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Abstract

The capacity of wireless mesh networks can be substantially increased by equipping

each mesh network node with multiple radio interfaces that can operate on multiple non-

overlapping channels. However, new scheduling, channel-assignment, and routing algo-

rithms are required to fully utilize the increased bandwidth in multi-channel multi-radio

wireless mesh networks. In this paper, we develop a fully distributed algorithm that jointly

solves the channel-assignment, scheduling and routing problem. Our algorithm is an online

algorithm, i.e., it does not require prior information on the offered load to the network,

and can adapt automatically to the changes in the network topology and offered load. We

show that our algorithm is provably efficient. That is, even compared with the optimal

centralized and offline algorithm, our proposed distributed algorithm can achieve a prov-

able fraction of the maximum system capacity. Further, the achievable fraction that we can

guarantee is larger than that of some other comparable algorithms in the literature.

1 Introduction

There is growing expectation that wireless mesh networks can be used to solve the decades-

long last-mile problem of providing cost-effective broadband access, especially in areas where
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DSL/Cable-Modem connections are not widely available. In this work, we are interested in

developing high-capacity control protocols for multi-channel multi-radio wireless mesh networks.

It has been shown recently that one can substantially increase the capacity of wireless mesh

networks by equipping each mesh network node with multiple radio interfaces that operate on

multiple non-overlapping channels. This is motivated by some current wireless LAN standards (in

particular, IEEE 802.11) where the entire frequency band is divided into multiple channels, and

each radio can only access one channel at a time. Hence, if each mesh network node has multiple

radio interfaces, it can then utilize a larger amount of radio bandwidth, and hence achieves higher

system capacity. Even if each node still has only one radio interface, by operating neighboring

nodes at different channels, the amount of interference is reduced, which also leads to higher

system capacity.

Multi-channel multi-radio networks pose a challenging set of resource allocation problems,

including (1) channel-assignment: what are the set of channels that each node/link should

operate on? (2) scheduling: when should each link be activated at each channel? and (3) routing:

how to select paths that minimize interference and increase throughput? These three problems

are inter-related with each other, and thus form a challenging cross-layer control problem across

the MAC layer and the network layer.

In this work, we are interested in control protocols for multi-channel multi-radio wireless

mesh networks that achieve high system capacity. Although such control protocols for channel-

assignment, scheduling and routing can be obtained via the known throughput-optimal ∗ algo-

rithms in [1, 2], these algorithms are centralized and often with exponential computational-

complexity. Hence, they are not easy to be implemented in real systems. In this paper, we

develop distributed and provably-efficient solutions to the above cross-layer control problem. By

provably-efficient, we mean that for any offered load that a given multi-channel wireless mesh

network can ever support (possibly by using the centralized and complex throughput-optimal

∗Note that an algorithm in throughput-optimal if it can achieve the largest possible capacity region.
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algorithms of [1, 2]), our algorithm can guarantee to support at least a constant fraction of this

offered load on the same network. In other words, our algorithm can achieve a provable fraction

of the maximum system capacity. Our algorithm is an online algorithm, i.e., it does not require

prior knowledge of the offered load, and can automatically track the changes in the network

topology and offered load. The distributive and online nature of our solution, combined with

its provable efficiency, differentiates our work from existing control algorithms in the literature

for multi-channel multi-radio wireless mesh networks that either do not guarantee provable per-

formance bounds [3–10], or require centralized and offline solutions [1, 11, 12], or only provide

order-optimal scaling laws [13].

Our solution is perhaps most comparable to the polynomial complexity (but centralized) algo-

rithm in [11], which is also shown to guarantee a certain fraction of the maximum system capacity.

Compared with the centralized solution of [11], our control algorithm is not only distributed and

much simpler, but also guarantees a higher fraction of the maximum system capacity (see the

comparison in Section 4.2 for details). One of the key differences between our approach and that

of [11] is our assumption that, if the number of radio interfaces of a mesh network node is less than

the number of channels, the mesh network node can switch radios from one channel to another

dynamically. In contrast, the work in [11] requires radio-channel assignment to be fixed. Current

state-of-art IEEE 802.11 hardware may take up to a few milliseconds to switch channels [14]. In

addition, our solution requires some protocol overhead to collect local queue-length information,

and to instruct the transmitter and receiver nodes which channel(s) they should tune to. In our

theoretical analysis, we have assumed that this overhead is negligible, which could be reasonable

if channel-switching occurs at the time-scale of hundreds of milliseconds. It is expected that the

channel switching delay can be further reduced by more advanced physical layer communication

technology, which will then make this overhead even smaller. More importantly, we believe that

our results provide a strong motivation to pursue such improved channel-switching hardwares

and protocols because, by allowing dynamic channel switching, one can obtain control protocols
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(like the one developed in this paper) that are both simpler and with higher performance. Fi-

nally, we note that the channel switching delay is not an issue if the number of radio interfaces

at each node is equal to the number of channels.

Our work is related to the recent progress in developing distributed and provably-efficient

scheduling algorithms for single-channel multi-hop wireless networks [15–20]. However, as we

will show in Section 3.2, straight-forward extensions of these single-channel distributed scheduling

algorithms to multi-channel networks may lead to very poor performance. The reason is that,

in multi-channel networks, there may exist channel-diversity. That is, due to both frequency-

selective multi-path fading and different amount of background interference, each link can have

different rate at each channel. In Section 3.2, we will provide examples to show that straight-

forward extensions of a well-studied single-channel distributed scheduling algorithm, i.e., the

Maximal Scheduling algorithm, can perform arbitrarily poorly in multi-channel systems with

channel diversity. In contrast, the algorithm that we develop in this paper can guarantee provable

efficiency even with channel diversity. Our work is also related to the opportunistic scheduling

algorithms in cellular networks that use OFDM (Orthogonal Frequency Division Multiplexing).

Note that in OFDM, the transmitter sends information over a large number of sub-carriers (e.g.,

52 sub-carriers in IEEE 802.11a). Hence, OFDM systems can also be viewed as a special type

of multi-channel multi-radio wireless systems where the number of (sub-carrier) radio interfaces

is equal to the number of channels/sub-carriers. Due to multipath fading, each sub-carrier

can have different channel characteristics and capacity. Opportunistic scheduling algorithms

that exploit such frequency-diversity (and also time-diversity) in wireless data networks have

been extensively studied under the context of 3G cellular systems [21–23]. These algorithms

opportunistically assign users to sub-carriers (or time-slots) with favorable channel conditions to

improve overall system capacity. However, these opportunistic scheduling algorithms for cellular

networks cannot be extended directly to wireless mesh networks because of the distributive

nature of mesh networks. On the other hand, the algorithm that we develop in this paper can be

4



viewed as a distributed opportunistic scheduling algorithm. Provided with appropriate firmware

support, our algorithm can potentially be used to exploit the frequency-diversity in OFDM-

based wireless mesh networks. (In contrast, current IEEE 802.11a standard does not support

such subcarrier-level scheduling, and hence cannot exploit such frequency-diversity.)

The rest of the paper is organized as follows. We first outline the network model in Section 2.

In Section 3, we illustrate the important effect of channel diversity, and show that straight-

forward extensions of a single-channel distributed scheduling algorithm can perform very poorly

in multi-channel networks with channel diversity. We then present our new distributed and

provably-efficient algorithm in Section 4. Then we conclude.

2 System Model

Consider a wireless network with N nodes and L links. Each link corresponds to a pair of

transmitter node and receiver node. Let b(l) and e(l) denote the transmitter node and the receiver

node, respectively, of link l. Let E(i) denote the set of all links originating or terminating at node

i. There are C frequency channels in the system. In order to take into account possible channel

diversity, we use rc
l to denote the rate at which link l can transfer data on channel c, provided

that there are no interfering links transmitting on channel c at the same time. The interference

relationship is defined as follows. For each link l, there is a set Il of links that interfere with l.

That is, if link l and another link in Il are transmitting on the same channel at the same time,

neither of the links can transfer any useful data. We assume that the interference relationship is

symmetrical, i.e., k ∈ Il if and only if l ∈ Ik for any two links k and l. For simplicity, we adopt

the convention that l ∈ Il. Note that the interference relationship is identical over all channels.

Further, the channels are non-overlapping. Hence, it is perfectly fine that link l and another link

k ∈ Il transmit at different channels at the same time. The above interference model is very

general and can be used to model a large class of practical interference relationships, including

IEEE 802.11 DCF [16,18], Bluetooth, and FH-CDMA [24].
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A key parameter that we will frequently used in this paper for characterizing the performance

of control algorithms is the interference degree [11, 17–19]. We first define a non-interfering

subset of Il as a subset of links in Il such that any two links in this subset do not interfere

with each other. The interference degree K(l) of link l is the maximum cardinality of any non-

interfering subset of Il. In other words, the interference degree K(l) of link l characterizes the

potential loss of system capacity if link l is scheduled, i.e., it is the maximum number of links

that could have been turned on simultaneously (without interference) if link l is not turned on.

The interference degree K of the whole network is the maximum possible interference degree over

all links. Note that the interference degree of the system can often be determined directly from

the physical interference model, and thus is independent of the exact network topology. For

example, under the so-called node-exclusive interference model for Bluetooch and FH-CDMA

networks, the interference degree is 2. For the so-called bi-directional equal-power model that

approximates IEEE 802.11 DCF, the interference degree is 8 [18].

Let Mi be the number of radio interfaces available at node i. We assume that at any given

time a radio can only tune to one channel. Therefore, for link l to successfully communicate on

channel c, both the transmitting node b(l) and the receiving node e(l) must tune one radio to

channel c. Like [4, 14], we assume that radios can switch channels dynamically.

There are S users in the system. Each user is associated with a source node and a destination

node. The traffic from each user may be routed over multiple alternate paths. Let J(s) denote

the number of alternate paths for user s. Let [H l
sj] denote the routing matrix, where H l

sj = 1 if

path j of user s traverses link l, H l
sj = 0, otherwise. For simplicity, we assume that user s injects

packets into the system at a constant rate λs (while our results can also be easily generalized to

the case when packets arrive according to some stationary and ergodic processes).

We assume that time is divided into slots of unit length, and the time that it takes to switch

radios between channels is negligible compared to the length of each time slot. For ease of

exposition, in the rest of the paper we will use the term “schedule” to refer to both the channel
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assignment and the link schedule at a time slot whenever there is no source of confusion. At time

slot t, let M(t) = [Mc(t)] denote the outcome of the scheduling policy, where Mc(t) is the set

of non-interfering links that are chosen to transmit information at channel c at time t. Let Dl(t)

denote the number of packets that link l can serve at time slot t. Then Dl(t) =
∑

c:l∈Mc(t)

rc
l . Let

Psj(t) denote the fraction of traffic from user s that is routed to path j at time slot t. Further, let

ql(t) denote the number of packets queued at link l at the beginning of time slot t. The evolution

of ql(t) may be written as:

ql(t + 1) = [ql(t) +
S
∑

s=1

J(s)
∑

j=1

H l
sjPsj(t)λs − Dl(t)]

+, (1)

where [·]+ denote the projection to [0, +∞). We say that the system is stable if the queue lengths

at all links remain finite [2], i.e.

lim
T→∞

1

T

T
∑

t=1

1
{

L
∑

l=1
ql(t)>η}

→ 0, almost surely as η → ∞. (2)

Remark: Note that in (1) we have adopted the simplifying assumption that packets from each

user s are applied to all links l along the path of user s simultaneously. This assumption simplifies

the analysis of the paper, and allows us to focus on the channel assignment and scheduling

components of the problem. In reality, packets have to traverse the links one at a time. There

are a number of known methodologies that can extend our model to take into account this link-

by-link packet dynamics [15–17,25]. One such approach is to assume that users can communicate

the amount of transmitted traffic Psj(t)λs to all links along path j through an additional control

channel, and let each link l updates a “virtual” queue according to (1). Then, with an appropriate

packet scheduling policy at each link, one can show that the real queue (with link-by-link packet

dynamics) is stable as long as the “virtual” queue defined by (1) is stable [15, 26]. Hence, in

this paper we will neglect the link-by-link packet dynamics, and use (1) to describe the system

dynamics.

Let ~λ = [λ1, ...λS] denote the offered load to the network. The capacity region under a partic-

ular channel-assignment, scheduling and routing algorithm is the set of ~λ such that the system
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remains stable. Under possible routing constraints, we define the optimal capacity region Ω as

the supremum of the capacity regions of all algorithms. An algorithm is throughput-optimal if

it can achieve the optimal capacity region Ω. The efficiency ratio of a (possibly sub-optimal)

algorithm is the largest number γ such that this policy can stablize the system under any load

~λ ∈ γΩ. By definition, a throughput-optimal algorithm has an efficiency ratio of 1.

3 Generalizations of Single-Channel Scheduling Algorithms

to Multi-Channel Networks

In this paper, we are interested in distributed control algorithms with provable efficiency ratios.

A number of provably-efficient and low-complexity scheduling algorithms have been proposed

for single-channel multi-hop wireless networks [15–20]. One would naturally hope that the gen-

eralization of these single-channel scheduling algorithms may lead to equally efficient and low-

complexity scheduling algorithms for multi-channel networks. In this section, we will study the

generalization of two such single-channel scheduling algorithms, i.e., Greedy Maximal Scheduling

and Maximal Scheduling, to multi-channel networks. We will first show that the generalization

of Greedy Maximal Scheduling, which is a low-complexity but centralized algorithm, can still

guarantee efficiency-ratios almost as tight as in single-channel networks. While this result is

encouraging, the Greedy Maximal Scheduling algorithm is not very easy to be implemented in a

distributive fashion. It would be more desirable that we can develop distributed scheduling al-

gorithms for multi-channel wireless mesh networks. However, we will show that straight-forward

extensions of Maximal Scheduling, a low-complexity and distributed algorithm, can result in

much lower efficiency ratios in multi-channel networks.
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3.1 Greedy Maximal Scheduling

It is known that the maximum system capacity can be achieved by the following throughput-

optimal scheduling algorithm [1,2,15]: at each time slot t, the schedule M(t) should be chosen to

maximize the queue-weighted rate-sum
∑

l,c:l∈Mc

ql(t)r
c
l . The Greedy Maximal Scheduling algorithm

can be viewed as an approximation to such throughput-optimal algorithms. Note that a schedule

M is maximal if M is a non-interfering schedule, and no more links can be added to Mc(t) at

any channel c without violating the interference constraint and radio interface constraint. The

Greedy Maximal Scheduling algorithm computes a maximal schedule by always starting from the

link with the largest queue-weighted rate ql(t)r
c
l . Specifically, the Greedy Maximal Scheduling

algorithm proceeds as follows. (i) Form a set F of all link-channel pairs (l, c). Define the weight

of each link-channel pair (l, c) to be qlr
c
l , where ql is the current queue length at link l. Start from

an empty schedule M(t). (ii) First search for the link-channel pair (l, c) with the largest weight

qlr
c
l . Add link l to Mc(t). Remove from F all link-channel pairs that cannot be scheduled due to

(l, c) being scheduled. Specifically, remove from F all link-channel pairs (k, c) with k ∈ Il. (Note

that (l, c) is also removed since we define l ∈ Il). Further, if by scheduling link l on channel c,

the transmitting node b(l) (or respectively, the receiving node e(l) ) of link l already uses up

all Mb(l) (respectively, Me(l)) radio interfaces, remove from F all link-channel pairs (k, c′) with

k ∈ E(b(l)) (or respectively, k ∈ E(e(l))). (In other words, all links incident to node b(l) or e(l)

are removed from F since no radio interfaces are available.) (iii) Next, find the link-channel pair

(l, c) with the largest weight qlr
c
l from the remaining pairs in F , and similar to the previous step,

remove from F all link-channel pairs that cannot be scheduled due to the new (l, c). Continue

in this fashion until no link-channel pairs are left in F . Note that the above Greedy Maximal

Scheduling algorithm is a natural generalization of the Greedy Maximal Scheduling algorithm

for single-channel networks [15,27].

The following proposition shows that the above Greedy Maximal Scheduling algorithm can

guarantee an efficiency ratio of 1/(K+ 2) in multi-channel networks, where K is the interference
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degree defined in Section 2. Note that the Greedy Maximal Scheduling algorithm has been shown

to achieve an efficiency ratio of 1/K in single-channel networks [15]. Thus, we can conclude that

its performance in multi-channel networks is similar. For simplicity, we only present the following

result for the case where each user has one fixed path through the network. Let H l
s = 1 if the

path of user s uses link l, H l
s = 0, otherwise.

Proposition 1 Assume that each user only has one path through the network, and the routing

matrix is [H l
s]. The above Greedy Maximal Scheduling algorithm can achieve an efficiency ratio

of 1/(K + 2).

Proof: Let Mg denote the scheduling decision by the Greedy Maximal Scheduling algorithm,

and let M∗ denote the scheduling decision by the throughput-optimal policy that maximizes

the queue-weighted rate-sum
∑

(l,c):l∈Mc

ql(t)r
c
l . We first show that the queue-weighted rate-sum

computed by Greedy Maximal Scheduling is at least 1/(K + 2) times the maximum queue-

weighted rate-sum, i.e.,
∑

(l,c):l∈Mc
g

qlr
c
l ≥

1

K + 2

∑

(l,c):l∈M∗,c

qlr
c
l . (3)

To see this, consider the first link-channel pair (l, c) picked by the Greedy Maximal Scheduling

algorithm. Because (l, c) is scheduled, all link-channel pairs (k, c) with k ∈ Il cannot be scheduled

any more. Among these interfering link-channel pairs, the throughput-optimal algorithm may

at most pick K link-channel pairs into M∗,c. Further, because (l, c) is scheduled, node b(l) (or

respectively, node e(l)) may uses up all available radio interfaces. If this is indeed the case,

all links incident to b(l) (or respectively, e(l)) cannot be scheduled any more. In this case, the

throughput-optimal algorithm may at most pick 2 additional link-channel pairs from all links

incident to b(l) (and e(l)). Note that all these interfering link-channel pairs have smaller weights

than (l, c). Hence, the sum of weights contributed by those link-channel pairs in M∗ that are

among the interferers described above is at most (K + 2) times the weight of (l, c). Now remove

all these interfering link-channel pairs from F , Mg and M∗. By applying the above argument
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inductively to each link-channel pair picked by Greedy Maximal Scheduling, we can thus prove

(3).

Then, by applying Proposition 3 of [15] to the inequality (3), we can conclude that the efficiency

ratio of Greedy Maximal Scheduling is at least 1/(K + 2). Q.E.D.

If Mi = C for all node i, i.e., if the number of radio interfaces on each mesh network node

is the same as the total number of channels in the system, the scheduling algorithm then does

not need to consider radio interface constraints. Using a similar argument, we can show that

the queue-weighted rate-sum computed by Greedy Maximal Scheduling is at most 1/K times the

maximum queue-weighted rate-sum. We then obtain the following tighter result.

Proposition 2 Assume that each user only has one path through the network, and the routing

matrix is [H l
s]. Further, assume that Mi = C for all i. The above Greedy Maximal Scheduling

algorithm can achieve an efficiency ratio of 1/K.

3.2 Maximal Scheduling

The Greedy Maximal Scheduling algorithm is essentially a centralized algorithm, and is not very

easy to be implemented in a distributive fashion. We next turn to extensions of the Maximal

Scheduling algorithm to multi-channel wireless mesh networks. Recall the definition of a maximal

schedule in Section 3.1. Mathematically, a maximal schedule can be stated as follows.

Multi-Channel Maximal Scheduling: For any link-channel pair (l, c) such that link l is

backloged (i.e., ql(t) ≥
∑C

c=1 rc
l ), at least one of the following is true:

• Either link l is scheduled in channel c, i.e., l ∈ Mc(t), or,

• One of the interfering links to link l is scheduled in channel c, i.e. k ∈ Mc(t) for some

k ∈ Il, or

11



• Either the transmitter or the receiver of link l has used up all the radios, i.e.

∑

k∈E(b(l))

C
∑

d=1

1{k∈Md(t)} = Mb(l), or

∑

k∈E(e(l))

C
∑

d=1

1{k∈Md(t)} = Me(l).

Maximal schedules can be easily computed via a distributed algorithm [28]. For single-channel

networks, such Maximal Scheduling algorithms have been shown to achieve an efficiency ratio of

1/K. However, for multi-channel networks with channel diversity, such algorithms can perform

much worse, because the algorithm could pick the weakest (i.e., least capacity) links at each

channel into the maximal schedule. A slightly improved version of Maximal Scheduling for

multi-channel networks would be to enforce an additional constraint that the scheduling pattern

on all channels must be the same. Assume that Mi = C for all node i, i.e., each node has

enough radio interfaces to access all channels simultaneously. Thus, if we aggregate all channels

together, the capacity of link l is
∑C

c=1 rc
l . We can then define the following Aggregated Maximal

Scheduling as in single-channel networks.

Aggregated Maximal Scheduling:

• If link l is scheduled, it will transmit over all channels simultaneously.

• For any link l that is backloged (i.e., ql ≥
∑C

c=1 rc
l ), either link l is scheduled, or some other

link k ∈ Il is scheduled.

Note that this is in fact the way current IEEE 802.11a standard uses OFDM (readers can

refer to the discussions in the Introduction regarding the relationship between OFDM and multi-

channel networks). However, the performance of Aggregated Maximal Scheduling can still be

very poor. In fact, the following example shows that its efficiency ratio can be as low as 1/Ī,

where Ī is the maximum number of links that interfere with any link l. To see this, consider a

node 0 communicating with nodes 1, ..., Ī. Label the link between node 0 and node i as link i.

Assume that each link interferes with all other links if they operate on the same channel. Hence,
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only one link can be assigned to each channel. Assume that the total number of channels is

also Ī. Let the capacity of link i at channel i to be 1, while its capacity at all other channels

to be ε. Thus, if we use Aggregated Maximal Scheduling, the aggregate capacity of link i is

1 + ε(Ī − 1). Since only one link can be activated at each time, the total capacity of the system

is 1 + ε(Ī − 1). However, if we assign link i to operate on channel i, there will be no interference

in the system, and the total capacity of the system is thus Ī. Clearly, as ε approaches zero, the

efficiency ratio of Aggregate Maximal Scheduling can be arbitrarily close to 1/Ī. In contrast,

Greedy Maximal Scheduling can guarantee the efficiency ratio 1/(K+2), where K is independent

of network topology.

The above example clearly illustrates the weakness of Maximal Scheduling algorithms in multi-

channel networks with channel diversity. In particular, the above extensions of Maximal Schedul-

ing to multi-channel networks fail to take into account the channel diversity, and hence the

performance of the scheduling decisions can be very poor.

4 A Distributed and Provably-Efficient Multi-Channel Multi-

Radio Control Algorithm

Given the results in Section 3, a natural question is then: can we develop a distributed scheduling

algorithm for multi-channel multi-radio wireless mesh networks that can guarantee the same

efficiency ratio as the centralized Greedy Maximal Scheduling algorithm? In this section, we will

develop such a distributed scheduling algorithm. Interestingly, our new scheduling algorithm still

uses maximal schedules. Obviously, in order to avoid the inefficiency illustrated in Section 3.2,

we must be able to properly take into account channel diversity. In this work, we introduce

a novel two-stage queueing mechanism to address channel diversity, and to prevent links from

using channels that are weak (i.e., with smaller capacity).

The basic idea of two-stage queueing is as follows. Packets arriving to each link l are served in
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two steps. The first step is a logical assignment of the packets to channels: packets that arrive

at each link l are assigned to queues that correspond to each channel c. The second step is

the actual scheduling of radio interfaces and links: radios are assigned to channels according to

maximal schedules, and packets in the channel queues are served. The key of two-stage queueing

is to ensure that, in the first step, packets are less likely to be assigned to link-channel pairs that

are “weak.” Thus, the “weak” links do not even participate in the maximal schedules in the

second step. Clearly, the main difficulty is how to determine in a distributive and online fashion

which link-channel pairs are “weak.” As we will show next, our algorithm makes this decision

intelligently by using the queue length information at both the per-link level and the per-channel

level.

4.1 The Single-Path Case

For ease of exposition, in this subsection we first focus on the case where each user only has

one fixed path through the network. Let H l
s = 1 if the path of user s uses link l, H l

s = 0,

otherwise. Our proposed multi-channel multi-radio scheduling algorithm works as follows. Each

link maintains C +1 queues. There is one queue ql for each link l, which represents the backlog of

packets at link l that have not been assigned to channel queues yet. At the same time, each link

l maintains C channel-queues ηc
l , c = 1, ..., C. The per-channel queue ηc

l represents the backlog

of packets assigned to channel c by link l that are still waiting to be served. At each time slot t,

the following algorithm is executed:

Algorithm SP :

• Step 1: Define xc
l (t) to be the number of packets that link l can assign to channel c at
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time-slot t. For each link l, let

xc
l (t) = rc

l , if ql

αl
≥ 1

rc
l

[

∑

k∈Il

ηc
k

rc
k

+ 1
Mb(l)

∑

k∈E(b(l))

C
∑

d=1

ηd
k

rd
k

+ 1
Me(l)

∑

k∈E(e(l))

C
∑

d=1

ηd
k

rd
k

]

xc
l (t) = 0, otherwise, (4)

where αl is an arbitrary positive constant chosen for link l. Then, link l drains min{ql(t),
∑C

c=1 xc
l (t)}

packets from ql, and assign them to each channel queue ηc
l . Let yc

l (t) be the actual number

of packets assigned to each channel queue ηc
l . Recall that in the same time slot, link l also

receives
S
∑

s=1

H l
sλs new packets. The evolution of ql is thus given by:

ql(t + 1) = ql(t) +
S
∑

s=1

H l
sλs −

C
∑

c=1

yc
l (t), (5)

where

C
∑

c=1

yc
l (t) = min{ql(t),

C
∑

c=1

xc
l (t)} (6)

0 ≤ yc
l (t) ≤ xc

l (t).

• Step 2: Based on the channel queues ηc
l (t), Multi-Channel Maximal Scheduling (as in Sec-

tion 3.2) is carried out to determine the channel-assignment and link schedules. Mathemat-

ically, this means that for any link-channel pair (l, c) that is backloged (i.e., ηc
l (t) ≥ rc

l ), one

of the statements under the Multi-Channel Maximal Scheduling algorithm in Section 3.2

must hold. Then at the end of step 2, each channel queue ηc
l (t) is updated by

ηc
l (t + 1) = ηc

l (t) + yc
l (t) − rc

l 1{l∈Mc(t)}.

Remark: The assignment in (4) is the key to ensure that links will only be scheduled on their

“strong” channels. Note that in (4) each link only needs to know the channel-queue-length ηc
l at

interfering links. This equation can be explained intuitively by interpreting the quantities ql and

ηc
l as “pricing” signals. The quantity ql can be interpreted as the congestion cost at link l (due to
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the imbalance between the external arrivals and the system capacity). The quantity
∑

k∈Il

ηc
k

rc
k

can

be interpreted as the contention cost at link l (due to the interference on channel c from links in

the interference set Il). The quantities 1
Mb(l)

∑

k∈E(b(l))

∑C

d=1

ηd
k

rd
k

and 1
Me(l)

∑

k∈E(e(l))

∑C

d=1

ηd
k

rd
k

can

be interpreted as the radio costs at the transmitter node b(l) and receiver node e(l), respectively,

of link l. Hence, each link l will assign traffic to channel c at the maximum rate rc
l only if the

contention cost of the channel plus the radio cost, weighted by the channel capacity rc
l , is smaller

than the congestion level at the link. Note that if rc
l is small, the right hand side of (4) will

increase, and hence it is less likely that link l will assign traffic to channel c. On the other hand,

if the congestion level ql is too high, it is still possible for link l to assign traffic to a channel c

with low rate, provided that the contention cost and the radio cost is low.

The following main result shows that the strategy in Equation (4) strikes the right balance in

identifying “weak” channels from “strong” channels. The result indicates that the efficiency ratio

of Algorithm SP is identical to that of the centralized Greedy Maximal Scheduling algorithm of

Section 3.1.

Proposition 3 Assume that each user only has one path through the network, and the routing

matrix is [H l
s]. The efficiency ratio of our proposed algorithm SP is 1/(K + 2) where K is the

interference degree defined in Section 2.

Proof: We will show that for any ~λ such that some scheduling algorithm can stabilize the

network at the offered load (K + 2)~λ, Algorithm SP will stablize the system at the offered load

~λ. We use the following Lyapunov function to establish stability:

V (~q, ~η) = Vq(~q) + Vη(~η), (7)
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where

Vq(~q) =
L
∑

l=1

(ql)
2

2αl

,

Vη(~η) =
L
∑

l=1

C
∑

c=1

ηc
l

2rc
l

[

∑

k∈Il

ηc
k

rc
l

+
1

Mb(l)

∑

k∈E(b(l))

C
∑

d=1

ηd
k

rd
k

+
1

Me(l)

∑

k∈E(e(l))

C
∑

d=1

ηd
k

rd
k

]

.

Let ∆V (t) = V (~q(t + 1), ~η(t + 1)) − V (~q(t), ~η(t)). First, note that

(ql(t + 1))2

2
−

(ql(t))
2

2

= ql(t)(ql(t + 1) − ql(t)) +
(ql(t + 1) − ql(t))

2

2

≤ ql(t)
[

S
∑

s=1

H l
sλs −

C
∑

c=1

yc
l (t)
]

+ C1

where C1 , maxl(
∑S

s=1

∑J(s)
j=1 H l

sλs +
∑C

c=1 rc
l )

2 upper bounds (ql(t + 1) − ql(t))
2 for any l.

According to (6),
∑C

c=1 yc
l (t) =

∑C

c=1 xc
l (t) whenever ql(t) ≥

∑C

c=1 rc
l . Hence, we can show that,

Vq(~q(t + 1)) − Vq(~q(t))

≤

L
∑

l=1

ql(t)

αl

[

S
∑

s=1

H l
sλs −

C
∑

c=1

xc
l (t)
]

+ C2

for some constant C2. Similarly, we can show that

Vη(~η(t + 1)) − Vη(~η(t))

≤

L
∑

l=1

C
∑

c=1

ηc
l (t)

rc
l

[

∑

k∈Il

yc
k(t)

rc
k

+
1

Mb(l)

∑

k∈E(b(l))

C
∑

d=1

yd
k(t)

rd
k

+
1

Me(l)

∑

k∈E(e(l))

C
∑

d=1

yd
k(t)

rd
k

− µc
l (t)

]

+ C3

≤

L
∑

l=1

C
∑

c=1

ηc
l (t)

rc
l

[

∑

k∈Il

xc
k(t)

rc
k

+
1

Mb(l)

∑

k∈E(b(l))

C
∑

d=1

xd
k(t)

rd
k

+
1

Me(l)

∑

k∈E(e(l))

C
∑

d=1

xd
k(t)

rd
k

− µc
l (t)

]

+ C3,

17



where C3 is a positive constant and

µc
l (t) =

∑

k∈Il

1{k∈Mc(t)} +
1

Mb(l)

∑

k∈E(b(l))

C
∑

d=1

1{k∈Md(t)}

+
1

Me(l)

∑

k∈E(e(l))

C
∑

d=1

1{k∈Md(t)}. (8)

Therefore, the Lyapunov drift ∆V (t) can be bounded by

E
[

∆V (t)|~q(t), ~η(t)
]

≤

L
∑

l=1

ql(t)

αl

[

S
∑

s=1

H l
sλs −

C
∑

c=1

xc
l (t)
]

+
L
∑

l=1

C
∑

c=1

ηc
l (t)

rc
l

[

∑

k∈Il

xc
k(t)

rc
k

+
1

Mb(l)

∑

k∈E(b(l))

C
∑

d=1

xd
k(t)

rd
k

+
1

Me(l)

∑

k∈E(e(l))

C
∑

d=1

xd
k(t)

rd
k

− µc
l (t)

]

+ C4,

for some positive constant C4.

Since there exist some scheduling algorithm that can stabilize the system at the offered load

vector (K + 2)~λ, there must exist some x̃c
l ∈ [0, rc

l ] for each (l, c) such that

(1 + ε)2(K + 2)
S
∑

s=1

H l
sλs ≤

C
∑

c=1

x̃c
l , for all link l, (9)

∑

k∈Il

x̄c
k

rc
k

≤ K, for all link l and channel c, (10)

∑

k∈E(i)

C
∑

c=1

x̄c
k

rc
k

≤ Mi, for all node i, (11)

where x̃c
l can be interpreted as the long-term average amount of service that link l received at

channel c, and ε is a small positive number. Note that the inequality (9) is due to the rate-balance

at link l. The inequality (10) is due to the interference constraint, i.e., there can be no more

than K links activated simultaneously in any interference range Il. The inequality (11) is due to

the radio interface constraint, i.e., there can be no more than Mi link-channel pairs incident to
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node i that are activated simultaneously (see [11,12]). Let x̄c
l =

x̃c
l

(K+2)(1+ε)
. We thus have,

(1 + ε)
S
∑

s=1

H l
sλs ≤

C
∑

c=1

x̄c
l , for all link l (12)

(1 + ε)





∑

k∈Il

x̄c
k

rc
k

+
1

Mb(l)

∑

k∈E(b(l))

C
∑

d=1

x̄d
k

rd
k

+
1

Me(l)

∑

k∈E(e(l))

C
∑

d=1

x̄d
k

rd
k





≤ 1, for all (l, c). (13)

Therefore, we have

E[∆V (t)|~q(t), ~η(t)]

≤

L
∑

l=1

ql(t)

αl

[

S
∑

s=1

H l
sλs −

C
∑

c=1

x̄c
l

]

+
L
∑

l=1

ql(t)

αl

[

C
∑

c=1

x̄c
l −

C
∑

c=1

xc
l (t)
]

+
L
∑

l=1

C
∑

c=1

ηc
l (t)

rc
l

[

∑

k∈Il

x̄c
k

rc
k

+
1

Mb(l)

∑

k∈E(b(l))

C
∑

d=1

x̄d
k

rd
k

+
1

Me(l)

∑

k∈E(e(l))

C
∑

d=1

x̄d
k

rd
k

− µc
l (t)

]

+
L
∑

l=1

C
∑

c=1

ηc
l (t)

rc
l

[

∑

k∈Il

xc
k(t) − x̄c

k

rc
k

+
1

Mb(l)

∑

k∈E(b(l))

C
∑

d=1

xd
k(t) − x̄d

k

rd
k

+
1

Me(l)

∑

k∈E(e(l))

C
∑

d=1

xd
k(t) − x̄d

k

rd
k

]

+ C4.

Let

mc
l =

[

∑

k∈Il

x̄c
k

rc
k

+
1

Mb(l)

∑

k∈E(b(l))

C
∑

d=1

x̄d
k

rd
k

+
1

Me(l)

∑

k∈E(e(l))

C
∑

d=1

x̄d
k

rd
k

]

.

By definition of Multi-Channel Maximal Scheduling (see Section 3.2), µc
l (t) ≥ 1 whenever ηc

l (t) ≥
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rc
l . Using (12)–(13), we thus have

E[∆V (t)|~q(t), ~η(t)]

≤ −ε
L
∑

l=1

S
∑

s=1

H l
sλs

αl

ql(t) − ε
L
∑

l=1

C
∑

c=1

mc
l (t)

rc
l

ηc
l (t)

+
L
∑

l=1

C
∑

c=1

x̄c
l − xc

l (t)

rc
l

[

rc
l ql(t)

αl

−

(

∑

k∈Il

ηc
k(t)

rc
k

+
1

Mb(l)

∑

k∈E(b(l))

C
∑

d=1

ηd
k(t)

rd
k

+
1

Me(l)

∑

k∈E(e(l))

C
∑

d=1

ηd
k(t)

rd
k





]

+C5.

Recall that 0 ≤ x̄c
l ≤ rc

l , then by Step 1 of Algorithm SP ,

L
∑

l=1

C
∑

c=1

x̄c
l − xc

l (t)

rc
l

[

rc
l ql(t)

αl

−

(

∑

k∈Il

ηc
k(t)

rc
k

+
1

Mb(l)

∑

k∈E(b(l))

C
∑

d=1

ηd
k(t)

rd
k

+
1

Me(l)

∑

k∈E(e(l))

C
∑

d=1

ηd
k(t)

rd
k





]

≤ 0.

Therefore,

E[∆V (t)|~q(t), ~η(t)]

≤ −ε
L
∑

l=1

S
∑

s=1

H l
sλs

αl

ql(t) − ε
L
∑

l=1

C
∑

c=1

mc
l

rc
l

ηc
l (t) + C4.

The stability of the system then follows [2]. Q.E.D.

If Mi = C for all node i, i.e., when there are no radio interface constraints, a tighter efficiency

ratio can be shown by slightly modifying Algorithm SP . In particular, we can remove the radio

costs (i.e., the last two terms) in (4). We can then use the following Lyapunov function:

V (~q, ~η) =
L
∑

l=1

(ql)
2

2αl

+
L
∑

l=1

C
∑

c=1

ηc
l

2rc
l

[

∑

k∈Il

ηc
k

rc
k

]

.

Following the line of proof of Proposition 3, and noting that the last two terms of (13) can also

be removed, We can then show the following tighter result.
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Proposition 4 Assume that each user only has one path through the network, and the routing

matrix is [H l
s]. Further, assume that Mi = C for all node i. The efficiency ratio of the modified

Algorithm SP is 1/K.

In both cases, the distributed Algorithm SP achieves the same efficiency ratio as the centralized

Greedy Maximal Scheduling algorithm in Section 3.1.

4.2 The Multi-Path Case

We next extend Algorithm SP to the case when each user can use multiple alternate paths. We

start from the following model. Assume that each user is provided with J(s) alternate paths

through the network. For the moment, we assume that these paths are given, and we will study

how each user should optimally route packets among these alternate paths. Then, in Section 4.3,

we will discuss how these paths should be computed. Define Psj to be the fraction of incoming

packets from user s that are routed to path j. Let ~Ps = [Ps1, . . . , Ps,J(s)]. Obviously, Psj ≥ 0 and

∑J(s)
j=1 Psj = 1 for all user s. Let ~P = [~P1, . . . , ~Ps]. We can then generalize Algorithm SP to the

following joint channel-assignment, scheduling and routing algorithm.

Algorithm MP : At each time slot t:

• Step 1: Each user s computes the routing fractions Psj(t) as the solution to the following

local optimization problem:

max
~Ps

−
βs

2

J(s)
∑

j=1

(Psj)
2 −

J(s)
∑

j=1

Psj

L
∑

l=1

H l
sjql(t)

subject to Psj ≥ 0,

J(s)
∑

j=1

Psj = 1, (14)

where [H l
sj] is the routing matrix, and βs is a positive number chosen for each source s.

Each user s then routes Psj(t) of the arrival traffic to path j.

• Step 2: This step is the same as Step 1 of Algorithm SP , except that the queue update
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(5) becomes

ql(t + 1) = ql(t) +
S
∑

s=1

H l
sjPsj(t)λs −

C
∑

c=1

yc
l (t).

• Step 3: This step is the same as Step 2 in Algorithm SP .

Remark: The local optimization problem (14) is formulated in such a way that the routing

fraction Psj will be larger for a path j with a smaller congestion cost
L
∑

l=1

H l
sjql(t). Note that each

user only needs to know the sum of the queue length ql along its alternate paths. The quadratic

term in the objective function of (14) is essential to prevent potential routing oscillation. To see

this, note that if βs = 0, then when (14) is solved for any user s that has multiple alternate paths,

only paths that have the smallest cost
L
∑

l=1

H l
sjql(t) will have positive Psj. This property can easily

lead to oscillation of the routing fractions Psj when the queue length ql is being updated [29].

On the other hand, with the addition of a quadratic term, the objective function of (14) becomes

strictly concave. The optimal routing fraction then becomes a continuous function of the queue

length ql. Thus, routing oscillation is eliminated. The parameter βs can also control how sensitive

the routing fraction is with respect to the queue length. By setting βs to be a larger constant,

the routing fraction will become less sensitive to the transient queue dynamics.

The following proposition establishes the efficiency ratio of Algorithm MP .

Proposition 5 Assume that the set of alternate paths are given. The efficiency ratio of Algo-

rithm MP is 1/(K + 2). Further, if Mi = C for all node i, then the efficiency ratio can be

improved to 1/K.

Remark: Our algorithm is perhaps most comparable to the joint channel assignment, schedul-

ing and routing algorithm in [11], which has been shown to achieve an efficiency ratio of

(mini Mi)/(KC) (see Theorem 2 of [11]). The algorithm in [11] is an offline and centralized

algorithm. In contrast, Algorithm MP that we developed in this paper is distributed and much

simpler. Further, when Algorithm MP uses the same set of paths as computed by the Linear-

Programming based algorithm in [11], it can guarantee an efficiency ratio of 1/(K + 2), which is
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higher than that of [11] if some mesh network node only has a small number of radio interfaces.

We refer the readers to the discussions in the Introduction regarding the difference between our

work and [11], and the potential implications.

Proof of Proposition 5 : We only provide the proof for the first part of the result (i.e., the

efficiency ratio 1/(K + 2)). The second part of the result can be shown by modifying the proof

as for Proposition 4. Use the same Lyapunov function in (7). Then following the steps in the

proof of Proposition 3, we can bound the Lyapunov drift as,

E
[

∆V (t)|~q(t), ~η(t)
]

≤

L
∑

l=1

ql(t)

αl

[

S
∑

s=1

J(s)
∑

j=1

H l
sjPsjλs −

C
∑

c=1

xc
l (t)
]

+
L
∑

l=1

C
∑

c=1

ηc
l (t)

rc
l

[

∑

k∈Il

xc
k(t)

rc
k

+
1

Mb(l)

∑

k∈E(b(l))

C
∑

d=1

xd
k(t)

rd
k

+
1

Me(l)

∑

k∈E(e(l))

C
∑

d=1

xd
k(t)

rd
k

− µc
l (t)

]

+C4.

Since (K + 2)~λ can be supported by some scheduling algorithm, similar to (12) and (13), there

must exist some [x̄c
l ] and [P̄sj], such that

(1 + ε)
S
∑

s=1

J(s)
∑

j=1

H l
sjP̄sjλs ≤

C
∑

c=1

x̄c
l , x̄c

l ∈ [0, rc
l ], (15)

(1 + ε)





∑

k∈Il

x̄c
k

rc
k

+
1

Mb(l)

∑

k∈E(b(l))

C
∑

d=1

x̄d
k

rd
k

+
1

Me(l)

∑

k∈E(e(l))

C
∑

d=1

x̄d
k

rd
k



 ≤ 1.
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We thus have,

E[∆V (t)|~q(t), ~η(t)]

≤

L
∑

l=1

ql(t)

αl

[

S
∑

s=1

J(s)
∑

j=1

H l
sjPsjλs −

S
∑

s=1

J(s)
∑

j=1

H l
sjP̄sjλs

]

(16)

+
L
∑

l=1

ql(t)

αl

[

S
∑

s=1

J(s)
∑

j=1

H l
sjP̄sjλs −

C
∑

c=1

x̄c
l

]

(17)

+
L
∑

l=1

ql(t)

αl

[

C
∑

c=1

x̄c
l −

C
∑

c=1

xc
l (t)
]

+
L
∑

l=1

C
∑

c=1

ηc
l (t)

rc
l

[

∑

k∈Il

x̄c
k

rc
k

+
1

Mb(l)

∑

k∈E(b(l))

C
∑

d=1

x̄d
k

rd
k

+
1

Me(l)

∑

k∈E(e(l))

C
∑

d=1

x̄d
k

rd
k

− µc
l (t)

]

+
L
∑

l=1

C
∑

c=1

ηc
l (t)

rc
l

[

∑

k∈Il

xc
k(t) − x̄c

k

rc
k

+
1

Mb(l)

∑

k∈E(b(l))

C
∑

d=1

xd
k(t) − x̄d

k

rd
k

+
1

Me(l)

∑

k∈E(e(l))

C
∑

d=1

xd
k(t) − x̄d

k

rd
k

]

+ C4.

Note that except the first two terms (16) and (17), the remaining terms are the same as in the

proof of Proposition 3. To show a negative Lyapunov drift, it only remains to ensure that the

first two terms ((16) and (17) have negative drifts. Note that

L
∑

l=1

ql(t)
[

S
∑

s=1

J(s)
∑

j=1

H l
sjPsjλs −

S
∑

s=1

J(s)
∑

j=1

H l
sjP̄sjλs

]

=
S
∑

s=1

J(s)
∑

j=1

βs(Psj)
2

2
+

L
∑

l=1

ql(t)
[

S
∑

s=1

J(s)
∑

j=1

H l
sjPsjλs

]

−
S
∑

s=1

J(s)
∑

j=1

βs(P̄sj)
2

2
−

L
∑

l=1

ql(t)
[

S
∑

s=1

J(s)
∑

j=1

H l
sjP̄sjλs

]

−
S
∑

s=1

J(s)
∑

j=1

βs(Psj)
2

2
+

S
∑

s=1

J(s)
∑

j=1

(βsP̄sj)
2

2
.

According to Step 1 of Algorithm MP ,

S
∑

s=1

J(s)
∑

j=1

βs(Psj)
2

2
+

L
∑

l=1

ql(t)
[

S
∑

s=1

J(s)
∑

j=1

H l
sjPsjλs

]

≤
S
∑

s=1

J(s)
∑

j=1

βs(P̄sj)
2

2
+

L
∑

l=1

ql(t)
[

S
∑

s=1

J(s)
∑

j=1

H l
sjP̄sjλs

]

.
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Hence, the term (16) can be bounded by

L
∑

l=1

ql(t)

αl

[

S
∑

s=1

J(s)
∑

j=1

H l
sjPsjλs −

S
∑

s=1

J(s)
∑

j=1

H l
sjP̄sjλs

]

≤ −

S
∑

s=1

J(s)
∑

j=1

βs(Psj)
2

2αl

+
S
∑

s=1

J(s)
∑

j=1

(βsP̄sj)
2

2αl

≤
S
∑

s=1

βsJ(s)

αl

.

On the other hand, using (15), the second term (17) is less than

−

L
∑

l=1

ε
∑S

s=1

∑J(s)
j=1 H l

sjP̄sjλs

αl

ql(t).

The rest of the proof then follows along the same line as the proof of Proposition 3. Q.E.D.

4.3 How to Generate Alternate Paths

The set of alternate paths, denoted by the matrix [H l
sj], could potentially be the enumeration

of all possible paths between each source-destination pair. In practice, however, a much smaller

set of alternate paths suffices. We next describe options to compute and maintain this set of

alternate paths.

Option 1: Use paths that appear to be “heuristically good.” For example, given a source-

destination pair, we can use various known routing schemes in the literature (e.g., in [8, 14]) to

generate a number of potential paths.

Option 2: Use historical data. This can be viewed as a traffic engineering step. We first

take measurements of typical traffic demands at different times of the day. For each demand

pattern, we can compute the optimal paths offline, e.g., using the linear programming approach

in [11]. The union of the alternate paths under all demand patterns can then be used as the set

of candidate paths. The role of Algorithm MP is to shift the traffic load among these candidate

paths automatically as the network condition changes.
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Option 3: An even better approach is to discover new paths online. The queue-length q l

provides us with the signal to discover potentially better alternate paths. Given a set of alternate

paths, we can easily verify the following property for Step 1 of Algorithm MP : For each user s,

only paths j that satisfy the following condition will see positive routing fractions Psj:

βsPsj +
L
∑

l=1

H l
sjql = max

k=1,..,J(s)
βsPsk +

L
∑

l=1

H l
skql , qs,max, (18)

Therefore, adding paths with congestion costs
L
∑

l=1

H l
sjql larger than qs,max will not yield any gain.

We can use the above property to iteratively generate the candidate paths online. Starting

from any initial set of candidate paths, we execute Algorithm MP for joint routing, channel-

assignment and scheduling. Then, from time to time, we can run a minimal cost routing algorithm

using the queue-length as the cost metric for each link. If the minimal cost is smaller than qs,max

defined in (18) by a certain threshold, we add this new path into the set of alternate paths, and

continue. Otherwise, we can conclude that no further alternate paths need to be added.

5 Conclusion

In this paper, we develop a distributed algorithm that jointly solves the channel-assignment,

scheduling and routing problem for multi-channel multi-radio networks. Our algorithm is very

simple, does not require prior information on the offered load to the network, and can adapt au-

tomatically to the changes in the network topology and offered load. We show that our algorithm

is provably efficient. That is, even compared with the optimal centralized and offline algorithm,

our proposed algorithm can achieve a provable fraction of the maximum system capacity.
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