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Abstract— In this work, we study the problem of minimizing
the total power consumption in a multi-hop wireless network
subject to a given offered load. It is well-known that the
total power consumption of multi-hop wireless networks can
be substantially reduced by jointly optimizing power control,
link scheduling, and routing. However, the known optimal cross-
layer solution to this problem is centralized, and with high
computational complexity. In this paper, we develop a low-
complexity and distributed algorithm that is provably power-
efficient. In particular, under the node exclusive interference
model, we can show that the total power consumption of our
algorithm is at most twice as large as the power consumption
of the optimal (but centralized and complex) algorithm. Our
algorithm is not only the first such distributed solution with
provable performance bound, but its power-efficiency ratio is also
tighter than that of another sub-optimal centralized algorithm
in the literature.

Index Terms— Energy Aware Routing, Duality, Mathematical
Programming/Optimization, Cross-Layer Optimization, Simula-
tions

I. I NTRODUCTION

There has been significant recent interest in developing
control protocols for multi-hop wireless networks. Many ap-
plications can benefit from the deployment of these networks.
For instance, sensors can form multi-hop wireless networks for
such applications as habitat monitoring [2], and the manage-
ment of sewer overflow events [20]. Vehicles can form multi-
hop wireless networks to exchange safety messages and traffic
information [17]. Wireless LAN devices can form multi-hop
mesh networks to provide wireless broadband access [1].

A key issue in developing control protocols for multi-
hop wireless networks is to reduce the energy or power
consumption. This is obviously an important issue for battery-
powered networks since the power consumption often limits
the lifetime of the network. Even for networks with access to
power sources, the transmission power of the communication
links may still need to be properly controlled, e.g., due to
health or regulatory concerns.

In this work, we are interested in the problem of minimizing
the total power consumption of a multi-hop wireless network,
subject to a given offered load. It is well-known that the total
power consumption of multi-hop wireless networks can be
substantially reduced by jointly optimizing power control, link

scheduling, and routing. However, known optimal solutions
require centralized computation and high computational com-
plexity. In this paper, we propose a new low-complexity and
distributed solution to this problem under a widely-used inter-
ference model, called the node-exclusive interference model.
Using this model, the work in [4] developed a centralized
solution that yielded a3-approximation ratio (the resultant
power consumption is within a factor of3 from the optimal
power consumption). In contrast, in this paper, we will obtain
a (2 + ε)-approximation algorithm that is fully distributed,
whereε > 0 is an arbitrarily small constant. To the best of
our knowledge, our proposed algorithm is the firstdistributed
solution in the literature with a provable performance bound.

Our solution approach is inspired by the recent progress in
using imperfect scheduling algorithms to develop distributed
cross-layer congestion control and scheduling algorithms in
multi-hop wireless networks. We first formulate the energy
minimization problem into a special form that naturally leads
to a distributed solution. We then map the solution to cor-
responding components of the cross-layer control protocols,
and rigorously establish the power-efficiency of the resulting
algorithm.

Our work is also related to the study of energy-aware routing
protocols for minimizing energy consumption and extending
network lifetime [10], [11], [13], [22], [25]. These works
assume that the system capacity is battery-limited instead of
interference-limited and therefore do not consider scheduling
constraints. In contrast, our work explicitly considers schedul-
ing, jointly with power control and routing.

The intellectual contribution of this work is summarized as
follows:
• We develop a low-complexity and distributed joint rout-

ing, power control, and scheduling algorithm for multi-
hop wireless networks with provable power-efficiency
ratio. Further, our algorithm can guarantee a better power-
efficiency level than some existing centralized algorithms.

• Our solution cannot be obtained by extending the known
optimal solution in the literature [8], [18]. Instead, we
develop an optimization approach to the energy mini-
mization problem that naturally leads to distributed solu-
tions. We also develop rigorous techniques to identify the



convergence properties and quantify the power-efficiency
of the resulted control protocol.

The rest of this paper is organized as follows: in Section II,
we present the system model and formulate the energy mini-
mization problem. In Section III, we present our algorithm and
discuss its implications. In Section IV, we discuss our main
result on the convergence properties and the power-efficiency
of the dual algorithm. Numerical results are provided in
Section V. Concluding remarks are presented in Section VI.

II. PROBLEM FORMULATION

We model a wireless multi-hop network by a directed graph
G(V, E), whereV is the set of vertices representing the nodes,
and E is the set of edges representing the communication
links. We useNo(v) andNi(v) to denote the sets of outgoing
and incoming links of nodev, respectively. Their unionN(v)
forms the set of all links incident on nodev.

The system is time-slotted. We adopt the following node-
exclusive interference model that is used to characterize FH-
CDMA and UWB system with perfect orthogonal spreading
codes and low power-spectrum density. Under this model, a
node can only receive from or transmit to at most one node
at any time-slotm. Further, each link is power-controlled.
That is, if node-exclusiveness is satisfied, we assume that the
possible data rateRe of link e is a result of its power assign-
ment,pe. We useh(Re) to denote the power consumption of
supporting data rate ofRe. It is assumed thath(·) is a non-
decreasing, convex function satisfyingh(0) = 0. An example
of h(·) is the power-rate relationship in an Additive White
Gaussian Noise (AWGN) channel. Other interference models
can be incorporated in this formulation, and we will discuss
this in Section VI.

Each packet may take multiple hops to be delivered from
source to destination. LetTvd denote the long-term average
data rate of the flow that needs to be supported from source
nodev to destination noded. We useD to denote the set of
destinations.

The joint energy minimization problem is now formulated
as follows:

(*) min~f, ~R lim
M→∞

1
M

M∑
m=1

∑

e∈E

h(Re(m)), (1)

subject to ~R(m) satisfies node-exclusiveness,∀m,

∑

d

fd
e = lim

M→∞
1
M

M∑
m=1

Re(m),∀e, (2)

∑

e∈No(v)

fd
e −

∑

e∈Ni(v)

fd
e − Tvd ≥ 0,

∀d, and∀v 6= d, (3)

where the quantityfd
e can be interpreted as the average

amount of data rate on linke allocated for destinationd.
The constraints in (2) require that the long-term average data
rate, determined by the power allocation, should be able to
support the total average data rate (

∑
d fd

e ) on each link.

The constraints in (3) require that the total outgoing flow
of a node should be able to support the total incoming and
locally generated flow, for all destinations. Note that we use
∀d as a shorthand notation for all nodesd belonging toD,
the set of destinations. We will refer to the above problem as
Problem (∗).

III. SOLUTION METHODOLOGY

A. Approximating the Energy Minimization Problem

The optimal solutions developed in [8], [18] attempt to solve
Problem (∗). However, their solutions contain a scheduling
component with high computational complexity. In order to
compute at which power and at what time each linke should
be activated, these solutions need to solve a complex global
optimization problem in each time-slot.

In this paper, in order to obtain a low-complexity and
distributed solution, we take a different approach. We first
approximate (∗) by another optimization problem that is
easier to solve. The following Lemma [4] provides the first
step in this direction.

Lemma 1:For some time-slotm when linke is activated,
the instantaneous data rateRe(m) is independent ofm in
any power-optimal scheme.

It is worth noting thatRe(m) = Re holds when linke is
activated.As a result,limM→∞ 1

M

∑M
m=1 Re(m) is equal to

the product ofRe and the frequency that linke is activated.
Therefore, by (2), the objective function of Problem (∗) can
now be written as

∑

e∈E

∑
d fd

e

Re
h(Re),

where
P

d fd
e

Re
is the fraction of time-slots that linke is

activated.
Further, using the results from low-complexity schedul-

ing [16], we have

• Fact 1: In the optimal solution to (∗), we must have∑
e∈N(v)

P
d fd

e

Re
≤ 1, ∀v ∈ V.

• Fact 2: Under the node-exclusive interference model, if∑
e∈N(v)

P
d fd

e

Re
≤ 1

2 − η, ∀v ∈ V, whereη > 0 is an ar-
bitrarily small number, then a maximal schedule [19] can

be computed such that each link is activated for
P

d fd
e

Re

fraction of time-slots. We will discuss more about the role
of maximal scheduling in our solution in Section III-D.

Based on these two facts, in the rest of the paper, we will
replace the scheduling constraints by

∑

e∈N(v)

∑
d fd

e

Re
≤ β, ∀v ∈ V. (4)

Problem (∗) can then be reformulated as the following



problem:

(A) min~f, ~R

∑

e∈E

∑
d fd

e

Re
h(Re), (5)

subject to (3) and (4)

(~f, ~R) ∈ X,

where X = {(~f, ~R) : Re ≥ 0, fd
e ≥ 0, ∀e, d}. The

formulation in (A) is not only easier to solve, but it also
produces natural bounds for proving the power efficiency ratio
of our solution. Indeed, solving (A) withβ = 1 provides a
lower bound on the minimum power of (∗), while β = 1

2 − η
provides an upper bound.

Remark:This problem appears in the formulation of [4].
However, our solution is different from this point on. As we
mentioned earlier, their solution is a centralized one with an
approximation ratio of3, while our solution is a distributed
one with a better approximation ratio.

B. Handling the Non-Convexity

In Problem (A), the objective function and constraints (4)
are non-convex. Problems of this type are considered to be
difficult in general. To overcome this difficulty, the following
change of variable is performed:

te =
∑

d fd
e

Re
, ∀e ∈ E.

The physical meaning ofte is the fraction of time-slotsthat
link e is activated. It can also be interpreted as theload on
link e. The latter interpretation seems more appropriate when
we deal withte(m) for each time-slot in the dual solution.
Note thatte = 0 implies thatfd

e = 0 for any destinationd
and any linke: if a link is not activated (or the load is zero), it
cannot support any non-zero data rate. The long-term average
power consumptionΘ from link e can therefore be defined as

Θ(~fe, te) =

{
0, te = 0,

teh(
P

d fd
e

te
), te > 0.

(6)

Using the above notation, Problem (A) can be transformed
into

(B) min~f,~t

∑

e∈E

Θ(~fe, te), (7)

subject to
∑

e∈N(v)

te ≤ β, ∀v ∈ V, (8)

∑

e∈No(v)

fd
e −

∑

e∈Ni(v)

fd
e − Tvd ≥ 0,

∀d, and∀v 6= d, (9)

(~f,~t) ∈ Y,

where Y = {(~f,~t) : fd
e ≥ 0,∀e, d; 0 ≤ te ≤ 1,

∑
d fd

e ≤
ate, ∀e, for somea ≥ 0}.

Remark:The condition
∑

d fd
e ≤ ate, for somea ≥ 0, in

the definition ofY is required to guarantee that the optimal
solution from Problem (B) can be transformed to the optimal

solution of Problem (A). Without this condition, Problem (B)
can be trivially solved by setting~t = 0 and ~f large enough
for the flow constraint. Such a solution cannot be transformed
to an optimal solution of Problem (A), since the instantaneous
data rate~R must be finite.

To show that there is no duality gap in solving Problem (B),
we need the following Lemma:

Lemma 2:Let

θ(f, t) =
{

0, t = 0,

th( f
t ), t > 0.

(10)

If h(·) is a convex function onR+, then θ(f, t) is also
convex onC =

⋃
a∈[0,+∞){(f, t) : 0 ≤ f ≤ at, t ≥ 0}.

We have included a proof of Lemma 2 in the Appendix.
Remark:A function of the formg(f, t) = th( f

t ), where
t > 0 is known as theperspectiveof function h(f). As
shown in [5], the perspective is one of the transformations that
preserve convexity. The transformation in the above Lemma
includes thet = 0 case, and therefore can be viewed as a
slightly generalized version of the perspective. Our proof in
the Appendix takes a different approach than [5].

Note thatθ is non-convex over the entireR+×R+. However,
the convexity ofθ over C is enough for our purpose, since
(~f,~t) ∈ Y in Problem (B). Due to Lemma 2, the objective
function Θ(~f,~t) of (B) is convex, and the entire problem is
a convex program. We can then use the duality approach to
solve the problem.

C. Distributed Algorithm Based on Lagrange Duality

To use the duality approach to solve the above problem, we
first form the Lagrangian:

L(~f,~t, ~µ, ~q)

=
∑

e∈E

Θ(~fe, te) +
∑

v∈V

µv


 ∑

e∈N(v)

te − β




−
∑

v,d

qd
v


 ∑

e∈No(v)

fd
e −

∑

e∈Ni(v)

fd
e − Tvd


 ,

where ~µ ≥ 0 and ~q ≥ 0 are the Lagrange multipliers, and
~fe = {fd

e }d∈D. For ease of notation, we defineqd
d = 0, for all

d. By rearranging the order of summation, the above equation
can be transformed into the following:

L(~f,~t, ~µ, ~q)

=
∑

e∈E

ce(~fe, te)− β
∑

v

µv +
∑

v,d

(qd
vTvd),

where

ce(~fe, te) = Θ(~fe, te) + (µx(e) + µr(e))te

−
∑

d

(qd
x(e) − qd

r(e))f
d
e , (11)



and x(e) and r(e) are the transmission node and reception
node of linke, respectively.

The dual objective function is

D(~µ, ~q)

= min
(~f,~t)∈Y

L(~f,~t, ~µ, ~q),

=
∑

e∈E

[
min

(~fe,te)∈Ye

ce(~fe, te)

]
−β

∑
v

µv+
∑

v,d

(qd
vTvd), (12)

whereYe denotes the constraint set on linke, namely

Ye = {(~fe, te) : 0 ≤ fd
e ≤ H, ∀d; 0 ≤ te ≤ 1;∑

d

fd
e ≤ ate, for somea ≥ 0}. (13)

To ensure convergence, we have addedfd
e ≤ H, where H

is a large constant to be determined later. See the proof of
Theorem 4 (in Appendix) for details. The minimization of the
Lagrangian can now be decomposed into a minimization on
each link. Note that all the information needed in minimizing
ce(~fe, te) is local to link e.

The dual optimization problem is

(C) max
~µ≥0,~q≥0

D(~µ, ~q). (14)

As mentioned before, the convexity ofΘ(~f,~t) can be
inferred from Lemma 2. Based on this, the following
Theorem [12] establishes the relationship between the primal
problem (B) and the dual problem (C) above.

Theorem 3:(Strong Duality)
Problem (B) is feasible and its optimal valueΘ∗ is finite.

Further, there is no duality gap:Θ∗ can be found by solving
its dual optimization problem.

Proof: We can always choose a large enoughfd
e to satisfy

the flow constraint (9), and small enoughte to satisfy the
scheduling constraint (8). Therefore, it is evident that problem
(B) is feasible and its optimal valueΘ∗ is finite.

In fact, we can choose~f,~t in such a way that all constraints
in (8) and (9) strictly satisfy:

∑

e∈N(v)

te < β, ∀v ∈ V ;

∑

e∈No(v)

fd
e −

∑

e∈Ni(v)

fd
e − Tvd > 0, ∀d, and∀v 6= d.

Therefore problem (B) satisfies the Slater constraint qualifica-
tion [21]. Since this condition is satisfied, and the constraints
(8) and (9) are polyhedral in nature, to show that there is no
duality gap, it suffices to show the objective functionΘ(~f,~t)
is convex overY . Note thatΘ(~f,~t) can be derived by applying
multiple vector compositions onθ(f, t). The convexity of
Θ(~f,~t) can therefore be inferred from Lemma 2.

The next step is to solve the dual problem in a distributed
fashion. We can show thatD(~µ, ~q) is convex and its subgra-
dient is given by

∂D

∂µv
=

∑

e∈N(v)

te − β,

∂D

∂qd
v

= −

 ∑

e∈No(v)

fd
e −

∑

e∈Ni(v)

fd
e − Tvd


 .

We can then use the following subgradient method to solve
the dual problem.

Distributed Energy Minimization Algorithm
At each iterationm,

1) At link e, the data rate~fe and the link assignmentte
are determined by:

(~fe(m), te(m))

= argmin
(~fe,te)∈Ye

ce(~fe, te,m)

= argmin
(~fe,te)∈Ye

[
Θ(~fe, te) + (µx(e)(m) + µr(e)(m))te

−
∑

d

(qd
x(e)(m)− qd

r(e)(m))fd
e

]
. (15)

2) At nodev, the dual variables are updated by:

µv(m + 1) =



µv(m) + αm


 ∑

e∈N(v)

te(m)− β








+

;

(16)

qd
v(m + 1) =



qd

v(m)− αm


 ∑

e∈No(v)

fd
e (m)

−
∑

e∈Ni(v)

fd
e (m)− Tvd








+

. (17)

Remark:At each iterationm, the data rate and schedule are
chosen to minimize the total costce, given the current implicit
costs (~µ, ~q). To maximize the dual objective function, the
dual variables are updated according to the subgradient ascent
procedure in (16) and (17), where{αm} are the stepsizes.
In the above algorithm, we use the same stepsize for~µ and
~f at each iteration. This is simply for ease of notation: the
stepsizes can be different for each dual variable. Since the
primal cost function is not strictly convex, the dual function
may not be differentiable. The stepsizes need to be chosen
carefully to guarantee the convergence of the dual variables.
We will discuss this issue in the Section IV.

The above exercise of using Lagrange duality is standard.
Nonetheless, there are some questions that are not answered by
the above algorithm alone. One of them is how the algorithm
maps to different protocol components. We will now study this
problem.



D. Mapping to Network Protocol Components

To decide the routing and scheduling, each link solves
(15) by minimizing ce(~fe, te,m). Note that there are three
components ince(~fe, te,m):

• The term Θ(~fe, te) is the power cost, i.e., the power
consumption of supporting an average data rate of~fe

while link e being activated forte fraction of time.
• The term (µx(e)(m) + µr(e)(m))te is the scheduling

cost. We will show thatte(m) will either be 0 or 1
in order for link e to minimize ce(~fe, te). If te(m) is
chosen to be1, then µx(e)(m + 1) ≥ µx(e)(m) from
(16): scheduling the transmission on linke gives rise to
increased (or at least the same) scheduling costs on the
transmission/reception nodes. Ifte(m) is chosen to be0,
then µx(e)(m + 1) ≤ µx(e)(m): an idle link gives the
system more flexibility in scheduling other links, which
leads to a potential decrease in the scheduling costs on
the transmission/reception nodes.

• The term
∑

d(q
d
x(e)(m) − qd

r(e)(m))fd
e is the utility of

supporting the total data rate on linke. The termqd
v can

be interpreted as an approximation of the scaled version
of the queue length at nodev for destinationd [15] if
constant stepsizes are used. As in (17), iffd

e (m) > 0, it
helps reduce the workload at the transmission node, but
add to the workload at the reception node.

The following transformation leads to a better understanding
of the minimization ofce(~fe, te):

fd
e (m) = Rd

e(m)te(m), (18)

whereRd
e(m) is the instantaneous data rate allocated on linke

for destinationd, andfd
e (m) is the resultant average data rate

when transmitting forte(m) fraction of the time. Substitute
the above equation intoce(~fe, te,m), we have (all time index
dropped for ease of notation):

ce(~fe, te) = tele(~Re), (19)

wherele(~Re) is defined as

le(~Re) = h(
∑

d

Rd
e) + (µx(e) + µr(e))

−
∑

d

[
(qd

x(e) − qd
r(e))R

d
e

]
. (20)

Since te ≥ 0, to minimize (19), we should first minimize
le(~Re) as a function of~Re. Note that functionh(·) takes as
input parameter the sum of the data rates allocated for all the
destinations on this link. In other words, from the viewpoint of
power consumption, it is indifferent which destination the data
rate is allocated for, as long as the total data rate is the same.
As a result, the minimum ofle(~Re) is attained whenall the
data rates are allocated to the destination with the maximum
positive backlog difference.Let

d̂ = argmax
d

(qd
x(e) − qd

r(e)), (21)

thenRd̂ > 0 if (qd̂
x(e) − qd̂

r(e)) > 0, andRd
e = 0 for all d 6= d̂.

With this observation, the minimization ofle(~Re) is relatively
simple. For example, ifh(x) = ex − 1, and maxd(qd

x(e) −
qd
r(e)) > 0, thenRd̂

e = [log(qd̂
x(e) − qd̂

r(e))]
+, andRd

e = 0 for
all other destinationd.

Now that ~Re has been chosen to minimizele(~Re) in (20),
the next step is to determine the value ofte over the interval
[0, 1] to minimize ce(~fe, te) = tele(~Re). Clearly, the optimal
te value is

t̂e =

{
1, if min~Re

le(~Re) ≤ 0,

0, if min~Re
le(~Re) > 0.

(22)

Remark:There are two possible scenarios wheret̂e = 0 (no
load is assigned in this time-slot):

• All backlog differences(qd
x(e)−qd

r(e)) are negative, which
means the utility does not increase by transporting data
to next hop on this link for any destination.

• Although some backlog differences(qd
x(e) − qd

r(e)) are
positive, as in (20), theutility of transporting data to next
hop is not large enough to outweigh theimportance of
saving more energy(theh(

∑
d Rd

e) term) and/or theneed
to gain more flexibility in scheduling(the (µx(e) +µr(e))
term). As a result, optimalle(~Re) is non-negative, and
no load is assigned to this link.

To summarize, the minimization ofce(~fe, te) on each link
naturally translates into the following protocol components:

1) Routing:Choose only the floŵd with maximum positive
backlog difference (cf. (21)). This is the flow that should
receive service.

2) Power control:Choose~Re to minimize le(~Re). This is
the power linke should use.

3) Link assignment:Choosete to minimize tele(~Re) in
such a way thatte takes its maximum value1 if
the optimal le(~Re) is less than or equal to0; and 0
otherwise. This determines the amount of time linke
should be on.

4) Maximal Scheduling:As mentioned before, given the
fraction of up-time, or load, on each link, a scheduling
component is needed to determine the exact time-slots
link e should be on. In other words, the link assignment
from previous step may have scheduling conflicts, and
therefore cannot be used as a transmission schedule as it
is. A scheduling component can resolve such conflicts
by delaying the transmission by a certain number of
time-slots. Clearly, given the link assignment~t(m), the
delay can be different for different links. With the node-
exclusive interference model, by choosingβ = 1

2 − η,
it can be shown [7], [24] that a scheduling policy
based on maximal matching can stabilize the system
(the delay of transmission mentioned above is bounded).
Maximal schedules such as this can be implemented in
a distributed fashion. We refer readers to [16] for more
details on the distributed implementation of maximal
schedules.



As we have seen thus far, the duality approach exploits the
problem structure and decomposes the primal problem into
sub-problems on each link that are much simpler. In addition,
some of the quantities produced/monitored by this algorithm
actually help network engineering. For instance, the Lagrange
multiplier qd

v can also be interpreted as theshadow price
of the corresponding constraint. If a small change occurs in
the amount of supported traffic from nodev to noded, qd

v

measures the sensitivity of the optimal power consumption
with respect to this perturbation. In a different networking
setting where the network has some control over the traffic
matrix ~T , information such as~q can be used as guidelines to
optimize power consumption.

IV. PERFORMANCEANALYSIS

In this section, first we are interested in the following
question:Under what condition do the dual variables in the
Distributed Energy Minimization algorithm converge?

Furthermore, as we have seen in Section III, there is no
guarantee that(~f(m),~t(m)) will converge, even if the dual
variables converge. For example,te(m) is either0 or 1 from
the distributed dual algorithm. A natural question to ask then
is the following:In what sense is the primal solution optimal?
The two Theorems below answer both of the above questions
from two different perspectives.

A. Convergence Result with Constant Stepsizes

The following theorem establishes the stability and the
optimality of the proposed dual algorithm.

Theorem 4:(Stability and Optimality)
Let the stepsizes in the Distributed Energy Minimization

algorithm be constant, i.e.,αm = h, for all m. Let Φ be
the set of(~µ, ~q) that maximizesD(~µ, ~q), andd((~µ, ~q), Φ) =
min(~µ∗,~q∗)∈Φ ‖(~µ, ~q)−(~µ∗, ~q∗)‖. Given anyε > 0, there exists
someh0 > 0 such that, for anyh ≤ h0 and any initial implicit
costs(~µ0, ~q0), there exists a timeM0 such that for allm >
M0,

d((~µ(m), ~q(m)),Φ) < ε, (23)

and

lim sup
m→∞

1
m

m∑
τ=1

∑

e∈E

Θ(~fe(τ), te(τ)) < Θ∗ + ε. (24)

The proof of Theorem 4 is included in the Appendix.
The above Theorem shows that, when stepsizes are small,

the dual variables eventually converge to within a small
neighborhood of the optimal dual solution. Further, the power
consumption from the distributed algorithm is asymptotically
optimal: although the primal variables(~f(m),~t(m)) may
not converge, by using(~f(m),~t(m)) for each time-slotm,
the long-term average of the resultant power consumption is
arbitrarily close to the optimal power consumption.

B. Optimality of Primal Variables

As shown in Theorem 4, with constant stepsizes, the dual
variables eventually converge to within a small neighborhood
of the optimal dual solution. When appropriate diminishing
stepsizes are used in the dual algorithm, the following
Theorem shows that the entire sequence of the dual variables
converges to one point. In this case, we also obtain a different
interpretation of the primal optimality.

Theorem 5:(Primal Optimality with Diminishing Step-
sizes)

(a) Let the stepsizes{αm} in the Distributed Energy Min-
imization algorithm satisfy the following conditions:

∞∑
m=1

α2
m < +∞,

∞∑
m=1

αm = +∞. (25)

Then for any nonnegative starting point(~µ0, ~q0), the dynamics
of the Distributed Energy Minimization algorithm converges
to the optimal value of Problem (B):

lim
m→∞

(~µ(m), ~q(m)) = (~µ∗, ~q∗), (26)

lim
m→∞

D(~µ(m), ~q(m)) = Θ∗, (27)

where(~µ∗, ~q∗) is a maximum point ofD(~µ, ~q).
(b) Let the stepsizes{αm} be chosen as

αm =
κ

m + ρ
, (28)

whereκ andρ are some positive scalars (note that the above
definition of {αm} satisfies the conditions (25)). If the long-
term average of the vector(~f(m),~t(m)) converges, i.e.,

lim
M→∞

1
M

M∑
m=1

~f(m) = ~f∗, lim
M→∞

1
M

M∑
m=1

~t(m) = ~t∗, (29)

then the time-average version of(~f(m),~t(m)) is the optimal
solution to Problem (B):

∑
e∈E Θ(~f∗e , t∗e) = Θ∗.

The proof of Theorem 5 is included in the Appendix.
Remark:In the Distributed Energy Minimization algorithm,

te(m), for example, can only be0 or 1. From this perspective,
our solution carries the same flavor as some of the related work
[8], [14], namely, in the optimal solution,the resource, be it
power or fraction of up-time, is used to the maximum extent,
if the link is activated for the current time-slot.However, one
would expect the optimal solution ofte to Problem (B) to be
a number anywhere from0 to β for most of the links in a
typical setting (cf. (8)). Theorem 5 reconciles the difference
between these two viewpoints. Although(~f(m),~t(m)) is not
a continuous mapping from the underlying converging implicit
costs (dual variables(~µ, ~q)), as long as the long-term average
of primal variables(~f(m),~t(m)) converges, the limit is an
optimal solution to the primal problem.



C. Power-Efficiency Ratio

Setting β = 1 or β = 1
2 − η in (4) gives necessary or

sufficient conditions for schedulability, in terms of stabilizing
the overall queueing system [9]. From the necessary condition
of β = 1, it is evident that the maximum loss in throughput
under the node exclusive interference model is1

2 − η. This
is the throughput loss ratio in approximating (∗) using Prob-
lem (B) with β = 1

2 − η.
To derive the approximation ratio of our algorithm, the

throughput loss needs to be translated into power loss. We
apply the same first order approximation of the rate-power
function as in [4]. More specifically, in an AWGN channel,
the total power consumption can be approximated as

∑
e

Be

te
,

where Be is a flow-related constant independent ofte. Let
(~f,~t) be the optimal solution to Problem (B) withβ = 1. It is
evident that(~f,

~t
2+ε ), whereε is a small positive constant, is a

feasible solution to Problem (B) withβ = 1
2−η. This feasible

solution results in a power consumption that is at most(2+ε)
that of the optimal value withβ = 1. Since the optimal value
of Problem (B) withβ = 1 is a lower bound on the minimum
power from (∗), we conclude that the power-efficiency ratio
of our algorithm is upper-bounded by(2 + ε).

V. NUMERICAL RESULTS

In this illustrative example, we consider a 7-node network,
whose topology is depicted in Figure 1. The power-rate
function is of the following form:

Re = W log2

[
1 +

σepe

N0W

]
,

whereW = 1.0 MHz is the available bandwidth,σe = 1.6×
10−13 is the channel gain of linke, N0 = 1.6×10−18 mW/Hz
is the noise spectral density,pe is the transmission power,
andRe is the resultant instantaneous data rate of linke. This
network supports two flows, as shown in Table I.

TABLE I

THE TWO FLOWS SUPPORTED BY THE NETWORK

source destination data rate paths
flow 1 1 7 250 kbps 1-7, 1-2-7
flow 2 3 6 500 kbps 3-2-6, 3-4-5-6

The node-exclusive interference model is considered, and
β = (0.5 − 10−4) in Problem (A). The length of each time-
slot is 1 second. The results reported in this section are the
average over a moving time window of length120 seconds.

To show that the joint energy minimization algorithm can
adapt to variations in the input parameters, we apply the
following changes in the system setting. At timet = 4000s,
the channel gainσ(1,7) of the direct link between node1 and
node7 is decreased from1.6×10−13 to 0.4×10−13. At time
t = 8000s, the data rate of flow2 (from node3 to node6) is
reduced from500 kbps to250 kbps.

For each setting, offline computation is carried out to find
the optimal value of Problem (A), which is given by the
dashed line in Figure 2. The power consumption from the
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Fig. 2. Power consumption from distributed algorithm and offline computa-
tion

proposed algorithm is shown as the solid line in the same
figure. This simulation result shows that the Distributed Energy
Minimization algorithm is capable of computing the optimal
solution in a distributed manner, and automatically tracking the
optimal operating point once the system parameters change.

Figure 3 shows the average data ratesfd
e for different flows

on four links. We now take a closer look at the routing of the
flows.

• In the initial state, flow1 concentrates on the minimum
energy path, namely, link(1, 7).

• At t = 4000s, the channel gainσ(1,7) reduces by75%,
and part of flow1 is shifted to path1 − 2 − 7. Since
the scheduling capacity of node2 is saturated, a larger
percentage of flow2 is then routed through path3− 4−
5− 6 in the optimal solution.

• At t = 8000s, the traffic that the network has to support
between node3 and node6 reduces (flow2 is reduced
to 250 kbps). As a consequence, part of the scheduling
capacity of node2 is freed, and more of flow1 takes
path1− 2− 7 to reduce the overall power consumption.

The above example shows that the interaction between
routing, scheduling, and power control is relatively complex
even in a wireless network of small size. The correct way
to deal with such interaction is difficult to summarize into
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general approaches such as minimum energy approach or load
balancing approach. In our Distributed Energy Minimization
algorithm, as shown in Figure 2 and Figure 3, low-complexity
and distributed operation on each link accomplishes this joint
optimization even in networks with non-stationarity.

VI. CONCLUSION

In this paper, we propose a joint power control, link
scheduling, and routing algorithm to minimize the power
consumption in multi-hop wireless networks. The known
cross-layer solution to this problem is centralized, and with
high computational complexity. In contrast, our algorithm
is distributed, and with low computational complexity. We
establish the power efficiency ratio of our solution, and show
this performance bound, achieved in a distributed manner, is
provably tighter than a centralized solution in the literature. We
map our solution to corresponding components of the cross-
layer control protocols, and discuss the implication of our
result on network protocol design. The stability and optimality
of our solution is studied, and the simulation results verify
that our distributed solution computes and tracks the optimal
operating point when the system parameters change.

In this work, we focus on the well-studied node exclusive
interference model. In a more general interference model, we
can defineΓe to be the set of links that interfere with linke.
(The node-exclusive model can be viewed as a special case
with Γe = N(x(e))

⋃
N(r(e)).) Let ωe denote the maximum

number of links that can be scheduled simultaneously inΓe,
and ωmax = maxe ωe. It can be shown that a distributed
maximal schedule can stabilize the system while the through-
put is reduced by at most a factor of1/ωmax. In this case,
the left hand side of the scheduling constraint in our problem
formulation need to be modified to be a summation over all
links incident with one or more nodes inΓe [6], [7], [23], [24].
As a result, the relationship of dual variables~µ and the set of
nodesV can be a many-to-many mapping, instead of a one-to-
one mapping in the node exclusive model. Nonetheless, since
all the information needed to solve the decomposed problem
is still local to each link, the general methodology presented
in this paper can be carried through to this type of interference

model.

APPENDIX

A. Proof of Lemma 2:
To begin with, we make the following two observations:
First, if f/t equals to some fixedτ > 0, then θ(f, t) is

proportional tot.
Secondly, given anyt > 0, it is evident thatθ(f, t) is convex

in f .
To show thatθ(f, t) is convex inC, we want to show

αθ(f1, t1) + (1− α)θ(f2, t2)
≥ θ(αf1 + (1− α)f2, αt1 + (1− α)t2), (30)

for any α ∈ [0, 1], and any(f1, t1) and (f2, t2) in C.
If t1 or t2 equals zero, then Inequality (30) holds. To see

that, without loss of generality, let us assumet1 = 0. To avoid
trivial case, let us also assume thatt2 > 0 and α 6= 1. Then
θ(f1, t1) = 0 by definition. It follows that

αθ(f1, t1) + (1− α)θ(f2, t2)
= (1− α)θ(f2, t2)

= (1− α)t2h(
f2

t2
)

= (1− α)t2h(
(1− α)f2

(1− α)t2
)

= θ((1− α)f2, (1− α)t2)
= θ(αf1 + (1− α)f2, αt1 + (1− α)t2).

The last equality holds sincet1 = 0 and (f1, t1) ∈ C imply
f1 = 0. Therefore, Inequality (30) holds in this case.

From now on, it is assumed that botht1 andt2 are positive.
Consider the point(t1f2/t2, t1). This point is chosen in such
a way that it has the samet-coordinate as(f1, t1) and is on
the same direction as vector(f2, t2). From the convexity of
h(·), we have

λθ(f1, t1) + (1− λ)θ(
t1f2

t2
, t1)

= t1

[
λh(f1, t1) + (1− λ)h(

t1f2

t2
, t1)

]

≥ t1h(f̄ , t1)
= θ(f̄ , t1), (31)

wheref̄ = λf1 + (1− λ) t1f2
t2

, for any λ ∈ [0, 1].
The next step is to select the correct value ofλ to show

the convexity ofθ(·) using the convexity ofh(·). Given any
α ∈ [0, 1], λ is chosen to be

λ =
αt1

αt1 + (1− α)t2
.

The value of λ is chosen this way such that(f̄ , t1) lies
in the direction of vector(f̂ , t̂), where (f̂ , t̂) is the convex
combination of(f1, t1) and(f2, t2) with weight parameterα,



as in the RHS of (30). By substituting the value ofλ into (31),
and simplifying the expression, we have

αt1θ(f1, t1) + (1− α)t2t1h(
f2

t2
)

≥ (αt1 + (1− α)t2)t1h(
αf1 + (1− α)f2

αt1 + (1− α)t2
).

Inequality (30) then follows.

B. Proof of Theorem 4:

The proof technique here is similar to [18].

We first show the boundedness of the subgradient of the dual
objective function. In (13), we chooseH ≥ |V |2 maxv 6=d Tvd,
where |V | is the number of nodes in the network. LetȲ
denote the Cartesian product of allYe in (13). It is clear that
Ȳ ⊂ Y , whereY is defined in Problem (B). Note that the
introduction ofH does not change the solution. The optimal
solution (~f∗,~t∗) to Problem (B) is inȲ for the following
reason:Θ is a non-decreasing function offd

e , and therefore
any (~f,~t) with fd

e > H for somed and e is clearly sub-
optimal even if all the traffic is routed through linke. So the
solution generated from the Distributed Energy Minimization
algorithm coincides with the optimal solution to Problem (B).
The benefit from enforcing such an upper bound onfd

e is that
the subgradient of the dual objective function is then bounded.

Given the subgradient of the dual objective function is
bounded, it can be shown [3] that, given anyε > 0, there
exists someh1 > 0 such that, for anyh ≤ h1 and any initial
implicit costs(~µ0, ~q0), there exists a timeM0 such that (23)
holds for allm > M0. Therefore, as time indexm increases,
(~µ(m), ~q(m)) converges to within a small neighborhood of
the set of the maximizer ofD(~µ, ~q) if the constant stepsize
is chosen to be small enough. This implies that the sequence
{(~µ(m), ~q(m))}m is bounded.

To show (24), we consider the following Lyapunov function:

V (~µ(m), ~q(m)) =
1
2

∑

v,d

[qd
v(m)]2 +

1
2

∑
v

µ2
v(m).

The subgradient ofD(~µ, ~q) at time-slotm can be written as

∆µv(m) =
∑

e∈N(v)

te(m)− β,

∆qd
v(m) = −


 ∑

e∈No(v)

fd
e (m)−

∑

e∈Ni(v)

fd
e (m)− Tvd


 .

Using the above notation, the one-step drift of the Lyapunov

function can be calculated as follows:

V (~µ(m + 1), ~q(m + 1))− V (~µ(m), ~q(m))

=
1
2

∑
v

{[
(µv(m) + h∆µv(m))+

]2

− µ2
v(m)

}

+
1
2

∑

v,d

{[(
qd
v(m) + h∆qd

v(m)
)+

]2

− [
qd
v(m)

]2}

(from (16) and (17))

≤ 1
2

∑
v

{
[µv(m) + h∆µv(m)]2 − µ2

v(m)
}

+
1
2

∑

v,d

{[
qd
v(m) + h∆qd

v(m)
]2 − [

qd
v(m)

]2}

≤ h
∑

v

µv(m)∆µv(m) + h
∑

v,d

qd
v(m)∆qd

v(m) + h2W,

where W is a constant large enough to guarantee the
last inequality. It is possible to choose such a con-
stant since the subgradient ofD(~µ, ~q) is bounded. Adding
h

∑
e∈E Θ(~fe(m), te(m)) to both sides of the above formula,

we have

V (~µ(m + 1), ~q(m + 1))− V (~µ(m), ~q(m))

+h
∑

e∈E

Θ(~fe(m), te(m))

≤ h

[∑

e∈E

Θ(~fe(m), te(m)) +
∑

v

µv(m)∆µv(m)

+
∑

v,d

qd
v(m)∆qd

v(m)


 + h2W

= hD(~µ(m), ~q(m)) + h2W

(from (12) and (15))

≤ hD∗ + h2W

= hΘ∗ + h2W,

whereD∗ is the maximum dual value, which is also equal to
the minimum powerΘ∗ from the primal problem.

Summing the above inequality overm = 1, 2, . . . , M , and
dividing both sides byM , we have

V (~µ(M + 1), ~q(M + 1))− V (~µ(1), ~q(1))
M

+
h

M

M∑
m=1

∑

e∈E

Θ(~fe(m), te(m))

≤ hΘ∗ + h2W. (32)

Note that all V (·) is bounded since the sequence
{(~µ(m), ~q(m))}m is bounded. For any givenε > 0, the first
term on the LHS of (32) can be bounded byε/2 for M large
enough:

1
M

M∑
m=1

∑

e∈E

Θ(~fe(m), te(m)) ≤ Θ∗ + hW +
ε

2
.



For any givenε > 0, there exist someh2 > 0 such that
hW < ε/2 for all h < h2. Under this condition, the following
is evident:

lim sup
M→∞

1
M

M∑
m=1

∑

e∈E

Θ(~fe(m), te(m)) < Θ∗ + ε.

Let h0 = min(h1, h2), and Theorem 4 follows.

C. Proof of Theorem 5:
(a) As in the beginning of the proof of Theorem 4, we

can show the boundedness of the subgradient. We then invoke
Proposition8.2.6 from [3], and by the diminishing stepsize
rule (25), we have (26) and

lim
m→∞

D( ~µ(m), ~q(m)) = D∗ = Θ∗, (33)

where the last equality follows from Theorem 3.

(b) Define the average fraction of up-time of linke over the
first m time slots as

t
avg
e (m) =

1
m

m∑
τ=1

te(τ).

Similarly, define the average data rate of linke, dedicated for
destinationd, over the firstm time slots as

f
d,avg
e (m) =

1
m

m∑
τ=1

fd
e (τ).

Let ε > 0 be a given arbitrarily small number. Since
limm→∞(~µm, ~qm) = (~µ∗, ~q∗), and αm = κ

m+ρ > κ
2m for

large m (from (25)), we can chooseM0 large enough such
that for all m ≥ M0, the following holds:

|qv(m)− q∗v | ≤
κε

12
, (34)

αm >
κ

2m
, (35)

for any nodev.
Consider linke, whose transmission nodex(e) or reception

noder(e) satisfiesqd,∗
v > 0 for somed.

For largeM , clearlyqd
v(m) > 0 for all m ≥ M . Therefore,

the (. . .)+ from (17) has no effect whenm is large:

−αm(
∑

e∈No(v)

fd
e (m)−

∑

e∈Ni(v)

fd
e (m)−Tvd) = qd

v(m+1)−qd
v(m).

Sum the above equation form ranging from M0 to some
M1 > M0:

M1∑

m=M0


−αm(

∑

e∈No(v)

fd
e (m)−

∑

e∈Ni(v)

fd
e (m)− Tvd)




= qd
v(M1 + 1)− qd

v(M0).

Sinceαm > κ
2m ≥ κ

2M1
and (34), we have

κ

2M1

∣∣∣∣∣∣

M1∑

m=M0

(
∑

e∈No(v)

fd
e (m)−

∑

e∈Ni(v)

fd
e (m)− Tvd)

∣∣∣∣∣∣

≤
∣∣∣∣∣∣

M1∑

m=M0

[αm(
∑

e∈No(v)

fd
e (m)−

∑

e∈Ni(v)

fd
e (m)− Tvd)]

∣∣∣∣∣∣
≤ ∣∣qd

v(M1 + 1)− qd
v(M0)

∣∣
≤ κε

6
. (36)

Exchange the order of summation on the LHS of (36), we
arrive at ∣∣∣∆̃vd(M0,M1)− T̃vd(M0,M1)

∣∣∣ ≤ ε

3
, (37)

where

∆̃vd(M0,M1) =
∑

e∈No(v)

f̃d
e (M0,M1)−

∑

e∈Ni(v)

f̃d
e (M0,M1),

f̃d
e (M0, M1) =

1
M1

M1∑

m=M0

fd
e (m),

T̃vd(M0,M1) = Tvd
M1 −M0 + 1

M1
.

Given M0,

lim
M1→∞

∆̃vd(M0,M1) =
∑

e∈No(v)

fd,∗
e −

∑

e∈Ni(v)

fd,∗
e , (38)

lim
M1→∞

T̃vd(M0,M1) = Tvd. (39)

From (39) and (38), we can chooseM1 large enough such
that∣∣∣∣∣∣

∆̃vd(M0,M1)−

 ∑

e∈No(v)

fd,∗
e −

∑

e∈Ni(v)

fd,∗
e




∣∣∣∣∣∣
≤ ε

3
,

∣∣∣T̃vd(M0,M1)− Tvd

∣∣∣ ≤ ε

3
.

From (37), we have
∣∣∣∣∣∣

∑

e∈No(v)

fd,∗
e −

∑

e∈Ni(v)

fd,∗
e − Tvd

∣∣∣∣∣∣
≤ ε.

Since the above is true for any givenε > 0, we conclude that
∑

e∈No(v)

fd,∗
e −

∑

e∈Ni(v)

fd,∗
e = Tvd, (40)

for all e satisfyingqd,∗
x(e) > 0 or qd,∗

r(e) > 0 for somed. In other

words, all the constraints on~f are active forqd
v > 0. This is

known as thecomplimentary slacknesscondition. Following
the same approach, the complimentary slackness can be shown
for constraints on~t:

∑

e∈N(v)

t∗e = β, (41)



for all e ∈ N(v), µ∗v > 0.
Furthermore, since the vector(~f(m),~t(m)) minimize

L(~f,~t, ~µ(m), ~q(m)) for each time-slotm in the Dual Energy
Minimization algorithm, it is easy to show

(~f∗,~t∗) = argmin
(~f,~t)

L(~f,~t, ~µ∗, ~q∗). (42)

Therefore,
∑

e∈E

Θ(~f∗e , t∗e)

=
∑

e∈E

Θ(~f∗e , t∗e) +
∑

v∈V

µ∗v


 ∑

e∈N(v)

t∗e − β




−
∑

v,d

qd,∗
v


 ∑

e∈No(v)

fd,∗
e −

∑

e∈Ni(v)

fd,∗
e − Tvd


 ,

(from complimentary slackness (40) and (41))

= L(~f∗,~t∗, ~µ∗, ~q∗)

= min
(~f,~t)

L(~f,~t, ~µ∗, ~q∗)

(from (42))

= D(~µ∗, ~q∗)
= Θ∗.

The last equality is true from the strong duality in Theorem 3.
Note that {(~f∗e , t∗e)} is also prime feasible, otherwise

(~µ∗, ~f∗) will diverge in view of (16), (17), and the fact that∑∞
m=1 αm = +∞.
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