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Abstract

We consider the problem of link scheduling for efficient convergecast in a wireless system. While there have been many results

on scheduling algorithms that attain the maximum possible throughput in such a system, there has been few results that provide

scheduling algorithms that are optimal in terms of some quality-of-service metric such as the probability that the end-to-end

buffer usage exceeds a large threshold. Using a large deviations framework, we design a novel and low complexity algorithm that

attains the best asymptotic decay rate of the probability ofsum-queue overflow as the overflow threshold becomes large. Through

simulations, we show that this algorithm has better performance than well known algorithms such as the standard back-pressure

algorithm and the multihop version of GMM (combined with back-pressure). Our algorithm performs better not only in terms of

the asymptotic decay rate at large overflow thresholds, but also in terms of the actual probability of overflow for practical range

of overflow thresholds.

I. I NTRODUCTION

We consider the link scheduling problem in a wireless multihop network for convergecast. In a convergecast situation, there

is a central node to which each node in the network forwards data. We assume that each node uses a fixed path to route data

to the central node. The same path is used irrespective of whether a node is relaying data for other nodes or is transmitting its

own data. This scenario results in a tree topology for the overall system of flows. Such convergecast problems arise commonly

in sensor networks where there is a central node that collects data, such as temperature readings or audio/video signals, from

all other nodes in the network.

Since the communication medium is wireless, managing interference becomes important in order to achieve effective data

transfer. For example, allowing all nodes to transmit at thesame time would lead to a significant number of collisions whereas

allowing only one node to talk at a time will be inefficient. Scheduling algorithms play the crucial role of determining which

links in the system can be activated at a certain time. A first order requirement made on any desirable scheduling algorithm is

that of throughput optimality. That is, if the desired scheduling algorithm can not stabilize the system for an offered load, then

no other algorithm can stabilize the system for the same offered load. There has been a substantial amount of work in this area

of research starting with the seminal work of Tassiulas and Ephremides [1]. The backpressure algorithm [1], [2], exponential

rule [3], log rule [4], [5] andα-algorithms [6] are several throughput optimal algorithmsknown to date.

However, throughput-optimality alone is not sufficient when performance metrics such as mean-delay, probability of delay

violation or probability of buffer overflow are considered.For example, the well known throughput-optimal back pressure

algorithm suffers from large delays [7], [8]. Many throughput-optimal algorithms make their scheduling decisions based on the

backlog in the system, which in turn depends on past scheduling decisions and arrival rates. Such cross-dependency results in
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system dynamics that are difficult to analyze. Due to this reason, the behavior of throughput-optimal algorithms in terms of finer

QoS performance metrics, such as those mentioned before, isdifficult to quantify. Forsingle-hoptraffic several techniques that

have been used in the past are mean-delay analysis [9], [10],heavy traffic analysis [3], [11] and large deviations [6], [12]–[15].

For multi-hop traffic, however the problem becomes even more complex due tothe coupling between the departure process

of a node and the arrival process of the node downstream. There are few results in this case. [16], [17] study mean-delay

performance in the presence of multi-hop traffic. While [16]provides lower bounds on the mean-delay, it does not immediately

reveal which algorithm is optimal. [17] provides an algorithm that is order-optimal for mean-delay. While the algorithm achieves

the optimal order when the number of nodes is large, for smallor moderate size systems, the algorithm may not be close to

optimal. [18] studies a specific tandem network topology andproves sample path optimality of the sum-queue.

Instead of analyzing the mean-delay performance as in [16],[17], we seek to design a scheduling algorithm to minimize the

probability that the sum-queue of the system exceeds a largethreshold. However, it appears difficult to apply the technique of

[18] in this more general network topology and to derive the exact probability for sum-queue overflow. Hence, we employ a

large deviations approximation which captures the asymptotic rate of decay of this probability as the threshold increases [13].

We design a low complexity scheduling algorithm called P-TREE algorithm that attains the maximum rate of decay for the

probability of overflow of the sum backlog. The philosophy behind the algorithm is to ensure that as much data is driven out

of the system as soon as possible. The algorithm achieves this by giving priority to links that are closer to the destination node

and to links which have a larger capacity. The details of thisalgorithm are provided in section IV. A non-rigorous explanation

of the P-TREE algorithm is the following. The algorithm considers for activation all the links attached to the root, thenit

considers all the links at depth 2 from the root and so on till it has reached the deepest leaf nodes. At each depth, the algorithm

first eliminates from consideration all links that might interfere with links already activated at a lower depth. Then, from the

remaining links, the algorithm activates those links whichwill lead to a maximum net transfer of data across that depth.When

applied to the tandem topology studied in [18], our algorithm reduces to the algorithm used in [18]. However, we emphasize

that our algorithm works for the more general tree topology.

Simulation results show that the algorithm significantly reduces the probability of sum-queue overflow even when the overflow

threshold is not very large. It performs much better than both the backpressure algorithm and the multi-hop version of the

low-complexity greedy maximal matching (GMM) algorithm. TakeL to be the number of links in the system. For the scenario

we consider (1-hop interference), it is known that the back-pressure algorithm has a complexity ofO(L3) [19] and the greedy

maximal matching algorithm has a complexity ofO(L log L) [20]. In comparison, the P-Tree algorithm has an even lower

complexity ofO(L).

The large-deviations optimality of the P-TREE algorithm isbased on a result from our earlier work that, under suitable

assumptions, an algorithm that minimizes the drift of a Lyapunov function at every time in every fluid sample path is large-

deviations optimal for minimizing the probability that theLyapunov function overflows [13]. However, as we will discuss later,

it is not trivial to come up with the P-Tree algorithm and to verify that it minimizes the drift of the sum-queue in every fluid

sample paths. As readers will see in Section V, such verification involves novel techniques that uncover non-trivial insights

on the dynamics of the P-Tree algorithm. These techniques are of independent interest and may be useful for other settings as

well.

The rest of the paper is organized as follows. Section II describes the system model and the performance objective. Section
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IV describes the P-TREE scheduling algorithm and in sectionV, we carry out the theoretical analysis to show optimality of

the priority algorithm. Section VI provides simulation results.

II. SYSTEM MODEL

As mentioned in the introduction, the convergecast problemleads to a tree topology for the flows in the network. The root

of the tree is the destination node for all flows in the network. Each flow in the network originates at some node of the tree

(other than the root) and follows the shortest path to the root. There can be only one flow originating at each node. All nodes

in the tree other than the root and leaf nodes will be referredto as interior nodes. Each node (except the root) in the network

can be associated with a link that connects the node to its parent node. Since this association is a one-to-one mapping, we

will use a unique identifierl to refer to both the link and its corresponding node. We will useC(l) to denote the number of

children of nodel andC to denote the number of children of the root. LetL denote the set of all links/nodes in the network.

For ease of exposition, we use a vectorl to identify a link (node), which can be explained through thefollowing recursive

procedure. Consider that we have labeled a node asl = (l1, . . . , lD(l)) (with D(l) denoting the dimension ofl). Then, the task

of labeling its child nodes is accomplished as follows. The child nodes are ordered according to their link capacities. The one

with the highest link capacity is labelled(l1, . . . , lD(l), 1), the next is labelled(l1, . . . , lD(l), 2) and so on. In the future, we

will use the notation< l, i > to denote the vector(l1, . . . , lD(l), i) and< l, i, j > to denote<< l, i >, j >. To start off this

procedure, we label the root node with a null vector. Hence the vectors of dimension one, i.e1, 2, . . . , C represent the nodes

at depth 1 arranged in decreasing order of their link capacities. Please see fig 1 for an example of the labeling scheme.

The interference model we consider is the so-called one-hopinterference model [20], [21]. This means that a node can either

receive or transmit during a time-slot but not both. Further, it can only receive from one of its children nodes at a time. This

interference model is useful for Bluetooth, UWB, FH-CDMA systems [20], [22], [23]. We assume that time is slotted and the

link capacity is fixed at all time. LetFl denote the capacity of linkl, i.e. the amount of data that can be transmitted over link

l in a time-slot isFl provided interfering links are silent.

The queue associated with linkl, denoted byXl(t), is maintained by nodel. Let El(t) denote the amount of data transmitted

over link l in time-slott. We impose the constraint thatEl(t) < Xl(t). Let Al(t) denote the amount of data generated by node

l in time-slott. We assume thatAl(t) is i.i.d in time∗ and that there is a boundM on the maximum amount of data that any

node can generate in a time-slot. Letλ̂l , E(Al(t)) be the expected arrival rate. We assume thatλ̂ is such that the system is

stabilizable, i.e. there exists some scheduling algorithmthat can stabilize the system. The queue evolution is then asfollows

Xl(t + 1) = Xl(t) + Al(t) +

C(l)
∑

l=1

E<l,l>(t) − El(t)

if l is not a leaf

Xl(t + 1) = Xl(t) + Al(t) − El(t) if l is a leaf (1)

Note that the root maintains no queue since it is the destination node for all flows. Further, note thatXl(t) ≥ 0 for all t and

links l. From (1), we can derive

∑

l∈L

Xl(t + 1) =
∑

l∈L

Xl(t) +
∑

l∈L

Al(t) −

C
∑

l=1

El(t). (2)

∗This assumption can be relaxed. It suffices thatAl(t) satisfy a sample path LDP [13].



4

(2) says that the sum queue is governed by a simple queueing equation where the arrival is the sum of the arrivals at each

node in the tree and the service is the sum of service given to the links connected to the root. Note that the service given to

any other link in the system will not change the sum queue since it is simply an internal transfer of data.

A. Performance Objective

In this paper, we are interested in designing a scheduling algorithm to minimize the total buffer occupancy in the network

in the following sense. We want to minimize the steady-stateprobability that the total buffer occupancy exceeds a threshold

B. The precise mathematical quantity that we want to minimizeis given by

P

[

∑

l∈L

Xl(0) ≥ B

]

. (3)

Unfortunately, in general this quantity is mathematicallyintractable. We instead use the following large deviationsquantities

−I , lim inf
B→∞

1

B
log

(

P

[

∑

l∈L

Xl(0) ≥ B

])

(4)

−J , lim sup
B→∞

1

B
log

(

P

[

∑

l∈L

Xl(0) ≥ B

])

(5)

to provide an approximation of (3). Note that for large B, we have

e−IB+o(B) ≤ P

[

∑

l∈L

Xl(0) ≥ B

]

≤ e−JB+o(B).

The quantitiesI andJ can be determined by the so-called fluid-sample-paths (FSPs) [13] described next.

III. L ARGE DEVIATIONS

We first define the concept of fluid sample paths.

A. Fluid Sample Paths

For a fixedB andT , define the following scaled quantities in the time interval[−T, 0]:

aB
l (t) =

1

B

B(T+t)
∑

τ=0

Al(τ), xB
l (t) =

1

B
Xl(B(T + t)),

eB
l (t) =

1

B

B(T+t)
∑

τ=0

El(τ). (6)

Note that the probabilities in (4) and (5) can now be rewritten asP[
∑

l∈L xB
l (t) ≥ 1]. Denote byaB(t) the vector[aB

l (t)]l∈L.

The vectorsxB(t) andeB(t) are defined similarly. Since the quantities(aB(t), xB(t), eB(t)) are Lipschitz continuous, there

exists a subsequence over which they converge uniformly over compact intervals (u.o.c). Any such limit is called a fluid-sample-

path (FSP). In other words,(a(t), x(t), e(t)) is called a FSP if for someT > 0 there exists a sequence(aB(t), xB(t), eB(t))

that converges to it u.o.c over[−T, 0].

Note that FSPs are different from fluid limits. Fluid limits are limiting processes to which(aB(t), xB(t), eB(t)) converge

with probability 1. Hence, fluid limits capture themeanbehavior of the system. In contrast, convergence to an FSP does not

need to be with probability1. Hence an FSP is more general and captures large-deviations behavior that deviates from the

mean.
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B. Large deviations principle

Since the arrival process isi.i.d in time, the sequence of scaled processesaB(t) satisfies a sample path large deviations

principle with some rate functionIT
a (·). What this means is the following. LetΦa[−T, 0] be the space of component-wise

non-decreasing functionsa(t) on [−T, 0] with a(−T ) = 0. Let this space be equipped with the essential supremum norm [24,

p176]. For any setΓ of trajectories inΦa[−T, 0], the probability that the sequence of scaled arrival processesaB(t) fall into

the setΓ satisfies:

lim
B→∞

1

B
logP[aB(t) ∈ Γ] = − inf

a∈Γ
IT
a (a).

That is, the decay-rate of the probabilityP[aB(t) ∈ Γ] is determined by the trajectorya in Γ with the least costIT
a (a).

Under a given scheduling algorithm, if the mapping from the arrival processaB(t) to the queue processxB(t) is continuous,

then one can apply the contraction principle [24] and conclude that the sequence of scaled queue processesxB(t) satisfies a

large deviations principle as well. That is, the rate of decay of the probability of overflowP[
∑

l∈L xB
l (0) ≥ 1] (either I in

(4) or J in (5)) is determined by the minimum costIT
a (a) among all trajectoriesa(t) that causes the queue to grow from

a(−T ) = 0 at t = −T to overflow att = 0. The trajectory that attains this minimum-cost-to-overflowis called the “most

likely path to overflow.”

However, for the system that we are interested in, this approach encounters several difficulties. First, for many scheduling

algorithms it is very difficult to verify the continuity of the mapping fromaB(t) to xB(t) and hence the contraction principle

may not hold. Second, even if the contraction principle can be applied, it is difficult to find the minimum-cost-to-overflow

because we have to solve a multi-dimensional calculus-of-variations problem. Third, even if we can compute the minimum-

cost-to-overflow for a given algorithm, it is unclear how to optimize across algorithmsto find the optimal algorithm.

In our earlier work [13], we establish a new result (Theorem 8in [13]) that circumvents these difficulties. This result is

re-stated in this paper as Theorem 3. Roughly speaking, thisTheorem states that under certain assumptions on a Lyapunov

functionV (x), if the scheduling algorithmπ0 minimizes the drift of the Lyapunov functionV (x(t)) at each point in time in

every fluid sample path, then the algorithmπ0 must be large deviations decay-rate optimal forP[V (xB(0)) ≥ 1]. This result

has the following intuitive explanation: For any given FSP under algorithmπ0, since the algorithmπ0 minimizes the drift of

the Lyapunov function at every time, it is plausible that thealgorithmπ0 will also minimize the value of the Lyapunov function

at the end of the FSP. We note however that this statement is not trivial to hold: minimizing the drift at each point in time

is a myopic property, which may not always lead to a globally optimal behavior! In our prior work [13], we have rigorously

quantified the conditions under which the above statement holds (see also Theorem 3 in Section V). Once these conditions

are satisfied, we can see that for any FSP that leads to overflowunder algorithmπ0, the corresponding FSP (with the same

arrival processa(t) and thus the same costIT
a (a)) under any other algorithms must also overflow. Hence, the minimum-cost-

to-overflow (and thus the decay rate of the overflow probability) under algorithmπ0 must be no smaller than that under any

other algorithms.

Hence, our problem becomes that of finding an algorithm (i.e.Algorithm P-Tree in section IV) and verifying that it is

drift-minimizing for the Lyapunov functionV (x(t)) =
∑

l∈L xl(t) at each time in every fluid sample path. This, however,

is not a trivial task. Although it is not difficult to identifythe minimum drift at a given point in an FSP, it is often much

more difficult to find an algorithmin the original discrete-time systemthat attains the minimum drift. This is because drift

minimization in FSP, even over an infinitesimally small interval δ, corresponds to the cumulative effect over time intervalBδ



6

in the original discrete-time system. However, in the original discrete-time system, an algorithm cannot know the “future” in

the intervalBδ before hand. As a result, it is not always easy to design a discrete-time algorithm that minimzes the drift in each

time in every FSP. This discrepancy between discrete-time and fluid-scaled continuous-time was discussed in [25] for fluid

limits, where the authors establish conditions under whichminimizing the drift in discrete-time is sufficient for minimizing

the drift in fluid limits. However, our Lyapunov function
∑

l∈L Xl(t) does not satisfy the conditions in [25], and hence the

techniques there do not apply. Further, as readers will see,the P-Tree algorithm that we will propose in section IV does not

minimize the drift of the Lyapunov function
∑

l∈L Xl(t) in discrete-time either. For instance, if a link has insufficient data,

i.e Xl(t) < Fl, then that link is not considered for activation in that time-slot even though serving that link might drain more

packets from the system. Nonetheless, we will develop new techniques that confirm that the P-Tree algorithm indeed minimizes

the drift of the Lyapunov function at each time in every FSP. These techniques reveal non-trivial insights on the dynamics of

the system under the P-Tree algorithm.

Finally, we emphasize that our task of proving the drift minimizing property forfluid sample pathsis distinct from the

more common proofs in the literature for proving that certain algorithms are drift minimizing for thefluid limit. As stated

previously, fluid limits only capture themeanbehavior where-as FSPs capture behaviors that deviate fromthe mean as well.

Proving an algorithm to be drift minimizing for FSP is inherently more difficult since drift minimization must be shown for

any conceivable system behavior.

IV. P-TREE SCHEDULER

We next describe P-TREE, a simple priority based schedulingalgorithm tailored for the tree network. The algorithm is based

on two guiding principles. First, we give priority to links that are closer to the root (destination) node and secondly, we give

priority to links that carry more data per timeslot. The intuition is that by following the two principles, we hope to movedata

out of the network as fast as possible and hence reduce the total buffer occupancy in the network.

Only links that have enough data to fully utilize the capacity, i.e. Xl(t) > Fl, are considered for activation in time-slot

t†. Let the set of such links be denoted byA(t). To choose the link for activation, the algorithm first considers linksl of

dimension 1. It chooses to activate linkl∗ = min{l|1 ≤ l ≤ C, l ∈ A(t)}. Recall that the links of dimension 1 are numbered in

decreasing order of link capacity. Hence,l∗ is the link with the largest capacity among links of dimension 1 that are considered

for activation. Then the algorithm considers all interior nodes at depth 1, then all interior nodes at depth 2 and so on till it has

considered all interior nodes. Each time the algorithm considers an interior nodel, it performs the following:

If link l is activated, then none of the links< l, l > (l = 1, . . . , C(l)) will be activated (due to interference). Otherwise link

< l, l∗ > is activated wherel∗ = min{l|1 ≤ l ≤ C(l), < l, l >∈ A(t)}. Again, if we recall the structure used to label links,

we can see that the above optimization problem is choosing the link with the largest capacity among all contending links.

This algorithm can be considered as a generalization of the algorithm π0 specified in [18] where the authors establish that

for a tandem topology (i.e. a tree with no branching) the algorithm is sample path optimal in terms of the sum queue backlog.

In comparison, in this work we show that the P-TREE algorithmis large deviations decay rate optimal in terms of the sum

queue backlog for the more general tree topology.

†Due to this restriction, the P-Tree algorithm does not always minimize the drift of
∑

l∈L Xl(t) in the discrete time.
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V. A NALYSIS

Any FSP(a(t), x(t), e(t)) is differentiable almost everywhere in the interval[−T, 0] [13]. Denote the set of time instances

where the FSP is not differentiable asT . Then T is of measure0. In the rest of this paper, we will restrict discussion

to time t /∈ T , and we will call such time a regular time. Define the followingrelated quantitiesfl(t) = 1
Fl

d
dtal(t) and

µl(t) = 1
Fl

d
dtel(t).

We remind the readers thatFlfl(t) is different from the mean arrival ratêλl(t) since we are considering an FSP. From the

queue evolution equation (1) and (2), we can derive the following for the FSP

d

dt
xl(t) = Flfl(t) +

C(l)
∑

l=1

F<l,l>µ<l,l>(t) − Flµl(t),

if l is not a leaf

d

dt
xl(t) = Flfl(t) − Flµl(t), if l is a leaf (7)

∑

l∈L

d

dt
xl(t) =

∑

l∈L

Flfl(t) −

C
∑

l=1

Flµl(t) (8)

We now briefly show how we can derive (7) for the case whenl is a leaf. From (1), we have

1

B
Xl(B(T + t)) =

1

B

B(T+t)
∑

τ=0

(Al(τ) − El(τ)) + O(
1

B
).

The termO( 1
B ) accounts for the terms1B (Xl(0) − Al(B(T + t)) + El(B(T + t))). Taking the limit asB → ∞ along the

subsequence that gives us the FSP, we havexl(t) = al(t) − el(t). Differentiating, we obtain (7).

The following proposition captures fundamental constraints in a converge-cast for the FSPs under any algorithm.

Proposition 1: For any scheduling algorithm, any FSP(a(t), x(t), e(t)) must satisfy the following constraints for all regular

time t.

Interference constraint equations:

C
∑

l=1

µl(t) ≤ 1 (9)

C(l)
∑

l=1

µ<l,l>(t) + µl(t) ≤ 1 for all interior nodesl (10)

µl(t) ∈ [0, 1] for all nodesl (11)

Flow constraint equations:

µl(t) ≤ fl(t) +

C(l)
∑

l=1

F<l,l>

Fl

µ<l,l>(t) (12)

if xl(t) = 0 & l is an interior node

µl(t) ≤ fl(t) if xl(t) = 0 & l is a leaf (13)

Remark: If we think of µl(t) as the fraction of time that linkl is activated, Equations (9)-(11) state that for any set of

interfering links, the sum of the fractions of time that eachlink in the set is activated must be less than 1. Equations (12) and

(13) state that when the queue backlogxl(t) at nodel is 0, the net flow of data into the node must exceed the flow out of the

node.
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Proof: First we prove the interference constraint equations (9)-(11). Consider the root node. Due to interference, only one

of the links1, . . . , C can be active in a time-slot. Hence,
C
∑

l=1

El(τ)

Fl
≤ 1.

for any time-slotτ . Summing both sides overτ = B(T + t) to B(T + t + δ) and dividing both sides byB, we can derive
C
∑

l=1

eB
l (t + δ) − eB

l (t)

Fl
≤ δ (14)

where we have used the fluid scaling notation (6). Note that this inequality holds for allB andT , and for alleB
l (·).

By definition of FSP, there exists (for someT > 0) a sequence(aB(t), xB(t), eB(t)) that converges to(a(t), x(t), e(t)).

Since(aB(t), xB(t), eB(t)) satisfies (14), we must have
C
∑

l=1

el(t + δ) − el(t)

Fl
≤ δ

Dividing both sides byδ and taking the limit asδ → 0, we obtain
C
∑

l=1

µl(t) ≤ 1.

Next, consider any interior nodel. Due to interference, only one of the linksl, < l, 1 >, . . . , < l, C(l) > can be active in

a time-slotτ . We have
C(l)
∑

l=1

E<l,l>(τ)

F<l,l>
+

El(τ)

Fl

≤ 1.

Applying similar algebraic operations as before, we can derive
C(l)
∑

l=1

µ<l,l>(t) + µl(t) ≤ 1

Similarly, for any nodel including the root, we have

0 ≤
El(τ)

Fl

≤ 1

for any time-slotτ . From this, we can show that

0 ≤ µl(t) ≤ 1

The flow constraints follow from (7) and the fact that ifxl(t) = 0 then d
dtxl(t) ≥ 0.

Define the Lyapunov functionV (x(t)) ,
∑

l∈L xl(t). We will use the results of [13] to prove that the P-TREE algorithm

is optimal in terms of maximizing the large deviations decayrate. Specifically, defineIπ andJπ (correspondingly,Ip−t and

Jp−t) to be the quantities (4) and (5) when the system is operatingunder scheduling algorithmπ (correspondingly, under

P-TREE). We will show thatJp−t ≥ Iπ for all algorithmsπ. Hence, the fastest rate of decay ofP[
∑

l∈L Xl(0) ≥ B] is that

obtained under the P-TREE algorithm. Recall for future reference thatP[
∑

l∈L Xl(0) ≥ B] = P[V (xB(0)) ≥ 1]. We state

this formally as follows.

Proposition 2: The P-TREE algorithm attains the optimal decay rate, i.e., for any scheduling algorithmπ, we have

lim sup
B→∞

1

B
log

(

P
p−t

[

∑

l∈L

Xl(0) ≥ B

])

≤ lim inf
B→∞

1

B
log

(

P
π

[

∑

l∈L

Xl(0) ≥ B

])

,
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i.e., Jp−t ≥ Iπ .

To prove Proposition 2, we use the result of Theorem 8 from [13] which we restate here for reference.

Theorem 3:Let π0 be a scheduling policy that satisfies Assumptions 1, 2, 3, 4, 5and 6 (see appendix A). Letπ be any

scheduling policy, thenlim supB→∞
1
B log(Pπ0 [V (xB(0)) ≥ 1]) ≤ lim infB→∞

1
B log(Pπ [V (xB(0)) ≥ 1]).

Assumptions 1, 2, 3, 5 and 6 are stated in appendix A along withthe proof of Lemma 4 which verifies that the P-TREE

algorithm in fact satisfies the stated assumptions.

Lemma 4:The P-TREE algorithm and Lyapunov functionV (·) satisfy Assumptions 1, 2, 3, 5 and 6 mentioned in [13].

Assumption 4 is stated below.

Assumption 4:For any FSP(a(t), x(t), e(t)), the algorithmπ0 satisfies the following for all regular timet:

d

dt
V (x(t)) = min

µ̂

∂

∂τ
V (x(t) + (f (t) − µ̂)τ)

∣

∣

∣

∣

τ=0

subject to x(t), f(t), µ̂ satisfy FSP constraints

in Proposition 1

Assumption 4 states that the scheduling algorithmπ0 minimizes the drift, d
dtV (x(t)), at each point in time over all possible

scheduling algorithms. This assumption is the key assumption that the P-TREE algorithm needs to satisfy for the result

Proposition 2 to hold. The rest of this section will be dedicated to verifying that the P-TREE algorithm in fact satisfies this

assumption.

First we define an optimization problem to obtain a lower bound on the drift ofV (x(t)), d
dtV (x(t)), under any scheduling

policy. Note that the drift is given byddtV (x(t)) =
∑

l∈L
d
dtxl(t) where

∑

l∈L
d
dtxl(t) is given in (8).

It is easy to see that the following optimization problem bounds from below the drift,ddtV (x(t)), of any FSP(a(t), x(t), e(t))

of any scheduling algorithm for regular timet.

optA(f(t), x(t)) : (15)

min
µ(t)

∑

l∈L

Flfl(t) −

C
∑

l=1

Flµl(t)

sub to
C
∑

l=1

µl(t) ≤ 1

C(l)
∑

l=1

µ<l,l>(t) + µl(t) ≤ 1 for all interior

nodesl.

µl(t) ∈ [0, 1] for all nodesl.

µl(t) ≤ fl(t) +

C(l)
∑

l=1

F<l,l>

Fl

µ<l,l>(t) if

xl(t) = 0 & l is an interior node.

µl(t) ≤ fl(t) if xl(t) = 0 & l is a leaf.

To see that (15) provides a lower bound for the drift, note that the objective function of the optimization problem isd
dtV (x(t))

and the constraints are the set of inequalities satisfied by any FSP as stated in Proposition 1. By minimizing over all possible

values ofµ(t), we obtain a lower bound on the drift under any algorithm.
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The following Lemma formally states that the P-TREE algorithm satisfies Assumption 4.

Lemma 5:For any FSP(a(t), x(t), e(t)) of the P-TREE algorithm, the drift is given byddtV (x(t)) = optA(f(t), x(t)).

Before we present the proofs, we briefly illustrate where lies the difficulty in verifying that the P-TREE algorithm satisfies

Assumption 4. Note that the drift of the Lyapunov function
∑

l∈L xl is equal to
∑

l∈L Flfl − Flµl. Suppose that link1 is at

depth1, and it has the largest rate among all links at depth1. At a given pointt in an FSP, suppose thatx1(t) > 0, which

means that in the original discrete time system the backlog of link 1 is very large. Then it is easy to see that P-TREE minimizes

the drift because it will always activate link1, and henceµ1(t) = 1. What is more complicated, however, is whenx1(t) = 0.

In this case, the backlog of link1 in the original discrete-time system is close to (but not always equal to) zero. Hence, under

the P-TREE algorithm, linkl will be served for some fraction of time. The exact fraction will depend on the services at its

children links that feed packets into link1. The situation will become even more complicated when thesechildren linksl in

turn havexl(t) = 0 in the FSP. Hence, in order to prove that P-TREE algorithm minimizes the drift at timet in FSP, we must

carefully account for all possible combinations of the valuesxl(t) (being zero or strictly positive), which makes the analysis

quite complicated. However, we will develop an important result (Proposition 7) that reveals an interesting structureof the

dynamics of the P-TREE algorithm, which successfully addresses the above difficulty.

The rest of the section is dedicated to proving Lemma 5 and is divided into two subsections. In subsection V-A, we derive

properties of the FSP under the P-TREE algorithm. Then, in subsection V-B, we show that the drift under the P-TREE algorithm

achieves the value of optA(f(t), x(t)). Since optA(f(t), x(t)) is a lower bound on the drift of any scheduling algorithm, this

implies that the P-TREE algorithm satisfies Assumption 4 andthat Lemma 5 holds.

A. Properties of FSPs under P-Tree algorithm

The following lemma proves that whenever the backlog for a link is positive or if the backlog is zero but is growing at

a positive rate, then under the P-TREE algorithm this link must receive all remaining service possible after service hasbeen

assigned to the higher priority links.

Lemma 6:Any FSP(a(t), x(t), e(t)) under the P-TREE algorithm satisfies the following for regular time t:

For l = 1, . . . , C, if xl(t) > 0 or if xl(t) = 0 and d
dtxl(t) > 0, thenµl(t) = 1 −

∑l−1
i=1 µi(t).

For any interior nodel, and l = 1, . . . , C(l) if x<l,l>(t) > 0 or x<l,l>(t) = 0 and d
dtx<l,l>(t) > 0, then µ<l,l>(t) =

1 − µl(t) −
∑l−1

i=1 µ<l,i>(t)

Proof: We will prove the equation forl = 1, . . . , C. The proof forl = 1, . . . , C(l), wherel is an interior node, follows

similar arguments and hence is omitted.

Considerxl(t) > 0. Sincex(t) is Lipschitz continuous and the convergence of(aB(t), xB(t), eB(t)) to FSP(a(t), x(t), e(t))

is u.o.c (uniform over compact intervals), there existsǫ > 0, B0 > 0 and δ0 > 0 such that forB > max{B0, Fl/ǫ} and

0 < δ < δ0, Xl(B(t + δ)) > Bǫ > Fl. Hence, for time-slotτ in the interval[Bt, B(t + δ0)], the P-TREE algorithm will

activate linkl whenever none of the higher priority links1, . . . , l − 1 is activated. Hence, we have

El(τ)

Fl
= 1 −

l−1
∑

i=1

Ei(τ)

Fi
.

Summing over the time interval[Bt, B(t + δ)] and dividing both sides byB, we have

eB
l (t + δ) − eB

l (t)

Fl
= δ −

l−1
∑

i=1

eB
i (t + δ) − eB

i (t)

Fi
.
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Taking the limit asB → ∞, dividing both sides byδ and further taking the limit asδ → 0, we obtainµl(t) = 1−
∑l−1

i=1 µi(t)

Now consider the case whenxl(t) = 0 and d
dtxl(t) > 0. This means that there existsǫ > 0 and δ0 > 0 such that for

0 < δ < δ0, xl(t + δ) > ǫδ. The fact thatxB
l (t) → xl(t) u.o.c implies that for anỹǫ ∈ [0, ǫδ0/4] we can findB0 such that for

B > max{B0, Fl/ǫ̃}, xB
l (t + δ) > (ǫδ − ǫ̃)+ or in other words,Xl(B(t + δ)) > B(ǫδ − ǫ̃)+. Note that forδ ∈ [2ǫ̃/ǫ, δ0], we

thus haveXl(B(t + δ)) > Fl and hence the priority algorithm will activate linkl whenever none of the higher priority links

1, . . . , l − 1 is activated. Hence, during timeslotsτ ∈ [B(t + 2ǫ̃/ǫ), B(t + δ0)] we have

El(τ)

Fl
= 1 −

l−1
∑

i=1

Ei(τ)

Fi
.

Take anyδ ∈ [2ǫ̃/ǫ, δ0]. Consider

eB
l (t + δ) − eB

l (t)

Fl

=
1

B

B(t+δ)
∑

τ=Bt

El(τ)

Fl

≥
1

B

B(t+δ)
∑

τ=B(t+2ǫ̃/ǫ)

(

1 −
l−1
∑

i=1

Ei(τ)

Fi

)

≥ δ − 2ǫ̃/ǫ −

l−1
∑

i=1

eB
i (t + δ) − eB

i (t + 2ǫ̃/ǫ)

Fi
.

Taking the limit asB → ∞, we get

el(t + δ) − el(t)

Fl
≥ δ − 2ǫ̃/ǫ−

l−1
∑

i=1

ei(t + δ) − ei(t + 2ǫ̃/ǫ)

Fi
.

Since the above is true for anỹǫ ∈ [0, ǫδ0/4], we can take the limit as̃ǫ → 0. Hence, for anyδ ∈ (0, δ0], we have

el(t + δ) − el(t)

Fl
≥ δ −

l−1
∑

i=1

ei(t + δ) − ei(t)

Fi
.

Dividing by δ and taking the limit asδ → 0, we obtainµl(t) ≥ 1 −
∑l−1

i=1 µi(t). Recall from Proposition 1 thatµl(t) ≤

1 −
∑l−1

i=1 µi(t). This concludes the proof.

We can now prove the following proposition which states the following. If the backlog at a link is positive, then the link

receives all remaining service possible after service has been allocated to higher priority links. If the backlog is zero, then it

receives the smaller of two quantities. One is the amount of data flowing in from the children and the other is the maximum

amount of service the link can receive after taking into account the amount of service given to higher priority links.

Proposition 7: Any FSP(a(t), x(t), e(t)) of P-TREE algorithm satisfies the following for all regular time t

For l = 1, . . . , C:

If xl(t) > 0, then the following holds

µl(t) = 1 −

l−1
∑

i=1

µi(t)
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If xl(t) = 0, then the following holds

µl(t) =























































min
(

1 −
∑l−1

i=1 µi(t) ,

fl(t) +
∑C(l)

j=1 µ<l,j>(t)
F<l,j>

Fl

)

if l is not a leaf.

min
(

1 −
∑l−1

i=1 µi(t), fl(t)
)

if l is a leaf.

For any interior nodel, l = 1, . . . , C(l):

If x<l,l>(t) > 0, then the following holds

µ<l,l>(t) = 1 − µl(t) −

l−1
∑

i=1

µ<l,j>(t)

If x<l,l>(t) = 0, then the following holds

µ<l,l>(t) =























































min
(

1 − µl(t) −
∑l−1

i=1 µ<l,j>(t),

f<l,l>(t) +
∑C(<l,l>)

j=1 µ<l,l,j>(t)
F<l,l,j>

F<l,l>
)
)

if < l, l > is not a leaf.

min
(

1 − µl(t) −
∑l−1

i=1 µ<l,j>(t), f<l,l>(t)
)

if < l, l > is a leaf.

Remark: The idea expressed by the proposition is the following. Consider link l connected to the root (the first set of equations).

If xl(t) > 0, then under any algorithm, the linkl can at most be assigned all the remaining service after service has been

assigned to higher priority links. Hence, we will have the inequalityµl(t) ≤ 1−
∑l−1

i=1 µi(t). What the above proposition says

is that under the P-TREE algorithm, we will have strict equality. Loosely speaking, this means that the P-TREE algorithm

uses up all the service. On the other hand, ifxl(t) = 0, then the amount of service given to linkl will be constrained by the

additional requirement that the out-flow at a node can not exceed the in-flow into the node (see Proposition 1). For example,

if link l is also a leaf node, then under any algorithm, the service given to link l will be determined by which of the two

1−
∑l−1

i=1 µi(t) andfl(t) is smaller. Hence we will have the inequalityµl(t) ≤ min
(

1 −
∑l−1

i=1 µi(t), fl(t)
)

. Again, what the

proposition says is that the P-TREE algorithm attains strict equality. A similar intuition applies to other parts of theproposition.

Proof: First, consider the links connecting to the root,l = 1, . . . , C. Considerxl(t) > 0. Using Lemma 6, we obtain

µl(t) = 1 −
∑l−1

i=1 µi(t).

Now, consider the casexl(t) = 0 and assume nodel is not a leaf. Lets assume that

µl(t) 6= min

(

1 −

l−1
∑

i=1

µi(t) , (16)

λl(t) +

C(l)
∑

j=1

µ<l,j>(t)
F<l,j>

Fl



 .
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Due to Proposition 1, we must haveµl(t) ≤ min
(

1 −
∑l−1

i=1 µi(t), λl(t) +
∑C(l)

j=1 µ<l,j>(t)
F<l,j>

Fl

)

. Hence the only possibility

is µl(t) is less than the right-hand-side of (16). There must then existγ > 0 such thatµl(t) < min
(

1 −
∑l−1

i=1 µi(t), λl(t) +
∑C(l)

j=1 µ<l,j>(t)

γ, or in other words,

min



1 −

l−1
∑

i=1

µi(t), λl(t) +

C(l)
∑

j=1

µ<l,j>(t)
F<l,j>

Fl





≥ µl(t) + γ

We will now show that this leads toddtxl(t) > 0. Recall from (7) thatddtxl(t) = Flfl(t)+
∑C(l)

j=1 F<l,j>µ<l,j>(t)−Flµl(t).

We have

d

dt

xl(t)

Fl
≥ min



1 −

l−1
∑

i=1

µi(t), fl +

C(l)
∑

j=1

µ<l,j>
F<l,j>

Fl





−µl(t)

≥ γ > 0

Hence, we haveddtxl(t) > 0. The consequence of this are the following: by (7) we have,µl(t) < fl(t)+
∑C(l)

j=1 µ<l,j>(t)
F<l,j>

Fl

and by Lemma 6 we have,µl(t) = 1 −
∑l−1

i=1 µi(t). We then have a contradiction with our initial assumption (16) and hence

it must be true thatµl(t) = min
(

1 −
∑l−1

i=1 µi(t), fl(t) +
∑C(l)

j=1 µ<l,j>(t)
F<l,j>

Fl

)

.

The rest of the cases in the statement of the proposition can be proved using similar ideas as outlined above. We omit details

for brevity.

B. Proof of Lemma 5

So far, we have only shown that the FSP of the P-TREE algorithmsatisfies certain properties, which correspond to different

combinations of the valuexl(t) (being zero or strictly positive). To prove Prop. 2, we need to verify that P-TREE minimizes

the drift at each time in every FSPs. More precisely, we need to prove that any FSP(a(t), x(t), e(t)) of the P-TREE algorithm

has drift equal to optA(f(t), x(t)), i.e. µ(t) is an optimizer for optA(f(t), x(t)) at everyt.

Our strategy is to prove by contradiction. Assume thatµ(t) does not optimize optA(f(t), x(t)). Then, there must exist a

change in serviceδ such thatµ(t)+ δ provides a better value for the objective function of optA(f(t), x(t)) while at the same

time satisfying the constraints of optA(f(t), x(t)). Note that the difference between the values of the objective function for

µ(t) and for µ(t) + δ is equal to
∑C

l=1 Flδl. Hence, it suffices to show that noδ can produce
∑C

l=1 Flδl > 0 while still

satisfying the constraints of optA(f(t), x(t)). This is proved in Proposition 8.

Proposition 8: For allδ such thatµ(t)+δ satisfies the constraint equations for optA(f(t), x(t)), we must have
∑C

l=1 Flδl ≤

0

Before we can prove Proposition 8, we will need to derive certain properties ofδ based on the assumption thatµ(t) + δ

satisfies the constraints of optA.

Lemma 9: If µ(t) + δ satisfies the constraints of optA(f(t), x(t)), thenδ satisfies the following:
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For l = 1, . . . , C:

δl ≤







































max
(

−
∑l−1

i=1 δi,
∑C(l)

j=1 δ<l,j>
F<l,j>

Fl

)

if l is not a leaf.

max
(

−
∑l−1

i=1 δi, 0
)

if l is a leaf.

For any interior nodel and l = 1, . . . , C(l)

δ<l,l> ≤























































max
(

−δl −
∑l−1

i=1 δ<l,j>,

∑C(<l,l>)
j=1 δ<l,l,j>

F<l,l,j>

F<l,l>
)
)

if < l, l > is not a leaf.

max
(

−δl −
∑l−1

i=1 δ<l,j>, 0
)

if < l, l > is a leaf.

Remark:Note that this is a critical property for the overall proof because it holds regardless of the value ofxl(t), which

as we discussed before, has been the main source of complexity. This Lemma expresses the following intuition: Recall from

Proposition 7 that the P-TREE algorithm uses up all the service available. In such a situation, the increase in serviceδl for any

link l is constrained by two factors. We must either sacrifice service (i.e. reduceδj) at higher priority linksj = 1, . . . , l− 1 or

increase service to the children ofl. Hence, the change in serviceδl can at most bemax
(

−
∑l−1

i=1 δi,
∑C(l)

j=1 δ<l,j>
F<l,j>

Fl

)

.

Note that if a link is a leaf, then it does not have children andhence the second factor does not appear.

Proof: Consider linkl = 1, . . . , C. Sinceµl(t) + δl is feasible, from the constraint equations of optA, we can derive

µl(t) + δl ≤ 1 −

l−1
∑

i=1

(µi(t) + δi) (17)

µl(t) + δl ≤ fl(t) +

C(l)
∑

j=1

(µ<l,j> + δ<l,j>)
F<l,j>

Fl
(18)

If xl(t) > 0, then by Proposition 7, we haveµl(t) = 1 −
∑l−1

i=1 µi(t). This with (17) provesδl ≤ −
∑l−1

i=1 δi and hence

δl ≤ max
(

−
∑l−1

i=1 δi,
∑C(l)

j=1 δ<l,j>
F<l,j>

Fl

)

.

If xl(t) = 0 andl is not a leaf, then by Proposition 7, we haveµl(t) = min
(

1 −
∑l−1

i=1 µi(t), fl(t) +
∑C(l)

j=1 µ<l,j>
F<l,j>

Fl

)

.

If 1 −
∑l−1

i=1 µi(t) ≤ fl(t) +
∑C(l)

j=1 µ<l,j>
F<l,j>

Fl
, we haveµl(t) = 1 −

∑l−1
i=1 µi(t). This with (17) impliesδl ≤ −

∑l−1
i=1 δi.

On the other hand, if1 −
∑l−1

i=1 µi(t) > fl(t) +
∑C(l)

j=1 µ<l,j>
F<l,j>

Fl
, we haveµl(t) = fl(t) +

∑C(l)
j=1 µ<l,j>

F<l,j>

Fl
. This with

(18) impliesδl ≤
∑C(l)

j=1 δ<l,j>
F<l,j>

Fl
. Hence we concludeδl ≤ max

(

−
∑l−1

i=1 δi,
∑C(l)

j=1 δ<l,j>
F<l,j>

Fl

)

.

The other cases can be proved using the ideas outlined above.

Let Ω be a number that upper boundsF<l,l>

Fl

for all links l and l = 1, . . . , C(l).

Lemma 10:If µ(t) + δ satisfies the constraints for optA(f(t), x(t)), thenδ satisfies the following:

Consider linkl such that forl = 1, . . . , C(l), δ<l,l> ≤ max(−δl−
∑l−1

j=1 δ<l,j>, 0). Then
∑C(l)

l=1 δ<l,l>
F<l,l>

Fl

≤ max(−δlΩ, 0).

Remark:The significance of this Lemma is the following: The assumption δ<l,l> ≤ max(−δl −
∑l−1

j=1 δ<l,j>, 0) captures the

requirement that the increase in service to a child link< l, l > can only come at a loss in service to higher priority links
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l, < l, 1 >, . . . , < l, l − 1 > (for example, the requirement holds when all the child nodesof l were leaf nodes). This lemma

states that if all the children links< l, l > are subject to the above requirement, then a positive increase in the service of the

child nodes
∑C(l)

l=1 δ<l,l>
F<l,l>

Fl

can only come from a reduction in service,−δl, to the parent nodel. The consequence of

this Lemma will be that the parent linkl will also be subject to the same requirement that an increasein service tol can only

come at a loss in service to links that have higher priority than l (see Lemma 11).

Proof: To prove the lemma, it is enough to show that for any mathematical quantitiesδl andδ<l,1>, . . . , δ<l,C(l)> which

satisfy the inequalities

δ<l,l> ≤ max(−δl −

l−1
∑

j=1

δ<l,j>, 0),

for l = 1, . . . , C(l), and any non-increasing, non-negative sequence{F<l,l>} bounded byΩFl, the following is true

C(l)
∑

l=1

δ<l,l>
F<l,l>

Fl

≤ max(−δlΩ, 0).

We emphasize that this is a purely mathematical result and that allowing{F<l,l>} to represent various sequences is simply a

trick to shorten the proof. It does not mean that we consider various systems with different values for the link capacities.

We will prove this by induction. By our assumption, we know that δ<l,1> ≤ max(−δl, 0). Hence,
∑1

l=1 δ<l,l>
F<l,l>

Fl

≤

max(−δlΩ, 0) for any non-increasing non-negative sequence{F<l,l>} bounded byΩFl. Now, assume
∑2

l=1 δ<l,l>
F<l,l>

Fl

≤

max(−δlΩ, 0),. . .,
∑k

l=1 δ<l,l>
F<l,l>

Fl

≤ max(−δlΩ, 0) for any non-increasing non-negative sequence{F<l,l>} bounded by

ΩFl. We will show that this implies
∑k+1

l=1 δ<l,l>
F<l,l>

Fl

≤ max(−δlΩ, 0) for any non-increasing non-negative sequence

{F<l,l>} bounded byΩFl. There are two cases to consider. Ifδ<l,k+1> ≤ 0, then the result immediately follows. On the

other hand, ifδ<l,k+1> > 0, by assumption, we have

0 < δ<l,k+1> ≤ −δl −

k
∑

l=1

δ<l,l>.

Hence, substitutingδ<l,k+1>, we have

k+1
∑

l=1

δ<l,l>
F<l,l>

Fl

≤

k
∑

l=1

δ<l,l>
F<l,l>

Fl

−

k
∑

l=1

δ<l,l>
F<l,k+1>

Fl

− δl

F<l,k+1>

Fl

.

=

k
∑

l=1

δ<l,l>

(

F<l,l> − F<l,k+1>

Fl

)

−δl

F<l,k+1>

Fl

.

The sequenceF<l,1> −F<l,k+1>, . . . , F<l,k> −F<l,k+1> is non-increasing, non-negative and bounded by(Ω−
F<l,k+1>

Fl

)Fl.

Hence, by the induction hypothesis, we have

k
∑

l=1

δ<l,l>

(

F<l,l> − F<l,k+1>

Fl

)

≤ max

(

−δl

(

Ω −
F<l,k+1>

Fl

)

, 0

)

.
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This implies that

k+1
∑

l=1

δ<l,l>
F<l,l>

Fl

≤ max

(

−δl

(

Ω −
F<l,k+1>

Fl

)

, 0

)

− δl

F<l,k+1>

Fl

.

Considering the two cases whenδl > 0 andδl ≤ 0, we can show that this implies
∑k+1

l=1 δ<l,l>
F<l,l>

Fl

≤ max(−δlΩ, 0).

The following Lemma, which uses Lemma 9, is essential to prove Proposition 8.

Lemma 11:If µ(t) + δ satisfies the constraints for optA(f(t), x(t)), thenδ satisfies the following:

(a) Consider any nodel that is not a leaf. Letl be any child ofl. If < l, l > is not a leaf and all its children (i = 1, . . . , C(<

l, l >)) satisfyδ<l,l,i> ≤ max
(

−δ<l,l> −
∑i−1

j=1 δ<l,l,j>, 0
)

, then

δ<l,l> ≤ max(−δl −

l−1
∑

j=1

δ<l,j>, 0). (19)

(b) Consider any nodel that is the child of the root. Ifl is not a leaf and all its children (i = 1, . . . , C(l)) satisfy δ<l,i> ≤

max
(

−δl −
∑i−1

j=1 δ<l,j>, 0
)

, then

δl ≤ max(−

l−1
∑

j=1

δj , 0). (20)

Remark:Part (a) of the Lemma says that if the children of< l, l >, < l, l, i > satisfy the property that, to increase service

to < l, l, i >, we must reduce service from higher priority nodes< l, l >, < l, l, 1 >, . . . , < l, l, i − 1 >, then link < l, l >

also satisfies this property, i.e., to increase service to link < l, l >, we must reduce service to its higher priority links

l, < l, 1 >, . . . , < l, l−1 >. Part (b) is a special case for when the link is directly connected to the root node. The significance

of this lemma is that it allows the above mentioned property to propogate up the tree from the leaf nodes. In other words, if

a link’s children satisfy the property, then the link satisfies the property as well.

Proof: From Lemma 9, we know that

δ<l,l> ≤ max



−δl −

l−1
∑

j=1

δ<l,j>, (21)

C(<l,l>)
∑

j=1

δ<l,l,j>
F<l,l,j>

F<l,l>
)



 .

By Lemma 10 and the assumptions on links< l, l, i >, we have,

C(<l,l>)
∑

i=1

δ<l,l,i>
F<l,l>

Fl

≤ max(−δ<l,l>Ω, 0).

Using this in (21), we obtain

δ<l,l> ≤ max



−δl −

l−1
∑

j=1

δ<l,j>, max(−δ<l,l>, 0)Ω



 . (22)

Considering the two casesδ<l,l> > 0 andδ<l,l> ≤ 0, (22) can be shown to imply (19). The proof of (20) follows a similar

idea.
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As we mentioned before, the leaf nodes satisfy the property that an increase in service to the link must come at a reduction

in service to higher priority links (see Lemma 9). Lemma 11 states that if a link’s children satisfy this property, then the link

itself must also satisfy this property. Clearly, this idea leads to the propogation of this property up the tree from the leaf nodes

and hence we expect that all links in the tree must satisfy this property. This result is explicitly stated in the following Lemma.

Lemma 12:If µ(t) + δ satisfies the constraint equations for optA(f(t), x(t)), δ satisfies the following:

(a) Consider any nodel that is not a leaf. Letl be any child ofl. Then,

δ<l,l> ≤ max(−δl −

l−1
∑

j=1

δ<l,j>, 0). (23)

(b) Consider any nodel that is the child of the root. Then,

δl ≤ max(−

l−1
∑

j=1

δj , 0). (24)

Proof: To prove (a), we first assume that there is atleast one link such that it does not satisfy (23). Let< l, l > be such

a link with the largest link depth (i.e. the link with the mostnumber of hops from the root). Then, either link< l, l > has

children and the child nodes satisfyδ<l,l,i> ≤ max(−δ<l,l> −
∑i−1

j=1 δ<l,l,j>, 0), in which case Lemma 11 part (a) applies

and leads to a contradiction, or< l, l > is a leaf node in which case Lemma 9 applies leading to a contradiction.

To prove (b), we use the result (a). Assume that linkl does not satisfy (24). Either linkl has children, in which case by

part (a), we know that the children< l, 1 >, . . . , < l, C(l) > satisfy

δ<l,i> ≤ max



−δl −

i−1
∑

j=1

δ<l,j>, 0



 .

Lemma 11 part (b) then applies and we have a contradiction. The other situation is that linkl is a leaf node. In this case

Lemma 9 applies and we have a contradiction.

We are now ready to prove Proposition 8.

Proof: [of Proposition 8] By Lemma 12, we know thatδl ≤ max(−
∑l−1

j=1 δj , 0) for l = 1, . . . , C.

To prove the proposition, it is enough to show that for any mathematical quantitiesδl which satisfy the inequalities

δl ≤ max(−

l−1
∑

j=1

δj , 0), (25)

for l = 1, . . . , C, and any non-increasing, non-negative sequence{Fl}, the following is true
∑C

l=1 δlFl ≤ 0.

We emphasize that this is a purely mathematical result and that allowing{Fl} to represent various sequences is simply a

trick to shorten the proof. It does not mean that we consider various systems with different values for the link capacities.

We will prove this by induction. By (25), we know thatδ1 ≤ 0. Hence,
∑1

l=1 δlFl ≤ 0 for any non-increasing, non-

negative sequence of numbers{Fl}. Now, assume
∑2

l=1 δlFl ≤ 0,. . .,
∑k−1

l=1 δlFl ≤ 0,
∑k

l=1 δlFl ≤ 0 for any non-increasing,

non-negative sequence of numbers{Fl}. We will show that this implies
∑k+1

l=1 δlFl ≤ 0. There are two cases to consider. If

δk+1 ≤ 0, then the result immediately follows. On the other hand, ifδk+1 > 0, by (25), we have0 < δk+1 ≤ −
∑k

l=1 δl.

Hence,
∑k+1

l=1 δlFl ≤
∑k

l=1 δlFl −
∑k

l=1 δlFk+1 =
∑k

l=1 δl (Fl − Fk+1) .

Since{Fl} is a non-increasing sequence, the sequenceF1−Fk+1, . . . , Fk−Fk+1 is a non-increasing non-negative sequence.

Hence, by the induction hypothesis,
∑k

l=1 δl (Fl − Fk+1) < 0. This implies
∑k+1

l=1 δlFl ≤ 0 for any non-increasing, non-

negative sequence{Fl}.
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Fig. 1. System topology for simulation

VI. SIMULATION

In this section, we present simulation results for the topology shown in figure 1. Note that the nodes/links are labelled

according to the scheme in section II. This topology consists of 12 nodes with two nodes at depth 1, 5 nodes at depth

2 and 4 nodes at depth 3. Six of the nodes are leaf nodes. There are 8 flows in the network, each with the root as the

destination. In each time slot, one packet arrives at (or is generated by) each source node with a certain fixed probability,

independent of other flows and other time slots. The average arrival rate for the flow originating at a node is labelled on

the node. For example, the average arrival rate for the flow originating at node(1, 1, 1) is 0.25. The numbers near the links

denote the capacity of the link. For example, link(1, 1) has capacity 3 and link(2, 1) has capacity 2. We defineS(X(t)) =

X1(t)+X2(t)+X(1,1)(t)+X(1,2)(t)+X(1,3)(t)+X(2,1)(t)+X(2,2)(t)+X(1,1,1)(t)+X(1,1,2)(t)+X(2,1,1)(t)+X(2,2,1)(t).

Our metric of interest is the overflow probabilityP[S(X(t)) > B]. We simulate the system under different scheduling

policies: P-TREE scheduler, back-pressure & back-pressure-α schedulers and the multi-hop version of greedy maximal matching

(GMM).

Let us briefly review the back-pressure [1] and greedy maximal matching [20] policies. Both policies have the following

common features. The differential backlog across a link is the difference of the backlog at the source node of the link andthat

at the destination node of the link. For example, the differential backlog of the link(1, 1) is X(1,1)−X1. Each link is assigned

a weightWl that is the product of the differential backlog and the link capacity. For example,W(1,1) = (X(1,1) − X1)3. The

back-pressure scheduler will activate links (subject to interference constraints) in such a fashion as to maximize thesum of the

weights of the activated links. The greedy maximal matchingwill instead do the following. It will first activate the linkwith

the largest weight. Then, it will remove from considerationall links that interfere with this activated link. From the remaining

links, it will activate the link with the largest weight and remove from consideration the links that interfere with thislink. This

procedure is repeated till there are no more links available.

The back-pressure-α algorithm is similar to the back-pressure algorithm exceptthat instead of taking the difference of the

backlogs, the algorithm takes the difference of the backlogs raised to a powerα. That is, the weight of link(1, 1) will be

W(1,1) = (Xα
(1,1)−Xα

1 )3. It can be shown that this algorithm minimizes the drift of the lyapunov function(
∑

l∈L Xα+1
l )1/(α+1)

and hence it is large deviations decay-rate optimal for the probability of overflowP((
∑

l∈L Xα+1
l )1/(α+1) > B) [13]. As

α → 0, we have(
∑

l∈L Xα+1
l )1/(α+1) →

∑

l∈L Xl. Hence, asα → 0, one would expect this algorithm to have near-optimal

performance in terms of the decay-rate forP(
∑

l∈L Xl > B).
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Fig. 2. The overflow probability of the sum-queue versue threshold B.

One of the problems with the back-pressure & back-pressure-α schedulers is that they entail a high computational complexity

due to the fact that the algorithms have to search for the bestway to activate links in order to maximize the total weight.

The greedy maximal matching algorithm overcomes this issue[20], [26]. For the node-exclusive interference model thatwe

consider, the back-pressure and back-pressure-α schedulers reduces to a matching problem which has complexity O(|L|3) [19].

The greedy maximal matching algorithm has complexityO(|L| log(|L|)) [20]. Our proposed P-TREE algorithm has an even

lower complexity ofO(|L|).

In figure 2, we plotP[S(X) > B] vs B with the y-axis in log scale. We observe that the P-TREE scheduler has the best

decay rate and indeed performs much better than the other schedulers. The back-pressure-α algorithm appears to perform

very poorly asα is reduced. This is because of the large-deviations decay-rate kicking in at higher and higher values of the

thresholdB. This effect has been documented in detail in our other works[6], [27]. In contrast, our P-TREE algorithm not

only maximizes the decay rate but also performs very well when overflow thresholds are small.

VII. C ONCLUSION

In this work, we consider the problem of scheduling links in awireless multi-hop system performing convergecast. The

goal of the scheduling algorithm is to minimize the sum-queue backlog over the network. We design a novel low complexity

scheduling algorithm called P-TREE scheduler and prove that this scheduler maximizes the decay rate of the probabilitythat

the sum-queue exceeds a certain threshold. We use simulations to compare this algorithm with the well known back-pressure

scheduler and the multi-hop version of greedy maximal matching scheduler. The P-TREE scheduler is seen to perform much

better than these well known algorithms not only in terms of decay rate but also in terms of actual probabilities of overflow

at small overflow thresholds.

APPENDIX

Proof of Lemma 4

In the following, we take|| · || to be theL1 norm.

We restate the assumptions from [13] for reference.
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A. Restatement of assumptions from [13]

Assumption 1:The Lyapunov functionV (x), defined forx ≥ 0, satisfies the following:

1) V (x) is a continuous function ofx.

2) V (x) ≥ 0 for all x andV (x) = 0 if and only if x = 0.

3) V (x) → ∞ if ||x|| → ∞.

4) min||x||≥1 V (x) ≥ 1. Further there exists a number̃C such thatmax||x||≤1 V (x) ≤ C̃.

5) For anyB > 0, there exists a constantL that may depend onB, such that for any||x1|| ≤ B and ||x2|| ≤ B,

|V (x1) − V (x2)| ≤ L||x1 − x2||.

6) The following holds (for a fixed arrival ratêλ assumed in the system model): For all fluid limitsx(t) (i.e. fluid sample

path withf(t) = λ̂ for all t), whenV (x(t)) > 0,

d

dt
V (x(t)) ≤ −η, (26)

for almost allt, whereη is a positive constant.

Parts (1)-(3) and (6) of the assumption are typically used when establishing stability through Lyapunov functions. Part (6)

states that the Lyapunov function must have negative drift when the arrival process does not deviate from its mean behavior.

This implies stability of the system since the negative drift will prevent the Lyapunov function from becoming exceedingly

large.

Assumption 2: 1) There existsǫ > 0 such that for all fluid sample paths and for all timet with ||f(t) − λ̂|| ≤ ǫ and

V (x(t)) > 0, the following holds:
d

dt
V (x(t)) ≤ −

η

2
,

whereη > 0 is the same constant as in (26).

2) For anyδ > 0, there existsM1 ≥ 0 such that for all fluid sample paths and for all timet with ||f(t) − λ̂|| ≥ δ, the

following holds,
d

dt
V (x(t)) ≤ M1.

Part (1) of this assumption states that if the arrival process deviates from the mean behaviour slightly, the Lyapunov function

still experiences negative drift leading to system stability. Part (2) states that even if the arrival process deviatessignificantly

from its mean behaviour, the rate of growth of the Lyapunov function is still bounded.

Assumption 3:The Lyapunov functionV (·) is linear in scale, i.e.,V (cx) = cV (x) for all c ≥ 0.

Assumption 5:V (x) is non-decreasing in each componentxl.

Assumption 6:V (x1 + x2) ≤ V (x1) + V (x2) for any two vectorsx1 ≥ 0 andx2 ≥ 0,

Assumptions 3 and 6 combined imply that Lyapunov functionV (·) behaves almost like a norm except that it may not be

defined when components ofx are negative.

All the assumptions other than assumption 1 part 6) and assumption 2 are easy to verify. We do not provide details for them

here. In what follows, we will show that assumption 1 part 6) and assumption 2 are true.

First, we verify assumption 1 part 6). We need to show that thedrift of the Lyapunov functionV (x(t)), when the arrival

rate isf(t) = λ̂, is less than−η for someη > 0 when the Lyapunov functionV (x(t)) > 0. If V (x(t)) > 0, there must exist
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some queuêl with x
l̂
(t) > 0. Sinceλ̂ is in the stability region of the system, there existsη > 0 such that̂λ+1η, where1η is

the vector with all entries equal toη, is in the capacity region. This means that the system can be stabilized when the arrival

rate for nodel is λ̂l for l 6= l̂ and the arrival rate for̂l is λ̂
l̂
+ η. The reason we only addη to l̂ is because sincex

l̂
(t) > 0,

the flow constraintµ
l̂
(t) ≤ λ

l̂
(t) +

∑C (̂l)
l=1

F
<l̂,l>

F
l̂

µ<l̂,l> does not appear in optA(λ̂, x(t)). This property will be necessary to

show negative drift. Since the system can be stabilized, there exists constant̂µ such that

∑

l∈L

Flλ̂l + η −

C
∑

l=1

Flµ̂l ≤ 0 (27)

C
∑

l=1

µ̂l ≤ 1

C(l)
∑

l=1

µ̂<l,l> + µ̂l ≤ 1 for all interior nodesl.

µ̂l(t) ∈ [0, 1] for all nodesl.

For all links l 6= l̂:

µ̂l = λ̂l +

C(l)
∑

l=1

F<l,l>

Fl

µ̂<l,l> if l is an interior

node.

µ̂l = λ̂l if l is a leaf.

µ̂
l̂
= λ̂

l̂
+ η +

C (̂l)
∑

l=1

F<l,l>

Fl

µ̂<l,l> if l̂ is an interior

node.

µ̂
l̂
= λ̂

l̂
+ η if l̂ is a leaf.

One can think of̂µl as the long term service rate for linkl provided by an algorithm that stabilizes the system.

Clearly µ̂ satisfies the constraint equations of optA(λ̂, x(t)). Hence we have optA(̂λ, x(t))≤
∑

l∈L Flλ̂l−
∑C

l=1 Flµ̂l. From

(27), we then have optA(̂λ, x(t))≤ −η. From Lemma 5, we know that the drift of the Lyapunov functionfor the p-tree

algorithm is given by optA(̂λ, x(t)). Hence, we have proved assumption 1 part 6).

We can prove assumption 2 in a similar manner. Sinceλ̂ is in the capacity region of the system, there exists anǫ < η/2

such that bothf(t) andf (t) + 1η/2 are in the capacity region whenever||f(t) − λ̂|| < ǫ. Again, as before, let̂l be a link

with x
l̂
(t) > 0. This means that we can find constantsµ̂ such that

∑

l∈L

Flfl(t) + η/2 −

C
∑

l=1

Flµ̂l ≤ 0 (28)

C
∑

l=1

µ̂l ≤ 1

C(l)
∑

l=1

µ̂<l,l> + µ̂l ≤ 1 for all interior nodesl.

µ̂l(t) ∈ [0, 1] for all nodesl.
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For all links l 6= l̂:

µ̂l = fl(t) +

C(l)
∑

l=1

F<l,l>

Fl

µ̂<l,l> if l is an interior

node.

µ̂l = fl(t) if l is a leaf.

µ̂
l̂
= f

l̂
(t) + η/2 +

C (̂l)
∑

l=1

F<l,l>

Fl

µ̂<l,l> if l̂ is an interior

node.

µ̂
l̂
= f

l̂
(t) + η/2 if l̂ is a leaf.

µ̂ satisfies the constraint equations of optA(f(t), x(t)) which implies that optA(f(t), x(t))≤
∑

l∈L Flfl(t) −
∑C

l=1 Flµ̂l.

From (28), we then have optA(f(t), x(t))≤ −η/2. From Lemma 5, we know that the drift of the Lyapunov functionfor

the p-tree algorithm is given by optA(f(t), x(t)). Hence, we have proved assumption 2 part 1). Assumption 2 part 2) holds

because optA(f(t), x(t)) is bounded from above by
∑

l∈L M whereM is the bound onAl(t).
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