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Abstract

In this paper, we develop a fast resource allocation algorithm that takes advantage of
intra-session network coding. The algorithm maximizes the total utility of multiple unicast
(or multicast) sessions subject to capacity constraints, where packets are coded within each
session. Our solution is a primal solution that does not use duality or congestion prices.
Thus, it does not require building up queues to achieve the optimal resource allocation.
Hence the queueing delay of the packets can be tightly controlled. The existing primal
solution in the literature requires a separate graph-theoretic algorithm to find the min-cut
of each session, whose complexity grows quadratically with the total number of nodes. In
contrast, we provide a new coded-feedback approach whose complexity grows only linearly
with the total number of nodes. More explicitly, by letting the ACK/feedback packets on
the return paths also carry coding coefficients as does the forward coded traffic, key network
information can be obtained more efficiently, which leads to a fast resource allocation scheme
fully integrated with the network coding operation.

1 Introduction

In this paper, we are interested in developing fast resource allocation algorithms that take ad-
vantage of intra-session network coding. For multicast sessions, intra-session network coding has
been found to offer two benefits over routing. First, the achievable throughput with coding is
often larger than that with routing [1]. Further, the maximum throughput can be achieved with
high probability by using simple random linear network codes [2]. Second, the resource allocation
problem with coding can be modeled as a convex optimization problem that is easy to solve. In
contrast, finding the optimal multicast tree with routing is often NP-hard [3, 4].

Although network coding leads to considerable performance improvement for multicast ses-
sions, the majority of the traffic in today’s Internet is by unicast. Intra-session network coding
does not offer throughput advantage over routing for unicast. Nonetheless, we argue in this
paper that, even for unicast traffic, intra-session network coding offers an attractive alternative
to routing. We use the following simple and motivational example. Consider the case when there
is only a single unicast session on a network (e.g., on a community LAN or a Virtual Private
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Network). It is well-known that the maximum throughput of the session is equal to the min-cut
max-flow (MCMF) rate between its source and destination. Traditional Internet protocols often
use only a single path. As a result, they are unlikely to attain the min-cut max-flow. Thus, it
would be more desirable to use multi-path control protocols. Without network coding, there are
two approaches available in the literature to achieve the optimal min-cut max-flow rate. First,
we can use a standard graph-theoretic algorithm, such as the push-&-relabel algorithm [5], to
find the max-flow value of the network, along with the paths that non-coded traffic should be
sent. Such graph-theoretic algorithms typically need to be executed separately from the network
traffic, and they require additional communication and control overhead. Second, we can apply
an adaptive control algorithm, such as the back-pressure algorithm in [6] or the multi-path con-
trol algorithm in [7], to achieve the optimal throughput for this single-session case. Both of these
algorithms need to build up queues in order to achieve the optimal throughput. Such queues
lead to increase in packet delay, which can be difficult to predict and control.

In contrast, network coding provides a surprisingly simple solution to achieve the optimal rate
of this single unicast problem. Each intermediate router simply mixes the incoming packets and
sends the coded packets to its neighbors. Then, with close-to-one probability, the number of
independent packets received by the destination will be equal to the min-cut max-flow value.
With simple precoding at the source, the destination can then decode the packets at near-optimal
rate. The advantage of network coding is apparent: The algorithm is simple and it converges
instantaneously to the optimal rate (when there is only a single session). Further, there is no
queue build-up and hence the packet delay can be tightly controlled. Third, the above scheme
extends naturally to a single multicast session.

In real networks, multiple unicast (or multicast) sessions must share the network resources.
Existing resource allocation algorithms are devised separately from the network coding operations
and can be classified into two categories: primal solutions and dual solutions. In a typical
dual solution, the queue at each link is interpreted as a price signal, which indicates the level
of imbalance between the offered-load and the capacity. The dual solution then updates the
resource allocation based on this price signal [3, 8–11]. One of the main disadvantage of dual
solutions is that there can be a disconnection between the optimality of the dual variables (i.e.,
the price) and the optimality of the primal variables (i.e., the resource allocation). First, even
if the the price converges, the rate allocation may not converge. An additional step (e.g., using
proximal algorithms [9]) is often required to enforce the convergence of the primal variables,
which increases the complexity of the solution. Second, before the price converges, the system
utility does not necessarily improve in each iteration. In fact, before the algorithm converges,
the rate allocation often violates the capacity constraints, which leads to queue-length dynamics
that are difficult to predict and control.

In contrast, primal solutions adjust the primal control variables (i.e., the rate allocation)
directly within the capacity constraints [12, 13]. Hence, the resulted rate allocation typically
improves the system utility (towards the optimal) over each iteration. Further, even before the
algorithm converges, the rate-allocation always satisfies the capacity constraints, and hence there
is no queue build-up.

However, a key step in the existing primal solution with network coding [12] is to use a separate
graph-theoretic algorithm to find the min-cut of the network. To the best of our knowledge,
the time-complexity of existing min-cut algorithms in the literature is at least O(|V |2), which
significantly increases the overall complexity of the solution. In this paper, we develop a much
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faster resource allocation algorithm than that of [12]. Specifically, by exploiting and refining a
novel concept of coded feedback (first introduced in [14,15]), we develop a new and fully distributed
algorithm that only takes O(|V |) time to compute the min-cut. This is an order of degree
faster than existing min-cut algorithms1 (including the O(|V |2) coded-feedback min-cut/max-
flow algorithms devised in [14, 15]). Our coded-feedback approach computes the min-cut as an
integral part of network-coding operation, by coding the feedback packets on the return path. By
developing low-complexity and distributed resource allocation schemes working in conjunction
with the ultra-efficient coded-feedback algorithm, our solution enjoys the benefits of both primal
solutions and the simplicity of network coding with minimal control and communication overhead.

The contributions of this paper are summarized as follows.

• We develop a fast resource allocation algorithm that can quickly allocate the full network
capacity and maximize the total network utility for multiple sessions.

• As a key step in the algorithm, we use the novel concept of coded-feedback to find the min-
cut of each session. Not only does the coded-feedback approach require lower complexity
than the graph-theoretic algorithms used in related works [12], it is also fully integrated
with the network coding operation.

• Even for unicast traffic, our algorithm can serve as an attractive alternative to traditional
non-coded solutions, such as the back-pressure algorithm [6]. Our algorithm has comparable
convergence speed and overhead as the back-pressure algorithm. On the other hand, since
our solution does not require the build-up of queues as price signals, the queue-length and
the packet delay can be tightly controlled.

2 System Model & The Overall Concept

2.1 System Model

We represent a network by a graph G = (V, L), where V is the set of nodes and L is the set of
directed links. We assume that each directed link l = 1, ..., |L| has a fixed capacity Rl. For the
sake of simplicity and ease of exposition, we assume that there is a set I of unicast sessions that
share the resources in such a network. (In Section 6, we will discuss how the problem formulation
and the solution can also be readily extended to the case with multicast sessions.) For each session
i = 1, ..., |I|, let si and di denote its source node and destination node, respectively. Let rl

i denote
the capacity of link l that is allocated to session i. Let ~ri = [rl

i, l = 1, ..., |L|]. From session i’s
point of view, its packets are transmitted on a sub-network with the same topology G = (V, L)
except that the capacity of each link is rl

i. In addition, to simplify the description of the network
coding operation, we assume that each session i only uses an acyclic subgraph Gi = (V, Li) of
G, where the link subset Li forms an acyclic graph. (we will discuss in Section 6 how to extend
the results to the case when sessions do not need to choose these acyclic graphs.) Define a cut
Ci for session i to be a subset of links from Li such that when these links are removed from the

1Throughout this paper, we ignore the computation time within a network node because we are mostly
interested in the speed of distributed algorithms. Thus, the time-complexity discussion is based on the delay
caused by exchanging control messages rather than caused by computation within a node.
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subgraph Gi, the source si and the destination di are disconnected. Given ~ri, define the value
ξi(Ci|~ri) of the cut Ci as the total rate (allocated to session i) of the links that belong to Ci.
Let Ĉi denote the collection of all cuts for session i. Define a minimum-cut (or min-cut) Cmin

i for
session i as the cut with the smallest value, i.e.,

ξi(C
min
i |~ri) = min

Ci∈Ĉi

ξi(Ci|~ri). (1)

This value ξi(C
min
i |~ri), which we subsequently denote as MCMFi(~ri), is also the maximum rate

that session i can transfer packets from source si to destination di, and hence is known as the
min-cut max-flow value of session i.

Assume that each session has a utility function Ui(xi) that is strictly concave and non-
decreasing. The utility function Ui(xi) characterizes the satisfactory level of the user of session
i when the service rate that it receives is xi. We assume that the derivative of Ui(·) is bounded
by M0 for all i. Let ~r = [~ri, i = 1, ..., |I|]. We are interested in the following utility-maximization
problem subject to capacity constraints:

max
~r=[~ri]≥0

|I|
∑

i=1

Ui(MCMFi(~ri)) (2)

subject to

|I|
∑

i=1

rl
i ≤ Rl for all links l.

This problem formulation is similar to the one proposed in [12].2 Next, we first present a
high-level overview of our solution methodology, which also has some similarity to the solution
of [12]. We then highlight the main step where our solution differs from [12].

2.2 The Overall Solution Methodology

One can show that the objective function in (2) is concave, and hence Problem (2) is a convex
optimization problem [12]. We can therefore use a subgradient-ascent method to solve it.3 Let
f(~x) be any concave function defined on a convex set. A vector ∂f(~x0) is called a subgradient of
the function f(~x) at ~x0 if the following holds:

f(~x)− f(~x0) ≤ ∂f(~x0) · (~x− ~x0) for all ~x. (3)

In [12], the authors show that a subgradient of the min-cut max-flow function MCMFi(~ri) is
given by the min-cut. More precisely, with a given ~ri, consider any min-cut Cmin

i for session i.
Define a vector ~µi = [µl

i, l ∈ L] such that

µl
i =

{

1 if l ∈ Cmin
i

0 otherwise.
(4)

2For multicast sessions, we can still use the problem formulation (2) by replacing MCMFi(~ri) with the
minimum of the min-cut max-flow value between the source si and each destination of a multicast session i [12].

3Since the MCMFi(~ri) is a piecewise-linear function of ~ri, the gradient may not exist everywhere, which is
why we use the subgradients.
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Then one can show that this vector ~µi is a subgradient of MCMFi(·) at ~ri [12].
Denote the objective function of (2) by

F (~r) =

|I|
∑

i=1

Ui(MCMFi(~ri)).

We can then construct a subgradient ∂F (~r) of F (~r) such that its (i, l)-th component is given
by [12]:

[∂F (~r)]il = U ′
i(MCMFi(~ri))µ

l
i, (5)

where U ′
i(·) is the derivative of the utility function Ui(·). Let Λ denote the set of ~r that satisfies

that capacity constraints, i.e., ~r ≥ 0, and
∑|I|

i=1 rl
i ≤ Rl for all links l. We can then use the

following constrained subgradient-ascent algorithm to solve (2). Let ~r(t) denote the resource al-
location at iteration t, and let ∂F (~r(t)) denote the corresponding subgradient (5) of the objective
function at ~r(t). The subgradient-ascent iteration is then given by:

~r(t + 1) = [~r(t) + α∂F (~r(t))]Λ, (6)

where α is a positive step-size and [·]Λ denotes the projection to the constraint set Λ. Like [12],
the above solution is a primal solution, and hence it has the desirable features of primal solutions
as discussed in Section 1.

Remark: Since the capacity constraint on each link is independent, the projection operation
[·]Λ can easily be carried out independently at each link.

A critical step in the above solution is to find a min-cut Cmin
i for each session i. The authors

of [12] use the graph-theoretic push-&-relabel (PNR) algorithm [5] to find the min-cut. Al-
though PNR can be implemented in a distributed fashion, it must be executed separately from
the network coding operation (see [14] for detailed discussion). Further, even the fully parallel,
distributed implementation of PNR still requires O(|V |2) communication time, which could sig-
nificantly slow down the overall convergence. In this paper, we take a different approach based
on the concept of coded-feedback, which computes the min-cut in O(|V |) time. In addition, a
highly-desirable feature of our new approach is that the computation is tightly integrated with
the network coding operations. Hence, it incurs minimum overhead and is easy to implement.

3 Finding Min-Cut Using Coded Feedback

3.1 A Unit-Capacity Network Model of Network Coding

Network coding operations are performed on a packet-by-packet basis. To better describe the
coding operations among different packets, we adopt the following unit-capacity network model,
commonly used in the network coding literature, to describe the new coded-feedback-based min-
cut algorithm.

For the following, we focus on a given session i and consider a directed acyclic subnetwork4

Gi = (V,Ei) used by session i. For simplicity, we drop the subscript i whenever there is no

4For directed cyclic networks with transmission delay, the time-axis naturally decouples the network into its
acyclic counterpart as first illustrated in [16]. More explicitly, by regarding the sequence number of each “packet”
as the corresponding topological order of each “unit-capacity edge”, any directed cyclic network is converted
automatically to the above unit-capacity acyclic network coding model.
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source of confusion. We assume that each edge e ∈ E is of unit-capacity, i.e., it is able to send
one packet per unit time. High-capacity links are modelled by multiple parallel edges. We also
assume that the delay for each edge is one unit time. Long-delay links are modelled by multi-hop
paths with added auxiliary nodes. Let s and d denote the source and destination respectively.
By converting links with different capacities to unit-capacity edges, this model characterizes the
packet-by-packet behavior of network coding.

Without loss of generality, we may further assume s being the most upstream node and d
being the most downstream node. We sometimes label nodes according to their corresponding
topological order (i.e. s = 1 and d = |V |). For the following, we use In(v) ⊆ E and Out(v) ⊆ E
to denote all edges entering/leaving node v. For notational simplicity, we use finite Galois field
GF(2b). The new algorithm works for finite fields of any size, including GF(3) used in the
illustrative example that follows.

3.2 Algorithmic Description of Network Coding

Following the generation-based practical network coding protocols [17], each packet along a unit-
capacity edge e carries an n-dimensional global coding vector me = (m1, · · · ,mn) in its header,
such that the coded symbol Xe ∈ GF(2b) in the payload is

Xe = m1X1 + · · ·+ mnXn (7)

where X1 to Xn are the information symbols (also known as non-coded/native symbols). We
assume each coding vector me being a row vector. For any subset E ′ ⊆ E of edges, we use the
notation [me : e ∈ E ′] as an |E ′| × n matrix constructed by concatenating |E ′| row vectors me

vertically.
The network coding (linear mixing) operations performed at each intermediate node consist

of two sub-routines:

§ Normal Network Coding

1: Run Choose Random Mixing Coefficients

2: Run Compute Coded Traffic

The description of the sub-routine Choose Random Mixing Coefficients is as follows.

§ Choose Random Mixing Coefficients

1: Each node v ∈ V \{s, d} chooses randomly an |Out(v)| × |In(v)| matrix Γ(v) = [γw,u(v)]
where each entry γw,u(v) is chosen independently and uniformly randomly from GF(2b) for
all (v, w) ∈ Out(v) and (u, v) ∈ In(v).

The second sub-routine Compute Coded Traffic is computed from the most upstream
node s toward the most downstream node d.

§ Compute Coded Traffic

1: Source s sends out randomly coded symbols according to (7) along Out(s), where the coding
vector me along e ∈ Out(s) is chosen uniformly randomly.

2: for v = s + 1, · · · , d− 1 do
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3: [me : e ∈ Out(v)]← Γ(v)[me′ : e′ ∈ In(v)].
4: Node v sends out coded symbols Xe according to (7) along all edges in Out(v).
5: end for

As illustrated in Line 3 of Compute Coded Traffic, matrix Γ(v) chosen in Choose

Random Mixing Coefficients is the mixing/transfer coefficients within node v. By choosing
Γ(v) and [me : e ∈ Out(s)] randomly, the above two sub-routines are simply an algorithmic way
of describing random packet mixing and broadcasting in a practical network coding scheme [17].
It is worth emphasizing that no special hardware is required for the first two subroutines except
the standard network-coding capable hardware.

Next, we introduce the novel concept of coded feedback, and show how it can identify a min-cut
using similar simple coding operations.

3.3 A Coded-Feedback Min-Cut Algorithm

The novel component of the new min-cut algorithm is the coded feedback message qe, which is an
n-dimensional row vector sent in the opposite direction of me. Namely, for any e = (u, v) ∈ In(v),
its coded feedback vector qe is a linear combination of {qe′ : e′ ∈ Out(v)}. In practice, the coded
feedback vector qe can also be embedded in the header of the acknowledgement packet in a
similar way as the coding coefficients me for the forward coded traffic. A detailed description of
the min-cut algorithm is as follows. (Subsequently, the following algorithm will be referred as
the Main Algorithm.)

§ A New Min-Cut Algorithm — The Main Algorithm

1: Run Choose Random Mixing Coefficients

2: Run Compute Coded Traffic

3: Run Compute Coded Feedback

4: return {e ∈ E : meq
T
e = 1}

The first two sub-routines are exactly the same as those in Normal Network Coding.
The only new sub-routine Compute Coded Feedback is described as follows. Let Rank(d)
denote the rank of the vectors [me : e ∈ In(d)] received by destination d.

§ Compute Coded Feedback

Starting from the most downstream node d and proceeding back to the most upstream node
s, compute the coded feedback vectors as follows.

1: Destination d randomly constructs (n − Rank(d)) vectors {m∗
a : a ∈ {1, · · · , n − Rank(d)}}

such that jointly {me : e ∈ In(d)} and {m∗
a} span the entire n-dimensional vector space.

2: Destination d randomly5 constructs two sets of vectors {qe : e ∈ In(d)} and {q∗a : a ∈

5As in a typical random network algorithms, the randomness in Lines 1 and 2 is needed for computing min-cut
correctly with high probability. (Refer to Proposition 2 below.) The detailed “random constructions” used in
Lines 1 and 2 are described briefly as follows. For Line 1, d arbitrarily chooses the complementing vectors [m∗

a].
Then, d randomly selects an (n − Rank(d)) × |In(d)| matrix Γd with each entry uniformly and independently
distributed. Replace [m∗

a] by [m∗

a] + Γd[me : e ∈ In(d)]. In this way, the new [m∗

a] is randomly constructed.
For Line 2, d first identifies Rank(d) independent me in [me : e ∈ In(d)]. Without loss of generality, assume
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(a) Normal
Network
Coding.

(b) Construct
the initial
coded feedback
[qe : e ∈ In(d)].

(c) Identify the
first edge with
meq

T

e = 1.

(d) Continue
the propaga-
tion of coded
feedback qe.

(e) Identify the
second edge
with meq

T

e = 1.

(f) The me and
qe under Algo.

Figure 1: An illustration of the new min-cut algorithm.

{1, · · · , n− Rank(d)}} such that the following matrices

q
∆
=

(

[qe : e ∈ In(d)]
[q∗a : a ∈ {1, · · · , n− Rank(d)}]

)

m
∆
=

(

[me : e ∈ In(d)]
[m∗

a : a ∈ {1, · · · , n− Rank(d)}]

)

satisfy qTm = In where In is an n by n identity matrix and qT is the transpose of q.
3: Destination d sends out the newly constructed {qe : e ∈ In(d)} along each edge in In(d).
4: for v = d − 1, · · · , s + 1 (i.e. from the most downstream node to the most upstream node)

do
5: Construct qv ← [qe : e ∈ Out(v)].
6: For those e ∈ Out(v) satisfying meq

T
e = 1, replace the corresponding rows in qv by all-zero

vectors.
7: [qe : e ∈ In(v)]← Γ(v)Tqv.
8: Node v sends qe along edges in In(v).
9: end for

Finally, the Main Algorithm returns the set of all edges satisfying meq
T
e = 1.

Most of the computation load in the above subroutine is within destination d, which involves
computing q satisfying qTm = In. Since during the decoding stage of normal network coding,
d has already had to find the inverse of the coding matrix m, the computation of the coded
feedback q, the left-inverse of m can be carried out with little extra cost. For intermediate
nodes other than s and d, a straightforward linear mixing is performed in Line 7 of Compute

Coded Feedback with the same mixing matrix Γ(v) used previously for computing the forward
messages. Therefore, one extra hardware requirement is for each intermediate node v to memorize
the randomly chosen mixing coefficients Γ(v) (used to perform previous coding operations). In
addition to the memory requirement, the other extra computation is to check the inner product
meq

T
e and to reset those qe with meq

T
e = 1, which induces little hardward/computation cost. In

that it is the last Rank(d) rows. Then the m matrix can be decomposed as an (|In(d)| − Rank(d)) × n matrix
m1 and an n× n invertible matrix m2. We then construct two corresponding sub-matrices q1 and q2 as follows.
Destination d first randomly chooses a q1 with each entry uniformly and independently distributed. Then, it
finds the unique q2 satisfying qT

2
= (In − qT

1
m1)m

−1

2
. The newly found q1 and q2 are concatenated to form the

desired q. The randomly chosen q1 will ensure the q2 and the entire q matrix being randomly constructed.
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summary, the subroutine Compute Coded Feedback is of similar complexity to Compute

Coded Traffic and can be performed with little extra cost.
We provide an example of this min-cut algorithm in Fig. 1. Consider a simple network as in

Fig. 1(a). Suppose there are n = 2 uncoded symbols and GF(3) is used for all linear operations.
Fig. 1(a) describes the corresponding normal network coding operations, in which nodes u and
v simply forwards the coding vectors (1, 0) and (0, 1), or equivalently the corresponding mixing
matrices are Γ(u) = (1, 1)T and Γ(v) = 1. (Note that the coding vectors are illustrated in the
figure with subscript m.) Line 1 of Compute Coded Feedback is redundant in this particular
example because Rank(d) = 2 = n and the received vectors [me : e ∈ In(d)] themselves are
spanning the entire n-dimensional space. The desired {m∗

a} is thus empty. Fig. 1(b) illustrates
one choice of [qe : e ∈ In(d)] such that

[qe : e ∈ In(d)]T[me : e ∈ In(d)]

=

(

2 2 0
1 2 1

)





1 0
1 0
0 1



 = I2 in GF(3)

satisfying Line 2 of Compute Coded Feedback. (Note that in this figure the coded feedback
vectors q are labeled with subscript q.) Fig. 1(c) shows that edge (v, d) has m(v,d)q

T
(v,d) = 1.

Fig. 1(d) continues the propagation of the coded feedback vectors back to the source s. Since
Γ(u) = (1, 1)T, q(s,u) = Γ(u)T[qe : e ∈ Out(u)] = (2, 1) + (2, 2) = (1, 0). Since Γ(v) = 1 and
m(v,d)q

T
(v,d) = 1, we have q(s,v) = Γ(v)Tqv = 1 · (0, 0) = (0, 0). The final coded traffic and coded

feedback vectors are illustrated in Fig. 1(d). There are exactly two edges {(s, u), (v, d)} satisfying
meq

T
e = 1 in Fig. 1(e). Our new coded-feedback algorithm then outputs {(s, u), (v, d)}, which is

indeed a minimum cut separating s and d.

Proposition 1 (Linear Running Time) Assuming the computation time (within a node) is
much smaller than the communication time (across different nodes), the proposed min-cut algo-
rithm stops in linear time O(|V |).

Note that existing preflow-based min-cut algorithms [5] require O(|V |2) communication time for
exchanging control messages.

Proof: As Compute Coded Traffic and Compute Coded Feedback process the nodes
in their topological order, both sub-routines finish in linear time. Once the feedback vector qe is
computed, each edge e immediately knows whether it belongs to the output edge set or not by
checking the inner product of me and qe. The proof of the linear running time is thus complete.
Q.E.D.

The correctness of the proposed algorithm is intractable for finite fields of small size (e.g.
GF(21)) due to the intrinsic hardness of the integer programming problem. (Note that we consider
the packet-by-packet (edge-by-edge) integer solutions). Take Fig. 2(a) for example. Each edge is
capable of carrying one symbol and thus has rl = 1. The MCMF(~r) of Fig. 2(a) is 2. Fig. 2(a)
also depicts one network coding solution in GF(3) where each node performs simple addition of
the incoming packets and the vectors along each edges describe the global coding vectors that
is embedded in the header of the packets. The network coding solution described in Fig. 2(a)
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(a) Original Network. (b) Removing (u4, v). (c) Removing (u3, v). (d) Removing (u3, v)
and (u4, v).

Figure 2: An illustration of the non-convex nature of packet-by-packet network coding behavior

achieves the optimal rate. If we remove edge (u4, v) as in Fig. 2(b), which is equivalent to reduce
the rate on (u4, v) from 1 to 0, the new MCMF(~r) = 2 remains unchanged but the original coding
solution is no longer able to achieve the optimal rate as edges (u1, T ) and (v, T ) now carry linearly
dependent packets. Similarly, if we remove edge (u3, v) alone, then the optimal rate cannot be
achieved (see Fig. 2(c)). Nonetheless, if we remove two edges (u3, v) and (u4, v) simultaneously,
then the optimal rate 2 can be again achieved (see Fig. 2(d)). The above examples illustrate
that although the graph-theoretic concept MCMF(~r) is concave with respect to the link-rate-
assignment ~r, the relationship between ~r and the achievable end-to-end rank/throughput is no
longer concave (actually not even monotonic). Since the Main Algorithm relies solely on the
algebraic concepts such as the rank, the inner product, and the left-inverse, rather than the graph-
theoretic concept of MCMF, the above irregularity significantly complicates the correctness
analysis of the Main Algorithm.

Nonetheless, the Main Algorithm becomes tractable when a relatively large finite field (say
GF(28) or GF(216) commonly used in practice) is used in conjunction with random linear network
coding [2].

Proposition 2 (Correctness) Let P (success) denote the probability that the output of our new
min-cut algorithm is a minimum cut separating s and d. For a finite field GF(2b), the success
probability can be lower bounded by

P (success) ≥
(

1− 2−b
)|E|

+ |E|
(

1− 2−b
)|E|
− |E|. (8)

When the field size 2b →∞, P (success) tends to one.6

Note that the size q = 2b is exponential to the number of bits b assigned for each symbol and
grows exponentially to a large number, say q = 216. Therefore, with close-to-one probability, the
new algorithm outputs a minimum cut.

Proof: We will first sketch the main intuition and several key intermediate steps. Then we
will provide the detailed proof of Proposition 2. Throughout this proof, we assume, without loss
of generality, that the min-cut max-flow value MCMF = n, which can always be satisfied by
adding (n−MCMF) auxiliary edges that directly connect s and d.

The main intuition behind this coded feedback approach is as follows. We say that an edge
set E ′ is parallel if any edge e ∈ E ′ cannot reach any other e′ ∈ E ′\e. Assume that there exists

a min-cut C that is also parallel. Let mC
∆
= [me′ : e′ ∈ C]. Then the forward coded messages

6There was a typo of (8) in our Infocom09 submission.
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received by destination d can be expressed as

mIn(d)
∆
= [me : e ∈ In(d)] = Γ ·mC (9)

for some |In(d)| × n matrix Γ. We call Γ the transfer matrix from C to In(d).
Let Algo denote a new algorithm that is identical to Compute Coded Feedback except

that Line 6 is removed, i.e. no zero-row-vector substitution. Then under Algo, we have

[qe : e ∈ In(v)]← Γ(v)T[qe : e ∈ Out(v)]. (10)

Note that in (10) the transfer matrix of the feedback vectors qe is the transpose of the transfer
matrix of the forward vectors me. We thus have

qC
∆
= [qe′ : e′ ∈ C]

= ΓT[qe : e ∈ In(d)]
∆
= ΓT · qIn(d). (11)

The above implies that

qT
CmC = qT

In(d)ΓmC = qT
In(d)mIn(d) = In (12)

where the first equality follows from (11), the second equality follows from (9), and the last
equality follows from the construction of qIn(d) in Line 2 of Compute Coded Feedback.
Since we assume MCMF = n, both qC and mC are n× n square matrices. Hence, (12) implies
that mCqT

C = In. Therefore, if any edge e is in the parallel min-cut C, then meq
T
e = 1. This

property can be generalized as follows even when C is not parallel.

• Property 1: Under Algo, if removing any edge e reduces the rank of [me : e ∈ In(d)], then
meq

T
e = 1.

In addition, the converse is also true as stated below.

• Property 2: Under Algo, removing any single edge e that has meq
T
e = 1 will reduce the

rank of the coding vectors [me : e ∈ In(d)].

Both properties have been rigorously proven in [14,15,18].
These two properties suggest that we can check whether meq

T
e = 1 to decide whether an edge e

is in a min-cut. Consider the following modified algorithm, which serves as a conceptually more
straightforward but implementation-wise less efficient version of the Main Algorithm.

§ A Modified Min-Cut Algorithm

1: Run Choose Random Mixing Coefficients

2: Run Compute Coded Traffic

3: Run Algo.
4: Let V1 ⊆ denote the vertex set such that any v ∈ V1, there exists a path from v to d not

using any edge e with meq
T
e = 1.

5: return the edge set C⋄ ∆
= {∀(u, v) ∈ E : u ∈ V \V1, v ∈ V1}.

11



As an example, Fig. 1(f) demonstrates the me and qe generated by Algo (i.e. without the
zero-vector-substitution in Line 6 of Compute Coded Feedback). There are three edges
(s, u), (s, v), and (v, d) that have meq

T
e = 1. Therefore, the node set V1 is V1 = {u, d} and the

output C⋄ is C⋄ = {(s, u), (v, d)}. Note that this is identical to the output of the proposed Main
Algorithm (cf. Fig. 1(e)).

Consider the following events: Let A0 be the event that random network coding achieves the
optimal rate MCMF (after Lines 1 and 2 of the Modified Min-Cut Algorithm). For any
edge e, let Ae denote the event that after the removal of e, random network coding can still
achieve the optimal rank MCMF. In [2], it is shown that

P (A0) ≥ (1− 2−b)|E| and P (Ae) ≥ (1− 2−b)|E|−1

if e is not in any minimum cut.7 Let E ′ denote the set of e that is not in any minimum cut and
let C∗ denote the min-cut that is the closest to d. (A formal definition that “a min-cut is the
closest to d” is provided in Appendix A, along with a proof that such a closest min-cut always
exists and is unique.) For the following, we will show that in the event A0∩

⋂

e∈E′ Ae, the output
C⋄ of the Modified Min-Cut Algorithm is indeed the min-cut C∗. By simple probability
inequalities, we will then have

P (success) ≥ P

(

A0 ∩
⋂

e∈E′

Ae

)

≥
(

1− 2−b
)|E|

+ |E ′|
(

1− 2−b
)|E|−1

− |E ′| ≥ (8).

We first provide one important property of C∗, the min-cut that is the closest to d, as follows
(which is proven in Appendix A). For any e /∈ C∗ that is reachable from some edge in C∗, e
must be in E ′, i.e., such e must not participate in any other min-cut. With the above property,
proving C⋄ = C∗ is a straightforward exploitation of the two properties of Algo as described
below.

In the event A0, removing any edge in C∗ will reduce the rate. By Property 1, any edge
in C∗ must have meq

T
e = 1. By the construction of C⋄, for any (u, v) ∈ C⋄, there exists a

path connecting v and d without using any edge in C∗. If C⋄ 6= C∗, then there must exist a
e⋄ = (u⋄, v⋄) ∈ C⋄ such that e⋄ /∈ C∗ and e⋄ is reachable from some edge in C∗. By the property
of the min-cut C∗, any such edge e⋄ must be in E ′. Nonetheless, in the event

⋂

e′∈E′ Ae′ , the edge
e⋄ ∈ E ′ must have me⋄q

T
e⋄ 6= 1 by Property 2 of the Algo. This leads to a contradiction as the

construction of C⋄ guarantees that any e⋄ ∈ C⋄ must have me⋄q
T
e⋄ = 1. The correctness of the

Modified Min-Cut Algorithm is proven.
Lines 4 and 5 of the Modified Min-Cut Algorithm require additional computation of the

node/edge sets that can reach d without using any edge e with meq
T
e = 1, which can be achieved

by any Shortest Path or Connected Component algorithm after setting the “distance” to
be infinity for edges with meq

T
e = 1. The proposed Main Algorithm replaces the Modified

Min-Cut Algorithm and the need of such a separate Shortest Path algorithm by resetting
to zero the very first encountered feedback vectors with meq

T
e = 1 (Line 6 of Compute Coded

7P (Ae) = 0 if e is part of a minimum cut.
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Feedback). For the following, we will quantify the impact of this new zero-vector substitu-
tion when compared to Main Algorithm, the results of which constitute a formal proof of
Proposition 2.

A formal proof of Proposition 2:

We first define the concept of intercepted/non-intercepted impact of a given edge e with respect
to an E0 ⊆ E. In the following definition, we consider the case that all edges in E0 is reachable
from e since the concept of being intercepted makes sense only to the downstream edges of e. For
those E0 containing non-downstream edges of e, our definition still applies with the following
slight modification:

Consider a new E ′
0

∆
= {e′ ∈ E0 : e′ being donwstream edges of e}. (13)

Therefore, without loss of generality, we assume all edges in E0 are downstream edges of e.
For any e ∈ E and any edge set E0 ⊆ E, (as illustrated in Fig. 3(a)), we can construct an

equivalent network by the following steps (as illurstrated in Fig. 3(b)). We first consider an
arbitrary cut containing e such that E0 is in between the cut and destination d. In Fig. 3(a), the
cut contains two edges. We use V0 ⊆ V to denote all the nodes that are reachable from some
edges in E0, which is illustrated by the cloud in Fig. 3(a). Consider all the paths connecting the
cut and some node v in V0 such that these paths use exactly one node in V0 (i.e. the terminal
node v) and do not use any edge in E0. In Fig. 3(a), there are four such paths connecting
the cuts and V0 without using any edges in E0. Augment the original network by duplicating
those paths and the corresponding coding operations on those paths. Each edge in the cut is
split to supply the original network and the new duplicated paths. All the terminal nodes v of
the original network are first disconnected from the original network and then reconnected to
the new duplicated paths. For example, the four paths in Fig. 3(b) is now connected to the
corresponding v ∈ V0 and the two edges in the cut are split to cover both the original network
and the four duplicated paths. Since the duplicated paths carry the same coding operations as
those in the original network, Figs. 3(a) and 3(b) are equivalent from the coding perspective.
As illustrated in Fig. 3(b), the left branch of the newly split e corresponds to the paths from
e to V0 not intercepted by E0, and the right branch correspond to the paths of e intercepted by
E0. We can then define the intercepted/non-intercepted impact of e by focusing on the right/left
branches of e respectively. For example, Fig. 3(c) illustrates the removal of the non-intercepted
impact of e as the left (non-intercepted) branch of the outgoing edges of e being removed.

For the following, we use the previous definition of A0 as the event that random network coding
achieves the optimal rate MCMF. However, we redefine the events Ae as follows. For any edge
e /∈ C∗ that is reachable from some edge in C∗ (or equivalently in between C∗ and d), let Ae denote
the event that after the removal of the non-intercepted impact of e with respect to C∗, random
network coding can still achieve the optimal rank MCMF. See Fig. 4 for illustration. Event
Ae denotes the case in which the removal of the non-intercepted thick edge does not change the
rank of the network coding session. We then note that removing non-intercepted impact can be
viewed as an extension of edge-removal in the duplicated networks. Moreover, by the property
of the closest min-cut C∗, any edge e /∈ C∗ that is reachable from some edge in C∗ does not
participate in any min-cut. Then there must exist a network coding solution such that after the
removal of e, one can still achieve the optimal MCMF rate (see Fig. 5(a)). Therefore, with the
removal of the left branch (the non-intercepted impact), there exists one solution that achieves
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(a) The original net-
work.

(b) An equivalent sub-
network after duplicat-
ing the non-intercepted
paths.

(c) Removal of the non-
intercepted impact of e.

Figure 3: Illustration of the intercepted/non-intercepted impact of e with respect to an edge
subset E0.

C∗
e

Non. Itrcpt.

Itrcpt.

Figure 4: The topological relationship of e and C∗. Edge cut C∗ contains four edges. We use
the thick edge to denote the non-intercepted impact of e with respect to C∗.

(a) Removal of e in the
original network.

(b) Equivalent coding
coefficients with the
removal of the unin-
tercepted impact (left-
branch) of e.

(c) Random coding co-
efficients with the re-
moval of the unin-
tercepted impact (left-
branch) of e.

Figure 5: The random coding arguments for the removal of the non-intercepted impact of e with
respect to an edge subset E0.
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(a) Original net-
work with qf

substituted by 0.

(b) Equivalent Net-
work without substi-
tution.

Figure 6: Illustration of the zero-row-vector substitution in Line 6 of the main algorithm.

the optimal MCMF rate with the coding coefficient on e being set to “×0” (see Fig. 5(b)).
Hence, by the same random network coding arguments in [2], if we choose the coding coefficient
of e randomly (see Fig. 5(c)), we have the following probability lower bound on P (Ae).

P (Ae) ≥ (1− 2−b)|E|.

Redefine E ′ as the set of e /∈ C∗ that is reachable from C∗. For the following, we will show
that in the event A0 ∩

⋂

e∈E′ Ae, the Main Algorithm will output the min cut C∗. By simple
probability inequalities, we again have

P (success) ≥ P

(

A0 ∩
⋂

e∈E′

Ae

)

≥
(

1− 2−b
)|E|

+ |E ′|
(

1− 2−b
)|E|−1

− |E ′| ≥ (8).

We need the following observation before completing the proof.

Observation: Line 6 of the Compute Coded Feedback has the effect of switching
the coded feedback to the one corresponding to the non-intercepted path with respect
to the edge subset E0, where E0 contains all edges that have had output meq

T
e = 1 by

the Main Algorithm.

Take Fig. 6 for example. Suppose originally edge e is carrying a feedback vector qe and the two
edges e1 and e2 in E0 are carrying qe1

and qe2
. Once the feedback vectors qe1

and qe2
along E0

are replaced by zero vectors (see Fig. 6(a)), this changes of the feedback vectors will propagate
backward to the upstream edges of E0. Therefore, the feedback vector along e will change from
qe to a new feedback vector, which we term it q̃e. Let us also consider the intercepted/non-
intercepted impact of e with respect to E0 as depicted in Fig. 6(b). It can be proven that in the
new subnetwork of Fig. 6(b), the original edge e is still carrying qe, the same coded feedback vector
of Fig. 6(a) before the zero-vector substitution. Moreover, the non-intercepted path of e carries
q̃e, the same coded feedback vector of Fig. 6(a) after the zero-vector substitution. Therefore, the
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zero-vector substitution is equivalent to switching our focus from qe on the original edge e to the
q̃e along non-intercepted path of e. For the following, we will prove that the output of the Main
Algorithm is C∗ by combining Properties 1 and 2 of Algo and the above observation.

Assume the event A0 ∩
⋂

e∈E′ Ae is satisfied. Let ek denote the k-th edge such that the Main
Algorithm results in mek

qT
ek

= 1. We will prove by induction that all such ek must be in C∗.
Moreover, ek must be the k-th closest-to-d edge8 in C∗ for all k = 1, · · · , n.

Consider the initial case k = 1: I.e. e1 being the very first edge that has meq
T
e = 1 under the

Main Algorithm. Since the zero-vector substitution in Line 6 of Compute Coded Feedback

has not be executed before, e1 must have me1
qT
e1

= 1 under the normal Algo. The assumption
that A0 is satisfied and Property 1 of Algo jointly imply that any e ∈ C∗ have me1

qT
e1

= 1
under normal Algo. Therefore, as the very first such edge, e1 must be in between C∗ and d.
(One implication of the above statement is that if e1 /∈ C∗, then e1 ∈ E ′.) Suppose e1 /∈ C∗.
Then the impact of e1 must not be intercepted by C∗. Otherwise, there exists e ∈ C∗ that is a
downstream edge of e1 and has meq

T
e = 1, which contradicts the construction of e1 as the first

such edge (the one that is the closest to d). If the impact of e1 is not intercepted by e1, then
the assumption of Ae1

is equivalent to saying that the removal of e1 will not reduce the rank
received by d. Nonetheless, this implication contradicts Property 2 of Algo, which says that the
removal of any e1 with me1

qT
e1

= 1 will reduce the received rank. From the above reasoning, we
have proven that the very first e1 must be in C∗. Moreover, e1 must be the most closest-to-d
edge in C∗.

Suppose ek ∈ C∗ for all k ≤ k0 and e1, · · · , ek0
are the k0 closest-to-d edges in C∗. Con-

sider ek0+1. Note that the zero-vector substitution has been performed on and only on E0
∆
=

{e1, · · · , ek0
}. Consider an arbitrary edge e ∈ C∗\E0. The fact that C∗ is a min-cut implies that

removal of the non-intercepted impact of e with respect to E0 must reduce the rank received
by d. Therefore, after the k0 times of zero-vector substitution, the output qe of the Main Al-
gorithm must still satisfy meq

T
e = 1, which is proven by applying Property 1 of Algo to the

non-intercepted path in the duplicated network noted in the Observation. Since all e ∈ C∗\E0

must have meq
T
e = 1, we must have the following two cases: Either ek0+1 ∈ C∗, or ek0+1 ∈ E ′.

Namely, ek0+1 must be in between C∗ and d and cannot be strictkly in between s and C∗. Other-
wise, the Main Algorithm will output some e ∈ C∗\E0 with meq

T
e = 1 first before outputting

ek0+1, which contradicts that that ek0+1 is the very next such edge. Since ek0+1 is the very next
edge having mek0+1

qT
ek0+1

= 1, if ek0+1 ∈ C∗, then ek0+1 must be the (k0 + 1)-th closest-to-d edge

in C∗. The proof of induction will then be complete.
The only remaining case is when ek0+1 ∈ E ′. In this case, the intercepted/non-intercepted

impact of ek0+1 with respect to C∗ must be equivalent to the intercepted/non-intercepted impact
of ek0+1 with respect to E0. Otherwise, suppose there is an edge e ∈ C∗\E0 that also “intercepts”
the impact of ek0+1. Then such e must be a downstream edge of ek0+1. The facts that all
e ∈ C∗\E0 have meq

T
e = 1 and e being a downstream edge of ek0+1 contradict the assumption

that ek0+1 is the very next edge having mek0+1
qT
ek0+1

= 1. Following this reasoning, the assumption

of Aek0+1
is equivalent to that the removal of the non-intercepted impact of ek0+1 with respect

to E0 will not reduce the rank received by d. By Property 2, this statement implies that after
the k0 times of zero-vector substitution, we must have mek0+1

qT
ek0+1

6= 1, which contradicts the

8We can use an arbitary but fixed topological order of the edges that is consistent with the up-
stream/downstream relationship.

16



construction of ek0+1. Therefore ek0+1 ∈ C∗ and the proof of induction is complete.
Q.E.D.

4 Combining Coded Feedback with Subgradient-Ascent

In this section, we will combine the coded-feedback method in Section 3 and the subgradient-
ascent algorithm in (6) to develop a unified solution to Problem (2). Compared with the solution
in [12] that uses a standard graph-theoretic method (i.e., PNR) to find the min-cut, the use of
the coded-feedback method in our solution introduces two new issues when interacting with the
subgradient-ascent algorithm. First, the coded-feedback method can only operate on graphs with
unit edge-capacity. However, the subgradient-ascent iteration (6) produces rate-allocations that
are real numbers. Hence, we need a way to switch between integers and real numbers. Second,
there is a non-zero probability that the coded-feedback method will not find the min-cut in a
given iteration. We will need a way to account for this probability.

In this section, we use the following technique to address these issues. We choose an integer
D as a common denominator. We then choose the time unit such that a link with rate 1 can
transmit D packets per unit time. For each ~r(t) (whose components are real numbers), we
construct arbitrarily another vector ~̃r(t) ∈ Λ such that each of its components r̃l

i(t) is an integer
multiple of 1/D and its difference from rl

i is less than 1/D. For each session i, when we form the
unit-capacity network model for network coding (see Section 3.1), we convert each link l ∈ Li

with allocated rate rl
i(t) to Dr̃l

i(t) number of edges. Thus, each unit-capacity edge corresponds to
a link rate of 1/D, and can transmit one packet per unit time. Intra-session network coding and
coded-feedback operations are carried out on this unit-capacity network model. Let Ranki(~̃ri(t))
denote the rank collected by the destination di of session i through this unit-capacity sub-network
for session i. Then with high probability, MCMFi(~̃ri(t)) = Ranki(~̃ri(t))/D. Once the coded-
feedback algorithm returns a subset C̃i of edges (which with high probability is the min-cut for
the unit-capacity sub-network for session i), we then construct a subset of links Ci ⊂ Li from
the edge subset C̃i as follows. For any link l ∈ Li, if r̃l

i(t) = 0, then include l in Ci. If r̃l
i(t) > 0

and if all the Dr̃l
i(t) unit-capacity edges that link l maps to belong to C̃i, then include l in Ci.

For other cases, exclude l from Ci. The reason behind the above construction is as follows. If C̃i

is indeed a min-cut for the unit-capacity sub-network of session i, and if a link l maps to an edge
e ∈ C̃i, then all other edges that link l maps to must also belong to C̃i. Hence, the subset Ci

constructed above must be a min-cut of the sub-network G(V, Li) of session i where the capacity
of each link l is given by r̃l

i. We can then form the vector ~̃µi(t) as in (4), and calculate a vector
∂F̃ (~r(t)) such that its (i, l)-th component is given by:

[∂F̃ (~r(t))]il = U ′
i(Ranki(~̃ri(t)))µ̃

l
i. (14)

Note that this vector ∂F̃ (~r(t)) can be viewed as an approximation to the subgradient ∂F (~r(t))
given in (5). Finally, we replace ∂F (~r(t)) by ∂F̃ (~r(t)) in the subgradient-ascent iteration (6),
i.e.,

~r(t + 1) = [~r(t) + α∂F̃ (~r(t))]Λ. (15)
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Unfortunately, as a consequence of the above techniques, the vector ∂F̃ (~r(t)) is no longer a
subgradient of the objective function F (~r) at ~r(t). Hence, the iteration (15) is not precisely a
subgradient-ascent algorithm. However, as we show next, if D is large and if the probability with
which the coded-feedback method returns a min-cut of the unit-capacity sub-network is close to
1, then the above iteration will result in rate allocation that is close to optimal. Let Ψ denote
the set of solutions to the original problem (2). Let F ∗ = F (~r ∗) for any ~r ∗ ∈ Ψ.

Proposition 3 For any ǫ > 0, there exist α0, δ0, D0 > 0 such that for all α ≤ α0, δ ≤ δ0 and
D ≥ D0, if the coded-feedback algorithm can output the min-cut for the unit-capacity sub-network
of each session i with probability no less than 1− δ, then starting from any initial rate-allocation
vector ~r(0), the iteration (15) will produce rate-allocation vectors that satisfy the following:

lim
T→∞

1

T

T
∑

t=0

E[F ∗ − F (~̃r(t))] ≤ ǫ.

Remark: Recall that F (~̃r(t)) corresponds to the total system utility when network-coding is
applied to the unit-capacity sub-network generated by the discretized rate-allocation vector ~̃r(t).
Clearly, F (~̃r(t)) ≤ F ∗ for all t. Hence, Proposition 3 implies that the rate-allocation produced by
iteration (15) will be close to optimal in an averaging sense. Further, if the system is stationary
and ergodic in the limit when t → ∞, then Proposition 3 implies that, when t is large, we will
have,

E[F (~̃r(t))] ≥ E[F ∗]− ǫ. (16)

Proof: For any ~r ∗ ∈ Ψ, define

∆(t) , ||~r(t + 1)− ~r ∗||2 − ||~r(t)− ~r ∗||2.

We would like to calculate the conditional expectation E[∆(t)|~r(t)]. Note that from (15), we
have,

||~r(t + 1)− ~r ∗||2 ≤ ||[~r(t) + α∂F̃ (~r(t))]− ~r ∗||2

= ||~r(t)− ~r ∗||2 + 2α∂F̃ (~r(t))(~r(t)− ~r ∗)

+ α2||∂F̃ (~r(t))||2. (17)

There are two cases.
Case 1: The coded feedback algorithm returns the min-cut of the unit-capacity sub-network

of each session i correctly. In this case, MCMFi(~̃ri(t)) must be equal to Ranki(~̃ri(t)). Hence,
∂F̃ (~r(t)) must be a subgradient of F (·) at ~̃r(t). From the definition of the subgradient (3), we
then have,

∂F̃ (~r(t))(~r ∗ − ~̃r(t)) ≥ F (~r ∗)− F (~̃r(t)).

Further, recall that each component of ~̃r(t) differs from the corresponding component of ~r(t) by at
most 1/D. Since the derivative of Ui(·) is bounded by M0, we must have ||∂F̃ (~r(t))|| ≤M0|I||L|
for all t. Hence,

|∂F̃ (~r(t))[~r(t)− ~̃r(t)]| ≤
M0(|I||L|)

2

D
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for all t. Using (17), we thus have,

||~r(t + 1)− ~r ∗||2

≤ ||~r(t)− ~r ∗||2 + 2α∂F̃ (~r(t))(~̃r(t)− ~r ∗)

+2α∂F̃ (~r(t))(~r(t)− ~̃r(t)) + α2||∂F̃ (~r(t))||2

≤ ||~r(t)− ~r ∗||2 − 2α[F (~r ∗)− F (~̃r(t))]

+2α
M0(|I||L|)

2

D
+ α2(M0|I||L|)

2.

Case 2: if the coded-feedback algorithm does not compute the min-cut correctly, we will still

have ||∂F̃ (~r(t))|| ≤M0|I||L|. Further, note that ||~r(t)−~r ∗|| ≤ |I|
L
∑

l=1

Rl , M1. Using (17) again,

we have,

||~r(t + 1)− ~r ∗||2

≤ ||~r(t)− ~r ∗||2 + 2αM0|I||L|M1 + α2(M0|I||L|)
2.

Combining the two cases, and using the assumption that the coded-feedback algorithm can
return the min-cut correctly with probability no smaller than 1− δ, we then have,

E[∆(t)|~r(t)]

≤ −2α(1− δ)[F (~r ∗)− F (~̃r(t))]

+2αM0|I||L|

(

δM1 +
|I||L|

D

)

+ α2(M0|I||L|)
2.

Take another expectation on both sides with respect to ~r(t), and summing over t = 0, 1, ..., T ,
we obtain

E[||~r(T + 1)− ~r ∗||2 − ||~r(0)− ~r ∗||2]

≤ −2α(1− δ)
T
∑

t=0

E[F (~r ∗)− F (~̃r(t))]

+2TαM0|I||L|

(

δM1 +
|I||L|

D

)

+ Tα2(M0|I||L|)
2.

Since E[||~r(T + 1)− ~r ∗||2] ≥ 0, dividing both sides by 2α(1− δ)T , and letting T →∞, we have

lim
T→∞

1

T

T
∑

t=0

E[F (~r ∗)− F (~̃r(t))]

≤M0|I||L|

[

δM1

1− δ
+
|I||L|

(1− δ)D

]

+
α

2(1− δ)
(M0|I||L|)

2.

The result then follows by choosing δ, D and α such that the right-hand-side is less than ǫ.
Q.E.D.
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(a) The directed cyclic
network

(b) Acyclic subgraphs for in-
dividual sessions

Figure 7: The network with four coexisting sessions.
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(a) The New Coded-
Feedback Scheme
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(b) The back-pressure
scheme with packet-
by-packet queue-length
updates.

Figure 8: Time evolution of the proposed coded-feedback scheme compared with the back-
pressure scheme.

5 Numerical Experiments

We simulate our solution on a network of 16 nodes (see Fig. 7(a)). There are 48 directed links,
each with a rate of 1. There are four co-existing unicast sessions (s1, d1) to (s4, d4) competing for
the resources and each session chooses an acyclic subgraph as shown in Fig. 7(b). As discussed in
Section 4, we choose the common denominator D = 30. This means that a link with rate 1 can
transmit D = 30 packets per unit time, and can be converted to D = 30 unit-capacity edges when
we construct the sub-networks for network coding. Every unit time, one set of coding coefficients
are transmitted from the source nodes to the destination nodes, and the feedback coefficients
are transmitted from the destination nodes to the source nodes. We then use (15) to update the
rate-allocation vector ~r(t) once every unit-time. Other parameters of the system include: The
number of information symbols to be mixed together at the source (often called the generation
size [17]) is n = 60, the finite field size is GF(28), the utility function is Ui(x) = log(x + 10) for
i = 1, · · · , 4, and the step size is α = 1.

Fig. 8(a) illustrates the time evolution of the proposed scheme with respect to the number of
sub-gradient updates. We have also solved the optimization problem (2) offline, and found that
the optimal rate-allocation is given by (x∗

1, x
∗
2, x

∗
3, x

∗
4) = (4

3
, 2, 4

3
, 4

3
). As shown in Fig. 8(a), our

proposed solution with coded-feedback reaches 90% of the optimal rate-allocation in less than
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Figure 9: Time evolution for a set of less practical values of parameters, which on the other hand
has a smaller gap to the optimal rates.

130 iterations. In our simulation, we choose the step-size α = 1 such that it is the largest α that
can still reach 90% of the optimal rate-allocation. We say such choice of α as having the fastest
90% convergence. Note that by sacrificing the speed of convergence (decreasing the value of α)
and by using finer granularity (increasing the values of n and D), our algorithm can approach
the optimal rates (4

3
, 2, 4

3
, 4

3
). Fig. 9 describes the convergence of the our fast resource allocation

algorithm but using a different set of parameters: D = 90, n = 180, and α = 0.3. This is a
less practical set of parameter values as in practice [19] the generation size is usually between
n =30–60. On the other hand, this choice of parameters reduces the gap to the optimal solution
(x∗

1, x
∗
2, x

∗
3, x

∗
4) = (4

3
, 2, 4

3
, 4

3
) as can be seen in Fig. 9.

To compare with a non-coded solution, we have simulated the rate-allocation algorithm in [6,20]
that solves a similar utility-maximization problem using the back-pressure algorithm. In the rest
of the section, we will simply refer to it as the back-pressure scheme. For a fair comparison,
we restrict the back-pressure scheme to also search among the acyclic subgraphs predefined
in Fig. 7(b). In addition, we let the back-pressure scheme update its queue-length and rate-
allocation every 1/30 time. (This is because the back-pressure scheme may update the control
every time one packet is transmitted, which takes 1/30 time under our setting.) In Fig. 8(b), we
show the time-evolution with the back-pressure scheme, where each unit on the x-axis is equal to
30 queue-length updates (i.e., equal to the time for one iteration in Fig. 8(a)). Next, we briefly
discuss some features of our scheme and compare it with the back-pressure scheme.

5.1 Convergence Speed and Overhead of Feedback

Our first observation is that the solution in this paper has comparable convergence speed as
the back-pressure algorithm. (Note that in Fig. 8(b) the step-size is also chosen to have the
fastest 90% convergence.) The overhead of the two algorithms is also comparable. In the coded-
feedback algorithm, one feedback coefficient is sent on every edge. Hence, a link of rate 1 sends
30 feedback coefficients per unit-time. In the back-pressure scheme, since each update (every
1/30 time) requires the feedback of queue-length information, each link also sends 30 queue-
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Figure 10: The number of queued packets in four representative nodes under the back-pressure
scheme in Fig. 8(b) with packet-by-packet queue-length updates.

length updates per unit-time. We note however that the feedback frequency in our proposed
solution (i.e., once every unit-time) is much slower than that of back-pressure (i.e., once every
1/30-time). Hence, our proposed solution could be more attractive when there are constraints
on the feedback frequency.

5.2 Controlling the Queue Length

A key advantage of our proposed solution with coded-feedback is that the queue-length can be
tightly controlled. In fact, since each link needs to store at most 30 packets before applying the
coding operation, it only needs a buffer of 30 packets. In contrast, in our numerical experiments
of the back-pressure algorithm in Fig. 8(b), the number of queued packets exceeds 500 at 7 of the
total 16 nodes. Fig. 10 describes the queue-length evolution of the back-pressure algorithm for
four representative nodes. We denote each representative node by its x and y coordinates. For
example, the first representative node with x = 2 and y = 3 is the node that is at the intersection
of the 2nd column from the left and the 3rd row from the bottom. As seen in Fig. 10, different
nodes will have different queue lengths. We observe that under the back-pressure scheme, the
queue lengths vary significantly from node to node and many of them are much larger than the
buffer sizes required by our network-coding-based solution.

In general, the queue-length dynamics under the back-pressure scheme depend on many factors,
such as the step-size, the network topology and the traffic pattern. Hence, the queue-length (and
correspondingly the packet delay) is much harder to control. For instance, if one decreases
the step size in a rate-allocation algorithm based on back-pressure (e.g., in [20]), although the
eventual rate-allocation will be closer to the optimal, the queue-length will typically increase
inverse-proportionally to the step-size.9 In comparison, a highly-desirable feature of our proposed
solution is that the queue-length is decoupled from the step-size α. Hence, one can tune the
precision of the eventual rate-allocation without increasing the queue-length or packet delay.

9Note that even with the technique of virtual queues [20], the physical queue length is still highly correlated
with the step size.
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This thus gives an extra degree of freedom for designing efficient control schemes, especially for
delay-sensitive applications.

5.3 Quick Start

We also observe that our proposed solution with coded-feedback achieves better rate-allocation
than the back-pressure scheme at the beginning of the iterations. This “quick start” feature is
achieved by the following. If a given link l is shared by I l sessions, we can simply let each
competing session grab 1/I l share of the available capacity Rl and set rl

i(0) = Rl

Il as the initial
rate-allocation. As a result, it is guaranteed that each session can achieve at least 1

maxl Il of the

optimal rate-allocation at the very beginning of the iteration. (Note that this lower bound 1
maxl Il

is quite conservative, and in practice the ratio is usually much higher.) Moreover, suppose after
a certain amount of time, one additional session would like to join the network. Again, the new
session can grab its fair share of the link capacities at the beginning of the iterations and start
transmission right-away.

In Fig. 8(a), the above “quick-start” feature ensures that, at the beginning of the iterations,
the initial receiving rates are (5

6
, 5

6
, 7

6
, 4

3
), which is (62.5%, 41.7%, 87.5%, 100%) of the optimal

rates (4
3
, 2, 4

3
, 4

3
). In Fig. 8(a), the coded-feedback algorithm ensures that Sessions 3 and 4 retain

≈70–90% of the optimal rates throughout the iterations while gradually increasing the rates for
Sessions 1 and 2. For comparison, in Figs. 8(b), Session 2 is not able to receive any packets
in the first 8 × 30 iterations under the back-pressure scheme. These results indicate that the
back-pressure scheme does not have this “quick-start” feature.

6 Discussions

In this section, we discuss extensions of our results to multicast sessions and to cyclic networks.

6.1 Multicast Sessions

To model multicast sessions, we associate each session i with a source node si and a set Ji

of destination nodes dij, j = 1, ..., |Ji|. Given the rate allocation ~ri for the sub-network i, let
MCMFi(~ri, dij) denote the min-cut max-flow value between the source si and the destination
dij. With intra-session network coding, the maximum rate at which the source can send to all
destination nodes is equal to MCMFi(~ri) , minj∈Ji

MCMFi(~ri, dij). Note that the problem
formulation (2) remains the same with this new definition of MCMFi(~ri).

The subgradient-ascent algorithm can also be used, except that when computing a subgra-
dient, we need to use the notion of a “critical cut” [12]. A destination node j is critical if
MCMFi(~ri, dij) = MCMFi(~ri), i.e., its min-cut max-flow value is equal to the minimum among
all destinations. A min-cut Cmin

i between the source si and such a critical destination j is called
a critical cut. Once a critical cut Cmin

i is found, the authors of [12] then use (4) and (5) to form
a subgradient of the objective function F (~r). They then use the subgradient-ascent algorithm
(6) to compute the optimal rate-allocation.

A similar methodology can also be used in our coded-feedback approach. As in Section 4, we
first replace the rate allocation ~ri by the discretized value ~̃ri with granularity 1/D. We then
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search for the critical-cut for the sub-network with the rate allocation ~̃ri. To find out which
destination is critical, we use a technique introduced in [12]. Specifically, when the source is
sending out packets, these packets are coded from a set of uncoded symbols with a rank greater
than MCMFi(~̃ri)D. Note that with high probability, the critical destination will receive a
rank equal to MCMFi(~̃ri)D, while a destination that is not critical will receive a rank greater
than MCMFi(~̃ri)D. Hence, this technique enables the identification of the critical destination
through the outcome of the network coding operation. Once a critical destination is identified,
the coded-feedback algorithm can then start from this destination to find the critical cut. We can
then use (14) and (15) to update the rate-allocation. This network-coding-based search for the
critical destination returns the critical destination with probability close-to-one (but not exactly
one). Therefore, an additional small amount of uncertainty is introduced during this step. Using
similar proof techniques, we can upper bound the impact of this uncertainty and derive parallel
convergence results as in Proposition 3.

6.2 Cyclic Graphs

In our system model in Section 2.1, we assume that each session i chooses an acyclic subgraph
Gi = (V, Li) from the original network graph. In fact, our solution can be generalized such
that one does not need to pre-choose such an acyclic subgraph. We use the following technique,
which is standard in the network-coding literature to convert a cyclic graph G = (V, L) to an
acyclic graph [16]. The key idea is to introduce the notion of time/delay. Assume for the sake
of simplicity that each link has unit delay. For a given integer K, we can make K + 1 copies of
the set V of nodes. We index these copies by time 0, 1, ..., K. Then, we make K copies of each
directed link l. Each copy of link l has the same capacity Rl. For each k = 1, 2, ..., K, the k-th
copy of the directed link l connects the corresponding transmitting node at time k − 1 to the
receiving node at time k. Intuitively, such a construction models the delay at the original directed
link l. Further, the copy of node n at time k− 1 is also connected to the copy of node n at time
k with infinite capacity, which models the “memory” at node n. With these constructions, the
resulted graph must be acyclic because the links always go in the direction of time. It has been
shown that, for both unicast and multicast sessions, as long as K is large, the maximum rate
supported by the above acyclic graph will approach that of the original (and potentially cyclic)
graph [16].

Our coded-feedback-based solution can be applied to such an acyclic network graph by expand-
ing the set of control variables. Specifically, we can associate a primal variable ~rl,k = [rlk

i ], k =
1, ..., K for each copy of the directed link l, where rlk

i is the capacity allocated to session i on the
k-th copy of link l. Each copy of the primal variable ~rl,k, k = 1, ..., K, must satisfy the capacity
constraint that

∑|I|
i=1 rlk

i ≤ Rl. Once ~rk, k = 1, ..., K are chosen, the network coding and coded
feedback operations can be applied to the acyclic subgraph constructed above for each session
i. Finally, the computation of the approximate subgradient-vector (14) and the approximate
subgradient-ascent iteration (15) can also be naturally extended to this acyclic subgraph.
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7 Conclusion

We have developed a new fast resource allocation algorithm based on the novel concept of coded-
feedback. Our solution performs coding operations on both the forward and the return directions.
Coding on the forward direction eliminates the need of building up queues. In conjunction with
a primal subgradient-ascent algorithm, this leads to a scheme with easily controllable packet
delay and with a desirable quick-start feature. Coding on the feedback direction provides an
ultra-efficient O(|V |)-time method of finding the min-cut of a network, which is an order of
degree faster than existing O(|V |2)-time min-cut algorithms. These features, enabled by the
tight integration of network coding and coded feedback, are beneficial for both multicast and
unicast sessions. As shown in our numerical results, even for unicast sessions, our solution can
serve as an attractive alternative to the existing non-coded resource allocation algorithms.

A The Closest Minimum Cut

Consider the unit-capacity, directed acyclic network model G = (V,E) discussed in Section 3.1.
We can have the following definition. Let (E ′, E ′′) denote a partition of the edge set E such that
E ′′ contains the edges that participate in at least one min-cut and E ′ = E\E ′′ denotes the edges
that do not participate in any min-cut. For any min-cut C, we denote the edges EC→d that are
strictly in between C and d by

EC→d
∆
= {e ∈ E\C : e is reachable from some edge in C and d is reachable from e} (18)

Definition 4 (The Closest Min-Cut) A min-cut C∗ is the closest to destination d if EC∗→d∩
E ′′ = ∅.

Lemma 5 There exists a unique C∗ that is the closest to d.

Proof: We first prove the existence. For any min-cut C, consider the corresponding value
g(C) = |EC→d ∩ E ′′|. Choose a min-cut Ca that minimizes g(C). As g(C) ≥ 0 being of integer
value, such a minimizing Ca always exists. The existence of C∗ is thus equivalent to proving
g(Ca) = 0.

Suppose g(Ca) > 0. There exists an edge eb and a min-cut Cb such that eb ∈ ECa→d and
eb ∈ Cb. Since |Ca| = |Cb| = MCMF, by the min-cut max-flow theorem, there exists a set
of MCMF edge-disjoint paths connecting s and d. We use P1, P2, to PMCMF to denote such
edge-disjoint paths. Since Ca must cut these MCMF paths, each edge in Ca must use exclusively
one of these paths. We can thus label the edges in Ca as ea,1 to ea,MCMF depending on their
corresponding paths. Similarly, we can label the edges in Cb as eb,1 to eb,MCMF. For any i, we
define the order between ea,i and eb,i as follows. We say ea,i < eb,i if ea,i is a strictly upstream
edge of eb,i. Intuitively, ea,i ≤ eb,i implies that either ea,i < eb,i or ea,i = eb,i. Symmetrically, we
can define ea,i > eb,i and ea,i ≥ eb,i. Following the above order, we let ea∨b,i denote the maximum
of the two edges ea,i and eb,i.

Without loss of generality, we assume that it is eb,1 that satisfies eb,1 ∈ ECa→d, which also
implies that ea∨b,1 = eb,1 > ea,1. Consider a new edge set Ca∨b = {ea∨b,1, · · · , ea∨b,MCMF} of
MCMF edges. Since each path Pi is used by exactly one edge in a min-cut, we have ea,i 6= eb,j
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for any i 6= j. Therefore, Ca∨b contains MCMF distinct edges. Shortly after, we will show that
Ca∨b is a cut. Since |Ca∨b| = MCMF, Ca∨b must be a min-cut. We then notice that by the
above construction

ECa∨b→d ⊆ ECa→d.

Since eb,1 = ea∨b,1 belongs to ECa→d ∩ E ′′ but not to ECa∨b→d, we have g(Ca∨b) ≤ g(Ca) − 1,
which contradicts the assumption that Ca minimizes g(C). Therefore g(Ca) = 0 and the proof of
existence is complete. The above construction can also be used to prove the uniqueness. Suppose
C∗

a and C∗
b are two closest min-cuts and we label their edges e∗a,i and e∗b,i as described previously.

Since each path Pi is used by exactly one edge in a min-cut, we also have e∗a,i 6= e∗b,j for any i 6= j.
Therefore, for any i = 1, · · · ,MCMF, edge e∗b,i must not be a strictly downstream edge of e∗a,i.
Otherwise, e∗b,i belongs to EC∗

a→d, which contradicts the assumption g(C∗
a) = 0. Symmetrically,

e∗a,i must not be a strictly downstream edge of e∗b,i. Therefore e∗a,i = e∗b,i for all i = 1, · · · ,MCMF
and we have C∗

a = C∗
b .

We use contradiction to show that Ca∨b is indeed a cut. Suppose not. There must exist a
path P ∗ connecting s and d without using any edge in Ca∨b. Since Ca is a min-cut, there must
exist at least one edge ea ∈ Ca such that P ∗ uses ea. Similarly, since Cb is a min-cut, there must
exist at least one edge eb ∈ Cb such that P ∗ uses eb. Among all such ea and eb, choose the one
that P ∗ meets the last before finally arriving d. Without loss of generality, assume it is ea,i0 that
P ∗ meets the last, which uses the i0-th edge-disjoint path Pi0 . Since P ∗ does not use any edge
in Ca∨b, ea,i0 ∈ P ∗ implies that ea,i0 < eb,i0 = ea∨b,i0 . Consider a new s-to-d path sPi0ea,i0P

∗d
consisting of two path segments. The first segment is from s to ea,i0 via path Pi0 and the second
segment is from ea,i0 to d via path P ∗. Since Pi0 uses no edges in Cb other than eb,i0 , and since
ea,i0 < eb,i0 , the first path segment sPi0ea,i0 does not use any eb,j for j = 1, · · · ,MCMF. Since
ea,i0 is the very last edge in Ca ∪ Cb that P ∗ meets, the second path segment ea,i0P

∗d does not
use any eb,j for j = 1, · · · ,MCMF. As a result, the combined new path sPi0ea,i0P

∗d does not
use any eb,j for j = 1, · · · ,MCMF, which contradicts the assumption that Cb is an edge cut.
By contradiction, Ca∨b must be an edge cut. The proof is complete.

Q.E.D.
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