)) of the P-TREE algorithm
has drift equal to optA((¢), z(t)), i.e. u(t) is an optimizer for optAf(¢), z(t)) at everyt.

Our strategy is to prove by contradiction. Assume thét) does not optimize optAf(t), «(t)). Then, there must exist a
change in servicé such thatu(t) + & provides a better value for the objective function of opff(), «(¢)) while at the same
time satisfying the constraints of optA(t), «(¢)). Note that the difference between the values of the ohjedtinction for
wp(t) and for u(t) + 6 is equal toZlC:1 F;é;. Hence, it suffices to show that nb can produceZlC:1 F;é; > 0 while still
satisfying the constraints of opt&(t), x(¢)). This is proved in Proposition 8.

Proposition 8: For all § such thaiu(t) + 4 satisfies the constraint equations for opff(), «(¢)), we must hav@f:1 Fé <

Before we can prove Proposition 8, we will need to deriveaierproperties ob based on the assumption thaft) + 6
satisfies the constraints of optA.

Lemma 9:If u(t) + 6 satisfies the constraints of optA(t), z(¢)), thend satisfies the following:
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Forl=1,...,C:

max (— Zi;i 0, chz(ll) 0<t,j> —F<Jf4lj> )
if [ is not a leaf.

max (— Zi;i di, O)

if [is a leaf.

o <

For any interior nodé and! =1,...,C(I)

max (—61 - Zi;i d<t,j>s
ch:(fl’b) d<tilj> F;f;—tlf))

dcri> < if <1,1> is not a leaf.

max (—61 - Zi;i d<t,j>s 0)

if <I,l>is a leaf.

Remark:Note that this is a critical property for the overall proofchese it holds regardless of the valueagft), which
as we discussed before, has been the main source of complExis Lemma expresses the following intuition: Recallnfro
Proposition 7 that the P-TREE algorithm uses up all the seravailable. In such a situation, the increase in serji¢er any

link [ is constrained by two factors. We must either sacrifice ser(iie. reduce;) at higher priority linksj =1,...,l—1 or

increase service to the children bfHence, the change in serviégcan at most benax (— Zﬁ;} 5, ch:(ll) S<tj> F<}?j>) .

L

Note that if a link is a leaf, then it does not have children &edce the second factor does not appear.

Proof: Consider linkl = 1,...,C. Sincey,(t) + J; is feasible, from the constraint equations of optA, we carivde
-1
i)+ < 1= (uilt) +65) (17)
=1
c() P
L
mt) +6 < )+ ; TR <Flf> (18)

If x;(t) > 0, then by Proposition 7, we have(t) = 1 — ZZ 1;%( ). This with (17) proves); < —Zli;} 0; and hence
§, < max (_ PORE I DR F;g»).
If 2;(¢t) = 0 andl is not a leaf, then by Proposition 7, we hav&t) = min (1 — Zﬁ;} wi(t), f1(t) + 27 1 <t > F<;j>).

1
If 1 — S0 i) < fil) + 50 pcr > F2=, we haveyu(t) = 1 — 02 i(t). This with (17) impliess; < —S>1=1 6,
On the other hand, if — 37} pi(t) > fi(t) + S50 ey > 75522, we haveu (t) = fi(t) + 37 per > 552 This with

(18) impliesd; < ch:(ll) 6<l_,j>F<}2—f>. Hence we concludé; < max (— Zé:i i, ijl 0<t j> ijﬂ—lp)

The other cases can be proved using the ideas outlined above. |
Let ©2 be a number that upper bounds;= for all links 7 and/ =1,...,C(1).
Lemma 10:If p(t) + d satisfies the constraints for optA(t), z(¢)), thend satisfies the following:
Consider linkl such that fof = 1,...,C(1), d<z> < max(—8—30") 6<1;5,0). ThenS "V 6y 1o 562 < max(—5,9,0).
Remark:The significance of this Lemma is the following: The assuopti.; ;~ < max(—d; — Zé;ll d<1,j>,0) captures the

requirement that the increase in service to a child kol,/ > can only come at a loss in service to higher priority links
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I,<l,1>,...,<l,l—1> (for example, the requirement holds when all the child naafeswere leaf nodes). This lemma
states that if all the children links I,/ > are subject to the above requirement, then a positive inergathe service of the
child nodeszlcz(? 6<l,l>F<}§—l*l> can only come from a reduction in serviceg;, to the parent nodé. The consequence of
this Lemma will be that the parent linkwill also be subject to the same requirement that an incrieaservice tol can only
come at a loss in service to links that have higher priorignth (see Lemma 11).

Proof: To prove the lemma, it is enough to show that for any matherabguantitiesy; anddo<; 1>, ...,d«;cq)> Which

satisfy the inequalities

-1
6<l,l> S maX(_él — Z §<[7j>, 0),

j=1
forl =1,...,C(l), and any non-increasing, non-negative sequdtcg ;- } bounded byQF;, the following is true
c()

F.
Z Oct > <hi> < max(—0;2,0).
=1 E

We emphasize that this is a purely mathematical result aadaifowing { F; ;~ } to represent various sequences is simply a
trick to shorten the proof. It does not mean that we consideious systems with different values for the link capasitie

We will prove this by induction. By our assumption, we knovethi; 1~ < max(—0d;,0). Hence,zllz1 O<ti> Fjil'b <

max(—0;€2,0) for any non-increasing non-negative sequefife; ;- } bounded byQF;. Now, assumez:f:1 Oct > F<}il’l> <

max(—6;9,0),. .., Zle d<ti> F<P£L’l> < max(—0;2,0) for any non-increasing non-negative sequefiég; ;- } bounded by

QF;. We will show that this impIiestjl1 O<ti> F<}§;l> < max(—§,,0) for any non-increasing non-negative sequence

{F<1,>} bounded byQF;. There are two cases to considerdlf; .11~ < 0, then the result immediately follows. On the

other hand, ifo<; x4+1> > 0, by assumption, we have

k

0 <0<t pr1> < —0p — Z5<l,l>-
=1

Hence, substituting«; +1>, we have

k+1

k
Feyp> Feyg>
Oty ’ < Ot :
Z <R = Z <H>R
=1 =1
k
25 Ny Foppp1> 5, Fap 1>
- <l,[> - .
— F F
k
= S <F<t,l> —F<l,k+1>)
- <lb,l>
1=1 F
—5 F<l,k+1>
—5
The sequencé€’c; 1> — Fepptis, .-, Fa ks — Fep p+1> 1S NON-increasing, non-negative and bounded My- &L’TTD)FL-

Hence, by the induction hypothesis, we have

k
5 Fois — Fappa>
<ll>
I
=1

< max (—5L (Q — M) ,O> .
F
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This implies that
k41

de F<l >

—E<l k+1> ; <l,k+1>
< — Q- —r - — Gy —=r
max ( o1 ( iz ,0 01 iz

Considering the two cases whén> 0 andj; < 0, we can show that this implieEf:f d<ti> F<}él*l> < max(—Q,0). H
The following Lemma, which uses Lemma 9, is essential to @i@roposition 8.
Lemma 11:If u(t) + 6 satisfies the constraints for optA(t), z(t)), thend satisfies the following:
(a) Consider any nodkthat is not a leaf. Let be any child ofl. If <1,] > is not a leaf and all its children & 1,...,C(<
l,1>)) satisfy 07 ,;> < max (—5<L,l> — T et 0), then

-1
6<l,l> S maX(_él — Z §<[7j>, 0) (19)

J=1

(b) Consider any nodéthat is the child of the root. If is not a leaf and all its childreni & 1,...,C(1)) satisfy d<; ;> <
max (—6l - Z;;ll 6<l,j>,0), then

-1

61 < max(— Y _§;,0). (20)

j=1
Remark:Part (a) of the Lemma says that if the children-ofl,! >, < [,1,i > satisfy the property that, to increase service
to < 1,1, >, we must reduce service from higher priority noded,l >, < 1,1,1 >,..., < l,l,1—1 >, then link< [,] >
also satisfies this property, i.e., to increase servicertkh & I,/ >, we must reduce service to its higher priority links
l,<l,1>,...,<l,l—1>. Part (b) is a special case for when the link is directly catee to the root node. The significance
of this lemma is that it allows the above mentioned propestpriopogate up the tree from the leaf nodes. In other words, if
a link’s children satisfy the property, then the link saésfithe property as well.

Proof: From Lemma 9, we know that

dcty> < max —6l_25<l,j>7 (21)
C(<L1>)
Z 5t F<l,l,]>)
U TR s

By Lemma 10 and the assumptions on linkd,[,i >, we have,

c(<tl>)

Z 6<l l 1>

< max( 5<L7Z>Q, O)

Using this in (21), we obtain

-1
d<ti> < max | —0p — 26<l,j>a max(—d<z,>,0) | . (22)

j=1
Considering the two cases;;~ > 0 andd.;;~ < 0, (22) can be shown to imply (19). The proof of (20) follows eniar

idea. [ |



17

As we mentioned before, the leaf nodes satisfy the propkéiydn increase in service to the link must come at a reduction
in service to higher priority links (see Lemma 9). Lemma ldtest that if a link’s children satisfy this property, them tink
itself must also satisfy this property. Clearly, this ideads to the propogation of this property up the tree froméhé hodes
and hence we expect that all links in the tree must satisf/ghoperty. This result is explicitly stated in the follogihemma.

Lemma 12:1f wp(t) + 6 satisfies the constraint equations for opfAY), =(t)), ¢ satisfies the following:

(a) Consider any nodkthat is not a leaf. Let be any child ofl. Then,
-1
Scrr> Smax(—0 — ¥ derj>,0). (23)

J=1

(b) Consider any nodéthat is the child of the root. Then,
-1
(Sl S max(— Z 5.7', 0) (24)

j=1
Proof: To prove (a), we first assume that there is atléast one link tat it does not satisfy (23). Let [,/ > be such
a link with the largest link depth (i.e. the link with the mastmber of hops from the root). Then, either lirkl,! > has
children and the child nodes satisfy;; ;> < max(—d<z;> — Z;;ll d<1,1,5>,0), in which case Lemma 11 part (a) applies
and leads to a contradiction, erl,! > is a leaf node in which case Lemma 9 applies leading to a adiotian.
To prove (b), we use the result (a). Assume that lindkoes not satisfy (24). Either link has children, in which case by

part (a), we know that the children I,1 >,..., < [,C(l) > satisfy

1—1
d<ti> <max [ —0; — E d<1,5>,0
j=1

Lemma 11 part (b) then applies and we have a contradiction. dther situation is that link is a leaf node. In this case
Lemma 9 applies and we have a contradiction. |
We are now ready to prove Proposition 8.
Proof: [of Proposition 8] By Lemma 12, we know that < max(— Z;;ll 0;,0)forl=1,...,C.

To prove the proposition, it is enough to show that for anyheatatical quantities; which satisfy the inequalities
-1
8 < max(—»_4;,0), (25)

j=1

fori=1,...,C, and any non-increasing, non-negative sequeg¢, the following is trueZlC:1 0 F; <0.

We emphasize that this is a purely mathematical result aadatowing { F;} to represent various sequences is simply a
trick to shorten the proof. It does not mean that we consideious systems with different values for the link capasitie

We will prove this by induction. By (25), we know that < 0. Hence,zllz1 0;F; < 0 for any non-increasing, non-
negative sequence of numberg;}. Now, assumezlzz1 o F <0,.. .,Zf;ll o < O,Zle 0, F; < 0 for any non-increasing,
non-negative sequence of numbérg }. We will show that this impliestjl1 0;F; < 0. There are two cases to consider. If
Orr1 < 0, then the result immediately follows. On the other handiif; > 0, by (25), we have) < 11 < —Zle 1.
Hence,Zfif ok < Zf:l ok — Zf:l O Fyq1 = Zf:l 61 (F1 — Fi41) -

Since{F;} is a non-increasing sequence, the sequédncerFy1,..., Fr — Fi4+1 IS a non-increasing non-negative sequence.
Hence, by the induction hypothesi ,le 01 (F; — Fx41) < 0. This implies Zf;l 0;F; < 0 for any non-increasing, non-

negative sequencgr; }. [ |
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Destination

0.125

Fig. 1. System topology for simulation

VI. SIMULATION

In this section, we present simulation results for the togglshown in figure 1. Note that the nodes/links are labelled
according to the scheme in section Il. This topology coasidt 12 nodes with two nodes at depth 1, 5 nodes at depth
2 and 4 nodes at depth 3. Six of the nodes are leaf nodes. Ther& #lows in the network, each with the root as the
destination. In each time slot, one packet arrives at (oreisegated by) each source node with a certain fixed probabilit
independent of other flows and other time slots. The averagekrate for the flow originating at a node is labelled on
the node. For example, the average arrival rate for the floginating at nodg(1, 1, 1) is 0.25. The numbers near the links
denote the capacity of the link. For example, lifik 1) has capacity 3 and link2, 1) has capacity 2. We defing(X (¢)) =
X1(t) + Xa(t) + X1,1)(t) + X(1,2)(8) + X(1,3) (1) + X2,1) (1) + X(2,2)(8) + X1,1,0)(8) + X1,1,2)(8) + X2,1,1)(#) + X(2.2,1)(2)-

Our metric of interest is the overflow probabili®[S(X (¢)) > B|. We simulate the system under different scheduling
policies: P-TREE scheduler, back-pressure & back-presssichedulers and the multi-hop version of greedy maximal hiagc
(GMM).

Let us briefly review the back-pressure [1] and greedy makimetching [20] policies. Both policies have the following
common features. The differential backlog across a linkésdifference of the backlog at the source node of the linktaad
at the destination node of the link. For example, the difiéieg backlog of the link(1,1) is X(; ;) — X;. Each link is assigned
a weight¥; that is the product of the differential backlog and the lirgdpacity. For examplelV; 1y = (X(1,1) — X1)3. The
back-pressure scheduler will activate links (subject terfierence constraints) in such a fashion as to maximizeuhe of the
weights of the activated links. The greedy maximal matchiilyinstead do the following. It will first activate the linkith
the largest weight. Then, it will remove from considerataihlinks that interfere with this activated link. From thennaining
links, it will activate the link with the largest weight andmove from consideration the links that interfere with tim&. This
procedure is repeated till there are no more links available

The back-pressura-algorithm is similar to the back-pressure algorithm exdbpt instead of taking the difference of the
backlogs, the algorithm takes the difference of the backiagsed to a powewr. That is, the weight of link(1,1) will be
W1y = (X8 ;) — X1)3. It can be shown that this algorithm minimizes the drift & thapunov functiory", . . X;**1)!/ (1)
and hence it is large deviations decay-rate optimal for trbability of overflowP((3_, . Xpthye+) 5 B) [13]. As
a— 0, we have(}, ., X TH¥/ e+ — 5~ - X;. Hence, asy — 0, one would expect this algorithm to have near-optimal

performance in terms of the decay-rate ®¢>,. . X; > B).
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Fig. 2. The overflow probability of the sum-queue versueshodd B.

One of the problems with the back-pressure & back-pressiwgehedulers is that they entail a high computational conitylex
due to the fact that the algorithms have to search for the wagtto activate links in order to maximize the total weight.
The greedy maximal matching algorithm overcomes this i§20¢ [26]. For the node-exclusive interference model that
consider, the back-pressure and back-presswsehedulers reduces to a matching problem which has coryplexiZ|?) [19].
The greedy maximal matching algorithm has complexity£|log(|£|)) [20]. Our proposed P-TREE algorithm has an even
lower complexity ofO(|L]).

In figure 2, we plotP[S(X) > B] vs B with the y-axis in log scale. We observe that the P-TREE saleechas the best
decay rate and indeed performs much better than the othedslelis. The back-pressusealgorithm appears to perform
very poorly asa is reduced. This is because of the large-deviations desi@ykicking in at higher and higher values of the
thresholdB. This effect has been documented in detail in our other w{Bks[27]. In contrast, our P-TREE algorithm not

only maximizes the decay rate but also performs very wellmtneerflow thresholds are small.

VII. CONCLUSION

In this work, we consider the problem of scheduling links inviseless multi-hop system performing convergecast. The
goal of the scheduling algorithm is to minimize the sum-gubacklog over the network. We design a novel low complexity
scheduling algorithm called P-TREE scheduler and provettiia scheduler maximizes the decay rate of the probalihiay
the sum-queue exceeds a certain threshold. We use sinmgdatiacompare this algorithm with the well known back-pressu
scheduler and the multi-hop version of greedy maximal matckcheduler. The P-TREE scheduler is seen to perform much
better than these well known algorithms not only in terms @fay rate but also in terms of actual probabilities of overflo

at small overflow thresholds.

APPENDIX
Proof of Lemma 4

In the following, we takd| - || to be theL; norm.

We restate the assumptions from [13] for reference.
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A. Restatement of assumptions from [13]
Assumption 1:The Lyapunov functiorV/ (x), defined forz > 0, satisfies the following:

1) V(x) is a continuous function af.

2) V(x) > 0forall x andV(x) =0 if and only if x = 0.

3) V(z) — oo if ||z]| — oc.

4) min||, > V(x) > 1. Further there exists a numbér such thatmax| |, <; V(z) < C.

5) For anyB > 0, there exists a constarl that may depend o8, such that for any|x;|| < B and||z2|| < B,
V(z1) — V(z2)| < L|z1 — 2|

6) The following holds (for a fixed arrival ratk assumed in the system model): For all fluid limitét) (i.e. fluid sample
path with £(t) = A for all t), whenV (x(t)) > 0,

SV(@(t) < - (26)

for almost allt, wherer is a positive constant.

Parts (1)-(3) and (6) of the assumption are typically use@rwastablishing stability through Lyapunov functions.tR&)
states that the Lyapunov function must have negative diigewthe arrival process does not deviate from its mean behavi
This implies stability of the system since the negativetdsifll prevent the Lyapunov function from becoming exceeayyn
large.
Assumption 2: 1) There exists > 0 such that for all fluid sample paths and for all timavith ||£(t) — A|| < e and
V(x(t)) > 0, the following holds:

V@) < -

d 1
%
wheren > 0 is the same constant as in (26).
2) For anys > 0, there existsM; > 0 such that for all fluid sample paths and for all timavith || f(t) — || > 4, the
following holds, ;

Part (1) of this assumption states that if the arrival preasviates from the mean behaviour slightly, the Lyapunaoxtion
still experiences negative drift leading to system stghilPart (2) states that even if the arrival process devisiggsificantly
from its mean behaviour, the rate of growth of the Lyapunawfion is still bounded.

Assumption 3:The Lyapunov functior/(-) is linear in scale, i.e.V (cx) = ¢V (x) for all ¢ > 0.

Assumption 5:V(x) is non-decreasing in each componept

Assumption 6:V (x1 + x2) < V(1) + V(x2) for any two vectorse; > 0 andas > 0,

Assumptions 3 and 6 combined imply that Lyapunov functiéf) behaves almost like a norm except that it may not be

defined when components af are negative.

All the assumptions other than assumption 1 part 6) and gssom? are easy to verify. We do not provide details for them

here. In what follows, we will show that assumption 1 part 63l assumption 2 are true.
First, we verify assumption 1 part 6). We need to show thatdtiié of the Lyapunov function/ (z(t)), when the arrival

rate is f(t) = A, is less than-7 for somen > 0 when the Lyapunov functiof’ (x(t)) > 0. If V(z(t)) > 0, there must exist
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some queué with xj(t) > 0. Sincel is in the stability region of the system, there exigts 0 such that\ + 17, wherely is
the vector with all entries equal 1@, is in the capacity region. This means that the system carnabdized when the arrival

rate for nodd is \; for I # I and the arrival rate fot is 5\2 + 1. The reason we only adg to [ is because since;(t) > 0,

the flow constrainu; (1) < A;(t) + ZZC:(? F<I§;l> i~ does not appear in optA(z(t)). This property will be necessary to
) :

show negative drift. Since the system can be stabilizedetbrists constant such that

c
Y RN+n-) Fu<o0 (27)
leL =1
c
d <1
1=1
c

Z ficii> + fu < 1 for all interior noded.
=1
fu(t) € 10,1] for all nodesl.

For all links 1 # I:
c) F
= \ <L> 5 if 1 is an interior
i 1+ ; 7 <t >

node.
fu = A if Lis a leaf.
c() Ia
= \e <L> 5 if 1 is an interior
155 i +n+ ; I3 H<t,l>

node.
iy = ;\i—i—n if [ is a leaf.

One can think ofii;; as the long term service rate for liikprovided by an algorithm that stabilizes the system.

Clearly fi satisfies the constraint equations of optA(1)). Hence we have optA (1)< Y, Fu\i — Y1, Fifu. From
(27), we then have optA\ x(t))< —n. From Lemma 5, we know that the drift of the Lyapunov function the p-tree
algorithm is given by optA, x(t)). Hence, we have proved assumption 1 part 6).

We can prove assumption 2 in a similar manner. Sikds in the capacity region of the system, there exists: ann/2
such that bothf(t) and f(t) + 11/2 are in the capacity region wheneviéf(t) — A|| < e. Again, as before, let be a link

with z;(¢) > 0. This means that we can find constaptsuch that

C
Y RAM) +n/2=) Fu <0 (28)
lel =1
C
Zﬂl <1
=1
c()

Z ficii> + fu < 1 for all interior noded.
=1
fu(t) € 10,1] for all nodesl.
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For all links 1 # l:
c@)

= fi(t) +
=1

Fas . e L
<F7 Z i<y~ if 1is an interior
l

node.

= fi(t) if Lis a leaf.
c(l) r

= f6) +n/2+ ) “=bl> s if Lis an interior
= h

node.

f; = f;(t) +n/2if Uis a leaf.

v satisfies the constraint equations of opffY), z(¢)) which implies that optAf(t), (¢))< > ;. Fifi(t) — ZIC:1 Fijuy.

From (28), we then have optf(t), z(t))< —n/2. From Lemma 5, we know that the drift of the Lyapunov function

the p-tree algorithm is given by opt&(¢), z(¢)). Hence, we have proved assumption 2 part 1). Assumptionr22panolds
because optAf(t), z(t)) is bounded from above by, . M whereM is the bound om;(t).
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