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Abstract

Peer-to-Peer (P2P) streaming technologies can take advantage of
the upload capacity of clients, and hence can scale to large content
distribution networks with lower cost. A fundamental question for
P2P streaming systems is the maximum streaming rate that all users
can sustain. Prior works have studied the optimal streaming rate for a
complete network, where every peer is assumed to communicate with
all other peers. This is however an impractical assumption in real sys-
tems. In this paper, we are interested in the achievable streaming rate
when each peer can only connect to a small number of neighbors. We
show that even with a random peer-selection algorithm and uniform
rate allocation, as long as each peer maintains Ω(log N) downstream
neighbors, where N is the total number of peers in the system, the
system can asymptotically achieve a streaming rate that is close to
the optimal streaming rate of a complete network. We then extend
our analysis to multi-channel P2P networks, and we study the sce-
nario where “helpers” from channels with excessive upload capacity
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can help peers in channels with insufficient upload capacity. We show
that by letting each peer select Ω(log N) neighbors randomly from ei-
ther the peers in the same channel or from the helpers, we can achieve
a close-to-optimal streaming capacity-region. Simulation results are
provided to verify our analysis.

1 Introduction

With the proliferation of high-speed broadband services, the demand for rich
multimedia content over the internet, in particular high-quality video deliv-
ery over the Internet, has kept increasing. Streaming video directly from
the server will require a large amount of upload bandwidth at the server,
which can be costly. The service quality can also be poor when the clients
are far away from the server. In addition, it may be difficult for the server
bandwidth to keep up when the demand is exceeding high. There have been
different approaches to off-load traffic from the server, using either CDN
(content distribution network) or P2P (peer-to-peer) technologies. Deploy-
ing a large CDN can introduce a high fixed cost. In contrast, P2P technolo-
gies are particularly attractive because they take advantage of the upload
bandwidth of the clients, which does not incur additional cost to the video
service provider. Several well-known commercial P2P live streaming systems
have been successfully deployed, include CoolStreaming [1], PPLIVE [2],
TVAnts [3], UUSEE [4], PPStream [5]. A typical P2P live streaming system
can now offer thousands of TV channels or movies for viewing, and may serve
hundreds of thousands of users simultaneously [4].

In contrast to the practical success of these P2P live streaming systems,
the theoretical understanding of the performance of P2P live streaming seems
to be lagging behind, which may impede further improvement of P2P live
streaming. For example, a basic question for a P2P live streaming system
is that of its streaming capacity, i.e., what is the maximum streaming rate
that all users can sustain? This question has been studied under the assump-
tion of a complete network, where each peer can connect to all other peers
simultaneously. Under this assumption, the maximum streaming capacity
has been found in [6], and both centralized and distributed rate allocation
algorithms to achieve this maximum streaming capacity have been devel-
oped [6–9]. However, the assumption of a complete network is impractical
for any large-scale P2P streaming systems. In a real P2P streaming system,
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typically each peer is only given a small list of other peers (which we refers
to as neighbors) chosen from the entire population, and each peer can only
connect to this subset of neighboring peers (neighbors may not be close in
terms of physical distance). The number of neighboring peers is often much
smaller than the total population, in order to limit the control overhead.

When each peer only has a small number of neighbors, the P2P network
can be modeled as an incomplete graph with node-degree constraints. In this
case, the streaming capacity of P2P systems becomes more complicated to
characterize. Liu et al. [10] investigate the case when the number of down-
stream peers in a single sub-stream tree is bounded. However, the number of
neighbors that each peer could have over all sub-streams can still be very large
(in the worse case it can be connected to all the other peers simultaneously).
Some approximated and centralized solutions to solve the optimal streaming
capacity problem on a given incomplete network has been proposed in [11].
However, for large-scale P2P streaming systems, such a centralized approach
will be difficult to scale. Liu et al. [12] proposed a Cluster-Tree algorithm
to construct a topology subject to a bounded node-degree constraint, which
could achieve a streaming rate that is close to the optimal streaming capacity
of a complete network. This result gives us hope that, even with node-degree
constraints, a P2P network may achieve almost the same streaming rate as
that of a complete network. However, the Cluster-Tree algorithm is not a
completely de-centralized algorithm because it requires the tracker (a central
entity) to apply the Bubble algorithm at the cluster level. The Bubble algo-
rithm is a centralized algorithm. Some other works such as SplitStream [13]
and Chinasaw [14] have also studied the problem of how to improve the
streaming capacity when there is a node-degree constraint. However, these
works did not provide theoretical results on the achievable streaming rate.
To the best of our knowledge, we have not been aware of a fully distributed
algorithm in the literature that can achieve close-to-optimal P2P streaming
capacity on incomplete networks.

All of the above works are for single-channel P2P systems. Today’s P2P
systems typically serve a large number of TV channels and movies at the
same time. In most P2P streaming systems, peers exchange data only with
other peers that are viewing the same channel. Hence, peers from different
channels are isolated from each other. Recently, Wu et al. [15, 16] show
that by allowing peers to exchange data with other peers that are not even
viewing the same channel, the overall performance of a multi-channel system
can be improved. Such cross-channel peer exchange is particularly helpful
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for channels that do not have enough upload capacity, and hence they need
the upload capacity of peers from other channels to improve their streaming
rate. [15,16] have proposed a View-Upload Decoupling (VUD) algorithm that
sets up a semi-permanent distribution group of peers, who are not necessarily
the peers interested in viewing a channel, to help distribute the content of
the channel. Although the VUD algorithm has been shown to improve the
multi-channel streaming capacity, it is again a centralized algorithm and it
assumes that all peers can connect to all other peers simultaneously, which
is impractical for real systems.

In this paper, we are interested in the following question: without central-
ized control, how many neighbors does a peer in a large P2P network need to
be maintained in order to achieve a streaming capacity that is close to the op-
timal streaming capacity of an otherwise complete network? Further, can we
develop fully-distributed algorithms for peer-selection and rate-allocation to
achieve the close-to-optimal streaming capacity? This paper provides some
interesting and positive answers to these questions. First, we show that, if
each peer has Ω(log N) neighbors, where N is the total number of peers in
the system, close-to-optimal streaming rate can be achieved with probabil-
ity approaching 1 as N goes to infinity. Further, in order to achieve, this
goal, each peer only needs to choose Ω(log N) downstream neighbors uni-
formly and randomly from the entire population, and simply allocates its
upload capacity evenly among all downstream peers. Only the server needs
a slightly different peer-selection policy (see Section 2.2 for details).

We also extend our analysis to multi-channel systems, and allow peers
from those channels with abundant upload capacity to help other channels
with insufficient upload capacity. Again, we show that by using a simple
and distributed algorithm where each peer randomly selects a small number
of neighbors from peers belonging to the same channel and from the helper
peers from other channels, a close-to-optimal streaming capacity region for
multi-channel systems can be achieved with high probability. Hence, our
results indicate that the benefit of VUD can be retained in a distributed
manner without the complete network assumption.

The results that we obtain have a similar flavor as scaling-law results in
wireless ad hoc networks [17]. Although such results only hold when the
size of the network N is large, they do provide important insights into the
dynamics of the system. For example, our analysis indicates that, with a ran-
dom peer selection, the last hop will most likely be the bottle-neck for the
streaming capacity. This insight suggests that we could focus on balancing
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the capacity at the last hop when designing new distributed resource alloca-
tion algorithms for P2P streaming systems. As an initial application of this
insight, we show with an example that, by slightly adjusting the uniform
rate-allocation strategy, we can indeed improve the probability of attain-
ing the near-optimal streaming rate empirically. Hence, we believe that the
insights from these results can be very helpful for designing more efficient
control algorithms for P2P streaming.

2 Single-Channel P2P Networks

In this section, we will show that even without centralized control, Ω(log N)
neighbors is sufficient for large single-channel P2P streaming networks. Specif-
ically, we will show that just by letting each peer select its Ω(log N) neigh-
bors randomly, the close-to-optimal streaming rate could be achieved will
high probability when the network size N is large.

2.1 System Model

We consider a peer-to-peer live streaming network with N peers and one
source s. In the rest of the paper, we will use the terms “source” and “server”
interchangeably. Similarly, we will use the terms “peer”, “node” and “user”
interchangeably. Denote the set of all peers and the source as V (thus,
|V | = N + 1). We assume that the source has a video file with infinite size
to be streamed to all peers and it has a fixed upload capacity us. Denote
the upload capacity of peer i as Ui, which is a random variables defined
as follows: each peer has an upload capacity of Ui = u with probability
p and an upload capacity of Ui = 0 with probability 1 − p, i.i.d. across
peers. Although this is a somewhat simplified ON-OFF model, we believe
that the insights obtained from this model can also be generalized to other
models for the distribution of the upload capacity. We assume that us ≥ u.
Like other works [6, 11, 12, 18], we assume that the download capacity and
the core network capacity are sufficiently large, and hence the only capacity
constraints are on the upload capacity. Each peer i ∈ V \{s} has a fixed
set Ei of M downstream neighbors. Similarly, the source has a set Es of
M downstream peers. We can then model the P2P network as a directed
and capacitated random graph [19]. If j ∈ Ei, assign an directed edge (i, j)
from i to j. Let the set of all edges be E. Note that there may be multiple
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peers that have a common downstream neighbor. Define Cij and Csj be the
streaming rate from peer i and source s, respectively, to peer j.

The value of Ei, Es, Cij and Csj depend on the peer-selection and rate-
allocation algorithm. Given such an algorithm, we can define the “streaming
capacity” of the system as the maximum rate that the source could distribute
the streaming content to all peers. For example, for a complete network, we
have Ei = V \{i, s} and Es = V \{s}. [6] shows that the optimal streaming
capacity is on average

Cf = min

{

us,
us +

∑

i∈V E[Ui]

N

}

, (1)

and can be achieved by setting Cij = Ui/(N − 1) and Csj = Us/N for all
i, j. For our ON-OFF model of upload capacity, this optimal streaming
capacity is equal to Cf = min

{

us,
us

N
+ up

}

. However, as we discussed in the
introduction, the assumption of a complete network is impractical. In this
paper, we are interested in the streaming capacity of an incomplete network,
which can be calculated by the minimum cuts. Specifically note that for a
given user t, a cut that separates s and t is defined by dividing the peers in V
into a set Vn of size (n + 1) that contains the server, and the complementary
set V c

n of size (N − n) that contains the peer t, i.e.,

s ∈ Vn, |Vn| = n + 1, t ∈ V c
n and |V c

n | = N − n.

The capacity of the cut Cn is defined as Cn =
∑

i∈Vn

∑

j∈V c
n

Cij. See fig 1 for
illustration.

Let Cmin(s → t) denote the minimum-cut capacity, which is the minimum
capacity of all cuts that separate the source s and the destination t. It is
well-known that this min-cut capacity is equal to the maximum rate from s
to t. Let Cmin−min(s → T ) denote the min-min-cut which is the minimum
cut of all individual min-cut capacities from the source to each destination t
within a set T , i.e.,

Cmin−min(s → T ) = min
t∈T

Cmin(s → t).

The streaming capacity of the network is then equal to Cmin−min(s → V \{s})
[20]. Note that given the graph and the capacity of each edge, this stream-
ing capacity can be achieved with simple transmission schemes, e.g., with
network coding [21, 22] or with a latest-useful-chunk policy [7]. However, it
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Figure 1: Illustration of the neighbor selection and a cut

may required global knowledge and centralized control in order to optimally
construct the network graph and allocate the upload capacity. A natural
question is then the following: without centralized control, can the stream-
ing capacity over an incomplete network approach the optimal streaming
capacity Cf of a complete network? In the next subsection we will provide a
simple and distributed peer-selection and rate-allocation algorithm that can
achieve this with high probability when the network size is large.

2.2 Algorithms

We will now give explicit description of our simple control algorithm. First,
we use a random peer-selection algorithm. Specifically, each peer will ran-
domly select M downstream neighbors uniformly from all other peers. On
the other hand, the server will select M downstream neighbors uniformly and
randomly among the ON peers. Second, we use a uniform rate-allocation al-
gorithm, i.e., each peer i simply divides its upload capacity equally among
all of its downstream neighbors in Ei. Therefore, each peer in the set Ei will
receive a streaming rate Ui/M from peer i. Similarly, each downstream peer
of the server receives Us/M from the server. Under the above scheme, the
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link capacity Cij is given by

Cij =







Ui/M, if j ∈ Ei, i 6= s
Us/M, if j ∈ Es, i = s
0, otherwise.

Note that since Ei and Es are chosen randomly, Cij’s will also be random
variables. We define another import parameter for the total capacity that
each peer i directly receives from its upstream neighbors, which is given by
CR

i =
∑

j∈V Cji. We will see that this value is the main factor that determines
the streaming capacity from the source to each node.

Note that the above algorithm is a very simple mesh-based algorithm
with the following advantages:

• Simplicity - The random peer selection and uniform rate allocation are
easy to implement.

• Robustness - If some peer leaves the system, only the upstream neigh-
bors of that peer need to re-select another downstream neighbor. It is
not necessary to reconstruct the whole topology. Further, when a peer
switches ON or OFF, its set of downstream neighbors does not need to
change.

• Low signaling overhead - Only the server need to know which peers are
ON. The tracker does not need to update the upload capacity of peers
to any other peer.

Somewhat surprisingly, we will show that, as long as M = Ω(log N), the
algorithm will achieve close-to-optimal streaming capacity, with probability
approaching 1 as N → ∞ (Theorem 1).

Remark: Note that the server will only choose ON peers as its downstream
neighbors. This is essential for achieving the close-to-optimal streaming ca-
pacity. To see this, note that the optimal streaming capacity Cf of a complete
network is also constrained by the server capacity (see Equation (1)). If the
server had used a substantial fraction of its upload capacity to serve OFF
peers, intuitively the rest of the peers would then suffer a lower streaming
rate. With the same intuition, one would think that the peers directly con-
nected to the server also need to be careful in choosing their downstream
neighbors. However, this turns out to be unnecessary. For our main re-
sult (Theorem 1) to hold, no other peers (except the server) are required
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to differentiate their downstream neighbors. As readers will see, this is be-
cause those cuts with Vn only containing the downstream neighbors of s will
play a small role in the overall probability of attaining the close-to-optimal
streaming capacity.

We also note that the above algorithm uses the “push” model, where
upstream peers choose downstream neighbors. An alternate model is the
“pull” model, where downstream peers choose upstream neighbors. Note
that both models create a mesh-topology, and there is considerable symmetry
between the two models. We use the push model in this paper because it is
easier to analysis, although we believe that the main results of the paper can
also be generalized to the pull model, which we leave as future work.

2.3 Main Result

Theorem 1. For any ǫ ∈ (0, 1) and d > 1, there exists α and N0 such that
for any M = α log(N) and N > N0 the probability for the min-min-cut under
the algorithm in Section 2.2 to be smaller than (1 − ǫ)Cf is bounded by

P (Cmin−min(s → V ) ≤ (1 − ǫ)Cf ) ≤ O

(

1

N2d−1

)

.

Recall that the min-min-cut is equal to the streaming rate to all peers.
Hence, Theorem 1 shows that as long as the number of downstream neighbors
M is Ω(log N), for any ǫ ∈ (0, 1) the streaming rate of our algorithm will
be larger than (1− ǫ) times the optimal streaming capacity with probability
approaching 1 as the network size N increases.

2.4 Proof of Theorem 1

We first find the min-cut for any fixed peer t. We will use a similar approach
as the one in [19]. We will show that the probability for the capacity of a
cut to be smaller than (1 − ǫ) times its mean is very small as N becomes
large. Then, we will take the union bound over all cuts and show that overall
probability is also very small. However, the techniques in [19] do not directly
apply to our model due to the following two reasons. First, due to ON-OFF
model, there are fewer “ON” peers and hence the probability for each cut
to fall below its expected value will be larger than the case when all peers’
upload capacity is the same. However, there are still the same number of
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cuts we need to account for, which may cause the union bound in [19] to
diverge. Second, the link capacity Cij in [19] is assumed to be independent
across j, which is not the case in our model. To address the first difficulty, we
will first consider the subgraph that only contains the ON users, and hence
the number of cuts is also reduced correspondingly. To address the second
difficulty, we will show that the joint distribution of Cij can be approximated
by i.i.d. random variables, which significantly simplifies the analysis.

We first introduce the following general relationship between the min-cut
from the server s to the peer t in a random graph G and the min-cut from
the server s to the peer t in the any subgraph Ht of G that contains s and t.

Proposition 2. Let G be a random graph defined on some probability space
Ω that has a fixed source s and a fixed destination t. Let Ht be another
random graph defined on the same probability space such that Ht(ω) ⊆ G(ω)
for all ω ∈ Ω and Ht contains s and t. Then for any given positive value C,
the following holds,

P (Cmin,G(s → t) ≤ C) ≤ P (Cmin,Ht(s → t) ≤ C) . (2)

where Cmin,G(s → t) is the min-cut in G from s to t, and Cmin,Ht(s → t) is
the min-cut in Ht from s to t.

Proof. Let A = {G(ω) : Cmin,G(ω)(s → t) ≤ C} and B = {ω : Cmin,Ht(ω)(s →
t) ≤ C}. For any ω ∈ A, the min-cut from s to t in the graph G(ω) is less
than C. Since Ht is a subgraph of G(ω), the min-cut from s to t in Ht(ω) is
smaller than the min-cut in G(ω), i.e.,

Cmin,Ht(ω)(s → t) ≤ Cmin,G(ω)(s → t) ≤ C.

Hence, ω ∈ B. We then have A ⊆ B and (2) holds consequently.

Proposition 2 is intuitive because every cut in G(ω) has a larger capacity
than the corresponding cut in the subgraph Ht(ω). For a given destination
t, let Ht(W, F ) be the subgraph of G(V, E) such that W contains the peer t,
the server and all of the nodes whose channel condition is ON, and F ⊂ E is
those edges between nodes in W . The capacity of the edges in F is the same
as the capacity of the edges in E. Proposition 2 allows us to focus on the
subnetwork Ht instead of the entire network G. Assume that there are Y ON
peers in the network excluding peer t, and thus |W | = Y +2. Clearly, Y is a
random variable with binomial distribution with parameter N −1 and p. For
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ease of exposition, we assume that Y is fixed during the following discussion
for one given cut, and we will consider the randomness of Y later when we
take the union bound over all cuts. We define a cut on Ht by dividing the
peers in W into a set Wm of size m + 1 that contains the server, and the
complementary set W c

m of size Y −m + 1 that contains peer t. The capacity
of the cut Dm is then given by

Dm =
∑

k∈W c
m

Csi +
∑

i∈Wm

∑

k∈W c
m

Cik.

Note that for each peer i ∈ Wm (and i 6= s), we have
∑

k∈W c
m

Cik = Liu/M ,
where Li is the number of downstream neighbors of peer i that are in the set
W c

m. Note that the value of Li must satisfy max{0, M − (N −Y +m−2)} ≤
Li ≤ min{M, Y −m+1}. Since downstream neighbors of peer i are uniformly
chosen from other peers, we have,

P





∑

k∈W c
m

Cik = l · u

M



 =

(

Y −m+1
l

)(

N−Y +m−2
M−l

)

(

N−1
M

) .

This is the probability that l out of M downstream neighbors of peer i
are in W c

m (of size Y − m + 1) and M − l of them are in the set Wm. The
distribution of Li is known as a hypergeometric distribution with expectation
(Y −m+1)M

N−1
[23, p167]. We can get a similar expression for the source s, i.e.,

P





∑

i∈W c
m

Csi = l · us

M



 =











(Y −m
l )( m

M−l)
(Y

M)
if t is OFF,

(Y −m+1
l )( m

M−l)
(Y +1

M )
if t is ON.

E





∑

i∈W c
m

Csi



 =

{

us(Y −m)
Y

if t is OFF,
us(Y +1−m)

Y +1
if t is ON.

.

Hence, we obtain the expectation of Dm as

E [Dm] = E





∑

k∈W c
m

Csi



+
∑

i∈Wm

E





∑

k∈W c
m

Cik





=

{

us(Y −m)
Y

+ u
N−1

m(Y − m + 1) if t is OFF,
us(Y +1−m)

Y +1
+ u

N−1
m(Y − m + 1) if t is ON.

(3)
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Next, we are interested in the probability that Dm ≥ (1− ǫ)E[Dm] for all m
for a given constant ǫ ∈ (0, 1). In other words, this is the probability that
the min-cut value is no less than (1 − ǫ) times its average. For all m, it is
not hard to see

E[Dm] ≥min{E[D0],E[DY ]} = min

{

us,
us

Y
+

Y

N − 1
u

}

.

If we have Y ≥ (1 − ǫ)p(N − 1), we will get

E[Dm] ≥ (1 − ǫ) min
{

us,
us

N
+ pu

}

.

Recall that Cf = min{us,
us

N
+pu} is the optimal streaming capacity assuming

a complete network [6]. Hence, Dm ≥ (1 − ǫ)E[Dm] will then imply that
Dm ≥ (1 − ǫ)2Cf . In other words, the probability that Dm ≥ (1 − ǫ)E[Dm]
for all m will become a lower bound for the probability that the min-cut is no
less than (1− ǫ)2Cf . In the following, we will derive P(Dm ≥ (1− ǫ)E[Dm]).
We will first find a bound on the moment generating function for Dm and
take advantage of the Chernoff bound to obtain a good estimate of the above
probability. Towards this end, we have the following Proposition. Before we
go further, we need to address the second difficulty we mentioned above. To
remove the coupling, we need to introduce the notion of negatively related
for Bernoulli random variables [24, 25].

Definition 3. The Bernoulli random variables Ii, i = 1, ..., n are said to
be negatively related if for each i ≤ n there exists random variables Jij,
such that the distribution of the random vector [Ji1, Ji2, ..., Jin] is equal to the
distribution of the random vector [I1, I2, ..., In] given that Ii = 1, and Jij ≤ Ij

for j 6= i.

For negatively related random variables, the following theorem holds
(Theorem 4 in [25]).

Theorem 4. Suppose Ii’s are negatively related Bernoulli random variables
with identical distribution, i = 1, 2, ..., n. Let Ĩi, i = 1, 2, ..., n be i.i.d. ran-
dom variables, where Ĩi has the same distribution as Ii for all i. Then for
any real t, we have

E
[

et
Pn

i=1 Ii

]

≤ E
[

et
Pn

i=1 Ĩi

]

.
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Roughly speaking, for negatively related Bernoulli random variables, con-
ditioned on the event that one of them is 1, the others are more likely to be-
come small. Correspondingly, conditioned on the event that one of them is 0,
the others are more likely to become large. Therefore, when t is positive, the
moment generating function is mainly determined by the probability of the
sum of all indicator random variables achieving the larger value. The sum
of negatively related random variables is less likely to achieve larger value
and hence the moment generation function is smaller. For negative t, the
moment generating function is mainly determined by the probability of the
sum of all indicator random variables achieving the smaller value. The sum
of negatively related random variables is also less likely to achieve smaller
value and hence the moment generation function is smaller.

One can show that hypergeometric random variables can be viewed as
the sum of negatively related Bernoulli random variables (See Example 1
in [25]). We first construct Ii by choosing M neighbors out of N − 1 peers.
For each peer i on the right, let Ii = 1 if peer i is chosen as a neighbor, and
let Ii = 0 otherwise (Note that Ii is not defined for peers on the left). We
can then construct Jij as the following. First, set Jij = Ij for all j. Then if
Jii = 0, in order to make Jii = 1, we choose one neighbor k randomly (either
from the left or the right), and exchange that neighbor with peer i. If k was
on the left, we then let Jii = 1. If k was on the right, we then let Jii = 1
and Jik = 0. Clearly, Ji has the same distribution as I given that Ii = 1.
However, by our construction Jij ≤ Ij for all j 6= i. Hence, Ii, i = 1, ..., M are
negatively related. We can now bound the moment generation function of
∑

k∈W d
m

Cik by the moment generating functions of the sum of i.i.d. random
variables. Towards this end, we have the following Proposition.

Proposition 5. For any given cut Vk and V c
k of a network G(V, E), let W̃1

and W̃2 be subsets of Vk and V c
k , respectively. Assume that |W̃1| = q ≤ k + 1

and |W̃2| = r ≤ N − k. Let the upload capacity of each peer i ∈ W̃1 be
u. For each peer in W̃1, it chooses M downstream neighbors uniformly and
randomly from a given subset Ṽ of V that is a superset of W̃2. Let Ñ = |Ṽ |.
Then the moment generating function of

∑

i∈W̃1

∑

j∈W̃2
Cij satisfy

E
[

e−θ
P

i∈W̃1

P

j∈W̃2
Cij

]

≤ exp

[

Mq
r

Ñ

(

e−θ u
M − 1

)

]

. (4)

Proof. We can write
∑

j∈W̃2
Cij = Li · u

M
, where Li is the number of down-

stream neighbors of peer i in W̃2. As mentioned above, peer i select M
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downstream neighbors from Ñ different peers. Consider all the potential
downstream neighbors j ∈ W̃2. Let Iij be the indicator function of the event
that peer j is a downstream neighbors of i. Clearly, Iij has a Bernoulli
distribution with parameter M/Ñ . Moreover, the number of downstream
neighbors in W̃2 would be equal to the summation of all the Iij ’s over j,
i.e., Li =

∑

j∈W̃2
Iij and follows a hypergeometric distribution. According to

Theorem 4 in [25], if Ĩij, j ∈ W̃2 are i.i.d. Bernoulli random variables such
that Ĩij has the same marginal distribution as Iij , we will have, for any real t

E
[

et
P

j∈W̃2
Iij

]

≤ E
[

et
P

j∈W̃2
Ĩij

]

. (5)

This means that we could use the moment generating function of a binomial
random variable, which is the summation of i.i.d. Bernoulli random variables,
to bound the moment generating function of the hypergeometric random
variable. Letting t = −θ, we then have, for each i ∈ W̃1

E
[

e−θ
P

j∈W̃2
Cij

]

=E

[

(

e−θ
P

j∈W̃2
Iij

) u
M

]

≤E

[

(

e−θ
P

j∈W̃2
Ĩij

)
u
M

]

=
(

E
[

e−θ u
M

Ĩij

])r

=

(

1 − M

Ñ
+

M

Ñ
e−θ u

M

)r

(6)

Note that,

1 − M

Ñ
+

M

Ñ
e−θ u

M =1 − M

Ñ

(

1 − e−θ u
M

)

≤ exp

[

M

Ñ

(

e−θ u
M − 1

)

]

. (7)

where the last inequality is due to 0 ≤ M
Ñ

(

1 − e−θ u
M

)

≤ 1, and 1 − x ≤ e−x

when 0 ≤ x ≤ 1. Therefore, substituting (7) into (6) yields

E
[

e−θ
P

j∈W̃2
Cij

]

≤ exp

[

r
M

Ñ

(

e−θ u
M − 1

)

]

.
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For different peers in W̃1, they will select their downstream neighbors inde-
pendently. Hence,

∑

j∈W̃2
Cij are independent across i. Therefore,

E
[

e−θ
P

i∈W̃1

P

j∈W̃2
Cij

]

=
(

E
[

e−θ
P

j∈W̃2
Cij

])q

≤ exp

[

Mrq

Ñ

(

e−θ u
M − 1

)

]

.

Proposition 5 combined with the Chernoff bound will be frequently used
to estimate the probability for a cut to “fail”, i.e., when the capacity of a
cut is less than (1 − ǫ) its expected capacity. We have the following result
for cuts Wm in Ht under the assumption of ON-OFF upload capacity.

Lemma 6. Let ǫ ∈ (0, 1). Given that the total number of ON peers in the
entire network Y = y, the probability that the capacity of the cut Dm is less
than (1 − ǫ)E[Dm] can be bounded by the following,

P(Dm ≤ (1 − ǫ)E[Dm]|Y = y)

≤ exp

[

−
(

Mm
y − m + 1

N − 1
+ M

y − m

y

)

u

us

ǫ2

2

]

.

Proof. By Chernoff bounds, we have for θ > 0

P(Dm ≤ (1 − ǫ)E[Dm]|Y = y, t is ON)

≤E
[

e−θDm|Y = y
]

e−(1−ǫ)θE[Dm|Y =y]

≤E
[

e−θ
Pm

j=1

Py+1
i=m+1 Cji

]

eθ(1−ǫ)m(y−m+1) u
N−1 E

[

e−θ
Py+1

i=m+1 Csi

]

eθ(1−ǫ)(y−m+1) us
y+1

=eφ(θ)+φs(θ), (8)

where

φ(θ) = log E
[

e−θ
Pm

j=1

Py+1
i=m+1 Cji

]

+ θ(1 − ǫ)m(y − m + 1)
u

N − 1
; (9)

φs(θ) = log E
[

e−θ
Py+1

i=m+1 Csi

]

+ θ(1 − ǫ)(y − m + 1)
us

y + 1
. (10)

Now we apply Proposition 5. Recall that we define a cut on Ht by dividing
peers into sets Wm and W c

m. We could also view Wm and W c
m as subsets of
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some cut Vk and V c
k of network G. We need to exclude the server from Wm

since it has a different upload capacity. For each peer in Wm\s, it will choose
M downstream neighbors randomly from the entire network. Hence, Ṽ = V .
According to proposition 5, we have q = |Wm\s| = m, r = |W c

m| = y−m+1
and |Ṽ | = N . Therefore, using (4), we have,

φ(θ) ≤ log

{

exp

[

Mm
y + 1 − m

N − 1

(

e−θ u
M − 1

)

]}

+ θ(1 − ǫ)(y + 1 − m)
u

N − 1

=M
y + 1 − m

N − 1

(

e−θ u
M − 1

)

+ θ(1 − ǫ)(y + 1 − m)
u

N − 1

=
1

N − 1

[

M
(

e−θ u
M − 1

)

+ θ(1 − ǫ)u
]

(y + 1 − m).

Note that the server only choose neighbors from the y + 1 ON peers, |Ṽ | =
y + 1. Using similar techniques, for the server, we can bound φs(θ) by

φs(θ) ≤
1

y + 1

[

M
(

e−θ us
M − 1

)

+ θ(1 − ǫ)us

]

(y + 1 − m).

Define

φ̃(θ) , M
(

e−θ u
M − 1

)

+ θ(1 − ǫ)u;

φ̃s(θ) , M
(

e−θ us
M − 1

)

+ θ(1 − ǫ)us.

The φ(·) and φs(·) can be written as

φ(θ) ≤ 1

N − 1
φ̃(θ)m(y + 1 − m);

φs(θ) ≤
1

y + 1
φ̃s(θ)(y + 1 − m).

Let φ̃min and φ̃s,min be the minimum of φ̃(θ) and φ̃s(θ) respectively, over
θ > 0. It is easy to see φ̃min = φ̃s,min < 0. Also since φ̃ and φ̃s is convex
on θ > 0, these minimum is attainable. Let θmin and θs,min be the minimizer
respectively. We must have

φ̃s(θs,min) = φ̃s,min = φ̃min ≤ φ̃(θs,min). (11)
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One can show that

θs,min = −M

us
log(1 − ǫ). (12)

Note that for 0 < a < 1 and 0 ≤ x ≤ 1, we have (1−x)a ≤ 1−ax since (1−x)a

is concave and its derivative at 0 is −a. Moreover, for 0 ≤ x ≤ 1, one can see
that (1−x) log(1−x) ≥ x2/2−x by checking d

dx
(1−x) log(1−x)−(x2/2−x) =

− log(1 − x) − x ≥ 0 and (1 − x) log(1 − x) = x2/2 − x when x = 0. Then,
substituting (12) into (11) and using the above relationship, we have

φ̃(θs,min) =M
[

(1 − ǫ)
u

us − 1
]

− M
u

us

(1 − ǫ) log(1 − ǫ)

=M

{

[

(1 − ǫ)
u

us − 1
]

− u

us

(1 − ǫ) log(1 − ǫ)

}

≤M

[

1 − u

us
ǫ − 1 − u

us

(

ǫ2

2
− ǫ

)]

= − M
u

us

ǫ2

2
.

We then have

mφ(θs,min) + φs(θs,min)

≤ 1

N − 1
φ̃(θs,min)m(y + 1 − m) +

1

y + 1
φ̃s(θs,min)(y + 1 − m)

≤ 1

N − 1
φ̃(θs,min)m(y + 1 − m) +

1

y + 1
φ̃(θs,min)(y + 1 − m)

≤−
(

m
y + 1 − m

N − 1
+

y + 1 − m

y + 1

)

M
u

us

ǫ2

2
.

Since (8) holds for any θ > 0, letting θ = θs,min yields

P(Dm ≤ (1 − ǫ)E[Dm]|Y = y, t is ON)

≤ exp(mφ(θs,min) + φs(θs,min))

≤ exp

[

−
(

Mm
y + 1 − m

N − 1
+ M

y + 1 − m

y + 1

)

u

us

ǫ2

2

]

.

Similarly, one can show that if the destination t is OFF, we have

P(Dm ≤ (1 − ǫ)E[Dm]|Y = y, t is OFF)

≤ exp

[

−
(

Mm
y + 1 − m

N − 1
+ M

y − m

y

)

u

us

ǫ2

2

]

.
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Since y+1−m
y+1

≥ y−m
y

, we have

P(Dm ≤ (1 − ǫ)E[Dm]|Y = y, t is ON)

≤P(Dm ≤ (1 − ǫ)E[Dm]|Y = y, t is OFF)

Hence,

P(Dm ≤ (1 − ǫ)E[Dm]|Y = y)

≤P(Dm ≤ (1 − ǫ)E[Dm]|Y = y, t is OFF)

≤ exp

[

−
(

Mm
y + 1 − m

N − 1
+ M

y − m

y

)

u

us

ǫ2

2

]

.

Lemma 6 gives us an upper bound on the probability that the capacity
Dm of a cut Wm is less than 1 − ǫ times its mean conditioned on the event
that total number of ON peers Y = y. Note that Mmy−m+1

N
is the average

number of edges from peers in Wm to peers in W c
m, while M y−m

y
is a lower

bound on the average number of edges from the server to peers in W c
m.

Hence, the upper bound in Lemma 6 decreases exponentially if the average
number of edges increases. Furthermore, since the average number of edges
is proportional to M , the upper bound also decrease exponentially if M
increases. The following lemma then bounds the effect of all cuts separating
s and t. Note that for each value of m, there are

(

Y
m

)

possible cuts Wm. Due

to symmetry, the capacity of all
(

Y
m

)

cuts has the same distribution.

Lemma 7. Define B̃m to be the event {Dm ≤ (1−ǫ)Cf for any cut Wm among
the

(

Y
m

)

cuts }. The probability of the union of all B̃m’s can be bounded by

P

(

Y
⋃

m=0

B̃m

)

≤ O(exp(−ǫ′2p2N)) + βγ

[

(

1 + pβ
γ
2

)N−1
]

. (13)

More specifically, we can separate the union bound into to two parts:

P

(

Y −1
⋃

m=0

B̃m

)

≤ O(exp(−ǫ′2p2N)) (14)

+ βγ

[

(

1 + pβ
γ
2

)N−1

− 1

]

, (15)

P
(

B̃Y

)

≤ O(exp(−ǫ′2p2N)) + βγ. (16)
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where ǫ′ = 1 −
√

1 − ǫ, γ = (1 − ǫ′)p and β , exp(−M u
us

ǫ′2

2
).

Proof. Choose a constant γ = (1 − ǫ′)p. We then have

P

(

Y −1
⋃

m=0

B̃m

)

≤
⌈γN⌉−1
∑

y=0

(

N − 1

y − 1

)

py(1 − p)N−1−yP

(

y
⋃

m=0

B̃m

∣

∣

∣

∣

∣

Y = y

)

+
N−1
∑

y=⌈γN⌉

(

N − 1

y − 1

)

py(1 − p)N−1−yP

(

y
⋃

m=0

B̃m

∣

∣

∣

∣

∣

Y = y

)

.

The first term satisfies,

⌈γN⌉−1
∑

y=0

(

N − 1

y − 1

)

py(1 − p)N−1−yP

(

y
⋃

m=0

B̃m

∣

∣

∣

∣

∣

Y = y

)

≤P(Y < ⌈γN⌉ − 1)

≤ exp

(

−2
(p(N − 1) − (⌈γN⌉ − 1))2

N − 1

)

= O(exp(−ǫ′2p2N)),

where the last inequality follows from Hoeffding’s inequality [26]. For the
second term, recall that Dm ≥

√
1 − ǫE[Dm] implies Dm ≥ (1 − ǫ)Cf . For

m = 0, Dm = us ≥ Cf . Therefore the probability P(B̃0|Y = y) is always 0.
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We can then take the summation from m = 1. We have,

P

(

y−1
⋃

m=0

B̃m

∣

∣

∣

∣

∣

Y = y

)

=

y−1
∑

m=0

(

y

m

)

P
(

Dm ≤
√

(1 − ǫ)E[Dm]
∣

∣

∣
Y = y

)

≤
y−1
∑

m=1

(

y

m

)

e−(Mm y−m+1
N−1

+M y−m
y ) u

us

ǫ′2

2

≤
y−1
∑

m=1

(

y

m

)

e−(Mm y−m+1
N−1

+Mγ y−m
y ) u

us

ǫ′2

2

≤e−γM u
us

ǫ′2

2

×
y−1
∑

m=1

(

y

m

)

e−(Mmγ y−m+1
y

+Mγ −m
y ) u

us

ǫ′2

2 (17)

Let β , exp(−M u
us

ǫ′2

2
). Then,

(17) =βγ

y−1
∑

m=1

(

y

m

)

exp

[

−Mmγ
u

us

ǫ′2

2

y − m + 1 − 1

y

]

(18)

=βγ

y−1
∑

m=1

(

y

m

)

βmγ y−m
y

=βγ





⌊y/2⌋
∑

m=1

(

y

m

)

βmγ y−m
y +

y−1
∑

m=⌊y/2⌋+1

(

y

m

)

βmγ y−m
y





≤βγ





⌊y/2⌋
∑

m=1

(

y

m

)

β
mγ
2 +

y−1
∑

m=⌊y/2⌋+1

(

y

m

)

β
(y−m)γ

2





≤βγ
[(

1 + β
γ
2

)y

− 1 +
(

β
γ
2 + 1

)y

− 1
]

=2βγ
[(

1 + β
γ
2

)y

− 1
]

. (19)
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We then have
N−1
∑

y=⌈γN⌉

(

N − 1

y

)

py(1 − p)N−1−yP

(

y−1
⋃

m=0

B̃m

∣

∣

∣

∣

∣

Y = y

)

≤
N−1
∑

y=⌈γN⌉

(

N − 1

y

)

py(1 − p)N−1−y

× 2βγ
[(

1 + β
γ
2

)y

− 1
]

≤
N−1
∑

y=0

(

N − 1

y

)

2βγ
(

p(1 + β
γ
2 )
)y

(1 − p)N−1−y

=2βγ

[

(

1 + pβ
γ
2

)N−1

− 1

]

.

Then, plugging in the value of β will yields (15). For m = y, we have

P
(

B̃y

∣

∣

∣
Y = y

)

=P
(

Dy ≤
√

(1 − ǫ)E[Dy]
∣

∣

∣
Y = y

)

≤e−(My 1
N−1)

u
us

ǫ′2

2

=βγ

(16) then follows trivially.

We could now prove Theorem 1.

Proof of Theorem 1. According to Proposition 2 and Lemma 7, for any peer
t, the minimum cut from the source s to t can be bounded by

P (Cmin(s → t) ≤ (1 − ǫ)Cf)

≤P (Cmin,Ht(s → t) ≤ (1 − ǫ)Cf )

=P

(

Y
⋃

m=0

B̃m

)

≤P

(

Y
⋃

m=0

{Dm ≤ (1 − ǫ′)E[Dm]}
)

≤2βγ
(

1 + pβ
γ
2

)N−1

+ O(exp(−ǫ2p2N)).
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Note that by assumption M = α log(N). For any ǫ > 0, and ǫ′ = 1−
√

1 − ǫ,
choose a sufficiently large α such that

ǫ′ =

√

4d

αγ

us

u
.

We then have, for large N

βγ = exp(−Mγ
u

us

ǫ′2

2
) = exp(−2d log(N)) = 1/N2d.

Hence, the minimum cut statistics,

P (Cmin(s → t) ≤ (1 − ǫ′)Cf)

≤ 1

N2d
2

(

1 + pO(
1

Nd
)

)N−1

= O

(

1

N2d

)

.

Thus, the min-min cut will satisfy

P (Cmin−min ≤ (1 − ǫ)Cf)

≤
N
∑

t=1

P (Cmin(s → t) ≤ (1 − ǫ)Cf)

≤O

(

1

N2d

)

· N = O

(

1

N2d−1

)

.

We remark on several implications of Theorem 1. First, Theorem 1 not
only shows that pure random selection is sufficient to achieve close-to-optimal
streaming capacity as long as each peer has Ω(log N) downstream neighbors,
it also reveals important insights on the significance of different types of cuts.
To see this, note that if we choose α as in the proof such that βγ = O(1/N2d),
we have

P

(

Y −1
⋃

m=0

B̃m

)

≤ 2βγ

[

(

1 + pβ
γ
2

)N−1

− 1

]

=O(1/N2d)O(e1/Nd−1 − 1) = o(1/N2d).
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On the other hand, we have P
(

B̃Y

)

= O(1/N2d). Hence, the probability

that the last cut (the WY and W c
Y cut) fails is much larger than the proba-

bility that any other cuts fails. Thus, for each peer t, the min-cut from the
source to t is mainly determined by CR

t (recall that CR
t is the total capacity

received by peer t directly from its upstream neighbors, which is also the
capacity of the last cut).

The above insight suggests that, if we want to design improved distributed
control algorithms for P2P streaming systems, we may want to focus on
improving the capacity CR

t at the last hop. Note that one of the main
reasons for CR

t to fall below its mean value is the imbalance of CR
t across

t. More specifically, some peers t may have a larger number of upstream
peers, and hence have a larger-than-average value of CR

t , while other peers
may have a smaller-than-average value of CR

t . Such imbalance will lead to
an increase in the probability that some peers have low streaming rates.
Based on this intuition, we can use the following slightly-modified algorithm.
Suppose that a peer already receives enough capacity from its direct upstream
neighbors (i.e., CR

t > Cf), it is very likely that this peer will also have a
min-cut from the source that is larger than Cf . We can then take away
some upstream neighbors from this peer and allocate them to other peers.
Intuitively, this modification will help to balance the values of CR

t . Simulation
results shows that this “adaptive” algorithm indeed reduces the “failure”
probability compared to the pure random algorithm when the network size
is the same.

Theorem 1 also reveals important relationship between the number of
neighbors required and key system parameters. For example, if we require a
better performance (smaller ǫ or larger d) or have fewer ON peers (smaller
p), the number of downstream neighbors needed by each peer will increase.
Specifically, according to the proof, we need α ≥ 4dus

γuǫ′2
. If we require higher

streaming rate or faster convergence rate, i.e., ǫ is smaller (consequently ǫ′ is
smaller) or d is larger, we will need a larger α. If the probability that a peer
is ON is reduced, i.e., p is reduced, we will also need a larger α.

3 Multi-Channel P2P Networks

In this section, we will extended our analysis to a multi-channel network
containing J different channels. We are interested in the scenarios where the
upload capacity from one channel can be used to “help” the other channel.
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For single-channel networks, the streaming capacity of the network is a real
number. However, for a multi-channel network, the streaming rate require-
ments of different channels can be different. Let Rj be the streaming rate
requirement of channel j, j = 1, 2, ..., J . There is clearly a tradeoff between
the values of Rj in different channels, i.e., with finite upload capacity, in-
creasing Rj for one channel j must be at the cost of reducing Rk of another
channel k. To capture this tradeoff, we define the capacity region Λ as the set
of streaming rate vectors R = [R1, R2, ..., RJ ]T such that whenever R ∈ Λ,
each user in the network will receive enough capacity to view its own channel
of interest with high probability. Intuitively, if the upload capacity of the
users and the server is the only bottleneck in the network, the best we can
do is to support those rate vectors R such that the summation of all the de-
mands is equal to all the supply. Hence, the largest possible capacity region
will be no larger than

Λm =

{

R

∣

∣

∣

∣

∣

J
∑

j=1

NjRj ≤
∑

i∈V

E[Ui],
J
∑

j=1

Rj ≤ us

}

, (20)

where Nj is the number of peers that are viewing channel j. With this largest
possible capacity region in mind, we are going to present our multi-channel
algorithm and we will show that our algorithm could achieve the following
close-to-optimal capacity region with high probability when N → ∞:

(1 − ǫ)Λm = {(1 − ǫ)R|R ∈ Λm}.

3.1 System Model

We consider a multi-channel P2P networks with N peers, one source s and J
different channels. We will reuse the same notations as in the single-channel
section. Let J = {1, 2, ..., J} denote the set of all the channels. We have
|J | = J . Denote the set of all peers that are viewing channel j as Nj and
we have |Nj| = Nj . We assume that Nj = pjN , where pj is a fixed constant
and represents the fraction of peers interested in viewing channel j. We
refer to the peers in Nj as the normal peers of channel j. Let the set of all

peers (including the source) be V . Obviously, V =
(

⋃

j∈J Nj

)

∪ {s} and

|V | = N + 1 =
∑

j∈J Nj + 1. Assume that the server allocates us,j amount
of capacity to channel j and

∑

j∈J us,j = us. We also assume that each
peer has an ON-OFF upload capacity, i.e., Ui is i.i.d. with the distribution
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P(Ui = u) = p and P(Ui = 0) = 1− p. Each node (including the server) will
still have M downstream neighbors. We will describe how these neighbors
are chosen later.

In multi-channel P2P networks, the popularity Nj and streaming rate
requirement Rj can vary from channel to channel. If we let the peers in
the same channel to form a sub-network, for some channel j the streaming
rate requirement Rj may exceed the maximum streaming capacity, while for
other channels the upload capacity of the peers is more than needed. More
specifically, for any ǫ ∈ (0, 1), let

Iǫ = {j ∈ J |Rj > (1 − ǫ)up + us,j/Nj, }
Sǫ = {j ∈ J |Rj ≤ (1 − ǫ)up + us,j/Nj.}

We call the channels in Iǫ insufficient channels, and the channels in Sǫ suf-
ficient channels. With a multi-channel network, we can let some peers in
the sufficient channels help another insufficient channel, and both channels
may be able to achieve their own streaming rate requirements [16]. We call
these peers that are helping the other channel j the “helpers” for channel
j. A helper will not allocate its upload capacity to its own channel but will
contribute to the channel it is helping. Let the number of helpers for channel
j be Hj . For convenience, we allow Hj be positive, negative or 0. Hj > 0
means that there are Hj helpers that are helping to distribute the content of
an insufficient channel j. Hj < 0 means that a sufficient channel j is provid-
ing |Hj| helpers to assist other channels. We emphasize that a helper from a
sufficient channel j to help an insufficient channel k still needs to receive a
streaming rate Rj for its interested content of channel j.

3.2 Algorithm

We will now present the scheme for allocating the capacity of the server for
each channel and for choosing the number of helpers that each channel have.
Fix ǫ ∈ (0, 1). In the following discussions, we assume that R ∈ (1 − ǫ)Λm.
The server will allocate the capacity for channel j according to the following
equation

us,j = Rj/(1 − ǫ). (21)

Each channel will determine the number of helpers it needs by the following
equation

Hj =

⌊

NjRj

(1 − ǫ)u
− us,j

u
− pNj

⌋

. (22)

25



We require that
∑

j∈J Hj ≤ 0, i.e., the total number of helpers provided by
the sufficient channels must be no smaller than the total number of helpers
demanded by insufficient channels. We can check that (22) satisfies this
condition (see Lemma 8 for details). Note that according to (22), a channel
with higher streaming rate requirement will require more helpers. Let K =
maxj∈J

Rj

(1−ǫ)u
− p. Note that for any insufficient channel j, we must have

Hj ≤ KNj . For an insufficient channel j, denote the set of all helpers
that are helping channel j as Hj . Recall that each ON peer can have M
downstream neighbors, which correspond to M links, each with capacity
u/M . Each peer i in Nj will reserve K downstream links (out of a total of
M links) to allow helpers to connect to peer i. Each helper i will choose
one connections among KNj reserved links uniformly randomly, and the
owner of that reserved link becomes an upstream neighbor of that helper. In
other words, each helper will try to find one and only one upstream neighbor
in Nj and no peers support more than K downstream helpers. Each peer
in Nj will choose M − K downstream neighbors from Nj and each helper
will also choose M downstream neighbors from Nj . Note that there will
be no connection between helpers, which avoids loops among helpers. Our
multi-channel algorithm preserves the desirable features of our single-channel
algorithms. The random peer-selection is simple, robust, and mesh-based.

3.3 Performance Analysis

Next we will provide the analysis of the capacity region of our algorithm.
We next consider the asymptotic behavior of the system as N → ∞ and
Nj = pjN for some fixed value of pj, j = 1, ..., J . We will show that as
long as M = Ω(log N), with high probability our algorithm can achieve the
capacity region of (1 − ǫ)Λm, where Λm is the optimal capacity region given
by (20). We start with a result of the performance bound on each channel,
and then use that result to analyze the capacity region.

For each channel j, denote the set containing the server, the peers in Nj

and the helpers in Hj as Vj , i.e., Vj = {s} ∪ Nj ∪ Hj. Let the subnetwork
that contains all the nodes in Vj and the links between them as Gj . We
have on average pNj native ON peers and Hj helpers that contribute their
bandwidth for uploading. There are Nj peers that require the full streaming
rate. Therefore, even under a complete-network assumption, the maximum
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streaming rate for each channel j will be

Cf,j , min

{

us,j,
pNj + Hj

Nj
u +

us,j

Nj

}

. (23)

Note that if Nj = pjN , under the assumption of ON-OFF upload capacity,
the set of Λm in (20) can be written as

Λm =

{

R

∣

∣

∣

∣

∣

J
∑

j=1

pjRj ≤ up +
us

N
,

J
∑

j=1

Rj ≤ us

}

,

which is independent of N . We will adopt this definition of Λm in the rest of
the paper. Assume that R ∈ (1 − ǫ)Λm.

Similar to the single-channel P2P network, our algorithm could achieve
a close-to-optimal streaming rate for each channel. We first introduce the
following lemma which reveals some important properties of our algorithm.

Lemma 8. Assume that Nj = pjN . Given any ǫ > 0 and R ∈ (1 − ǫ)Λm,
let us,j be given by (21) and Hj be chosen as (22). Then for any ǫ′ such that
ǫ < ǫ′ < 1, there exist N0 and 0 < η < 1 such that if N ≥ N0 we have

1) Hj = Θ(N) or 0; (24)

2) If Hj < 0 for all N > N0, we have |Hj| ≤ ηpNj; (25)

3) and Rj ≤ (1 − ǫ′)Cf,j; (26)

4)
∑

j∈J

Hj ≤ 0. (27)

This lemma tell us: 1) The number of helpers Hj of either sufficient
channel or insufficient channel has the same order as N , unless this channel
cannot provide any helper and do not require any helper from other channels.
2) For a sufficient channel j, the number of helpers that it provides is less than
pNj, which is the expected number of ON peers in channel j. Consequently,
with high probability, for any sufficient channel, there are enough ON peers
to become helpers. 3) For any ǫ′ > ǫ, there exists a sufficiently large N such
that the target streaming rate Rj is less than (1 − ǫ′) times the maximum
streaming capacity of channel j. 4) The sum of Hj is no greater than 0, i.e.,
the total number of helpers required by insufficient channel is less than the
total number of helpers provided by sufficient channel.

Then the follow theorem holds for each channel under our multi-channel
algorithm.
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Theorem 9. Fix ǫ ∈ (0, 1). Assume that pj, Rj are given and Hj = Θ(N)
for large N . In addition, assume that for any j such that Hj < 0, there exist
η < 1 such that |Hj| ≤ ηpNj. Then for any channel j, any ǫ′ > ǫ and d > 1,
there exists αj and N0,j such that for any M = αjlog(N) and N > N0,j the
probability for the min-min cut of channel j to be smaller than or equal to
(1 − ǫ′)Cf,j is bounded by

P (Cmin−min(s → Nj) ≤ (1 − ǫ′)Cf,j) ≤ O

(

1

N2d−1

)

.

We will prove this Lemma 8 and Theorem 9 in the appendix. Theorem
9 provides a performance bound for each channel. The result is similar in
flavor to the single-channel case. The choice of αj is also very similar (see
the remark at the end of Appendix B), i.e., the higher the streaming rate is
(smaller ǫ) and the smaller the ON probability p is, the larger αj is required
to achieve faster convergence rate (larger d). According to Lemma 8, with
the choice of Hj in (22), let ǫ′ be a small constant such that 0 < ǫ′ < ǫ. For
any j ∈ J , (1 − ǫ′)Cf,j ≥ Rj , we can then conclude that

P (Cmin−min(s → Nj) ≤ Rj)

≤P (Cmin−min(s → Nj) ≤ (1 − ǫ′)Cf,j) ≤ O

(

1

N2d−1

)

.

With Theorem 9 and Lemma 8, we are able to show the capacity region
of our algorithm. Theorem 10 summarizes the final result on the capacity
region of our algorithm.

Theorem 10. For any ǫ ∈ (0, 1), d > 1 and R ∈ (1 − ǫ)Λm, choose Hj as
(22) for j = 1, 2, ..., J . There exists α and N0 such that for any M = αlog(N)
and N > N0, the following holds

P (Cmin−min(s → Nj) ≤ Rj , for some j) ≤ O

(

1

N2d−1

)

.

We omit the proof of this theorem since it follows trivially from Theorem
9 and Lemma 8. We see that Ω(log N) neighbors are again sufficient for
achieving a close-to-optimal streaming capacity with high probability when
N → ∞.
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4 Simulation

In this section we provide simulation results to verify our analytical results
in previous sections. We first simulate a single-channel P2P network with
N = 10000 peers and one server. Each user has a ON-OFF upload capacity
with ON probability p = 0.5. When a user is ON, it will contribute u = 10
amount of upload capacity. The server has a capacity of us = 20. The
optimal streaming capacity would be Cf = 5.002. We vary the number of
downstream neighbors of each user from 10 log N = 90 to 70 log N = 630,
which corresponds to between 0.9% and 6.3% of the total number of pees
N . For each choice of the number of downstream neighbors, we generate the
network 100 times. During each iteration all users select their downstream
neighbors randomly as described in section 2.2, and we use the algorithm
in [27] to find the min-min cut from the source to all the users and compare
it with (1−ǫ)Cf , where ǫ = 0.3. We count the number of times that the min-
min cut of the network is larger than (1 − ǫ)Cf and plot the probability for
that to happen as the number of downstream neighbors of each peer varies.
We also simulate the adaptive algorithm described at the end of section
2.4 where each peer only selects those peers who have not received enough
capacity as its downstream neighbors. The result is shown as fig 2. We see
that using pure random selection, when the number of downstream neighbors
of each peer is more than 40 log N = 360 (3.6% of N), the probability that
the system could sustain a streaming rate higher than 70% of the optimal
streaming capacity is greater than 0.9. For the adaptive algorithm, the same
performance is achieved when each peer only have 30 log N = 270 (2.7% of N)
downstream neighbors. We see that by improving the capacity of the last cut,
the performance of the system is also improved. We caution, however, that
when the peer-selection is significantly different from the baseline random
algorithm in Section 2.2, Theorem 1 will no longer apply. Hence, it remains
an open question as to how to design hybrid schemes that adaptively improve
the capacity in the last hop, while retaining the robustness of a random peer-
selection scheme at the same time. We leave this question for future work.

Next we simulate a multi-channel P2P network with N = 10000 peers
and 2 channels. We use the same setting as the single-channel simulation
for the upload capacity for all ON peers, the capacity of the server, and the
probability for a peer to be ON. We set N1 = 4000 and N2 = 6000. We
choose a streaming rate vector R̃ = [15/2, 10/3]T in Λm and let our target
streaming rate vector be R = 0.7R̃ (i.e., ǫ = 0.3). Channel 1 will become an
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insufficient channel and channel 2 will be a sufficient channel. For channel
1, we need 1000 helpers and channel 2 could provide 1000 helpers. In this
case, each normal peer in channel 1 needs to reserve 1 link for helpers. We
plot the probability that the streaming rate of each channel j is greater than
its target streaming rates Rj and the probability that both channels 1 and
2 sustain a streaming rate greater than their corresponding target streaming
rate R1 and R2, respectively, as the number of downstream neighbors of each
peer varies. The result is shown in fig 3. We see that the performance of
sufficient channel is worse than the insufficient channel. The reason is that
there is only 6000 peers in the sufficient channel, and on average there are
3000 ON peers. However, 1000 of the ON peers is helping the insufficient
channel. Hence, there are only 2000 ON peers left in the sufficient channel,
which is equivalent to having an ON probability of 1/3. Hence, the network
size and the ON probability of the sufficient channel are both smaller. We
will then need a larger number of downstream neighbors to achieve the same
success probability.

5 Conclusion

In this paper, we study the streaming capacity of sparsely-connected P2P
networks. We show that even with a random peer-selection algorithm and
uniform rate allocation, as long as each peer maintains Ω(log N) downstream
neighbors, the system can achieve close-to-optimal streaming capacity with
high probability when the network size is large. We then extend our analy-
sis to multi-channel P2P networks, and we let “helpers” from channels with
excessive upload capacity to help peers in channels with insufficient upload
capacity. We show again that we can achieve a close-to-optimal stream-
ing capacity-region by letting each peer uniformly randomly select Ω(log N)
neighbors from either the peers in the same channel or from the helpers.

These results provide important new insights on the streaming capac-
ity of large P2P network with sparse topology. In future work, we plan to
study how to improve the peer-selection and rate-allocation algorithm to fur-
ther optimize the streaming capacity. We note that although our analytical
results show that having Ω(log N) neighbors is sufficient to achieve close-
to-optimal streaming capacity with high probability, our simulation results
indicate that the actual number of peers required can still be fairly large. A
natural next step is to improve the constant in front of the Ω(log N) result
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and still retain the simplicity and robustness of a random selection scheme.
Our analysis provides an important insight that the capacity of the last cut
(i.e., the capacity from direct upstream neighbors) is often the bottleneck.
Our simulation results demonstrate that, by slightly modifying the control
at the last hop, the performance of the system can indeed be improved. We
envision that hybrid schemes that both balance the capacity at the last hop
and exploit some level of random peer-selection may be able to achieve the
best tradeoff between performance and complexity.

A Proof of Lemma 8

Proof. 1) It is clear from (22) that Hj and Nj have the same order unless
Hj = 0. Hence, either Hj = 0 or

Hj = Θ(Nj) = Θ(N).

2) Note that us,j = Rj/(1 − ǫ), we have

|Hj| =

∣

∣

∣

∣

⌊

NjRj

(1 − ǫ)u
− us,j

u
− pNj

⌋∣

∣

∣

∣

≤
∣

∣

∣

∣

⌊

(Nj − 1)Rj

(1 − ǫ)u
− pNj

⌋∣

∣

∣

∣

.

If Hj < 0, we have
(Nj − 1)Rj

(1 − ǫ)u
− pNj < 0.

Thus,

|Hj| ≤ pNj −
(Nj − 1)Rj

(1 − ǫ)u
+ 1.

We then have

lim sup
N→∞

|Hj|
Nj

= lim sup
Nj→∞

|Hj|
Nj

≤p − Rj

(1 − ǫ)u
.
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Let η′ , 1 − Rj

(1−ǫ)up
. Since

Rj

(1−ǫ)up
> 0, we have η′ < 1. On the other hand,

because

lim sup
N→∞

|Hj|
Nj

≤ pη′, (28)

and
|Hj |
Nj

> 0, p > 0, we have η′ > 0. Now, choose η such η′ < η < 1,

according to (28), we have for large enough N

|Hj| ≤ pηNj .

3) From (22) we have

pNj + Hj

Nj

u +
us,j

Nj

≥pu +
us,j

Nj

+
u

Nj

(

NjRj

(1 − ǫ)u
− us,j

u
− pNj − 1

)

=pu +
us,j

Nj
+

Rj

(1 − ǫ)
− us,j

Nj
− pu − u

Nj

=
Rj

(1 − ǫ)
− u

Nj
.

Choose ǫ′ < ǫ. We then have,

Rj ≤ (1 − ǫ)

(

pNj + Hj

Nj
u +

us,j

Nj
+

u

Nj

)

= (1 − ǫ′)

(

pNj + Hj

Nj
u +

us,j

Nj

)

+ (ǫ′ − ǫ)

(

pNj + Hj

Nj
u +

us,j

Nj

)

+ (1 − ǫ)
u

Nj

Note that ǫ′ − ǫ < 0. For large enough N , we have

−(1 − ǫ)
u

Nj

+ (ǫ′ − ǫ)

(

pNj + Hj

Nj

u +
us,j

Nj

)

≤ 0.

Hence,

Rj ≤ (1 − ǫ′)

(

pNj + Hj

Nj
u +

us,j

Nj

)

. (29)

Combining (21) and (29) yields (26).
4) To show (27), note that R ∈ (1 − ǫ)Λm, we have

∑

j∈J

NjRj

≤ (1 − ǫ)(upN + us).
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Hence,

∑

j∈J

Hj ≤
∑

j∈J

(

NjRj

(1 − ǫ)u
− us,j

u
− pNj

)

=
∑

j∈J

NjRj

(1 − ǫ)u
− us

u
− pN

≤pN +
us

u
− us

u
− pN(using )

=0.

Therefore, (27) holds.

B Proof of Theorem 9

For any insufficient channel j ∈ I, consider the subnetwork Gj . We will use
a similar technique as we did for the single-channel model. We first focus on
the min-cut from the server s to any given destination t. Denote the further
subnetwork of Gj that contains all the ON peers in Nj , the destination t and

the links between them as GON,t
j , i.e., GON,t

j will contains the server, the peers
in Hj and the ON peers in Nj and the links between them. Let the set of
ON peers in Nj be NON

j . Let the number of peers in NON
j excluding the

server and the destination be Yj. According to Proposition 2, the min-cut of

Gj statistically dominates by the min-cut of GON,t
j . We can then study GON,t

j

instead of Gj .
We will estimate the “failure” probability for each individual cut using

Chernoff bound and take the union bound of them. However, we need to
categorize cuts more carefully because now we have two different kinds of
peers: the normal peer in channel i and the helpers borrowed from other
channels. We define a cut of GON,t

j by dividing peers into a set Vn,h
j that

contains the server, n ON peers from the set Nj and h helpers from the

set Hj, and the complementray set Vn,h
j

c
that contains the destination, the

remaining Yj −n ON peers and Hj −h helpers. In the following, by “the left

set” we mean the set Vn,h
j and by “the right set” we mean the set Vn,h

j

c
. For

each pair of (n, h) there are totally
(

Yj

n

)(

Hj

h

)

such cuts. Define

N n,h
j , Vn,h

j ∩ Nj,Hn,h
j , Vn,h

j ∩Hj.
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N n,h
j is the set of normal ON peers of channel j that are in the left set and

Hn,h
j is the set of helpers of channel j that are in the left set. Define the set

N n,h
j

c
and Hn,h

j

c
as the complementray set of N n,h

j and Hn,h
j in NON

j and Hj ,
respectively. Recall that Ci,k is the link capacity between node i and node

k. Let Cn,h
j be the capacity of the cut, which is given by

Cn,h
j =

∑

i∈Vn,h
j

∑

k∈Vn,h
j

c

Ci,k.

The capacity of a cut comes from four different kinds of contribution
including (i) the contribution from the server to the normal peers in the
right set, (ii) the contribution from the normal peers in the left set to the
normal peers in the right set, (iii) the contribution from the normal peers in
the left set to the helpers in the right set and (iv) the contribution from the
helpers in the left set to the normal peers in the right set. Note that there is
no contribution from helpers to other helpers since there are no connections
between them. Denote these four parts of contribution as Cn,h

j,s→N , Cn
j,N→N ,

Cn,h
j,N→H and Cn,h

j,H→N (we omit the superscript h in Cn
j,N→N since it does not

depend on the number of helpers on the left set h). More specifically,

Cn,h
j,s→N =

∑

k∈Nn,h
j

c

Cs,k,

Cn
j,N→N =

∑

i∈Nn,h
j

∑

k∈Nn,h
j

c

Ci,k,

Cn,h
j,N→H =

∑

i∈Nn,h
j

∑

k∈Hn,h
j

c

Ci,k,

Cn,h
j,H→N =

∑

i∈Hn,h
j

∑

k∈Nn,h
j

c

Ci,k.

The capacity of a cut can then be written as

Cn,h
j = Cn,h

j,s→N + Cn
j,N→N + Cn,h

j,N→H + Cn,h
j,H→N .

Note that for each normal peer, there are K reserved links for helpers, and
therefore the upload capacity of each normal ON peer that can be utilized
for other normal peers will be given by u′ = M ′

M
u, where M ′ = M − K. The
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contribution of a normal peer in the left set to that in the right set normalized
by the per link capacity u/M still has a hypergeometric distribution. So are
the contribution from the server to the normal peers in the right set and the
contribution from the helpers in the left set to the normal peers in the right
set. The expectations of different parts conditioned on Yj can be written as

E
[

Cn,h
j,s→N |Yj, t is ON

]

= (Yj − n + 1)
us,j

Yj + 1
,

E
[

Cn,h
j,s→N |Yj, t is OFF

]

= (Yj − n)
us,j

Yj

,

E
[

Cn
j,N→N |Yj

]

= (Yj − n + 1)n
u′

Nj − 1
,

E
[

Cn,h
j,H→N |Yj

]

= (Yj − n + 1)h
u

Nj

.

However, Cn,h
j,N→H has a different distribution. For each individual i ∈ Nj, k ∈

Hj, Cik will be a Bernoulli random variable with parameter 1/Nj times the
per link capacity u

M
. Note however that such Cik are not independent across

i or k. Nonetheless, we can show that

E
[

Cn,h
j,N→H|Yj

]

=
n(Hj − h)

YjM
u.

Now define

C
′n,h
j = Cn,h

j,s→N + Cn
j,N→N + Cn,h

j,H→N ,

and let

C̄
′n,h
j =E

[

C
′n,h
j

∣

∣

∣
Yj

]

=E
[

Cn,h
j,s→N |Yj

]

+ E
[

Cn
j,N→N |Yj

]

+ E
[

Cn,h
j,H→N |Yj

]

.

In addition, define the contribution from all the helpers to the normal peers
on the right side as Cn

j,AH→N , i.e.,

Cn
j,AH→N =

∑

k∈Hj

∑

i∈Nn,h
j

c

Ci,k.

We have

E
[

Cn
j,AH→N

]

= (Yj − n)
Hj

Nj
u.

We have the following lemma.
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Lemma 11. For insufficient channel j and any ǫ > 0, assume that M =
Ω(log N), Nj = Θ(N) and Hj = Θ(N). For any ǫ′′ ∈ (0, 1) there exists

N0 such that for N > N0 if γ ∈ [p(1 − ǫ′′)
1
3 , p) and Yj ≥ γNj, we have the

following results for 0 ≤ n ≤ Yj and 0 ≤ h ≤ Hj

1) When n ≤ δ1Yj, and 0 < δ1 < 1, we have

(1 − ǫ′′)Cf,j ≤ C̄
′n,h
j ; (30)

2) When Yj − (K + 1)/p ≥ n ≥ δ1Yj for some constants δ1 > 0, we have

(1 − ǫ′′)Cf,j ≤ E
[

Cn
j,N→N |Yj

]

; (31)

3) When n ≥ Yj − (K + 1)/p, we have

(1 − ǫ′′)2Cf,j ≤ E(1 − ǫ′′)
[

Cn
j,N→N |Yj

]

+ Cn,h
w,j , (32)

where

Cn,h
w,j =

[

(1 − ǫ′′)E
[

Cn
j,AH→N

]

− (Hj − h)(Yj − n + 1)
u

M

]+

+ [(Hj − h)u/M − K(Yj − n + 1)u/M ]+ .

(Cn,h
w,j is the expectation of the worst case value of Cn,h

j,N→H + Cn,h
j,H→N in these

condition, which will be described later.)

Proof. We first consider part 1). Note that Nj = Θ(N). We can assume
that β1N ≤ Nj ≤ β2N . We consider two different ranges of n. i) Suppose
n ≤ δ3 log(N) for some constants δ3. We have

lim inf
N→∞

C̄
′n,h
j ≥ lim inf

N→∞
E
[

Cn,h
j,s→N |Yj

]

≥ lim inf
N→∞

(Yj − n)
us,j

Yj

≥ lim inf
N→∞

(

1 − δ3 log(N)

γβ1N

)

us,j

=us,j ≥ Cf,j.

Therefore, (30) holds for large enough n.
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ii) Suppose δ3 log(N) ≤ n ≤ δ1Yj for some constants δ3. Then

lim inf
N→∞

C̄
′n,h
j ≥ lim inf

N→∞
E
[

Cn
j,N→N |Yj

]

≥ lim inf
N→∞

(Yj − n + 1)n
u′

Nj − 1

≥ lim inf
N→∞

(γβ1(1 − δ1)N − 1)δ3 log(N)
u′

β2N − 1

= lim inf
N→∞

γβ1(1 − δ1)

β2
δ3 log(N)u′

= + ∞.

Hence, (30) holds for large enough n. According to i) and ii), result 1) holds
consequently.

We now consider 2). Note that

E
[

Cn
j,N→N |Yj

]

= (Yj − n + 1)n
u′

Nj − 1

is a quadratic function of n. Therefore, for Yj − (K + 1)/p ≥ n ≥ δ1Yj,

E
[

Cn
j,N→N |Yj

]

=(Yj − n + 1)n
u′

Nj − 1

≥min{(1 + (K + 1)/p)(Yj − (K + 1)/p), δ1Yj(Yj − δ1Yj)}
u′

Nj − 1
.

Note that δ1Yj(Yj −δ1Yj) = Θ(N2), (1+(K +1)/p)(Yj −(K +1)/p) = Θ(N).
For large N , we will have

δ1N(Yj − δ1N) >> (1 + (K + 1)/p)(Yj − (K + 1)/p).

Hence, for Yj − (K + 1)/p ≥ n ≥ δ1N , we have

E
[

Cn
j,N→N |Yj

]

> (1 + (K + 1)/p)(Yj − (K + 1)/p).

If Yj ≥ γNj , we have

(1+(K+1)/p)(Yj−(K+1)/p)
u′

Nj − 1
≥ (1+(K+1)/p)(γNj−(K+1)/p)

u′

Nj − 1
.

39



Hence,
lim inf
N→∞

E
[

Cn
j,N→N |Yj

]

≥ (1 + (K + 1)/p)γu′.

For any ǫ′′, if N is large enough such that Nj = pjN and M = α log(N) are
large enough, we have

E
[

Cn
j,N→N |Yj

]

≥(1 + (K + 1)/p)(1 − ǫ′′)
1
3 γu′,

and

u′ =
M − K

M
≥ (1 − ǫ′′)

1
3 u

Choose γ such that γ ≥ p(1 − ǫ′′)
1
3 . We then have

E
[

Cn
j,N→N |Yj

]

≥(1 + (K + 1)/p)(1 − ǫ′′)
1
3 p(1 − ǫ′′)

1
3 (1 − ǫ′′)

1
3 u

=(1 − ǫ′′)(up + (K + 1)u).

Note that Hj ≤ KNj , for large enough N

Cf,j ≤
pNj + Hj

Nj
u +

us,j

Nj

≤up + Ku +
us,j

Nj

≤up + (K + 1)u

Therefore, for large enough N ,

(1 − ǫ′′)Cf,j ≤ (1 − ǫ′′′)up + (K + 1)u ≤ E
[

Cn
j,N→N |Yj

]

.

For 3), we have Yj − (K + 1)/p ≤ n. Then if Yj ≥ γNj

(Yj − n + 1)n
u′

Nj − 1
≥Yj

u′

Nj − 1

≥γ
M − K

M
u

For any ǫ′′, we can choose γ such that γ ≥ p
√

1 − ǫ and M large enough such
that M−K

M
≥

√
1 − ǫ′′. Then we will get

(Yj − n + 1)n
u′

Nj − 1
≥ (1 − ǫ′′)up. (33)
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Next we will show that for large enough N ,

(1 − ǫ′′)2Hj

Nj

u ≤ Cn,h
w,j .

First, if Hj−h ≤ K(Yj−n+1), we have (Hj−h)u/M−K(Yj−n+1)u/M ≤ 0,
and

lim sup
N→∞

(Hj − h)(Yj − n + 1)
u

M
≤ lim sup

N→∞
K(Yj − n + 1)2 u

M

≤ lim sup
N→∞

K((K + 1)/p + 1)2 u

α log(N)

=0.

On the other hand, since (Hj − h)(Yj − n + 1) u
M

≥ 0, we have

lim inf
N→∞

(Hj − h)(Yj − n + 1)
u

M
≥ 0.

Hence,

lim
N→∞

(Hj − h)(Yj − n + 1)
u

M
= 0.

Therefore, for large enough N , (Hj−h)(Yj−n+1) u
M

will be smaller than (1−
ǫ′′)

(Yj−n+1)Hj

Nj
u, whose limit is at least limN→∞(1− ǫ′′)

Hj

Nj
when N approaches

infinity, i.e.,

(1 − ǫ′′)E
[

Cn
j,AH→N

]

= (1 − ǫ′′)
(Yj − n + 1)Hj

Nj
u ≥ (Hj − h)(Yj − n + 1)

u

M
.

Thus

Cn,h
w,j =

[

(1 − ǫ′′)E
[

Cn
j,AH→N

]

− (Hj − h)(Yj − n + 1)
u

M

]+

+ [(Hj − h)u/M − K(Yj − n + 1)u/M ]+

= (1 − ǫ′′)
(Yj − n + 1)Hj

Nj
u − (Hj − h)(Yj − n + 1)

u

M
+ 0

≥ (1 − ǫ′′)
Hj

Nj
u − (Hj − h)(Yj − n + 1)

u

M

N→∞−→ (1 − ǫ′′)
Hj

Nj
u.
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Second, if K(Yj − n + 1) ≤ Hj − h ≤ (1 − ǫ′′)
Hj

Nj
M , we have

(Hj − h)
u

M
− K(Yj − n + 1)

u

M
≥K(Yj − n + 1)

u

M
− K(Yj − n + 1)

u

M
= 0.

and

(1 − ǫ′′)
(Yj − n + 1)Hj

Nj
u − (Hj − h)(Yj − n + 1)

u

M

≥(1 − ǫ′′)
(Yj − n + 1)Hj

Nj
u − Hj

Nj
M(Yj − n + 1)

u

M

=0.

Hence,

Cn,h
w,j =(1 − ǫ′′)

(Yj − n + 1)Hj

Nj
u − (Hj − h)(Yj − n + 1)

u

M
+ (Hj − h)

u

M

− K(Yj − n + 1)
u

M

=(1 − ǫ′′)
(Yj − n + 1)Hj

Nj
u − (Hj − h)(Yj − n)

u

M
− K(Yj − n + 1)

u

M

≥(1 − ǫ′′)
(Yj − n + 1)Hj

Nj
u − Hj

Nj
M(Yj − n)

u

M
− K(Yj − n + 1)

u

M

=(1 − ǫ′′)
Hj

Nj
u − K(Yj − n + 1)

u

M

N→∞−→ (1 − ǫ′′)
Hj

Nj

u.

Finally, if Hj − h ≥ (1 − ǫ′′)
Hj

Nj
M , we have

(Hj − h)
u

M
− K(Yj − n + 1)

u

M
≥Hj

Nj

M
u

M
− K(Yj − n + 1)

u

M
≥ 0,

and

(1 − ǫ′′)
(Yj − n + 1)Hj

Nj
u − (Hj − h)(Yj − n + 1)

u

M

≤(1 − ǫ′′)
(Yj − n + 1)Hj

Nj

u − Hj

Nj

M(Yj − n + 1)
u

M

=0.
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Thus,

Cn,h
w,j =0 + (Hj − h)

u

M
− K(Yj − n + 1)

u

M

≥Hj

Nj
M

u

M
− K(Yj − n + 1)

u

M

N→∞−→ Hj

Nj

u.

Combine the three different ranges of h together, we have

lim inf
N→∞

Cn,h
w,j = (1 − ǫ′′) lim

N→∞

Hj

Nj
u.

Thus for large enough N ,

Cn,h
w,j ≥ (1 − ǫ′′)2Hj

Nj
u.

Consequently, part 3) of the lemma holds.

In conclusion, for any ǫ′′ ∈ (0, 1), and any γ such that γ ≥ p(1− ǫ′′)
1
3 and

γ ≥ p
√

1 − ǫ′′, all the three parts hold. Obviously, p > p(1−ǫ′′)
1
3 > p

√
1 − ǫ′′.

The lemma holds if we choose γ ≥ p(1 − ǫ′′)
1
3 for any given ǫ′′ ∈ (0, 1).

Part 1) Lemma 11 basically says that when there are few normal peers
on the left the contribution from the peers on the left to the normal peers
on the left will be big enough (larger than Cf,j). Part 2) Lemma 11 says
that when there are many normal peers on the left but there are still a few
normal peers on the right, the contribution from the normal peers on the
left to the helpers on the right will dominant. Part 3) of Lemma 11 says
that when almost all the normal peers are on the left, we need to consider
all the three parts of the contribution except the contribution of the server.
Lemma 11 allows us to analyze the “failure” probability of a cut based on
how many peers that each side of the cut has, and also allows us to compare
the capacity of the cut to the mean capacity instead of Cf,j . Law of large
numbers then says the “failure” probability will converge to 0 if we compare
the cut capacity with its mean.

However, the distribution of Cn,h
j,N→H is different from the other three parts

of the contribution. It is not the sum of hypergeometric random variables.
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But its characteristic function can still be bounded by the characteristic
function of the sum of independent Bernoulli random variables. Note that
for each k ∈ Hn,h

j

c
, Ik =

∑

i∈Nn,h
j

Ci,kM/u is a Bernoulli random variables

with parameter n
Yj

. We can show that Ik’s are negatively related. To see this,

construct Jkl as the following. First set Jkl = Il for any l. Then if Jkk 6= 1,
choose one out of all reserved links from the left normal nodes randomly and
exchange it with the reserved links that peer k is connecting to. It is clear
that Jk has the same distribution as I given Ik = 1. If the chosen reserved
link connects to a helper k′ on the right, then after the exchanging, we have
Jkk = 1 and Jkk′ = 0. If the chosen reserved link connects to a helper on
the left, then we have Jkk = 1 and the other Jkl, l 6= k remain the same.
Under either case, we have Jkl ≤ Il, l 6= k. We then can apply Theorem 4
and bound the moment generating function of Cn,h

j,N→H as the sum of i.i.d.
Bernoulli random variables with parameter n

Yj
.

Now we consider sufficient channel j. We denote the cut by Vn
j and Vn

j
c

since there are no helpers involved. Let the capacity of the cut be Cn
j , which

is given by

Cn
j =

∑

i∈Vn
j

∑

k∈Vn
j

c

Ci,k.

Assuming that Yj +Hj > 0, the conditional expectation given the number of
ON peers Yj can be calculated easily

C̄n
j , E

[

Cn
j |Yj

]

=

{

us,j(Yj+Hj−n)

Yj+Hj
+ u

Nj−1
n(Yj + Hj − n) if t is OFF,

us,j(Yj+Hj+1−n)

Yj+Hj+1
+ u

Nj−1
n(Yj + Hj − n) if t is ON.

.

We have corresponding result for sufficient channels regarding the mean of
the cut capacity.

Lemma 12. Given ǫ, choose Hj’s according to (22). For sufficient channel
j, assume there exist η < 1 such that |Hj| ≤ ηpNj. For any 0 ≤ n ≤ Yj +Hj,
and ǫ′′ ∈ (0, 1) if γ′ ∈ [(1 − ǫ′′ + ηǫ′′)p, p) and Yj > γ′Nj we have

Yj + Hj ≥ (1 − ǫ′′)(1 − η)pNj, (34)

and,
(1 − ǫ′′)Cf,j ≤ C̄n

j . (35)
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Proof. It is not hard to see

C̄n
j ≤min

{

C0
f,j, C

Yj+Hj

f,j

}

≤min

{

us,j,
Yj + Hj

Nj

u +
us,j

Nj

}

.

We have

(1 − ǫ′′)Cf,j ≤ C̄n
j

⇔(1 − ǫ′′) min

{

us,j,
pNj + Hj

Nj
u +

us,j

Nj

}

≤ min

{

us,j,
Yj + Hj

Nj
u +

us,j

Nj

}

⇔(1 − ǫ′′)
pNj + Hj

Nj
u ≤ Yj + Hj

Nj
u

⇔(1 − ǫ′′)(pNj + Hj) ≤ Yj + Hj

Hence, for (35) to holds, it is sufficient to show that there exist γ′ < p such
that

γ′Nj + Hj ≥ (1 − ǫ′′)(pNj + Hj),

which is equivalent to

γ′ ≥ (1 − ǫ)p − ǫ′′
Hj

Nj
. (36)

Note that from Lemma 8 2), there exists η < 1 such that −Hj

Nj
≤ ηp, we have,

(1 − ǫ′′)p − ǫ
Hj

Nj

≤(1 − ǫ′′)p + ηpǫ′′

=(1 − ǫ′′ + ηǫ′′)p

<p.

Then we can choose any γ′ between [(1− ǫ′′ + ηǫ′′)p, p) as a constant and the
(35) holds. Substitute γ′ into (36) will yields (34).

Lemma 12 says that if Yj is close to or larger than its mean value pNj ,
the capacity of each cut is greater than the Cf,j, which is the minimum over
the mean value of any cut capacity. Now we can prove Theorem 9.
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Proof of Theorem 9. The proof is divided into two main parts.
A. Insufficient channels
For given ǫ′, let ǫ′′ = 1−

√

(1− ǫ′), i.e., (1− ǫ′′)2 = 1− ǫ′. For insufficient

channel, define B̃n,h
j to be the event {Cn,h

j ≤ (1 − ǫ′)Cf,j for any cut among

the
(

Yj

n

)(

Hj

h

)

cuts }. Let 0 < δ1 < 1 be a constant. We will first assume that
Yj = yj ≥ γNj for the γ as in Lemma 11 during the following discussion, and
consider the randomness of Yj at the end. We will consider three different
ranges of n and h.

1) When n ≤ δ1yj, is satisfied. From part 1) of Lemma 11 we will only

need to worry about the C
′n,h
j . Using Chernoff bound, for any θ > 0 we have

P
(

C
′n,h
j ≤ (1 − ǫ′)Cf,j

)

≤P
(

C
′n,h
j ≤ (1 − ǫ′′)E

[

C
′n,h
j

∣

∣

∣
Yj = yj

])

≤
E
[

exp(−θC
′n,h
j )

∣

∣

∣
Yj = yj

]

exp(−θ(1 − ǫ′′)E
[

C
′n,h
j

∣

∣

∣
Yj = yj

]

)

=
E
[

e−θCn,h
j,s→N

∣

∣

∣
Yj = yj

]

E
[

e−θCn
j,N→N

∣

∣Yj = yj

]

E
[

e−θCn,h
j,H→N

∣

∣

∣
Yj = yj

]

e−θ(1−ǫ′′)(E[Cn,h
j,s→N |Yj=yj]+E[Cn,h

j,N→H|Yj=yj]+E[Cn,h
j,H→N |Yj=yj])

.

We can use the same method as we did in Lemma 6 and we will have

P
(

C
′n,h
j ≤ (1 − ǫ′′)E

[

C
′n,h
j

∣

∣

∣
Yj = yj

]

|Yj = yj

)

≤ exp

(

− u

us,j

ǫ′′2

2
M ′

(

yi − n

yi
+

(n + h)(yi − n)

Ni

))

Since n ≤ δ1yj, we have yi − n ≥ (1 − δ1)yj ≥ γ(1 − δ1)Nj . Letting β =
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e
− u

us,j

ǫ′′2

2
M ′

, then

P





δ1yj
⋃

n=0

Hj
⋃

h=0

B̃n,h
j |Yj = yj





≤
δ1yj
∑

n=0

Hi
∑

h=0

(

yi

n

)(

Hi

h

)

P
(

C
′n,h
j ≤ (1 − ǫ′′)E

[

C
′n,h
j

∣

∣

∣
Yj = yj

]

|Yj = yj

)

≤
δ1yj
∑

n=0

Hi
∑

h=0

(

yi

n

)(

Hi

h

)

exp

(

− u

us,j

ǫ′′2

2
M ′

(

yi − n

yi
+

(n + h)(yi − n)

Ni

))

≤β

δ1yj
∑

n=0

Hi
∑

h=0

(

yi

n

)(

Hi

h

)

exp

(

− u

us,j

ǫ′′2

2
M ′

(−n

yi
+ δ1γ(n + h)

))

≤β

yj
∑

n=0

(

yi

n

)

β
− n

yi
+δ1γn

Hi
∑

h=0

(

Hi

h

)

βδ1γh

=β(1 + βδ1γ−1/yi)yi(1 + βδ1γ)Hi . (37)

2) When yj−(K+1)/p ≥ n ≥ δ1yj, from part 2) Lemma 11 we can found
N large enough and yj ≥ γNj such that (1 − ǫ′′)Cj,f ≤ E

[

Cn
j,N→N |Yj = yj

]

.
Hence, we only need to consider Cn

j,N→N . As result, for these cuts the capacity
between normal peers will be big enough, and we do not need to consider
the contribution from the helpers. Let us focus on the subnetwork only
contains the ON normal peers and the cuts of the subnetwork that divide
all the ON normal peers to two sets: one on the left with n peers and the
other on the right with yj − n peers. Define B̃n

j to be the event {Cn
j,N→N ≤

(1 − ǫ′′)
[

Cn
j,N→N |Yj = yj

]

for any cut among the
(

yj

n

)

cuts }. For a given n
such that yj − (K +1)/p ≥ n ≥ δ1yj, if a cut in this subnetworks has enough
capacity then any cuts in the subnetwork contains both ON normal peers and
helpers that divides the normal peers the same will also has enough capacity.
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More specifically, for a fixed n : yj − (K + 1)/p ≥ n ≥ δ1yj, we have

(

B̃n
j

)c

,{Cn
j,N→N ≥ (1 − ǫ′′)E

[

Cn
j,N→N |Yj = yj

]

for all the

(

yj

n

)

cuts}

⊂{Cn
j,N→N ≥ (1 − ǫ′′)2Cf,j for all the

(

yj

n

)(

Hj

h

)

cuts in GON,t
j for all h}

⊂{Cn,h
j ≥ (1 − ǫ′)Cf,j for all the

(

yj

n

)(

Hj

h

)

cuts in GON,t
j for all h}

=

Hj
⋂

h=0

(

B̃n,h
j

)c

Therefore, for yj − (K + 1)/p ≥ n ≥ δ1yj

Hj
⋃

h=0

B̃n,h
j ⊂ B̃n

j . (38)

For each n ≥ δ1yj

P
(

Cn
j,N→N ≤ (1 − ǫ′′)E

[

Cn
j,N→N |Yj = yj

]

|Yj = yj

)

≤ E
[

exp(−θCn
j,N→N)|Yj = yj

]

exp(−θ(1 − ǫ′′)E
[

Cn
j,N→N |Yj = yj

]

)
.

Using the same method as we did in Lemma 6 we can get

P
(

Cn
j,N→N ≤ (1 − ǫ′′)

[

Cn
j,N→N

]

|Yj = yj

)

≤ exp

(

−ǫ′′2

2

Mn(yi − n + 1)

Ni − 1

)

.
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then

P





Hj
⋃

h=0

B̃n,h
j |Yj = yj





≤P
(

B̃n
j |Yj = yj

)

≤
(

yi

n

)

P
(

Cn
j,N→N ≤ (1 − ǫ′′)

[

Cn
j,N→N

]

|Yj = yj

)

≤
(

yi

n

)

exp

(

−ǫ′′2

2

Mn(yi − n + 1)

Ni − 1

)

Note that for n ≥ δ1yj and yj ≥ γNj, we have

Mn(yi − n + 1)

Ni − 1
= M

yi − n + 1

Ni − 1
+ M

(n − 1)(yi − n + 1)

Ni − 1

≥ M
γNi − n + 1

Ni − 1
+ M

(n − 1)(yi − n + 1)

Ni − 1

≥ γM + M
−n + 1

Ni − 1
+ M

(n − 1)(yi − n + 1)

Ni − 1

≥ γM + M
(n − 1)(yi − n)

Ni − 1

≥ γM + γδ1(yi − n)M

Therefore, letting β ′ = e−M ǫ′′2

2 , for n ≥ δ1yj and yj ≥ γNj , we have

P
(

B̃n
j |Yj = yj

)

≤
(

yi

n

)

exp

(

−ǫ′′2

2

Mn(yi − n + 1)

Ni − 1

)

≤
(

yi

n

)

exp

(

−ǫ′′2

2
γM − ǫ′′2

2
γδ1(yi − n)M

)

≤β ′γ

(

yi

n

)

β ′δ1γ(yi−n). (39)

3) Then consider the case when yj−(K+1)/p ≤ n. There will be at most

(K + 1)/p + 1 normal peers on the right. Now consider Cn,h
j,H→N , which is the

contribution from all the helpers on the left to the normal peers on the right.
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For the cut that all helpers is on the left, we have Cn
j,AH→N = C

n,Hj

j,H→N (recall
that Cn

j,AH→N is the contribution from all the helpers to the normal peers on
the right side). Now we move the helpers to the right one by one. Note that
for each helper moved to the right, it takes away at most (yj −n + 1)u/M of
capacity from Cn

j,AH→N . We then have

Cn,h
j,H→N ≥

[

Cn
j,AH→N − (Hj − h)(yj − n + 1)

u

M

]+

,

where [·]+ denotes the projection to [0, +∞).
Now consider Cn,h

j,N→H. Since each helpers will have one and only one

upstream neighbors from all the normal peers, we have Cn,h
j,N→H is at most

(Hj − h)u/M , which is achieved when all the upstream neighbors of the
helpers on the right are on the left. However, for each normal peers on the
right, it will have at most K helpers as downstream neighbors. Therefore,
there are at most K(yj − n + 1) helpers will select their upstream neighbors
on the right. Hence,

Cn,h
j,N→H ≥ [(Hj − h)u/M − K(yj − n + 1)u/M ]+ .

We get for any h

Cn,h
j,H→N + Cn,h

j,N→H ≥
[

Cn
j,AH→N − (Hj − h)(yj − n + 1)

u

M

]+

+ [(Hj − h)u/M − K(yj − n + 1)u/M ]+ .

Recall that

Cn,h
w,j =E

[

(1 − ǫ′′)
[

Cn
j,AH→N − (Hj − h)(Yj − n + 1)

u

M

]+

+ [(Hj − h)u/M − K(Yj − n + 1)u/M ]+ |Yj = yj

]

.

According to part 3) of Lemma 11, for yj ≥ γNj , we have

(1 − ǫ′′)2Cf,j ≤ (1 − ǫ′′)E
[

Cn
j,N→N |Yj = yj

]

+ Cn,h
w,j .

Note that, for any small h such that (1 − ǫ′′)E
[

Cn
j,AH→N |Yj = yj

]

≤ (Hj −
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h)(Yj − n + 1) u
M

, we have

Cn,h
j ≤ (1 − ǫ′)Cf,j

⇒Cn
j,N→N + Cn,h

j,H→N + Cn,h
j,N→H ≤ (1 − ǫ′′)2Cf,j

⇒Cn
j,N→N + Cn,h

j,H→N + Cn,h
j,N→H ≤ (1 − ǫ′′)

[

E
[

Cn
j,N→N |Yj = yj

]

+ Cn,h
w,j

]

.

⇒Cn
j,N→N + [(Hj − h)u/M − K(yj − n + 1)u/M ]+

+
[

Cn
j,AH→N − (Hj − h)(Yj − n + 1)

u

M

]+

≤ (1 − ǫ′′)E
[

Cn
j,N→N |Yj = yj

]

+ [(Hj − h)u/M − K(yj − n + 1)u/M ]+

+
[

(1 − ǫ′′)E
[

Cn
j,AH→N |Yj = yj

]

− (Hj − h)(Yj − n + 1)
u

M

]+

⇔Cn
j,N→N +

[

Cn
j,AH→N − (Hj − h)(Yj − n + 1)

u

M

]+

≤ (1 − ǫ′′)E
[

Cn
j,N→N |Yj = yj

]

+
[

(1 − ǫ′′)E
[

Cn
j,AH→N |Yj = yj

]

− (Hj − h)(Yj − n + 1)
u

M

]+

⇔Cn
j,N→N +

[

Cn
j,AH→N − (Hj − h)(Yj − n + 1)

u

M

]+

≤ (1 − ǫ′′)E
[

Cn
j,N→N |Yj = yj

]

⇒Cn
j,N→N ≤ (1 − ǫ′′)E

[

Cn
j,N→N |Yj = yj

]

.

For any large h such that (1−ǫ′′)E
[

Cn
j,AH→N |Yj = yj

]

> (Hj−h)(Yj−n+1) u
M

,
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we have

Cn,h
j ≤ (1 − ǫ′)Cf,j

⇒Cn
j,N→N +

[

Cn
j,AH→N − (Hj − h)(Yj − n + 1)

u

M

]+

≤ (1 − ǫ′′)E
[

Cn
j,N→N |Yj = yj

]

+
[

(1 − ǫ′′)E
[

Cn
j,AH→N |Yj = yj

]

− (Hj − h)(Yj − n + 1)
u

M

]+

⇔Cn
j,N→N +

[

Cn
j,AH→N − (Hj − h)(Yj − n + 1)

u

M

]+

≤ (1 − ǫ′′)E
[

Cn
j,N→N |Yj = yj

]

+ (1 − ǫ′′)E
[

Cn
j,AH→N |Yj = yj

]

− (Hj − h)(Yj − n + 1)
u

M
⇒ Cn

j,N→N + Cn
j,AH→N

≤ (1 − ǫ′′)E
[

Cn
j,N→N |Yj = yj

]

+ (1 − ǫ′′)E
[

Cn
j,AH→N |Yj = yj

]

.

The last step holds because

Cn
j,AH→N ≤ (Hj − h)(Yj − n + 1)

u

M

+
[

Cn
j,AH→N − (Hj − h)(Yj − n + 1)

u

M

]+

.

We can then conclude that

Cn,h
j ≤ (1 − ǫ′)Cf,j for any of the

(

h

Hj

)

cut, any h

⇒Cn
j,N→N ≤ (1 − ǫ′′)E

[

Cn
j,N→N |Yj = yj

]

or

Cn
j,N→N + Cn

j,AH→N

≤ (1 − ǫ′′)E
[

Cn
j,N→N |Yj = yj

]

+ (1 − ǫ′′)E
[

Cn
j,AH→N |Yj = yj

]

Now define C̃n
j be the event that

{ for any of the

(

yj

n

)

cuts , Cn
j,N→N + Cn

j,AH→N

≤(1 − ǫ′′)E
[

Cn
j,N→N |Yj = yj

]

+ (1 − ǫ′′)E
[

Cn
j,AH→N |Yj = yj

]

}
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We have

P





yj
⋃

n=yj−(K+1)/p

Hj
⋃

h=0

B̃n,h
j |Yj = yj





≤P(Cn
j,N→N ≤ (1 − ǫ′′)E

[

Cn
j,N→N |Yj = yj

]

for any cut, any h

and any n ≥ yj − (K + 1)/p)

+ P(Cn
j,N→N + Cn

j,AH→N ≤ (1 − ǫ′′)E
[

Cn
j,N→N |Yj = yj

]

+ (1 − ǫ′′)E
[

Cn
j,AH→N |Yj = yj

]

for any cut, any n ≥ yj − (K + 1)/p, any h)

≤P





yj
⋃

n=yj−(K+1)/p

B̃n
j |Yj = yj



+ P





yj
⋃

n=yj−(K+1)/p

C̃n
j



 . (40)

For each cut, we have

P
(

Cn
j,N→N + Cn

j,AH→N ≤ (1 − ǫ′′)(E
[

Cn
j,N→N |Yj = yj

]

+ E
[

Cn
j,AH→N |Yj = yj

])

≤ E
[

exp(−θ(Cn
j,N→N + Cn

j,AH→N))|Yj = yj

]

exp(−θ(1 − ǫ′′)(E
[

Cn
j,N→N |Yj = yj

]

+ E
[

Cn
j,AH→N |Yj = yj

]

))
.

We can apply Lemma 5 to obtain a bound on the moment generating function
of Cn

j,AH→N , which is given by

E
[

exp(−θ(Cn
j,N→N + Cn

j,AH→N))|Yj = yj

]

≤ exp

[

M(yj − n + 1)
Hj + Nj

Nj

(e−θ u
M − 1)

]

.

Using the same method as we did in Lemma 6, one can show then that

P
(

Cn
j,N→N + Cn

j,AH→N ≤ (1 − ǫ′′)(E
[

Cn
j,N→N |Yj = yj

]

+ E
[

Cn
j,AH→N |Yj = yj

])

≤ exp

(

−ǫ′′

2

M(yj − n + 1)(Hj + Nj)

Nj

)

.

Therefore, for n ≥ yj − (K + 1)/p, we have

P





yj
⋃

n=yj−(K+1)/p

C̃n
j





≤
(

yj

n

)

exp

(

−ǫ′′

2

M(yj − n + 1)(Hj + Nj)

Nj

)

≤β
′γ

Hj+Nj
Nj

(

yj

n

)

β
′(yj−n)

Hj+Nj
Nj . (41)
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We are now ready to prove Theorem 9. Note that (39) holds for all
n ≥ δ1yj . We now combine 2) and 3) together and obtain the following from
(38) (39), (40) and (41).

P





yj
⋃

n=δ1yj

Hj
⋃

h=0

B̃n,h
j |Yj = yj





=P





yj−(K+1)/p
⋃

n=δ1yj

Hj
⋃

h=0

B̃n,h
j |Yj = yj



+ P





yj
⋃

n=yj−(K+1)/p

Hj
⋃

h=0

B̃n,h
j |Yj = yj





≤P





yj−(K+1)/p
⋃

n=δ1yj

B̃n
j |Yj = yj



+ P





yj
⋃

n=yj−(K+1)/p

B̃n
j |Yj = yj





+ P





yj
⋃

n=yj−(K+1)/p

C̃n
j





≤
yj
∑

n=δ1yj

β ′γ

(

yi

n

)

e−
ǫ′

2
Mδ1γ(yi−n) +

yj
∑

n=yj−(K+1)/p

β
′γ

Hj+Nj
Nj

(

yj

n

)

β
′(yj−n)

Hj+Nj
Nj

=≤β ′γ(1 + β ′−δ1γ)yj + β
′γ

Hj+Nj
Nj (1 + β

′δ1γ
Hj+Nj

Nj )yj . (42)

Now combine (37) and (42) we have

Nj−1
∑

yj=⌈γNj⌉

(

Nj − 1

yj

)

py
j (1 − p)Nj−1−yjP





yj
⋃

n=0

Hj
⋃

h=0

B̃n,h
j

∣

∣

∣

∣

∣

∣

Yj = yj





≤
Nj−1
∑

yj=⌈γNj⌉

(

Nj − 1

yj

)

py
j (1 − p)Nj−1−yj

[

βγ(1 + βδ1γ−1/yi)yi(1 + βδ1γ)Hi

+ β ′γ(1 + β ′δ1γ)yj + β
′γ

Hj+Nj
Nj (1 + β

′δ1γ
Hj+Nj

Nj )yj

]

≤βγ(1 + pβδ1γ−1/γNj )Nj (1 + βδ1γ)KNj

+ +β ′γ(1 + pβ ′δ1γ)Nj + β
′γ

Hj+Nj
Nj (1 + pβ

′δ1γ
Hj+Nj

Nj )Nj
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Recall that M = αj log(n), choose αj , δ1 large enough such that for d > 1

αj ≥ d
4us,j

δ1γǫ′′2u
.

We will have

β ′ =
1

N
2dus,j
γδ1u

,

β =
1

N
2d

γδ1

.

Consequently

βγ =
1

N
2d
δ1

≤ O

(

1

N2d

)

,

β ′γ =
1

N
2dus,j

δ1u

≤ O

(

1

N2d

)

,

β
′γ

Hj
Nj =

1

N
2dus,j

Hj+Nj
Nj

δ1u

≤ O

(

1

N2d

)

.

Moreover,

(1 + pβδ1γ−1/γNi)Ni

=(1 + pO(
1

N2d
))Ni

=O(1),

and similarly

(1 + pβ ′δ1γ)Ni = O(1),

(1 + pβ
′δ1

Hj+Nj
Nj

γ
)Ni = O(1).
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Therefore,

Nj−1
∑

yj=⌈γNj⌉

(

Nj − 1

yj

)

py
j (1 − p)Nj−1−yjP





yj
⋃

n=0

Hj
⋃

h=0

B̃n,h
j

∣

∣

∣

∣

∣

∣

Yj = yj





≤O

(

1

N2d

)

O(1) + O

(

1

N2d

)

O(1) + O

(

1

N2d

)

O(1)

≤O

(

1

N2d

)

.

Finally,

P

(

Cmin−min(s → Nj) ≤ (1 − ǫ′)

{

us,j,
pNj + Hj

Nj
u +

us,j

Nj

})

≤ NjP

(

Cmin(s → t) ≤ (1 − ǫ′)

{

us,j,
pNj + Hj

Nj
u +

us,j

Nj

})

≤ NjP





yj
⋃

n=0

Hj
⋃

h=0

B̃n,h
j





≤ NjP(Yj ≤ γNj)

+ Nj

Nj−1
∑

yj=⌈γNj⌉

(

Nj − 1

yj

)

py
j (1 − p)Nj−1−yjP





yj
⋃

n=0

Hj
⋃

h=0

B̃n,h
j

∣

∣

∣

∣

∣

∣

Yj = yj





≤ NjO(exp(−(1 − γ)Nj)) + NjO

(

1

N2d

)

=O

(

1

N2d−1

)

B. Sufficient Channel
For sufficient channel j, if Yj is given, then it is equivalent to a single

channel with Nj peers, Ỹj = Yj +Hj of which is ON. Then the result obtained
for single model when the number of ON peers is given still holds, i.e., Lemma
6 and (19) still holds. Let the ǫ′′ in Lemma 12 be ǫ′′ = 1−

√
1 − ǫ′ and choose

the corresponding γ′. We have Ỹj ≥ −Hj . The probability that Yj ≤ γ′Nj is
of order O(exp−(1 − γ′)2Nj).

Define B̃n
j to be the event {Cn

j ≤ (1 − ǫ′)Cf,j for any cut among the
(

Yj+Hj

n

)

cuts }. We have {Cn
j ≤ (1 − ǫ′)Cf,j} implies {Cn

j ≤
√

1 − ǫ′C̄n
j }
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given that Yj ≥ γ′Nj since
√

1 − ǫ′Cf,j ≤ C̄n
j . Let γ̃′ = γ′ + ηp so that

γ′ ≥ (1 − ǫ′)(1 − η)p. Since Ỹj ≥ γ̃′Nj, letting β ′′ = e−M
us,j

u
ǫ′′

2 , from (19) we
have

P

(

yj
⋃

m=0

B̃n
j

∣

∣

∣

∣

∣

Ỹj = yj

)

≤2β ′′γ̃′

(

1 + β ′′ γ̃
′

2

)yj

.

Therefore,

Nj+Hj
∑

yj=⌈γ̃′N⌉

(

Nj + Hj

yj

)

py
j (1 − p)Nj+Hj−1−yjP

(

yj
⋃

m=0

B̃m

∣

∣

∣

∣

∣

Ỹj = yj

)

≤
Nj+Hj−1
∑

yj=⌈γ̃′N⌉

(

Nj + Hj − 1

y

)

py(1 − p)Nj+Hj−1−yj

× 2β ′′γ̃′

(

1 + β ′′ γ̃
′

2

)y

≤
Nj+Hj−1
∑

y0=0

(

Nj + Hj − 1

yj

)

2β ′′γ̃′

(

p(1 + β ′′ γ̃
′

2 )
)y

j
(1 − p)Nj+Hj−1−yj

=2β ′′γ̃′

(

1 + pβ ′′ γ̃
′

2

)Nj+Hj−1

.

Then using exactly the same method as in Theorem 1, if M = αj log(N)

where αj ≥ 4dus,j

γ̃′uǫ′′2
, we have

P

(

Cmin−min(s → Nj) ≤ (1 − ǫ′)

{

us,j,
pNj + Hj

Nj
u +

us,j

Nj

})

≤ O

(

1

N2d−1

)

.

Remark : For insufficient channel, we need

αj ≥ d
4us,j

δ1γǫ′′2u
,
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where γ can be chosen close to p and δ1 can chosen close to 1 according to
Lemma 11. For sufficient channel, we need

αj ≥
4dus,j

γ̃′uǫ′′2
,

where γ̃′ can be chosen close to p according to Lemma 12. Therefore, for any
channel j, αj is close to

4dus,j

puǫ′′2
.

Similar to the single-channel model, we observe that if we require larger
streaming capacity or faster convergence rate, i.e., ǫ is smaller (consequently
ǫ′ and ǫ′′ is smaller) or d is larger, we will need a larger αj. If the probability
that a peer is ON is reduced, i.e., p is reduced, we will also need a larger αj .
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