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Abstract—In this work, we study the problem of minimizing scheduling, and routing. However, known optimal solutions
the total power consumption in a multi-hop wireless network require centralized computation and high computational com-
subject to a given offered load. It is well-known that the plexity. In this paper, we propose a new low-complexity and
total power consumption of multi-hop wireless networks can 7. . . Lo . .
be substantially reduced by jointly optimizing power control, distributed solution to this problem undt_ar a_W|der-used inter-
link Schedu"ng, and routing_ However, the known optima| Cross- ference mOdel, called the node-exclusive interference model.
layer solution to this problem is centralized, and with high Using this model, the work in [4] developed a centralized
computational complexity. In this paper, we develop a low- solution that yielded &3-approximation ratio (the resultant
complexity and distributed algorithm that is provably power- power consumption is within a factor & from the optimal
efficient. In particular, under the node exclusive interference . . . . .
model, we can show that the total power consumption of our power consumptl_on)._ln contra_st, in this paper, We_ W'_” obtain
algorithm is at most twice as large as the power consumption @ (2 + €)-approximation algorithm that is fully distributed,
of the optimal (but centralized and complex) algorithm. Our wheree > 0 is an arbitrarily small constant. To the best of
algorithm is not only the first such distributed solution with  our knowledge, our proposed algorithm is the fititributed
provable performance bound, butits power-efficiency ratio is also - gq|tion in the literature with a provable performance bound.

it:]gmg”ttg?;u}:'eat of another sub-optimal centralized algorithm Our solution approach is inspired by the recent progress in

Index Terms—Energy Aware Routing, Duality, Mathematical ~ USing imperfect scheduling algorithms to develop distributed
Programming/Optimization, Cross-Layer Optimization, Simula- cross-layer congestion control and scheduling algorithms in

tions multi-hop wireless networks. We first formulate the energy
minimization problem into a special form that naturally leads
to a distributed solution. We then map the solution to cor-
There has been significant recent interest in developingsponding components of the cross-layer control protocols,
control protocols for multi-hop wireless networks. Many apand rigorously establish the power-efficiency of the resulting
plications can benefit from the deployment of these networkagorithm.
For instance, sensors can form multi-hop wireless networks forOur work is also related to the study of energy-aware routing
such applications as habitat monitoring [2], and the managgotocols for minimizing energy consumption and extending
ment of sewer overflow events [20]. Vehicles can form multiretwork lifetime [10], [11], [13], [22], [25]. These works
hop wireless networks to exchange safety messages and traffisume that the system capacity is battery-limited instead of
information [17]. Wireless LAN devices can form multi-hopinterference-limited and therefore do not consider scheduling
mesh networks to provide wireless broadband access [1]. constraints. In contrast, our work explicitly considers schedul-
A key issue in developing control protocols for multiing, jointly with power control and routing.
hop wireless networks is to reduce the energy or powerThe intellectual contribution of this work is summarized as
consumption. This is obviously an important issue for batter§ellows:
powered networks since the power consumption often limitse We develop a low-complexity and distributed joint rout-
the lifetime of the network. Even for networks with access to  ing, power control, and scheduling algorithm for multi-
power sources, the transmission power of the communication hop wireless networks with provable power-efficiency
links may still need to be properly controlled, e.g., due to ratio. Further, our algorithm can guarantee a better power-
health or regulatory concerns. efficiency level than some existing centralized algorithms.
In this work, we are interested in the problem of minimizing « Our solution cannot be obtained by extending the known
the total power consumption of a multi-hop wireless network, optimal solution in the literature [8], [18]. Instead, we
subject to a given offered load. It is well-known that the total develop an optimization approach to the energy mini-
power consumption of multi-hop wireless networks can be mization problem that naturally leads to distributed solu-
substantially reduced by jointly optimizing power control, link  tions. We also develop rigorous techniques to identify the

I. INTRODUCTION



convergence properties and quantify the power-efficiendhe constraints in (3) require that the total outgoing flow
of the resulted control protocol. of a node should be able to support the total incoming and

The rest of this paper is organized as follows: in Section ligcally generated flow, for all destinations. Note that we use
we present the system model and formulate the energy mifil as a shorthand notation for all nodésbelonging toD,
mization problem. In Section I, we present our algorithm anée set of destinations. We will refer to the above problem as
discuss its implications. In Section 1V, we discuss our maiiroblem §).
result on the convergence properties and the power-efficiency
of the dual algorithm. Numerical results are provided in [1l. SOLUTION METHODOLOGY

Section V. Concluding remarks are presented in Section VI. o o
A. Approximating the Energy Minimization Problem

Il. PROBLEM FORMULATION ) ) )
The optimal solutions developed in [8], [18] attempt to solve

GWeEmodEI aW|r'eIer?s mUItI]:hOp .network by a cﬁrec;ed gr;‘gbroblem ¢). However, their solutions contain a scheduling
(V. E), whereV is the set of vertices representing the no eEomponent with high computational complexity. In order to

e_md E is the set of edges representing the communic_ati%larnpute at which power and at what time each kinghould
|II’]kS: we u.seN."(v) andN;(v) to de”f’te the Sets Of. outgoingy, activated, these solutions need to solve a complex global
and incoming links of node, respectively. Their uniodV (v) optimization problem in each time-slot

SYs ) : P 9 ?_istributed solution, we take a different approach. We first
exclusive interference model that is used to characterize Fap'proximate ¢ by another optimization problem that is
CDMA and UWB system with perfecF orthogonal .Spreadmgasier to solve. The following Lemma [4] provides the first
codes and low power-spectrum density. Under this model, f’(‘a in this direction
node can only receive from or transmit to at most one node " ’
at any time-slotm. Further, each link is power-controlled.
That is, if node-exclusiveness is satisfied, we assume that %n
possible data rat®&, of link e is a result of its power assign- N
ment,p.. We useh(R.) to denote the power consumption o
supporting data rate aR.. It is assumed thak(-) is a non-
decreasing, convex function satisfying0) = 0. An example tivated A It L . 't
of h(-) is the power-rate relationship in an Additive Whitec!Va& ed. tS e;P[esu éliﬁM?m i th:hl tT'(ﬁlZ)' IS egua; 0‘13
Gaussian Noise (AWGN) channel. Other interference moddi€ Product ofi2. and the frequency that link is activated.

can be incorporated in this formulation, and we will discus5herefore, by (2), the objective function of Probles) ¢an
this in Section VI. now be written as

emma 1:For some time-sloin when linke is activated
instantaneous data rafe.(m) is independent ofn in
any power-optimal scheme.

It is worth noting thatR.(m) = R. holdswhen linke is

Each packet may take multiple hops to be delivered from S fd
source to destination. Lef,,; denote the long-term average Z ]‘é “h(R.),
data rate of the flow that needs to be supported from source ek c
nodev to destination node. We useD to denote the set of sl _ _ S
destinations. where # is the fraction of time-slots that linke is
The joint energy minimization problem is now formulatedctivated.
as follows: Further, using the results from low-complexity schedul-

ing [16], we have

1 M o Fact 1: In thg optimal solution to %), we must have
() mingz  lim o D> h(Re(m)), 1) > een(w) ale <1 wwev.
. m=1e€k « Fact 2: Under the node-exclusive interference model, if
subject to R(m) satisfies node-exclusivenessn, > een o) Zﬁifd <1y, Vv eV, wheren > 0is an ar-
J ) 1 X bitrarily small number, then a maximal schedule [19J can
> fi= im — ZlRe(m),Ve, @ be computed such that each link is activated %L
d J m_d fraction of time-slots. We will discuss more about the role
Z fé— Z fe —Tva 20, of maximal scheduling in our solution in Section IlI-D.
ee]\g’(;”) dveeNif;) 3 Based on these two facts, in the rest of the paper, we will
, andvv # d, ©) replace the scheduling constraints by
where the quantityf¢ can be interpreted as the average J
amount of data rate on link allocated for destinationi. Z 2afe < B,Yv e V. (4)
The constraints in (2) require that the long-term average data cEN() Re

rate, determined by the power allocation, should be able to
support the total average data rafe (f¢) on each link. Problem §) can then be reformulated as the following



problem: solution of Problem (A). Without this condition, Problem (B)
can be trivially solved by setting = 0 and f large enough

d
(A) min ¢ 5 Z %h(]{e), (5) for the flow constraint. Such a solution cannot be transformed
ek ¢ to an optimal solution of Problem (A), since the instantaneous
subject to  (3) and (4) data rateR must be finite.
(ﬁ ﬁ) € X, To show that there is no duality gap in solving Problem (B),

oL we need the following Lemma:
where X = {(f,R) : R. > 0,f¢ > 0, Ve,d}. The
formulation in (A) is not only easier to solve, but it also | emma 2:Let
produces natural bounds for proving the power efficiency ratio

of our solution. Indeed, solving (A) witl = 1 provides a 0(f,t) = {
lower bound on the minimum power of), while 5 = % —n

provides an upper bound. _ _ If h(-) is a convex function orR*, then d(f,t) is also
Remark: This problem appears in the formulation of [4]'convex onC = | ((f,t):0< f<at,t>0}
However, our solution is different from this point on. As we a€l0Aoo) B/ B = =T =T

mentloned _earller,. their soIL_Jtlon is a ce.ntraillzed one with an We have included a proof of Lemma 2 in the Appendix.
approximation ratio of3, while our solution is a distributed
one with a better approximation ratio.

0, t=0,

th(L), t>o.

(10)

Remark: A function of the formg(f,t) = th(%), where

t > 0 is known as theperspectiveof function h(f). As
B. Handling the Non-Convexity shown in [5], the perspective is one of the transformations that
In Problem (A), the objective function and constraints (4 reserve convexity. The transformation in the ab_ove Lemma
i gludes thet = 0 case, and therefore can be viewed as a

are non-convex. Problems of this type are considered to . . : .
difficult in general. To overcome this difficulty, the followingS ightly gen_erallzed version of the perspective. Our proof in
change of variable is performed: the Appendlx takes a different approa<_:h than [5].

Note thatf is non-convex over the entii@™ x R*. However,
2 fe Ve € E the convexity off over C is enough for our purpose, since
R’ ' (f.1) € Y in Problem (B). Due to Lemma 2, the objective

The physical meaning of, is the fraction of time-slotghat function ©(f,#) of (B) is convex, and the entire problem is
link e is activated. It can also be interpreted as kbad on & convex program. We can then use the duality approach to
link e. The latter interpretation seems more appropriate whéflve the problem.
we deal with¢.(m) for each time-slot in the dual solution.
Note thatt, = 0 implies thatf¢ = 0 for any destinationd
and any linke: if a link is not activated (or the load is zero), it To use the duality approach to solve the above problem, we
cannot support any non-zero data rate. The long-term averdiget form the Lagrangian:
power consumptio® from link e can therefore be defined as ——

L(f.t, /i, q)

- Oa te:()’
@(fe,te):{teh(zgeﬁ), o ©) = Yo+ Y| Y -

eceE veV e€EN(v)

te

C. Distributed Algorithm Based on Lagrange Duality

Using the above notation, Problem (A) can be transformed

into S ISR o T
v,d

. eEN,(v) eEN;(v)
(B) ming; Y O(fe,te), @
e€lE where i > 0 and ¢ > 0 are the Lagrange multipliers, and
subject to Z te < B, Yo eV, (8)  fe.={f%}aep. For ease of notation, we defingé = 0, for all
eeN(v) d. By rearranging the order of summation, the above equation
y ging q

Z Fi Z Fi- Ty >0, can be transformed into the following:

eEN,(v) e€EN;(v) L(ﬁf:[i,(j')
Vd, andVv # d, (9) > d

- = Ce(f67 te) - ﬁ My + (quvd)v

(f.t) e, 267; Z Zd

whereY = {(f,1) : f& > 0,Ye,d;0 < t. < 1,3,/ < where
at., Ve, for somea > 0}.

Remark: The condition}", f¢ < at., for somea > 0, in Ce(ferte) = O(ferte) + (Ha(e) + tr(e))te
- (qf
d

the definition ofY is required to guarantee that the optimal Z © — qd( ) d (11)

solution from Problem (B) can be transformed to the optimal



and z(e) and r(e) are the transmission node and reception The next step is to solve the dual problem in a distributed

node of linke, respectively. fashion. We can show thdd(ji, ¢) is convex and its subgra-
The dual objective function is dient is given by
i oD
D(ji, q) — - S t-p,

= min L(f,t, /i, Q), o e€N(v)

(f.ey )

D d d

= elJe v v 12 dq? - Z fe = Z fe —Tva

;Lf:?l)réyc (forte ] 52# +Z (¢9T,4), (12) qd ol A

We can then use the following subgradient method to solve

whereY, denotes the constraint set on linknamely the dual problem

Yo = {(fut):0< [ SHVEO <t <1 — — .
J Distributed Energy Minimization Algorithm
Z fe < ate,for somea > O}. (13) At each iterationn,
1) At link e, the data ratqi and the link assignment,
To ensure convergence, we have addéd< H, where H are determined by:
is a large constant to be determined later. See the proof of > ;
Theorem 4 (in Appendix) for details. The minimization of the (fe(m), E(ml)
Lagrangian can now be decomposed into a minimization on = argmin Ce(feste,m)
each link. Note that all the information needed in minimizing (Ferte)€Ye
ce(fort.) is local to linke. —  argmin [@( Forte) + (ttae) (M) + firey (M)t
The dual optimization problem is (Ferte)EYe
© nax D). (14) =3 (@ (m) — gy () £2] . (15)
d

As mentioned before, the convexity @(f,#) can be  2) At nodeu, the dual variables are updated by:
inferred from Lemma 2. Based on this, the following

Theorem [12] establishes the relationship between the primal !
problem (B) and the dual problem (C) above. po(m+1) = S po(m) + am | D te(m) =8 ;
e€EN(v)
Theorem 3:(Strong Duality) (16)
Problem (B) is feasible and its optimal val&¥ is finite.
Further, there is no duality ga@®@* can be found by solving ¢l(m+1) = { ¢?(m) — o, Z fe(m
its dual optimization problem. e€N,(v)
4
Proof: We can always choose a large enoygtto satisfy Z F4(m) — Tpa ) (17)
the flow constraint (9), and small enough to satisfy the e N (v)
scheduling constraint (8). Therefore, it is evident that problem
(B) is feasible and its optimal value™ is finite. Remark:At each iterationn, the data rate and schedule are
In fact, we can choosg, £ in such a way that all constraintschosen to minimize the total cost, given the current implicit
in (8) and (9) strictly satisfy: costs (j, 7). To maximize the dual objective function, the
dual variables are updated according to the subgradient ascent
D te<f VeV procedure in (16) and (17), whergy,,} are the stepsizes.
eEN(v) In the above algorithm, we use the same stepsizeifand
SoofE= > f=Tw>0, vd, andVv # d. f at each iteration. This is simply for ease of notation: the
eE€N,(v) e€N; (v) stepsizes can be different for each dual variable. Since the

primal cost function is not strictly convex, the dual function

may not be differentiable. The stepsizes need to be chosen
Therefore problem (B) satisfies the Slater constraint qualificearefully to guarantee the convergence of the dual variables.
tion [21]. Since this condition is satisfied, and the constraint¥e will discuss this issue in the Section IV.
(8) and (9) are polyhedral in nature, to show that there is noThe above exercise of using Lagrange duality is standard.
duality gap, it suffices to show the objective functl@rﬁf )  Nonetheless, there are some questions that are not answered by
is convex ovey”. Note thato ( f E) can be derived by applying the above algorithm alone. One of them is how the algorithm
multiple vector compositions od(f,t). The convexity of maps to different protocol components. We will now study this
O(f,1) can therefore be inferred from Lemma 2. m problem.



D. Mapping to Network Protocol Components

then R% > 0 if (q_ff(e) - qf(e)) >0, andR? = 0 for all d # d.

To decide the routing and scheduling, each link solvédith this observation, the minimization of(R.) is relatively
(15) by minimizing c.(f.,t.,m). Note that there are threeSimple. For example, ifi(x) = e” — 1, and maxa (g, —

components irc.(fe, te, m):

qf(s)) > 0, thenR¢ = [1og(qi(e) - qf(e))]+, and R¢ = 0 for

« The term O(f.,t.) is the power cost, i.e., the powerdll other destination.

consumption of supporting an average data ratefeof
while link e being activated fot, fraction of time.

The term (pge)(m) + pre)(m))te is the scheduling
cost. We will show thatt.(m) will either be 0 or 1
in order for link e to minimize c.(f.,t.). If t.(m) is
chosen to bel, then py(m + 1) > iz (m) from
(16): scheduling the transmission on liakgives rise to
increased (or at least the same) scheduling costs on th
transmission/reception nodes.tlf{(m) is chosen to b,
then pi, ey (m + 1) < pgey(m): an idle link gives the
system more flexibility in scheduling other links, which
leads to a potential decrease in the scheduling costs on
the transmission/reception nodes.

The term - (¢} ., (m) — ¢, (m))f¢ is the utility of
supporting the total data rate on lirk The termg? can

be interpreted as an approximation of the scaled version
of the queue length at node for destinationd [15] if
constant stepsizes are used. As in (17)f4tm) > 0, it
helps reduce the workload at the transmission node, but
add to the workload at the reception node.

The following transformation leads to a better understanding
of the minimization ofc.(fe, te):

load

1)
fg(m) = Rg(m)te(m)» (18)
where R4(m) is the instantaneous data rate allocated ondink
for destinationd, and f¢(m) is the resultant average data rate
when transmitting fort.(m) fraction of the time. Substitute
the above equation int@(ﬁ,te,m), we have (all time index
dropped for ease of notation):

3)

Ce(ﬂate) = tele(ée)a (19)
wherel.(R.) is defined as 4)
le(ﬁe) = h(z Ril) + (,U'm(e) + Nv'(e))
d
-S|y - d)ry]. @O
d

Sincet. > 0, to minimize (19), we should first minimize
I.(R.) as a function ofR.. Note that functioni(-) takes as
input parameter the sum of the data rates allocated for all the
destinations on this link. In other words, from the viewpoint of
power consumption, it is indifferent which destination the data
rate is allocated for, as long as the total data rate is the same.
As a result, the minimum ote(ﬁe) is attained wherall the
data rates are allocated to the destination with the maximum
positive backlog differencé.et

d= argznax(q;i(e) — qf(e)),

(21)

Now that K. has been chosen to minimizg R.) in (20),
the next step is to determine the valuetgfover the interval
[0,1] to minimize c.(f.,t.) = t.l.(R.). Clearly, the optimal
t. value is

1, if ming l.(R.) <0,
0, if ming le(ﬁe) > 0.

e

= (22)

e

{

Remark:There are two possible scenarios where= 0 (no

is assigned in this time-slot):

All backlog differences{qg(e) —qf(e)) are negative, which
means the utility does not increase by transporting data
to next hop on this link for any destination.
Although some backlog differencelg?,, — g, are
positive, as in (20), thatility of transporting data to next
hop is not large enough to outweigh thmportance of
saving more energfthe h(>", RY) term) and/or theveed
to gain more flexibility in scheijulinghe (Ka(e) + Hr(e))

term). As a result, optimal.(R.) is non-negative, and
no load is assigned to this link.

To summarize, the minimization @t(f;te) on each link
naturally translates into the following protocol components:

Routing:Choose only the flowl with maximum positive
backlog difference (cf. (21)). This is the flow that should
receive service.

Power control: ChooseR, to minimizel.(R.). This is

the power linke should use.

Link assignment:Chooset. to minimize tele(ﬁe) in
such a way thatt, takes its maximum value if

the optimal le(ﬁe) is less than or equal t0; and 0
otherwise. This determines the amount of time link
should be on.

Maximal Scheduling:/As mentioned before, given the
fraction of up-time, or load, on each link, a scheduling
component is needed to determine the exact time-slots
link e should be on. In other words, the link assignment
from previous step may have scheduling conflicts, and
therefore cannot be used as a transmission schedule as it
is. A scheduling component can resolve such conflicts
by delaying the transmission by a certain number of
time-slots. Clearly, given the link assignmetitn), the
delay can be different for different links. With the node-
exclusive interference model, by choosifig= % -,

it can be shown [7], [24] that a scheduling policy
based on maximal matching can stabilize the system
(the delay of transmission mentioned above is bounded).
Maximal schedules such as this can be implemented in
a distributed fashion. We refer readers to [16] for more
details on the distributed implementation of maximal
schedules.



As we have seen thus far, the duality approach exploits tBe Optimality of Primal Variables

roblem structure and decomposes the primal problem into . . .
P . P b P .. As shown in Theorem 4, with constant stepsizes, the dual
sub-problems on each link that are much simpler. In addition, . - .
. : . ... variables eventually converge to within a small neighborhood
some of the quantities produced/monitored by this algorith

actually help network engineering. For instance, the Lagrang?ethe optimal dual solution. When appropriate diminishing

multiplier ¢ can also be interpreted as tishadow price épsizes are used in the dual algorithm, the following

. . Theorem shows that the entire sequence of the dual variables
of the corresponding constraint. If a small change occurs in

the amount of supported traffic from nodeto noded, g converges to one point. In this case, we also obtain a different

measures the sensitivity of the optimal power consumpti(')rrllterpre'[atlon of the primal optimality.

with respect to this perturbation. In a different networking

setting where the network has some control over the traﬁsizcl:z-;r:)aorem 5:(Primal Optimality with Diminishing Step-

matrix 7', information such ag can be used as guidelines to . . o )
optimize power consumption. (a) Let the stepsizeéa,,} in the Distributed Energy Min-
imization algorithm satisfy the following conditions:

IV. PERFORMANCEANALYSIS

2 _
In this section, first we are interested in the following Z Ay, < +00, Z Qm = +00. (29)
guestion:Under what condition do the dual variables in the m=1 m=1
DiStributed Energy Minimization algorithm ConVerge? Then for any nonnegative Starting po(mo7 q"o), the dynamics

Furthermore, as we have seen in Section lll, there is @ the Distributed Energy Minimization algorithm converges

- =

guarantee thatf(m),¢(m)) will converge, even if the dual tg the optimal value of Problem (B):
variables converge. For examplg(m) is either0 or 1 from
the distributed dual algorithm. A natural question to ask then lim (g@(m),q(m)) = (@*,q"), (26)
is the following:In what sense is the primal solution optimal? meee . .
The two Theorems below answer both of the above questions mlgnooD(“(m)’ q(m)) = 67, 27)
from two different perspectives. i , ,

where(i*, ¢*) is a maximum point ofD(f, q).

A. Convergence Result with Constant Stepsizes (b) Let the stepsize$a,, } be chosen as

The following theorem establishes the stability and the o =" (28)
optimality of the proposed dual algorithm. " mp’

wherex and p are some positive scalars (note that the above

Theorem 4:(Stability and Optimality) definition of {«,,} satisfies the conditions (25)). If the long-

Let the stepsizes in the Distributed Energy Minimizatior[lerm average of the vectc@f( ),#(m)) converges, i.e
algorithm be constant, i.eq,, = h, for all m. Let & be 9 m), Him ges, 1.e.,
the set of(iZ, ¢) that maximizesD(f, ¢), andd((&, ), ®) = | M | M
min gz« gea ||(4, @) —(7*, )| Given anye > 0, there exists ~ lim — Z fim)=f* lim — Z t(m) =t*, (29)
someh, > 0 such that, for any, < ho and any initial implicit M~ M 2= M—co M =
costs(fio, §o), there exists a timé{, such that for allm > . -

Mo, then the time-average version of(m),¢(m)) is the optimal
d((i(m), @(m)), ®) < ¢, (23) solution to Problem (B)ZeeE O(fr, tt) = o

and The proof of Theorem 5 is included in the Appendix.
L& . Remark:In the Distributed Energy Minimization algorithm,
lim sup — Z Z O(fe(r),te(1)) < OF +£. (24) t.(m), for example, can only be or 1. From this perspective,
m—oo M I ek our solution carries the same flavor as some of the related work
[8], [14], namely, in the optimal solutiorthe resource, be it
power or fraction of up-time, is used to the maximum extent,
The proof of Theorem 4 is included in the Appendix. if the link is activated for the current time-sldtlowever, one
The above Theorem shows that, when stepsizes are smabuld expect the optimal solution @f to Problem (B) to be
the dual variables eventually converge to within a smadl number anywhere frorfi to 5 for most of the links in a
neighborhood of the optimal dual solution. Further, the powégypical setting (cf. (8)). Theorem 5 reconciles the difference

— N

consumption from the distributed algorithm is asymptoticallpetween these two viewpoints. Althouglfi(m),t(m)) is not

— =

optimal: although the primal variablegf(m),t(m)) may a continuous mapping from the underlying converging implicit
not converge, by usingf(m),t(m)) for each time-slotm, costs (dual variable§i, 7)), as long as the long-term average

the long-term average of the resultant power consumptiondt primal variables(f(m),(m)) converges, the limit is an
arbitrarily close to the optimal power consumption. optimal solution to the primal problem.



C. Power-Efficiency Ratio

Settings = 1 or g = % — n in (4) gives necessary or
sufficient conditions for schedulability, in terms of stabilizing
the overall queueing system [9]. From the necessary condition
of B =1, it is evident that the maximum loss in throughput
under the node exclusive interference modekis- . This
is the throughput loss ratio in approximating) (using Prob-
lem (B) with 3 = 5 — .

To derive the approximation ratio of our algorithm, the
throughput loss needs to be translated into power loss. We
apply the same first order approximation of the rate-power
function as in [4]. More specifically, in an AWGN channel,
the total power consumption can be approximatec[}aesB—:,
where B, is a flow-related constant independent tof Let
(ﬁ{) be the optimal solution to Problem (B) with= 1. It is
evident that(f ﬁ), wheree is a small positive constant, is a
feasible solution to Problem (B) with = %—77- This feasible
solution results in a power consumption that is at m@st ¢)
that of the optimal value with = 1. Since the optimal value
of Problem (B) withg = 1 is a lower bound on the minimum
power from §), we conclude that the power-efficiency ratio
of our algorithm is upper-bounded kg + ¢).

V. NUMERICAL RESULTS

In this illustrative example, we consider a 7-node network,
whose topology is depicted in Figure 1. The power-rate
function is of the following form:

0€p€
NoW |’

whereWW = 1.0 MHz is the available bandwidth;, = 1.6 x
10~13 is the channel gain of link, Ny = 1.6 x 10~ mW/Hz

tion

R. = Wlog, [1 +

Fig. 1. Network topology

Total Power (mW)

0.4 = Distributed Algorithm |
= = = Offline Computation

0 2000 4000 6000 8000 10000 12000
Time (second)

Fig. 2. Power consumption from distributed algorithm and offline computa-

proposed algorithm is shown as the solid line in the same

is the noise spectral density, is the transmission power, i re This simulation result shows that the Distributed Energy
and . is the resultant instantaneous data rate of inRhis  \jinimization algorithm is capable of computing the optimal

network supports two flows, as shown in Table |I. solution in a distributed manner, and automatically tracking the
optimal operating point once the system parameters change.

TABLE |
THE TWO FLOWS SUPPORTED BY THE NETWORK Figure 3 shows the average data ratégor different flows
Source | destnation | data Taie Daths on four links. We now take a closer look at the routing of the
flow 1 1 7 250 Kbps | 1-7, 1-2-7 flows.
flow2 | 3 6 500 kbps | 3-2-6, 3-4-5-6 « In the initial state, flowl concentrates on the minimum

The node-exclusive interference model is considered, and
B = (0.5 —10"%) in Problem (A). The length of each time-
slot is 1 second. The results reported in this section are the
average over a moving time window of length0 seconds.

To show that the joint energy minimization algorithm can
adapt to variations in the input parameters, we apply the®
following changes in the system setting. At time= 4000s,
the channel gaiw(, 7, of the direct link between node and
node7 is decreased from.6 x 10713 to 0.4 x 10~13. At time
t = 8000s, the data rate of flol (from node3 to node6) is
reduced fromb00 kbps to250 kbps.

energy path, namely, linkL, 7).

At t = 4000s, the channel gain(, ;) reduces byr5%,
and part of flowl is shifted to pathl — 2 — 7. Since
the scheduling capacity of nodeis saturated, a larger
percentage of flov2 is then routed through path— 4 —

5 — 6 in the optimal solution.

At t = 8000s, the traffic that the network has to support
between nodel and node6 reduces (flow2 is reduced
to 250 kbps). As a consequence, part of the scheduling
capacity of node2 is freed, and more of flowl takes
path1 — 2 — 7 to reduce the overall power consumption.

The above example shows that the interaction between

For each setting, offline computation is carried out to fincbuting, scheduling, and power control is relatively complex
the optimal value of Problem (A), which is given by thesven in a wireless network of small size. The correct way
dashed line in Figure 2. The power consumption from the deal with such interaction is difficult to summarize into



450 . . . : : model.
== Link (1,7): flow 1
4001 m— |ink (1,2): flow 1] ]
1 Link (3,2): flow 2

asol = = = Link (34): flow 2| | APPENDIX

A. Proof of Lemma 2:

To begin with, we make the following two observations:

First, if f/t equals to some fixed > 0, thend(f,t) is
proportional tot.

Secondly, given any > 0, it is evident that)( f, ¢) is convex
in f.

% 7000 000 o000 8000 Tow00 12000 To show thatd(f,t) is convex inC, we want to show
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ad(fi,t1) + (1 — a)0(fa, t2)

Fig. 3. Average data rates for different flows on four links
> O(afi +(1—a)fy,at; + (1 —a)tz), (30)

for any a € [0,1], and any(fi,t1) and(fa,ts) in C.
general approaches such as minimum energy approach or load ¢, or ¢, equals zero, then Inequality (30) holds. To see
balancing approach. In our Distributed Energy Minimizatiothat, without loss of generality, let us assutne= 0. To avoid
algorithm, as shown in Figure 2 and Figure 3, low-complexityivial case, let us also assume thtat> 0 and« # 1. Then
and distributed operation on each link accomplishes this joifitf;,¢;) = 0 by definition. It follows that
optimization even in networks with non-stationarity.
ad(fi,t1) + (1 — a)f(fa, t2)

VI. CONCLUSION = (1—a)0(fo,ts)

In this paper, we propose a joint power control, link — (-t h(é)
scheduling, and routing algorithm to minimize the power - 2N,
consumption in multi-hop wireless networks. The known (1—a)fs
cross-layer solution to this problem is centralized, and with = (1 - a)tzh( (1— a)tg)
high computational complexity. In contrast, our algorithm = (1 —a)fo, (1 —a)ts)
is distributed, and with low computational complexity. We
establish the power efficiency ratio of our solution, and show = flafi+{d-a)fz,ats +(1-aty).

this performance bound, achieved in a distributed manner{igg |ast equality holds sincg = 0 and (f1.£:) € C impl
provably tighter than a centralized solution in the literature. V\SIF d y & (/1,t1) Py

i ) 1 = 0. Therefore, Inequality (30) holds in this case.
map our solution to corresponding components of the cro SErom now on. it is assumed that bathandt, are positive.
layer control protocols, and discuss the implication of o '

X . O O onsider the poin{ty f2/t2,t1). This point is chosen in such
result on network protocol design. The stability and optimalit way that it has the samecoordinate agf;, ) and is on

of our solgthn is studle_d, and the simulation results verify « same direction as vectofs, t»). From the convexity of
that our distributed solution computes and tracks the optmﬁg_) we have
operating point when the system parameters change. '

In this work, we focus on the well-studied node exclusive t1fa
interference model. In a more general interference model, we AO(fr 1) + (1 - )‘)H(Tf’tl)
can definel’, to be the set of links that interfere with link t1 fo
(The node-exclusive model can be viewed as a special case = h [)\h(fbtl) +(1- /\)h(gil)
with T, = N(z(e)) | N(r(e)).) Let w. denote the maximum > th(f.t)
number of links that can be scheduled simultaneousl¥in = e
and wmax = max.w.. It can be shown that a distributed = 0(f. 1), (31)

maximal schedule can stabilize the system while the throu
put is reduced by at most a factor ofwmax In this case, .
the left hand side of the scheduling constraint in our proble The next_ step Is to 'select the corr_ect value)\o.fo show
formulation need to be modified to be a summation over iﬁe °°”Vex"¥ ofé(-) using the convexity ofi(-). Given any
links incident with one or more nodesin [6], [7], [23], [24]. ¢ € [0,1], A is chosen to be

As a result, the relationship of dual variablésand the set of aty

nodesV can bg a many-to-many mapping, instead of a one-.to- - m-

one mapping in the node exclusive model. Nonetheless, since

all the information needed to solve the decomposed probldihe value of A is chosen this way such thdtf,t;) lies

is still local to each link, the general methodology presentéd the direction of vector(f, t), Where(f, t) is the convex
in this paper can be carried through to this type of interferencembination of(f1,¢1) and(fs, t2) with weight paramete,

%ﬁeref: M1+ (1= X1 forany A e [0,1].

ta




as in the RHS of (30). By substituting the value)ointo (31), function can be calculated as follows:
and simplifying the expression, we have

V(i(m +1),q(m + 1)) = V(i(m), (m))

1 2

= = )+ hAp,(m) | — p? }
atlﬁ(fl,tl)Jr(lfa)tgtlh({—j) 22{[ #olm) ] #o ()
_ afit(l-a)fs +5 { g2m) + hagi(m)) 7] = [gd(m) 2}
> (ot + (1= )b (G oy ) Z [( )= latom)]

(from (16) and (17))
72{ pro(m) + Ay (m))* = 2 (m) |

IN

Inequality (30) then follows. |

2
B. Proof of Theorem 4: +5 Z{ g (m) + hAgl(m )] — g5 (m)] }
The proof technique here is similar to [18].

We first show the boundedness of the subgradient of the dual< Z po(m) Apro (m) + h Z 6y (m)Agy(m) + h*W.
objective function. In (13), we chood¢ > |V |?> max,q Tya,
where |[V| is the number of nodes in the network. LBt where W is a constant large enough to guarantee the
denote the Cartesian product of &ll in (13). It is clear that |ast inequality. It is possible to choose such a con-
Y C Y, whereY is defined in Problem (B). Note that thestant since the subgradient @#(j,q) is bounded. Adding

introduction of ' does not change the solution. The optlmatlLZ (fe( ), t.(m)) to both sides of the above formula,
solution (f* t*) to Problem (B) is inY for the following e have

reason:® is a non-decreasing function ¢, and therefore

any (f,#) with f > H for somed and e is clearly sub- V(fi(m+1),q(m + 1)) — V(i(m), g(m))
optimal even if all the traffic is routed through link So the +h Z O(f.(m), te(m))

solution generated from the Distributed Energy Minimization B

algorithm coincides with the optimal solution to Problem (B).

The benefit from enforcing such an upper boundféris that < h [Z @(ﬁ(m) )+ Z“” VA, (m
the subgradient of the dual objective function is then bounded. ecE

Given the subgradient of the dual objective function is
bounded, it can be shown [3] that, given any> 0, there +un )Ag(m
exists somée; > 0 such that, for anys < h; and any initial
implicit costs (jio, ¢o), there exists a timé{, such that (23)

+ h2W

hD(N’(Tn)v gm)) + h*W

holds for allm > M,. Therefore, as time index. increases, (from (12) and (15))
(ii(m),q(m)) converges to within a small neighborhood of v 9

the set of the maximizer oD(ji, §) if the constant stepsize < hDT W

is chosen to be small enough. This implies that the sequence = hO* + h*W,

[ 7 m 1S bounded.
{((m), qm))} where D* is the maximum dual value, which is also equal to
To show (24), we consider the following Lyapunov functionine minimum powe©* from the primal problem.
Summing the above inequality ovet = 1,2,..., M, and

1 1 dividing both sides by, we have
V(ji(m), q(m)) = 5 > las(m)* + 5 > ud(m)

' ; ' V(EM +1), @M + 1)) — V(i(1), q(1)
M
. . . . h « .
The subgradient oD(/Z, §) at time-slotm can be written as +a7 mZ:l PEZE@(fe(m),te(m))
< hO* +hAW. (32)
A/-Lv(m) = Z te(m)_ﬁa
e€N(v) Note that all V() is bounded since the sequence
{(f(m), g(m))}. is bounded. For any given > 0, the first
A¢iim) = — Z fd(m) — Z F4(m) — T,q| . termon the LHS of (32) can be bounded &2 for M large
€N, (v) cEN, (v) enough:

M
LSS 0 (m) t(m)) < O + W + -

Using the above notation, the one-step drift of the Lyapunov M~ ocE



For any givene > 0, there exist somé, > 0 such that Sincea,, > 5 > In and (34), we have
hW < /2 for all h < he. Under this condition, the following

is evident:
o Z Do fm)y= Y fAm) - Ta)
m=Mo e€N,(v) eEN;(v)
hmsuprZ@ fe te(m)) < ©F +e. o
M—o0 m=1ecFE 4
) < D ol Y fom) = DD flm) - Ta)]
Let hy = min(hy, he), and Theorem 4 follows. [ ] m=Mo e€No(v) e€N;(v)
< Jay(My+1) = g5 (Mo)|
C. Proof of Theorem 5: < ke (36)
(@) As in the beginning of the proof of Theorem 4, we ~ 6

can show the boundedness of the subgradient. We then inveiehange the order of summation on the LHS of (36), we
Proposition8.2.6 from [3], and by the diminishing stepsizearrive at

rule (25), we have (26) and ‘A J(Mo, My) — Toa(Mo M1)‘ <€ (37)
. v I’ v ) 3
n}iinoo D(u(m),q(m)) = D* = ©7, (33) where
where the last equality follows from Theorem 3. Ava(Mo, My) = > fE(My, My) — Z (Mo, M),
e€EN,(v) EN;(v)
(b) Define the average fraction of up-time of linlover the ekl a(
first m time slots as Fé (Mo, My) = M Z fe(
m=DMj
- My — My +1
an Zt Tpa(Mo, M) :TvdTlo'
Given My,
Similarly, define the average data rate of linkdedicated for . .
destinationd, over the firstm time slots as pim Apa(Mo, My) = > fd=— >~ fb*, (38)
e€EN,(v) e€EN,;(v)
d an Z fd hm Tvd(MO; Ml) Ty (39)

From (39) and (38), we can choogd¢, large enough such
Let ¢ > 0 be a given arbitrarily small number. Sincethat

limy— oo (fim, Gm) = (£, 7%), and o, = 5= > 5= for
large m (from (25)), we can qhoosMo .Iarge enough such Ava(Mo, M) — Z fdr — Z il < %7
that for allm > M, the following holds: €Ny (v) € N3 (v)
~ 3
lgo(m) — ¢¥] < ’f; (34) Tya(Mo, My) — Tya| < 3
U > 2i (35)
m From (37), we have
for any nodev.
Consider linke, whose transmission nod€e) or reception Z fg,* _ Z fd “_ Tl <e
noder(e) satisfiesg?* > 0 for somed. Nolo) N (o)
For largeM, clearly q?(m) > 0 for all m > M. Therefore, o .
the (...)* from (17) has no effect whem is large: Since the above is true for any given> 0, we conclude that
fd’* - .fd = 1)d7 (40)
—Oém( Z féi( Z fd ’Ud =y (m+1) (m) EE]\[Z(U) ¢ eENzi(v)

e€N,(v) e€N,(v)
for all e satlsfylnqu(e) >0 or g% (e) > 0 for somed. In other

m th Vi ion fon ranging from M, m
Sum the above equation for. ranging fro o to some words, all the constraints oﬁ are active forg? > 0. This is

M= Mo known as thecomplimentary slacknessondition. Following
M, the same approach, the complimentary slackness can be shown
ST l—am( Y] fAm)— > fdm)-T,)| for constraints ort:
o S e > =5 (41)

= qg(Ml + 1) - qg(MO) e€EN(v)



for all e € N(v), ul > 0.

(12]

- .

Furthermore, since the vectoff(m),¢(m)) minimize

—

L(f.t. fi(m),@m)) for each time-slotn in the Dual Energy

Minimization algorithm, it is easy to show

(13]

- —
*

(f*,#) = argmin L(f. 7, ", §°). (42)
(£, [14]
Therefore,
Yoo 1)
ecE [16]
= Y o)+ > m| D n-s [17]
ecE veV e€N(v)

[18]

72(]5’* Z fg’*f Z fg’*f vd )
v,d e€EN,(v) e€N;(v) (19]

(from complimentary slackness (40) and (41))
L(f* 5, 0%)
min L(f,t, i*, ")

f.E)

)

(20]

[21]

(from (42)) [22]

D(i*,q")

23
o*. 23]

The last equality is true from the strong duality in Theorem 34]

Note that {(
(i,
2om

(1]
(2]

K]
(4]

(5]

(6]

(7]

(8]

(9]
[10]

[11]

—1 Oy = +00.

F* ¢*)} is also prime feasible, otherwise

er’e

F*) will diverge in view of (16), (17), and the fact that

m [29]
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