
The Impact of Imperfect Scheduling on Cross-Layer Rate

Control in Multihop Wireless Networks

Xiaojun Lin and Ness B. Shroff

Center for Wireless Systems and Applications (CWSA)

School of Electrical and Computer Engineering, Purdue University

West Lafayette, IN 47907, U.S.A.

{linx, shroff}@ecn.purdue.edu ∗

Abstract

In this paper, we study cross-layer design for rate control in multihop wireless networks.

In our previous work, we have developed an optimal cross-layered rate control scheme that

jointly computes both the rate allocation and the stabilizing schedule that controls the

resources at the underlying layers. However, the scheduling component in this optimal

cross-layered rate control scheme has to solve a complex global optimization problem at

each time, and hence is too computationally expensive for online implementation. In this

paper, we study how the performance of cross-layer rate control will be impacted if the

network can only use an imperfect (and potentially distributed) scheduling component that

is easier to implement. We study both the case when the number of users in the system

is fixed and the case with dynamic arrivals and departures of the users, and we establish

desirable results on the performance bounds of cross-layered rate control with imperfect

∗This work has been partially supported by the NSF grant ANI-0099137 and the Indiana 21st Century Center

for Wireless Communications and Networking.

1

scheduling. Compared with a layered approach that does not design rate control and

scheduling together, our cross-layered approach has provably better performance bounds,

and usually substantially outperforms the layered approach. The insights drawn from our

analyses also enable us to design a fully distributed cross-layered rate control and scheduling

algorithm for a restrictive interference model.

Keyword: Cross-layer design, rate control, multihop wireless networks, stability, imperfect

scheduling, mathematical programming/optimization, stochastic processes/queueing theory.

1 Introduction

Cross-layer design is becoming increasingly important for improving the performance of mul-

tihop wireless networks (see, e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] and the reference therein). By

simultaneously optimizing the control across multiple layers of the network, cross-layer design

can substantially increase the network capacity, reduce interference and power consumption.

In this paper, we study the issues involved in the cross-layer design of multihop wireless

networks that employ rate control [8, 9, 10]. Rate control (or congestion control) is a key func-

tionality in modern communication networks to avoid congestion and to ensure fairness among

the users. Although rate control has been studied extensively for wireline networks (see [11]

for a good survey), these results cannot be applied directly to multihop wireless networks. In

wireline networks, the capacity region (i.e., the set of feasible data rates) is of a simple form,

i.e., the sum of the data rates at each link should be less than the link capacity, which is known

and fixed. In multihop wireless networks, the capacity of each radio link depends on the signal

and interference levels, and thus depends on the power and transmission schedule at other links.

Hence, the capacity region is usually of a complex form that critically depends on the way in

which resources at the underlying physical and MAC layers are scheduled. One possible way to

address this difficulty is to choose a rate region within the capacity region, which has a simpler

set of constraints similar to that of wireline networks, and compute the rate allocation within

2

this simpler rate region [12, 13, 14]. This approach essentially attempts to make rate control

oblivious of the dynamics of the underlying layers. Hence, we will refer to this approach as the

layered approach to rate control. However, it requires prior knowledge of the capacity region in

order to choose such a rate region. For many network settings, even such a rate region is difficult

to find. Further, because the rate region reduces the set of feasible rates that rate control can

utilize, the layered approach results in a conservative rate allocation.

On the other hand, the cross-layered approach to rate control can allocate data rates without

requiring precise prior knowledge of the capacity region. Here, by the “cross-layered” approach

to rate control, we mean that the network jointly optimizes both the data rates of the users

and the resource allocation at the underlying layers, which include modulation, coding, power

assignment and link schedules, etc. (For the rest of the paper, we will use the term scheduling to

refer to the joint allocation of these resources at layers under rate control.) In our previous work

[8], we have presented an optimal cross-layered rate control scheme and we have shown that our

scheme can fully utilize the capacity of the network, maintain fairness, and improve the quality

of service to the users.

However, the scheduling component in the optimal cross-layered rate control scheme of [8]

requires solving at each iteration a global optimization problem that is usually quite difficult.

In some cases, the optimization problem does not even have a polynomial-time solution. In this

work, our objective is to develop a framework for cross-layered rate control that is suitable for on-

line (and potentially distributed) implementation. The complexity of the scheduling component

has become the main obstacle to developing such a solution.

To overcome this difficulty, in this paper we take a different approach. We accept the possi-

bility that only suboptimal solutions to the scheduling problem may be computable, which we

will refer to as imperfect schedules. Instead, we will study the impact of imperfect scheduling

on the optimality of cross-layered rate control. In this paper, we have studied this impact for a

large class of imperfect scheduling policies, both for the case when the number of users in the

3

system is fixed, and for the case when users dynamically arrive and leave the network. When the

number of users in the system is fixed, we are able to obtain some desirable, but weak, results on

the fairness and convergence properties of cross-layered rate control with imperfect scheduling.

Surprisingly, we are able to obtain far stronger results on the performance of the system when

we consider dynamic arrivals and departures of the users. Our numerical results suggest that,

in many network configurations, cross-layered rate control with imperfect scheduling can per-

form comparably to that with perfect scheduling, while significantly reducing the computation

overhead of the scheduling component. Further, we find that our cross-layered approach can

substantially outperform the layered approach. Finally, the insights drawn from our analysis

allow us to develop a fully distributed rate control and scheduling scheme in a more restrictive

network setting.

The rest of the paper is structured as follows. The system model is presented in Section 2. We

review results with perfect scheduling in Section 3, and study the impact of imperfect scheduling

in Section 4 and 5. In Section 6, we present a fully distributed cross-layered rate control algorithm.

Simulation results are presented in Section 7, and the conclusion is given in Section 8.

2 The System Model

We consider a multihop wireless network with N nodes. Let L denote the set of node pairs (i, j)

(i.e., links) such that direct transmission from node i to node j is allowed. The links are assumed

to be directional. Due to the shared nature of the wireless media, the data rate rij of a link (i, j)

depends not only on its own modulation/coding scheme and power assignment Pij, but also on

the interference due to the power assignments on other links. Let ~P = [Pij, (i, j) ∈ L] denote

the vector of global power assignments and let ~r = [rij, (i, j) ∈ L] denote the vector of data

rates. We assume that ~r = u(~P), i.e., the data rates are completely determined by the global

4

power assignment∗. The function u(·) is called the rate-power function of the system. Note

that the global power assignment ~P and the rate-power function u(·) summarize the cross-layer

control capability of the network at both the physical layer and the MAC layer. Precisely, the

global power assignment determines the Signal-to-Interference-Ratio (SIR) at each link. Given

the SIR, each link can choose appropriate modulation and coding schemes to achieve the data

rate specified by u(~P). Finally, the network can schedule different sets of links to be active (and

to use different power assignments) at different time to achieve maximum capacity [3]. There

may be constraints on the feasible power assignment. For example, if each node has a total

power constraint Pi,max, then
∑

j:(i,j)∈L Pij ≤ Pi,max. Let Π denote the set of feasible power

assignments, and let R = {u(~P), ~P ∈ Π}. We assume that Co(R), the convex hull of R, is

closed and bounded. We assume that time is divided into slots and the power assignment vector

~P (t) is fixed during each time slot t. We will refer to ~r(t) = u(~P (t)) as the schedule at time slot

t.

In the rest of the paper, it is usually more convenient to index the links numerically (e.g., links

1, 2, ..., L) rather than as node-pairs (e.g., link (i, j)). The power assignment vector and the rate

vector should then be written as ~P = [P1, ..., PL] and ~r = [r1, ..., rL], respectively.

There are S users and each user s = 1, ..., S has one path through the network†. Let H = [H l
s]

denote the routing matrix, i.e., H l
s = 1, if the path of user s uses link l, and H l

s = 0, otherwise.

Let xs be the rate with which user s injects data into the network. Each user is associated with

a utility function Us(xs), which reflects the level of “satisfaction” of user s when its data rate

is xs. As is typically assumed in the rate control literature, we assume that each user s has

a maximum data rate Ms and the utility function Us(·) is strictly concave, non-decreasing and

twice continuously differentiable on (0,Ms].

∗Although we have not considered channel variation, e.g., due to fading, our main results may be generalized

to those cases.
†Extensions to the case with multipath routing are also possible (see [8]).

5

3 Cross-Layer Rate Control with Perfect Scheduling

In this section, we review the optimal cross-layered rate control scheme that we presented in [8].

We first define the capacity region of the system. We say that a system is stable if the queue

lengths at all links remain finite. We say that a user rate vector ~x = [x1, ..., xs] is feasible if

there exists a scheduling policy that can stabilize the system under user rates ~x. We define the

capacity region to be the set of feasible rates ~x. It has been shown in [3, 4, 6] that the optimal

capacity region Λ is a convex set and is given by

Λ =

{

~x

∣

∣

∣

∣

∣

[
S
∑

s=1

H l
sxs] ∈ Co(R)

}

. (1)

where
S
∑

s=1

H l
sxs can be interpreted as the total data rate on link l. The convex hull operator

Co(·) is due to a standard time-averaging argument [3, 4, 6]. Λ is optimal in the sense that no

vector ~x outside Λ is feasible for any scheduling policy.

In [8], we have formulated and solved the following optimal cross-layered rate control problem.

The Cross-Layered Rate Control Problem:

• Find the user rate vector ~x in Λ that maximizes the total system utility, i.e.,

max
0≤xs≤Ms

S
∑

s=1

Us(xs) (2)

subject to
S
∑

s=1

H l
sxs ≤ rl for all l ∈ L (3)

and [rl] ∈ Co(R).

• Find the associated scheduling policy that stabilizes the system.

There are two elements in this cross-layer control problem. One is to determine the rates

with which users inject data into the network. The other is to determine when and at what rate

each link in the network should transmit. Maximizing the total system utility as in (2) has been

shown to be equivalent to some fairness objectives when the utility functions are appropriately

6

chosen [15]. For example, utility functions of the form

Us(xs) = ws log xs (4)

correspond to weighted proportional fairness, where ws, s = 1, ..., S are the weights. A more

general form of utility function is

Us(xs) = ws

x1−β
s

1 − β
, β > 0. (5)

Maximizing the total utility will corresponds to maximizing weighted throughput as β → 0,

weighted proportional fairness as β → 1, minimizing weighted potential delay as β → 2, and

max-min fainess as β → ∞.

We now take a duality approach to solve problem (2). We associate a Lagrange multiplier q l

for each constraint in (3). The Lagrangian is then:

L(~x, ~r, ~q)

=
S
∑

s=1

Us(xs) −
L
∑

l=1

ql

[

S
∑

s=1

H l
sxs − rl

]

=
S
∑

s=1

[

Us(xs) −
L
∑

l=1

H l
sq

lxs

]

+
L
∑

l=1

qlrl.

The objective function of the dual of problem (2) is then:

D(~q) = max
0≤xs≤Ms,s=1,...,S,~r∈Co(R)

L(~x, ~r, ~q)

=
S
∑

s=1

Bs(~q) + V (~q),

where

Bs(~q) = max
0≤xsMs

[

Us(xs) −
L
∑

l=1

H l
sq

lxs

]

, (6)

and

V (~q) = max
~r∈Co(R)

L
∑

l=1

qlrl. (7)

7

Further, because the objective function in (7) is a linear function of ~r, the optimal point must

lie in the set R, i.e.,

V (~q) = max
~r∈R

L
∑

l=1

qlrl = max
~r=u(~P), ~P∈Π

L
∑

l=1

qlrl. (8)

The dual approach thus results in an elegant decomposition of the original problem. Given the

Lagrange multipliers ql, the rate control problem Bs(~q) and the scheduling problem V (~q) are

decomposed. The Lagrange multiplier ql can be interpreted as the implicit cost at link l. Each

user s solves its own utility maximization problem Bs(~q) independently as if the “price” for user s

is
L
∑

l=1

H l
sq

l. The scheduling problem V (~q) also computes the power assignment ~P and the schedule

~r = u(~P) based on the implicit costs. Note that V (~q) also appears as the optimal scheduling

policy in [3, 6].

The dual problem of (2) is then

min
~q≥0

D(~q). (9)

The dual objective function D(~q) is convex. We can show that its subgradient is given by,

∂D

∂ql
= −

(

S
∑

s=1

H l
sxs − rl

)

.

where ~x = [xs] and ~r = [rl] solve (6) and (8), respectively. We can then use the subgradient

method to solve the dual problem [16]. The solution to the optimal cross-layered rate control

problem can be summarized as follows:

The Optimal Cross-Layered Rate Control Algorithm:

At each iteration t:

• The data rates of the users are determined by

xs(t) = argmax
0≤xs≤Ms

[

Us(xs) −
L
∑

l=1

H l
sq

l(t)xs

]

. (10)

• The schedule is determined by

~r(t) = argmax
~r∈R

L
∑

l=1

ql(t)rl = argmax
~r=u(~P), ~P∈Π

L
∑

l=1

ql(t)rl. (11)

8

• The implicit costs (i.e., Lagrange multipliers) are updated by

ql(t + 1) =

[

ql(t) + αl

(

S
∑

s=1

H l
sxs(t) − rl(t)

)]+

. (12)

The following proposition is given in [8].

Proposition 1 a) There is no duality gap, i.e., the minimal value of (9) coincides with the

optimal value of (2).

b) Let Φ be the set of ~q that minimizes D(~q). For any ~q ∈ Φ, let ~x solve (10), then ~x is the

unique optimal solution ~x∗ of (2).

c) Assume that αl = hα0
l . Let ||~q||A =

∑L

l=1
(ql)2

α0

l

and d(~q, Φ) = min~p∈Φ

√

||~q − ~p||A. For any

ε > 0, there exists some h0 > 0 such that, for any h ≤ h0 and any initial implicit costs

~q(0), there exists a time T0 such that for all t ≥ T0,

d(~q(t), Φ) < ε and ||~x(t) − ~x∗|| < ε.

Proposition 1 is a consequence of Theorem 2.3 in [16, p26]. The details of the proof is in

Appendix A. It shows that, when the stepsizes αl are small, the user rates ~x(t) will converge

within a small neighborhood‡ of the optimal rate allocation ~x∗.

The optimal cross-layered rate control algorithm (10)-(12) not only computes the optimal rate

allocation, but also generates the stabilizing scheduling policy by solving (11) at each time slot

t. In fact, let Ql denote the queue size at link l. Then Ql evolves approximately as§:

Ql(t + 1) ≈
[

Ql(t) +

(

S
∑

s=1

H l
sxs(t) − rl(t)

)]+

. (13)

Comparing (13) with (12), we can see that Ql(t) ≈ ql(t)/αl. From here we can infer that Ql(t)

is bounded.
‡An alternate formulation of Proposition 1 is as follows: if the stepsizes are time varying and they are chosen

such that αl(t) = htα
0
l
, ht → 0 as t → ∞ and

∑+∞
t=1

ht = +∞, then d(~q(t),Φ) → 0 and ~x(t) → ~x∗ as t → ∞.
§Note, (13) is an approximation because not all links are active at the same time. Hence, data injected to the

network by each user at time t may take several time slots to reach downstream links.

9

Proposition 2 If the stepsizes αl are sufficiently small, then using the schedules determined by

solving (11) at each time slot, we have,

sup
t

Ql(t) < +∞ for all l ∈ L.

We give the proof in Appendix B. Combining Propositions 1 and 2, we conclude that, by

choosing the stepsizes αl sufficiently small, we can obtain user rate allocation ~x as close to ~x∗ as

we want, and we can obtain the joint stabilizing scheduling policy at the same time.

Remark: The duality approach that we used here (and in [8]) shares some similarities to

the approach in [1, 9, 10]. However, there are also some major differences. The network models

in [1] and [10] assume a restrictive set of rate-power functions. They either assume that the

data rate at each link is a concave function of its own power assignment, or assume a special

form of rate-power functions that are concave after a change of variables. In this paper, we

impose no such restrictions. Further, a consequence of the assumption in [10] is that, at their

optimal solution, all links will be transmitting at the same time. In the more general network

model of this paper, it usually requires different sets of links to transmit at different time in

order to achieve optimality. In [9], the authors propose a column generation approach for solving

(2). This approach appears to be more suitable for offline computation as it requires solving a

sequence of approximate problems to (2), each of which requires an iterative solution by itself.

In contrast, in this paper we are more interested in solutions suitable for on-line implementation.

Finally, these previous works have not addressed the joint stabilizing scheduling policy as we did

in Proposition 2.

4 The Impact of Imperfect Scheduling on Cross-Layered

Rate Control: The Static Case

In this paper, we are interested in developing cross-layered rate control solutions that are suitable

for online implementation. The main difficulty in implementing the optimal solution of Section 3

10

is the complexity of the scheduling component. Depending on the rate-power function u(·), the

scheduling problem (11) is usually a difficult global optimization problem. In some cases, this

optimization problem does not even have a polynomial-time solution. Hence, solving (11) exactly

at every time slot is too time-consuming.

As discussed in the Introduction, in this paper, we take a different approach from that of

finding optimal rate allocations. We will only compute suboptimal solutions to the scheduling

problem (11), which we will refer to as imperfect schedules. We will instead study how imperfect

scheduling impacts the optimality of cross-layered rate control. Our objective is to find some

imperfect scheduling policies that are easy to implement and that, when properly designed with

rate control, result in good overall performance.

We will particularly be interested in the following class of imperfect scheduling policies:

Imperfect Scheduling Policy Sγ :

Fix γ ∈ (0, 1]. At each time slot t, compute a schedule ~r(t) ∈ R that satisfies:

L
∑

l=1

rl(t)q
l(t) ≥ γ max

~r∈R

L
∑

l=1

rlq
l(t). (14)

With an imperfect scheduling policy Sγ, the dynamics of cross-layered rate control are sum-

marized by the following set of equations:

xs(t) = argmax
0≤xs≤Ms

[

Us(xs) −
L
∑

l=1

H l
sq

l(t)xs

]

, (15)

~r(t)T~q(t) ≥ γ max
~r∈R

~r T~q(t), ~r(t) ∈ Co(R), (16)

ql(t + 1) =

[

ql(t) + αl

(

S
∑

s=1

H l
sxs(t) − rl(t)

)]+

. (17)

The parameter γ in (14) can be viewed as a tuning parameter indicating the degree of precision

of the imperfect schedule. The complexity of finding a schedule ~r(t) satisfying (14) usually

decreases as γ is reduced. When γ = 1, the dynamics (15)-(17) reduce to the case with perfect

scheduling (as in Section 3). Let ~x ∗,0 denote the solution to the original optimal cross-layered

rate control problem (2). The solution to the following problem turns out to be a good reference

point for studying the dynamics (15)-(17) when γ < 1:

11

The γ-Reduced Problem:

max
0≤xs≤Ms

S
∑

s=1

Us(xs) (18)

subject to ~x ∈ γΛ.

Let ~x ∗,γ denote the solution to the γ-reduced problem. The choice of γΛ in the constraint of

the γ-reduced problem is motivated by the following proposition, which shows that an imperfect

scheduling policy Sγ at most reduces the capacity region by a factor of γ. The proof is given in

Appendix C.

Proposition 3 If the user rates ~x lie strictly inside γΛ, then any imperfect scheduling policy Sγ

can stabilize the system.

Motivated by Proposition 3, we would expect that the rate allocation computed by the dy-

namics (15)-(17) will be “no worse than” ~x ∗,γ . However, this assertion is not quite true. As we

will see soon, the interaction between cross-layered rate control and imperfect scheduling is much

more complicated. As the data rates of the users are reacting to the same implicit costs as the

scheduling component is, there is a possibility that the system gets stuck into local sub-optimal

areas. We will construct examples where, for a subset of the users, their data rates determined by

the dynamics (15)-(17) can be much smaller than the corresponding rate allocation computed by

the γ-reduced problem. Nonetheless, we will be able to show certain weak but desirable results

on the fairness and convergence properties of cross-layer rate control with imperfect scheduling.

4.1 Dominance

We begin our analysis by studying whether the rate allocation computed by the dynamics (15)-

(17) will dominate ~x ∗,γ . (Note: a vector [x1, ..., xS] dominates another vector [y1, ..., yS] if xi ≥ yi

for all i = 1, ..., S.) It is easy to check that, if we let

~r(t) = γ~r0(t), (19)

12

the dynamics (15)-(17) will solve the γ-reduced problem. Hence, we can use (19) as a special

case of the imperfect scheduling policy Sγ, and study first whether the rate allocation ~x ∗,0 of the

original problem (2) dominates that of the γ-reduced problem (18). The following proposition

shows that such dominance holds if the utility function is logarithmic. (Recall that logarithmic

utility functions are of the form

Us(xs) = ws log xs for all user s,

where ws is the weight for user s. In this case, the rate allocation computed by the original

problem (2) is weighted proportionally fair [15].)

Proposition 4 Assume that the utility function is logarithmic. Let ~x ∗,0 be the solution to the

original problem (2). Then the solution to the γ-reduced problem is

~x ∗,γ = γ~x ∗,0.

Proof: In the γ-reduced problem (18), do a change of variables ~x′ = ~x/γ. Using the fact that

Us(xs) = ws log x′
s + ws log γ,

one can show that the γ-reduced problem becomes equivalent to the original problem (2). Hence,

~x ∗,γ = γ~x ∗,0 . Q.E.D.

However, as shown in the following example, if the utility function is not logarithmic, domi-

nance will not hold in general.

Example 1: Consider the following wireline network (note that a wireline network can be

viewed as a special case of our network model where the capacity of each link is fixed). There

are two links, whose capacities are 2 and 7, respectively. There are three users. The first user

uses both links, the second user uses only the first link, and the third user uses only the second

link. Their utility functions are

U1(x) = log x + 6x

13

U2(x) = log x

U3(x) = 36 log x.

The γ-reduced problem is then

max
x1,x2,x3≥0

(log x1 + 6x1) + log x2 + 36 log x3

subject to x1 + x2 ≤ 2γ

x1 + x3 ≤ 7γ.

When γ = 1, the solution is ~x ∗,0 = [1 1 6]T . When γ = 0.95, the solution becomes ~x ∗,γ =

[0.8551 1.0449 5.7949]T . Note that the rate of the second user increases as γ is reduced. This

example shows that ~x ∗,0 does not dominate ~x ∗,γ in general.

4.2 A Weak Fairness Property

For the rest of the paper, we will focus on logarithmic utility functions, although most of the

results that follow can also be extended to utility functions of other forms (as in (5)). Note

that even though ~x ∗,0 dominates ~x ∗,γ when the utility function is logarithmic (as shown in

Proposition 4), it does not imply that the rate allocation computed by the cross-layered rate

control algorithm with an arbitrary imperfect scheduling policy Sγ will dominate ~x ∗,γ .

In the following proposition, we characterize the likely rate allocation under imperfect schedul-

ing provided that the dynamics (15)-(17) converges. The proof is given in Appendix D.

Proposition 5 Assume that the utility function is logarithmic (i.e., of the form in (4)). If the

dynamics (15)-(17) converges, i.e., ~x(t) → ~x ∗,I and ~q(t) → ~q ∗
I as t → ∞, then

~x ∗,I ∈ Λ and
S
∑

s=1

wsx
∗,γ
s

x∗,I
s

≤
S
∑

s=1

ws. (20)

Proposition 5 can be generalized to other forms of utility functions (as in (5)). This result can

be viewed as a weak fairness property. It shows that, if the dynamics (15)-(17) converge, the

14

x s
*, γ

x s

ws x s
*,γ

*,IΣ
ws

q *,0

q *,γ

qD()

qD ()γ

Φγ

Capacity Region

Rate Allocation
of the −reduced problemγ

The Optimal
Λ

Lower Bound
γΛ

Σ=

Figure 1: The weak fairness property (left) and the set Φγ (right).

rate allocation of the users will lie in a strip defined by (20) (see Fig. 1). Hence, the rate of each

user is unlikely to be too unfair compared to ~x ∗,γ . In particular, if ws = 1 for all s, then by (20),

x∗,I
s will be no smaller than x∗,γ

s /S. On the negative side, the rates of some users can still be

substantially smaller than their rates computed by the γ-reduced problem, which indicates that

cross-layered rate control with imperfect scheduling may indeed get stuck into local sub-optimal

regions.

4.3 Convergence

We next study the question whether the dynamics (15)-(17) converge in the first place. Using a

duality approach analogous to that in Section 3, we can define the dual of the γ-reduced problem

as

Dγ(~q) =
S
∑

s=1

Bs(~q) + γV (~q),

where Bs(~q) and V (~q) are still defined as in (6) and (7), respectively. Note that both D(~q) and

Dγ(~q) are convex functions and D(~q) ≥ Dγ(~q).

Let ~q ∗,0 denote a minimizer of D(~q) and ~q ∗,γ denote a minimizer of Dγ(~q). Further, let

Φγ = {~q : Dγ(~q) ≤ D(~q ∗,0)}.

Proposition 6 Assume that αl = hα0
l . Let ||~q||A =

∑L

l=1
(ql)2

α0

l

. For any ε > 0, there exists some

h0 > 0 such that, for any h ≤ h0 and any initial implicit costs ~q(0), there exists a time T0 such

15

that for all t ≥ T0,
√

||~q(t) − ~q ∗,0||A < max
~p∈Φγ

√

||~p − ~q ∗,0||A + ε.

The proof is provided in Appendix E. Proposition 6 shows that, if the stepsizes αl are suffi-

ciently small, the dynamics (15)-(17) will eventually enter a neighborhood of the set Φγ . Note

that both ~q ∗,0 and ~q ∗,γ belong to the set Φγ (see Fig. 1). Hence, in a weak sense, the dynamics

of the system are moving in the right direction. However, in general the set Φγ is quite large

and does not provide much further insights on the eventual rate allocation. We next present two

examples illustrating the possible behaviors of the dynamics.

Example 2:

We will first show that, for any vectors ~q ∗
I and ~x ∗,I that satisfy

x∗,I
s =

ws

L
∑

l=1

H l
sq

l,∗
I

for all s, ~x ∗,I ∈ Λ, and

L
∑

l=1

ql,∗
I

S
∑

s=1

H l
sx

∗,I
s > γ max

~r∈Co(R)

L
∑

l=1

ql,∗
I rl, (21)

there exists an imperfect scheduling policy Sγ such that the dynamics (15)-(17) converge to ~q ∗
I

and ~x ∗,I . Note that the above set of conditions implies (20). In fact, since

[

S
∑

s=1

H l
sx

∗,γ
s , l ∈ L

]

∈ γCo(R),

we have,

S
∑

s=1

ws =
S
∑

s=1

x∗,I
s

L
∑

l=1

H l
sq

l,∗
I =

L
∑

l=1

ql,∗
I

S
∑

s=1

H l
sx

∗,I
s

≥
L
∑

l=1

ql,∗
I

S
∑

s=1

H l
sx

∗,γ
s =

S
∑

s=1

x∗,γ
s

L
∑

l=1

H l
sq

l,∗
I

=
S
∑

s=1

wsx
∗,γ
s

x∗,I
s

.

We now show how a suitable imperfect scheduling policy Sγ can be constructed. It is easy to

verify that ~x ∗,I is the solution to the following optimization problem and ~q ∗
I is the corresponding

16

Lagrange multipliers.

max
~x≥0

S
∑

s=1

ws log xs

subject to
S
∑

s=1

H l
sxs ≤

S
∑

s=1

H l
sx

∗,I
s . (22)

Hence, if we let

rl(t) =
S
∑

s=1

H l
sx

∗,I
s for all l and all t, (23)

then, using a standard gradient descent argument for the dual problem of (22), we can show that

the dynamics (15)-(17) will converge to ~q ∗
I and ~x ∗,I as t → ∞. It remains to be verified whether

the schedule in (23) belongs to the class of imperfect scheduling policies Sγ . To see this, note

that if we pick the initial implicit cost vector ~q(0) to be sufficiently close to ~q ∗
I , then ~q(t) ≈ ~q ∗

I

for all t. Hence,

L
∑

l=1

ql(t)rl(t) ≈
L
∑

l=1

ql,∗
I

S
∑

s=1

H l
sx

∗,I
s

> γ max
~r∈Co(R)

L
∑

l=1

ql,∗
I rl ≈ γ max

~r∈Co(R)

L
∑

l=1

ql(t)rl,

i.e., the schedule in (23) indeed belongs to Sγ if the initial implicit cost vector ~q(0) is sufficiently

close to ~q ∗
I .

Example 3:

We next give another example in which the dynamics (15)-(17) never converge to any point.

Consider the following simple wireline network with two users, each of which uses one different

link. The capacity is c for both links. The solution to the γ-reduced problem is simply x∗,γ
1 =

x∗,γ
2 = γc. Assume that the vectors ~q ∗

I and ~x ∗,I satisfy the conditions in (21) of Example 2. At

any time t, define

∆(t) = ~q(t) − ~q ∗
I .

17

q *
I

radius ε

εradius 2

Figure 2: The direction of the update of the implicit costs

Let ε be a small positive number. We now use the following scheduling policy:

~r(t) = [r1 r2]
T =







































[x1 x2]
T − ε







0 −1

1 0







∆(t)
||∆(t)||

, if ∆(t) ≤ ε,

[x1 x2]
T − ε ∆(t)

||∆(t)||
, if ε ≤ ∆(t) ≤ 2ε,

c, otherwise.

With this choice of the schedule ~r(t), the update of the implicit cost ~q(t) will be around a circle

when ||~q(t) − ~q ∗
I || ≤ ε, and it will be towards ~q ∗

I when ε < ||~q(t) − ~q ∗
I || ≤ 2ε (see Fig. 2).

Provided that the initial ~q(0) satisfies ||~q(0) − ~q ∗
I || ≤ 2ε and the stepsizes are sufficiently small,

the dynamics (15)-(17) will eventually follow the circle ||~q(t) − ~q ∗
I || = ε, and hence will never

converge. We can verify as in Example 2 that the schedule ~r(t) does belong to the class Sγ when

the stepsizes and ε are sufficiently small.

To conclude this section, we have studied the impact of imperfect scheduling on the dynamics

of cross-layered rate control when the number of users in the system is fixed. We have presented

several examples that illustrate the difficulty in characterizing the dynamics precisely. We have

shown that the system may not even converge in the first place, or, it may converge to any

rate allocation within a fairly large set that does not possess any desirable dominance property.

These examples indicate that the interaction between cross-layered rate control and imperfect

scheduling are quite complicated, and the system may indeed get stuck into local sub-optimal

18

regions. Nonetheless, we do show two desirable, but weak, results on the fairness and convergence

properties of the system. In Proposition 6, we are able to show that the dynamics (15)-(17) appear

to move in the right direction globally. In Proposition 5, we show that those local sub-optimal

regions are probably “not too bad.” In the next section, we will turn to the case when users

dynamically arrive and depart the network, and surprisingly, we will be able to show far stronger

results on the performance of the system there.

5 Stability Region of Cross-Layered Rate Control

In this section, we turn to the case when the number of users in the system is itself a stochastic

process. We will study how imperfect scheduling impacts the stability region of the system

employing cross-layer rate control. Here, by stability, we mean that the number of users in the

system and the queue lengths at all links in the network remain finite. The stability region of the

system is the set of offered loads under which the system is stable. Previous works for wireline

networks have shown that, by allocating data rates to the users according to some fairness criteria,

the largest possible stability region can be achieved [15]. This result is important as it tells us

that fairness is not just an aesthetic property, but it actually has a strong global performance

implication, i.e., in achieving the largest possible stability region. In this section, we will show

that similar but stronger results can be shown for our cross-layered rate control scheme with

imperfect scheduling.

To be precise, instead of using the notation s for user s, we now use s to denote a class of

users with the same utility function and the same path. We assume that users of class s arrive

according to a Poisson process with rate λs and that each user brings with it a file for transfer

whose size is exponentially distributed with mean 1/µs. The load brought by users of class s is

then ρs = λs/µs. Let ~ρ = [ρ1, ..., ρS]. Let ns(t) denote the number of users of class s that are

in the system at time t, and let ~n(t) = [n1(t), ..., nS(t)]. We assume that the rate allocations for

users of the same class are identical. Let xs(t) denote the rate of each user of class s at time t.

19

In the rate assignment model that follows, the evolution of ~n(t) will be governed by a Markov

process. Its transition rates are given by:

ns(t) → ns(t) + 1, with rate λs,

ns(t) → ns(t) − 1, with rate µsxs(t)ns(t)

if ns(t) > 0.

As in [17], We say that the above system is stable if

lim sup
t→∞

1

t

∫ t

0

1
{

S
P

s=1

ns(t)+
L
P

l=1

ql(t)>M}
dt → 0,

as M → ∞. This means that the fraction of time that the amount of “unfinished work” in the

system exceeds a certain level M can be made arbitrary small as M → ∞. The stability region

Θ of the system under a given rate control and scheduling policy is the set of offered loads ~ρ such

that the system is stable.

We next describe the rate assignment and implicit cost update policy. We assume that time

is divided into slots of length T , and the schedules and implicit costs are only updated at the

end of each time slot. However, users may arrive and depart in the middle of a time slot. Let

~q(kT) denote the implicit cost at time slot k. The data rates of the users are determined by the

current implicit costs as in (10). For simplicity, we assume that the utility function is logarithmic

(the result can be readily generalized to utility functions of other forms in (5)). Further, let Ms

denote the maximum data rate for users of class s. The rate of each user of class s is then given

by

xs(t) = xs(kT) = min

{

ws
∑L

l=1 H l
sq

l(kT)
,Ms

}

(24)

for kT ≤ t < (k +1)T . The schedule ~r(kT) at time slot k is computed according to an imperfect

scheduling policy Sγ based on the current implicit cost ~q(kT). Finally, at the end of each time

slot, the implicit costs are updated as

ql((k + 1)T) =

[

ql(kT) + αl

(

S
∑

s=1

H l
s

∫ (k+1)T

kT

ns(t)xs(kT)dt − rl(kT)T

)]+

. (25)

20

The following proposition shows that, using the above cross-layered rate control algorithm

with imperfect scheduling policy Sγ, the stability region of the system is no smaller than γΛ.

Proposition 7 If

max
l∈L

αl ≤
1

T S̄L̄
min

s

ws

4ρsMs

, (26)

where S̄ = maxl∈L

S
∑

s=1

H l
s is the maximum number of classes using any link, and L̄ = maxs

L
∑

l=1

H l
s

is the maximum number of links used by any class, then for any offered load ~ρ that resides strictly

inside γΛ, the system described by the Markov process [~n(kT), ~q(kT)] is stable.

Several remarks are in order: Firstly, Proposition 7 shows that, when imperfect schedules

are used, the stability region of the system employing cross-layer rate control is no worse than

the capacity region shown in Proposition 3 (and used by the γ-reduced problem). This result

is interesting (and somewhat surprising) given the fact that, when the number of users in the

system is fixed, the dynamics of cross-layered rate control with imperfect scheduling can form

loops or get stuck into local sub-optimal regions. Nonetheless, Proposition 7 shows that these

potential local sub-optimums are inconsequential when the arrivals and departures of the users

are taken into account.

Secondly, we do not need the rates of any users to converge. Previous results on the stability

region of rate control typically adopt a time-scale separation assumption [15], which assumes that

the rate allocation ~x(t) perfectly solves (2) at each time instant t. Such an approach is of little

value for the model in this paper because the dynamics (15)-(17) with imperfect scheduling do not

even converge in the first place! Further, the time-scale separation assumption is rarely realistic

in practice: as the number of users in the system is constantly changing, the rate allocation may

never have the time to converge. In Proposition 7, we establish the stability region of the system

without requiring such a time-scale separation assumption. This result is of independent value.

For the special case when γ = 1, it can be viewed as a stronger version of previous results in the

literature (including those for wireline networks, e.g., Theorem 1 in [15]).

21

Finally, a simple stepsize rule is provided in (26). Note that when the number of users in the

system is fixed, we typically require the stepsizes to be driven to zero for convergence to occur

(see Proposition 1). However, in (26) the stepsizes can be chosen bounded away from zero. In

fact, as the set γΛ is bounded, the stepsizes can be chosen independently of the offered load.

The simplicity in the stepsize rule is another benefit we obtain by studying the dynamic arrivals

and departures of the users.

5.1 The Main Idea of the Proof of Proposition 7

We now sketch the main idea of the proof for Proposition 7 so that the reader can gain some

insight on the dynamics of the system. Define the following Lyapunov function,

V(~n, ~q) = Vn(~n) + Vq(~q),

where Vn(~n) =
S
∑

s=1

wsn2
s

2λs
, and Vq(~q) =

L
∑

l=1

(ql)2

2αl
. We shall show below that V(~n, ~q) has a negative

drift. As a crude first-order approximation, assume that users arrive and depart only at the

end of each time slot. Thus, ns(t) = ns(kT) during the k-th time slot. We can show that (see

Appendix F for the details),

E[Vn(~n((k + 1)T)) − Vn(~n(kT))|~n(kT), ~q(kT)]

≤ T
S
∑

s=1

[

ws

xs(kT)

]

[ρs − ns(kT)xs(kT)] + E1(k),

where E1(k) is an error term that is roughly on the order of |ρs − ns(kT)xs(kT)|. Since the rate

allocation is determined by (24), we have (ignoring the maximum data rate Ms),

E[Vn(~n((k + 1)T)) − Vn(~n(kT))|~n(kT), ~q(kT)]

≤ T
S
∑

s=1

[

L
∑

l=1

H l
sq

l(kT)

]

[ρs − ns(kT)xs(kT)]

+E1(k). (27)

We can also show that

E[Vq(~q((k + 1)T) − Vq(~q(kT))|~n(kT), ~q(kT)]

22

≤ T
L
∑

l=1

ql(kT)

[

S
∑

s=1

H l
sns(kT)xs(kT) − rl(kT)

]

+E2(k), (28)

where E2(k) is an error term that is roughly on the order of

[

S
∑

s=1

H l
sns(kT)xs(kT) − rl(kT)

]2

.

Hence, by adding (27) and (28), and by changing the order of the summation, we have

E[V(~n((k + 1)T), ~q((k + 1)T))

−V(~n(kT), ~q(kT))|~n(kT), ~q(kT)]

≤ T

L
∑

l=1

ql(kT)

[

S
∑

s=1

H l
sρs − rl(kT)

]

+E1(k) + E2(k). (29)

By assumption, ~ρ lies strictly inside γΛ. Hence, there exists some ε > 0 such that

[(1 + ε)
S
∑

s=1

H l
sρs] ∈ γCo(R).

By the definition of the imperfect scheduling policy Sγ,

L
∑

l=1

ql(kT)rl(kT) ≥ (1 + ε)
L
∑

l=1

ql(kT)
S
∑

s=1

H l
sρs.

Substituting into (29), we have,

E[V(~n((k + 1)T), ~q((k + 1)T))

−V(~n(kT), ~q(kT))|~n(kT), ~q(kT)] (30)

≤ −Tε
L
∑

l=1

ql(kT)
S
∑

s=1

H l
sρs + E1(k) + E2(k).

This shows that V(·, ·) would drift towards zero when ||~q(kT)|| is large and when the error terms

E1(k) and E2(k) are bounded. We would then apply Theorem 2 of [17] to establish the stability

of the system.

To complete the proof, however, we have to address several difficulties:

23

• In order to apply Theorem 2 of [17], a stronger negative drift is required. Instead of (30),

we need,

E[V(~n((k + 1)T), ~q((k + 1)T))

−V(~n(kT), ~q(kT))|~n(kT), ~q(kT)]

≤ −ε′(||~n(kT)|| + ||~q(kT)||) + E0

for some positive constants ε′ and E0.

• Further, in order to apply Theorem 2 of [17], the error terms E1(k) and E2(k) have to be

bounded, which is not true in (30) since they both can become large as ns(kT) increases.

• Finally, users could arrive and depart at any time (not only at the end of a time slot).

The complete proof that addresses these difficulties is given in Appendix F.

We now give two examples showing how efficient cross-layer rate control schemes can be con-

structed by applying Proposition 7 to different network settings.

5.2 The Node Exclusive Interference Model

Proposition 7 is most useful when an imperfect schedule that satisfies (14) can be easily computed

for some reasonable value of γ. This is the case under the following node exclusive interference

model.

The Node Exclusive Interference Model:

• The data rate of each link is fixed at cl.

• Each node can only send to or receive from one other node at any time.

This interference model has been used in earlier studies of rate control in multihop wireless

networks [12, 13]. Under this model, the perfect schedule (according to (11)) at each time slot

corresponds to the Maximum Weighted Matching (MWM), where the weight of each link

24

is qlcl. (A matching is a subset of the links such that no two links share the same node. The

weight of a matching is the total weight over all links belonging to the matching. A maximum-

weighted-matching (MWM) is the matching with the maximum weight.) An O(N 3)-complexity

algorithm for MWM can be found in [18], where N is the number of nodes. On the other hand,

the following much simpler Greedy Maximal Matching (GMM) algorithm can be used to

compute an imperfect schedule with γ = 1/2. Start from an empty schedule. From all possible

links l ∈ L, pick the link with the largest qlcl. Add this link to the schedule. Remove all links

that are incident with either the sending node or the receiving node of link l. Pick the link with

the largest qlcl from the remaining links, and add to the schedule. Continue until there are no

links left. The GMM algorithm has only O(L log L)-complexity (where L is the number of links),

and is much easier to implement than MWM. Using the technique in Theorem 10 of [19], we can

show that the weight of the schedule computed by the GMM algorithm is at least 1/2 of the

weight of the maximum-weighted-matching. According to Proposition 7, the stability region will

be at least Λ/2 using our cross-layered rate control scheme with the GMM scheduling policy.

For the node-exclusive interference model, a layered approach to rate control is also possible,

which considers separately the dynamics of rate control and scheduling [12, 13]. It has been

shown that the optimal capacity region Λ in the node-exclusive interference model is bounded

by 2
3
Ψ0 ⊆ Λ ⊆ Ψ0, where

Ψ0 =







~x

∣

∣

∣

∣

∣

∣

∑

l:b(l)=i or e(l)=i

1

cl

S
∑

s=1

H l
sxs ≤ 1 for all i







.

and b(l) and e(l) are the sending node and the receiving node, respectively, of link l. The layered

approach then chooses the lower bound 2
3
Ψ0 as the rate region for computing the rate allocation

[12, 13]. On the other hand, when an imperfect GMM scheduling policy is used, the capacity

region can be reduced by half in the worst case (according to Proposition 3). Hence, the layered

approach then needs to use Ψ0/3(⊆ Λ/2) as the rate region. Note that for the layered approach

with GMM scheduling, Ψ0/3 is an upper bound for its stability region, which is smaller than the

lower bound of the stability region of the corresponding cross-layered approach (which is Λ/2

25

according to Proposition 7). Hence, due to its conservative nature, the layered approach always

suffers from worst case inefficiencies. In Section 7, we will use simulations to show that our

cross-layered rate control scheme can in practice substantially outperform the layered approach.

5.3 General Interference Models

Under general interference models, it may still be time-consuming to compute a schedule that

satisfies (14) for a given value of γ. We now use Proposition 7 to develop a scheduling policy that

can cut down the frequency of such computation, and hence effectively reduce the computation

overhead. This idea is motivated by the observation that implicit costs, being updated by (17),

cannot change abruptly. Hence, there is a high chance that a schedule computed earlier can be

reused in subsequent time-slots. To see this, assume that we know a schedule ~r 0 that satisfies

(14) for an inefficiency factor γ0 > γ when the implicit cost vector is ~q 0, i.e.,

L
∑

l=1

r0
l q

l
0 ≥ γ0 max

~r∈R

L
∑

l=1

rlq
l
0. (31)

Let the implicit cost vector at the current time slot be ~q, and let ~r ∗ denote the corresponding

(but unknown) perfect schedule. We can normalize ~q 0 and ~q to be of unit length since the

corresponding schedules will remain the same. We have,

L
∑

l=1

qlr∗l =
L
∑

l=1

(ql − ql
0)r

∗
l +

L
∑

l=1

ql
0r

∗
l

≤
L
∑

l=1

[ql − ql
0]

+rmax
l +

L
∑

l=1

ql
0r

0
l

γ0

,

where rmax
l is the maximum rate of link l. Hence, if

L
∑

l=1

qlr0
l ≥ γ



















L
∑

l=1

[ql − ql
0]

+rmax
l +

L
∑

l=1

ql
0r

0
l

γ0



















,

we can still use ~r 0 as the imperfect schedule for ~q. This approach is even more powerful when the

network can remember multiple schedules from the past. Assume that the schedules ~r 1, ~r 2, ..., ~r K

26

correspond to ~q 1, ~q 2, ..., ~q K , respectively, and each pair satisfies (31). Then, as long as

max
k=1,..,K

L
∑

l=1

qlrk
l (32)

≥ min
k=1,...,K

γ



















L
∑

l=1

[ql − ql
k]

+rmax
l +

L
∑

l=1

ql
kr

k
l

γ0



















,

we do not need to compute a new schedule. Instead, we can use the schedule that maximizes

the left hand side of (32). By Proposition 7, the stability region of the system using the above

scheduling policy is no smaller than γΛ. In Section 7, we will use simulations to show that such

a simple policy can perform very well in practice.

6 A Fully Distributed Cross-Layered Rate Control and

Scheduling Algorithm

Proposition 7 opens a new avenue for studying cross-layer design for rate control in multihop

wireless networks. Instead of restricting our attention to the rate allocation at each snapshot

of the system (as we did in Section 4 where the results tend to be weaker), we can now study

the entire time horizon by focusing on the stability region of such a cross-layer-designed system.

Motivated by Proposition 7, we now present a fully distributed cross-layered rate control and

scheduling algorithm for the node-exclusive interference model in Section 5.2. (In contrast, the

GMM algorithm in Section 5.2 still requires centralized implementation.) This new algorithm

can be shown to achieve a stability region no smaller than Λ/2.

The new algorithm uses Maximal Matching (MM) to compute the schedule at each time

[20]. A maximal matching is a matching such that no more links can be added without violating

the node-exclusive interference constraint. To be precise, let qij denote the implicit cost at link

(i, j). (For convenience, in this section we will index a link by a node pair (i, j).) A maximal

matching M is a subset of L such that qij ≥ 1 for all (i, j) ∈ M, and, for each (i, j) ∈ L, one of

27

the following holds:

qij < 1, or (33)

(i, k) ∈ M for some link (i, k) ∈ L, or

(k, i) ∈ M for some link (k, i) ∈ L, or

(j, h) ∈ M for some link (j, h) ∈ L, or

(h, j) ∈ M for some link (h, j) ∈ L.

Note that a maximal matching can be computed in a distributed fashion as follows. When

a link (i, j) is added to the matching, we say that both node i and node j are matched. For

each node i, if it has already been matched, no further action is required. Otherwise, node i

scans its neighboring nodes. If there exists a neighboring node j such that node j has not been

matched, node i sends a matching request to node j. It is possible that a matching request

conflicts with other matching requests. In this case, the nodes involved in the conflict can use

some randomization and local coordination to pick any non-conflicting subset of the matching

requests. For those nodes whose matching requests are declined, they can repeat the above

procedure until every node in the network is either matched or has no neighbors that are not

matched.

Let

Qi =
∑

j:(i,j)∈L

qij +
∑

j:(j,i)∈L

qji

denote the total cost of the links that either start from, or end at node i. Our new cross-layered

rate control and scheduling algorithm then proceeds as follows.

The Distributed Cross-Layered Rate Control Algorithm:

At each time slot [kT, (k + 1)T):

• A maximal matching M(kT) is computed based on the implicit costs ~q(kT).

• The data rate of each user of class s is determined by

xs(t) = xs(kT)

28

= max







ws

2
∑

(i,j)∈L H ij
s

Qi(kT)+Qj(kT)

cij

,Ms







(34)

where cij is the capacity of link (i, j), and H ij
s is defined as H l

s, i.e., H ij
s = 1, if users of

class s use link (i, j); and H ij
s = 0, otherwise.

• The implicit costs are updated by:

qij((k + 1)T) =

[

qij(kT) + α

(

S
∑

s=1

H ij
s

∫ (k+1)T

kT

ns(t)xs(kT)

cij

dt − T1{(i,j)∈M(kT)}

)]+

. (35)

This new cross-layered rate control and scheduling algorithm is similar to the algorithms of

Section 4 and 5 in many aspects:

• A user reacts to congestion by reducing its data rate when the implicit costs along its path

increase.

• The implicit cost at each link (i, j) is updated based on the difference between the offered

load and the schedule of the link.

However, there is a critical difference. When the maximal matching is computed, we do not care

about the precise value of the implicit costs (see (33)). Hence, the maximal matching typically

does not satisfy the requirement of the imperfect scheduling policy Sγ, and Proposition 7 does not

apply either. Further, the rate control part (34) is also different from that in the earlier sections.

It has been chosen specifically for the maximal matching scheduling policy. Nonetheless, using

similar techniques as in Section 5, we can show the following result on the stability region of the

system. The details are given in Appendix G.

Proposition 8 If the stepsize α is sufficiently small, then for any offered load ~ρ that resides

strictly inside Λ/2, the system with the above distributed cross-layered rate control algorithm is

stable.

29

3

2

4

5

1

0
L0

L3

L6

L5

L7L4

L8

L1

Class 3

Class 2

L2

0 (0.0, 0.0)

1 (0.0, 2.0)

2 (1.0, 1.0)

4 (2.5, 2.0)

5 (3.5, 1.0)

3 (2.2, 0.0)

PositionNode

Class 4

Class 1

Class 0

Figure 3: The Network Topology

7 Numerical Results

We now use simulations to verify the results in this paper. We use the network in Fig. 3. There

are 5 classes of users, whose paths are shown in Fig. 3. Their utility functions are all given

by Us(xs) = log xs. We first use the following interference model. The path loss G(i, j) from a

node i to a node j is given by G(i, j) = d−4
ij where dij is the distance from node i to node j

(the positions of the nodes are also given in Fig. 3). We assume that the data rate rij at link

(i, j) ∈ L is proportional to the SIR, i.e.,

rij = W
G(i, j)Pij

N0 +
∑

(k,h)∈L,(k,h)6=(i,j) G(k, j)Pk,h

,

where N0 is the background noise and W is the bandwidth of the system. This assumption

is suitable for CDMA systems with a moderate processing gain [6]. Each node i has a power

constraint Pi,max, i.e., the power allocation must satisfy
∑

j:(i,j)∈L Pij ≤ Pi,max for all i.

We first simulate the case when there is one user for each class. The left figure in Fig. 4 shows

the evolution of the data rates for all five users when the network computes the perfect schedule

according to (11) at every time slot. We have chosen W = 10, N0 = 1.0, Pi,max = 1.0 for all node

i and αl = 0.1 for all link l. Note that the scheduling subproblem (11) for this interference model

is a complex non-convex global optimization problem. In [8], we have given an O(2N) algorithm

for solving the perfect schedule, where N is the number of nodes. Executing such an algorithm

at every time-slot is extremely time-consuming.

We then simulate the imperfect scheduling policy outlined in Section 5.3 for general interference

30

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

 Iteration
 R

at
e

 User 0
 User 1
 User 2
 User 3
 User 4

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

 Iteration

 R
at

e

 User 0
 User 1
 User 2
 User 3
 User 4

Figure 4: The evolution of the data rates for all users with perfect scheduling (left) and with

imperfect scheduling (right, γ = 0.5).

models. Such an imperfect scheduling policy attempts to reuse schedules that have already been

computed in the past. In our simulation, we have chosen γ0 = 1.0 in (31), i.e., each of these

past schedules are perfect schedules. The computational complexity could have been further

reduced if we had chosen γ0 < 1. However, we leave this for future work. Instead, in this

paper we focus on how the imperfect scheduling policy can reduce the number of times that new

perfect schedules have to be computed. The system that we simulate can store at most 10 past

schedules. If there are already 10 past schedules and a new perfect schedule is computed, the new

schedule will replace the old one that has the smallest weighted-sum
L
∑

l=1

qlrl. In the right figure

of Fig. 4, we show the evolution of the data rates when γ = 0.5. Note that the rate allocation

eventually converges to values close to that with perfect scheduling. We also record the number

of times that perfect schedules are computed. When γ = 0.5, perfect schedules are computed in

only 7 iterations among the entire 2000 iterations of the simulation, and most of these perfect

schedules are computed at the initial stage of the simulation. We have simulated other values

of γ and find similar results. In fact, by just reducing γ from 1.0 to 0.9, the number of times

that perfect schedules have to be computed is reduced to 34 (over 2000 iterations of simulation).

These results indicate that our cross-layered rate control scheme with the imperfect scheduling

policy in Section 5.3 can substantially reduce the computation overhead and still maintain good

performance.

31

0 0.05 0.1 0.15 0.2
0

10

20

30

40

50

 ρ

 A
ve

ra
ge

 N
um

be
r

of
 U

se
rs

 γ=1.0
 γ=0.9
 γ=0.5

Figure 5: The average number of users in the

system versus load.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

10

20

30

40

50

 ρ

 A
ve

ra
ge

 N
um

be
r

of
 U

se
rs Joint−MWM

 Layered−MWM
 Joint−GMM
 Layered−GMM
 Joint−MM

Figure 6: The average number of users in

the system versus load: the node-exclusive

interference model

We then simulate the case when there are dynamic arrivals and departures of the users as in

Section 5. Users of each class arrive to the network according to a Poisson process with rate

λ. Each user brings with it a file to transfer whose size is exponentially distributed with mean

1/µ = 100 unit. We vary the arrival rate λ (and hence the load ρ = λ/µ) and record in Fig. 5 the

average number of users in the system at any time for different choice of γ. Given γ, the average

number of users in the system will increase to infinity as the offered load ρ approaches a certain

limit. This limit can then be viewed as the capacity of the system. From Fig. 5, we observe that

the capacity of the system is not significantly affected when γ is reduced from 1.0 to 0.5. On the

other hand, the number of time-slots that new perfect schedules have to be computed is reduced

to less than 1% of the total number of time-slots when γ = 0.9, and to less than 0.05% when

γ = 0.5. These results confirm again the effectiveness of our cross-layered rate control scheme

with the imperfect scheduling policy in Section 5.3, in reducing the computation overhead and

achieving good overall performance.

We next turn to the node-exclusive interference model in Section 5.2, where we can draw a

comparison with the layered approach to rate control [12, 13]. We still use the network topology

in Fig. 3. The capacity of each link is now fixed at 10 units. Due to space constraints, we only

report the result for the case when there are dynamic arrivals and departures of the users. Fig. 6

demonstrates the average number of users in the system versus load with different rate control

32

and scheduling schemes. We label each curve with the rate control scheme (we use “Joint” to

denote the cross-layered rate control scheme and use “Layered” to denote the layered approach

in [13]), followed by the scheduling policy. (Note that the curve for the cross-layered rate control

scheme with GMM scheduling, labeled as “Joint-GMM,” in fact overlaps with the curve for

the optimal cross-layered rate control scheme with perfect MWM scheduling, which is the right

most curve labeled as “Joint-MWM.”) From Fig. 6, we observe that, regardless of the scheduling

policy used (either MWM, GMM, or MM), the layered approach always performs much poorer

than the corresponding cross-layered approach. The performance gap widens even more when

an imperfect scheduling policy (such as GMM) is used. In particular, the fully distributed joint

rate control and scheduling algorithm in Section 6 (with imperfect maximal matching scheduling,

labeled “Joint-MM”), actually performs even better than the layered approach with the perfect

(and more complex) MWM scheduling (labeled “Layered-MWM”). These results demonstrate

that the conservative nature of the layered approach indeed hurts the overall performance of the

system, and an appropriately designed cross-layered rate control scheme can perform very well

in practice even with imperfect scheduling.

8 Conclusion

In this paper, we study how the performance of cross-layer rate control will be impacted if the

network can only use an imperfect (and potentially distributed) scheduling component. When

the number of users in the system is fixed, we are able to show some desirable, but weak,

results on the fairness and convergence properties of the system. We then turn to the case with

dynamic arrivals and departures of the users, and establish stronger results bounding the stability

region of the system. Compared with a layered approach that does not design rate control and

scheduling together, the cross-layered approach has provably better performance bounds, and

usually substantially outperforms the layered approach. Hence, the cross-layered approach is

much more robust to imperfect scheduling than the layered approach. The insights drawn from

33

our analyses also enable us to design a fully distributed and high-performance cross-layered rate

control and scheduling algorithm for the node-exclusive interference model.

These results constitute an important step towards designing fully distributed cross-layered

rate control schemes for multihop wireless networks. Several directions for future work are possi-

ble. For example, Proposition 7 may be combined with a clustering scheme to design distributed

cross-layered rate-control solutions for large networks. We can also use similar techniques as in

[8] to combine cross-layered rate control with multipath routing. Our main result (Proposition 7)

can also be extended to the case with random fading. It would also be important to study the

impact of feedback delays, and to extend our results to hybrid wireless-wireline networks.

Appendix

A Proof of Proposition 1

The proof of part a) is quite standard (see, for example, Theorem 3.2.8 in [21, p44]). In fact,

let ~x∗ denote the optimal solution to the primal problem (2), and let ~r ∗ denote the corresponding

vector of link rates that satisfies (3). It is easy to verify that

max
0≤xs≤Ms,~r∈Co(R)

L(~x, ~r, ~q) ≥ L(~x∗, ~r ∗, ~q) ≥
S
∑

s=1

Us(x
∗
s) for all ~q ≥ 0 .

To prove part a), we only need to find Lagrange multipliers ~q ≥ 0 such that

max
0≤xs≤Ms,~r∈Co(R)

L(~x, ~r, ~q) =
S
∑

s=1

Us(x
∗
s).

Towards this end, let ~b = [bl, l ∈ L] and let

G(~b) = max
0≤xs≤Ms

S
∑

s=1

Us(xs)

subject to
S
∑

s=1

H l
sxs ≤ rl + bl for all l ∈ L (36)

and [rl] ∈ Co(R).

34

The original problem (2) corresponds to ~b = 0 and hence G(0) =
S
∑

s=1

Us(x
∗
s). It is easy to

show that G(~b) is a concave function of ~b. Hence, by Theorem 3.1.8 of [21, p36], there exists a

subgradient ~q0 of G(~b) at ~b = 0. We now show that ~q0 is the desired Lagrange multipliers. For

any ~b ≥ 0, by the concavity of G(~b), we have

G(~b) ≤ G(0) + ~q tr
0

~b,

where [·] tr denotes the transpose. Further, by the definition of G(~b) in (36),

G(0) ≤ G(~b) for all ~b ≥ 0.

Hence, for any ~b ≥ 0,

G(0) ≥ G(~b) − ~q tr
0

~b ≥ G(0) − ~q tr
0

~b,

and we have,

~q tr
0

~b ≥ 0 for all ~b ≥ 0.

This implies that ~q0 ≥ 0. Next, for any ~x such that xs ≤ Ms for all s, and for any ~r ∈ Co(R),

if we let ~g(~x, ~r) =

[

S
∑

s=1

H l
sxs − rl, l ∈ L

]

, then (~x, ~r) is a feasible point in the problem (36) with

~b = ~g(~x, ~r). Hence, using the concavity of G(~b) again, we have

S
∑

s=1

Us(xs) ≤ G(~g(~x, ~r))

≤ G(0) + ~q tr
0 ~g(~x, ~r)

=
S
∑

s=1

Us(x
∗
s) + ~q tr

0 ~g(~x, ~r). (37)

Choosing ~x = ~x∗ and ~r = ~r ∗, we have

S
∑

s=1

Us(x
∗
s) ≤

S
∑

s=1

Us(x
∗
s) + ~q tr

0 ~g(~x∗, ~r ∗),

i.e.,

~q tr
0 ~g(~x∗, ~r ∗) ≥ 0.

35

However, since ~g(~x∗, ~r ∗) ≤ 0 and ~q0 ≥ 0, we must have

~q tr
0 ~g(~x∗, ~r ∗) = 0.

Finally, using (37) again, we obtain

L(~x, ~r, ~q0) =
S
∑

s=1

Us(xs) − ~q tr
0 ~g(~x, ~r)

≤
S
∑

s=1

Us(x
∗
s) =

S
∑

s=1

Us(x
∗
s) − ~q tr

0 ~g(~x∗, ~r ∗)

= L(~x∗, ~r ∗, ~q0).

Hence

max
0≤xs≤Ms,~r∈Co(R)

L(~x, ~r, ~q0) = L(~x∗, ~r ∗, ~q0) =
S
∑

s=1

Us(x
∗
s),

i.e., there is no duality gap.

Proof of part b): Let ~x∗ denote the optimal solution to the primal problem (2), and let ~r ∗

denote the corresponding vector of link rates that satisfies (3). Note that ~x∗ is unique due to the

strict concavity of Us(xs). We shall show that, for any ~q ∈ Φ, the following holds,

max
0≤xs≤Ms,~r∈Co(R)

L(~x, ~r, ~q) = L(~x∗, ~r ∗, ~q).

(Note that ~q may be different from ~q0 in the proof of part (a).) In fact, since ~q ∈ Φ, we have,

S
∑

s=1

Us(x
∗
s) = D(~q) = max

0≤xs≤Ms,~r∈Co(R)
L(~x, ~r, ~q)

≥
S
∑

s=1

Us(x
∗
s) −

L
∑

l=1

ql

(

S
∑

s=1

H l
sx

∗
s − r∗l

)

. (38)

Hence,
L
∑

l=1

ql

(

S
∑

s=1

H l
sx

∗
s − r∗l

)

≥ 0.

However, since
S
∑

s=1

H l
sx

∗
s − r∗l ≤ 0 for all l and ~q ≥ 0, we must have

L
∑

l=1

ql

(

S
∑

s=1

H l
sx

∗
s − r∗l

)

= 0.

36

Substituting into (38), we have,

max
0≤xs≤Ms,~r∈Co(R)

L(~x, ~r, ~q) =
S
∑

s=1

Us(x
∗
s) = L(~x∗, ~r ∗, ~q).

However, given ~q, the point (~x, ~r) that maximizes

L(~x, ~r, ~q) =
S
∑

s=1

Us(xs) −
L
∑

l=1

ql

(

S
∑

s=1

H l
sx

∗
s − r∗l

)

is unique due to the strict concavity of Us(xs). Therefore, the maximizer must be equal to ~x∗.

Proof of part c): Let A denote the S × S diagonal matrix whose l-th diagonal element is

α0
l . Let H denote the L × S matrix whose (l, s)-element is H l

s. Then ||~q||A = ~q trA−1~q. For any

~q ∗,0 ∈ Φ, by (12), we have

||~q(t + 1) − ~q ∗,0||A ≤ ||~q(t) − ~q ∗,0||A + 2h[H~x(t) − ~r(t)] tr[~q(t) − ~q ∗,0]

+h2[H~x(t) − ~r(t)] trA[H~x(t) − ~r(t)]. (39)

Note that

D(~q(t)) =
S
∑

s=1

Us(xs(t)) − [H tr~q(t)] tr~x(t) + ~r tr(t)~q(t),

and

D(~q ∗,0) = max
0≤xs≤Ms

{

S
∑

s=1

Us(xs) − (H tr~q ∗,0) tr~x

}

+ max
~r∈Co(R)

~r tr~q ∗,0

≥
S
∑

s=1

Us(xs(t)) − (H tr~q ∗,0) tr~x(t) + ~r tr(t)~q ∗,0.

Hence,

D(~q ∗,0) − D(~q(t)) ≥ [H~x(t) − ~r(t)] tr[~q(t) − ~q ∗,0].

Substituing into (39), we have

||~q(t + 1) − ~q ∗,0||A

≤ ||~q(t) − ~q ∗,0||A + 2h[D(~q ∗,0) − D(~q(t))] + h2[H~x(t) − ~r(t)] trA[H~x(t) − ~r(t)].

37

Fix η > 0. Let

Φ(η) = {~q|D(~q) ≤ D(~q ∗,0) + η}. (40)

Since both ~x(t) and ~r(t) are bounded, there exists M < ∞ such that

max
0≤xs≤Ms,~r∈Co(R)

(H~x − ~r) trA(H~x − ~r) ≤ M.

If we pick

h ≤ η/M,

then as long as ~q(t) /∈ Φ(η), we have

||~q(t + 1) − ~q ∗,0||A ≤ ||~q(t) − ~q ∗,0||A − hη.

Hence, eventually, ~q(t) will enter the set Φ(η). On the other hand, if we pick

h ≤ η/
√

M,

then once ~q(t) ∈ Φ(η), we have

√

||~q(t + 1) − ~q ∗,0||A ≤
√

||~q(t) − ~q ∗,0||A +
√

||~q(t + 1) − ~q(t)||A ≤
√

||~q(t) − ~q ∗,0||A + η. (41)

Since the inequality (41) holds for any ~q ∗,0 ∈ Φ ⊂ Φ(η), it implies that

d(~q(t + 1), Φ) ≤ d(~q(t), Φ) + η,

where d(~q, Φ) = min~p∈Φ

√

||~q − ~p||A. Hence, if

h ≤ min{η/M, η/
√

M},

then there exists time T0 such that

d(~q(t), Φ) ≤ ξ(η) for all t ≥ T0,

where

ξ(η) = max
~p∈Φ(η)

d(~p, Φ) + η.

38

It is easy to show that, as η → 0,

ξ(η) → 0.

Hence, for any ε > 0, we can pick η (and h) sufficiently small such that ξ(η) < ε, i.e., there exists

time T0 such that

d(~q(t), Φ) < ε for all t ≥ T0.

Finally, since the mapping from ~q(t) to ~x(t) is continuous, we can pick η (and h) sufficiently

small such that

||~x(t) − ~x∗|| < ε for all t ≥ T0.

B Proof of Proposition 2

We need the following assumption on the queueing discipline at each link. We assume that,

when each link forwards data, data at smaller number of hops away from their source will have

priority over data at a large number of hops away from their source. Hence, first-hop data will be

forwarded before all second-hop data, then second-hop data will be forwarded before all third-

hop data, and so on. One way to achieve such priority queueing is to have each link maintain

separate queues for data at different number of hops away from their sources.

The above assumption allows us to study the queue lengths at all links in the network in an

inductive manner. We first study all first-hop traffic in isolation because first-hop traffic takes

precedence over all other traffic. Once we compute the contribution to the queue lengths by the

first-hop traffic, we can then study the second-hop traffic in the network, and so on.

Let xs(t, k) denote the data from user s injected at time t to the link that is at the k-th hop

from the source of user s (let xs(t, k) = 0 if data of user s travels at most k0 < k hops). Let

H l
s(k) = 1, if link l is at the k-th hop from user s, and let H l

s(k) = 0, otherwise. Let Al(t, k)

denote the amount of data injected to link l at time t by all first-hop through k-th hop traffic,

39

i.e.,

Al(t, k) =
S
∑

s=1

k
∑

m=1

H l
s(m)xs(t,m).

Let Ql(t, k) denote the queue length at link l contributed by all first-hop through k-th hop traffic.

Applying Loynes’ formula, we have

Ql(t, k) = max
0≤t′≤t

[

t
∑

u=t−t′

Al(u, k) −
t
∑

u=t−t′

rl(u)

]

.

We now use induction to show that the queue lengths at all links are bounded. The induction

hypothesis is as follows.

The Induction Hypothesis:

Fix k.

• For each user s, there exists a positive constant Ms(k) such that

t0+t
∑

u=t0

xs(u, k) ≤
t0+t
∑

u=t0

xs(u) + Ms(k), for all t0 and t. (42)

• The queue length Ql(t, k) at link l contributed by all first-hop through k-th hop traffic is

bounded for all t.

We first show that the inequality (42) implies the second part of the induction hypothesis.

Assume that αl = hα0
l . By Proposition 1, there exists some h0 > 0 such that for all h < h0 and

any initial implicit costs ~q(0), there exists a time T0 such that

d(~q(t), Φ) ≤ 1 for all t ≥ T0.

Hence, ~q(t) is bounded for all t. Since

ql(t + 1) ≥ ql(t) + αl(
S
∑

s=1

H l
sxs(t) − rl(t)).

we have,
t0+t
∑

u=t0

S
∑

s=1

H l
sxs(u) −

t0+t
∑

u=t0

rl(u) ≤ 1

αl

[

ql(t0 + t + 1) − ql(t0)
]

.

40

Hence, the left hand side is bounded from above for all t0 and t. Let M l(0) be this upper bound.

We then have,

Ql(t, k) = max
0≤t′≤t

[

t
∑

u=t−t′

Al(u, k) −
t
∑

u=t−t′

rl(u)

]

= max
0≤t′≤t

[

t
∑

u=t−t′

k
∑

m=1

S
∑

s=1

H l
s(m)xs(u,m) −

t
∑

u=t−t′

rl(u)

]

≤ max
0≤t′≤t

[

t
∑

u=t−t′

S
∑

s=1

H l
sxs(u) −

t
∑

u=t−t′

rl(u) +
k
∑

m=1

S
∑

s=1

H l
s(m)Ms(m)

]

≤ M l(0) +
k
∑

m=1

S
∑

s=1

H l
s(m)Ms(m).

Hence, Ql(t, k) is bounded for all t.

We now use induction to show that the inequality (42) holds for all k. We first consider the

case k = 1, i.e., the first-hop traffic only. Since

xs(t, 1) = xs(t),

the inequality (42) trivially holds. The second part of the induction hypothesis then follows (for

k = 1).

Assume that the induction hypothesis holds for 1, 2, ..., k − 1. Let M(k − 1) be the upper

bound for Ql(t, k − 1) for all t and l, i.e.,

M(k − 1) = sup
t

max
l

Ql(t, k − 1).

We now consider the contribution by the k-th hop traffic. Note that

t0+t
∑

u=t0

xs(u, k) ≤
t0+t
∑

u=t0

xs(u, k − 1) + M(k − 1),

where the first term on the right hand side correponds to contribution from (k−1)-th hop traffic

of user s, and the second term corresponds to the maximum amount of backlog at time t0. Since

the inequality (42) holds for (k − 1), we have,

t0+t
∑

u=t0

xs(u, k) ≤
t0+t
∑

u=t0

xs(u) + Ms(k − 1) + M(k − 1),

41

and hence the inequality (42) now holds for k. Again, by the discussion above, the second part

of the induction hypothesis also holds for k.

Finally, let L̄ denote the maximum number of hops of any users. Note that the overall queue

length Ql(t) at link l is equal to Ql(t, L̄). Hence,

sup
t

Ql(t) < +∞ for all l ∈ L.

C Proof of Proposition 3

Define

Vq(~q) =
L
∑

l=1

(ql)2

2αl

.

We now show that Vq(·) is a Lyapunov function of the system. In fact, using (17), we have,

Vq(~q(t + 1)) − Vq(~q(t)) ≤
L
∑

l=1

ql(t)

[

S
∑

s=1

H l
sxs − rl(t)

]

+ E1(t),

where

E1(t) =
1

2

L
∑

l=1

αl

[

S
∑

s=1

H l
sxs − rl(t)

]2

.

Since both xs and rl(t) are bounded, E1(t) is bounded for all t. Hence,

Vq(~q(t + 1)) − Vq(~q(t)) ≤
L
∑

l=1

ql(t)

[

S
∑

s=1

H l
sxs − rl(t)

]

+ E0
1 , (43)

for some positive constant E0
1 . By assumption, ~x lies strictly inside γΛ. Hence, there exists some

ε ≥ 0 such that

(1 + ε)~x ∈ γΛ,

i.e.,
[

(1 + ε)
L
∑

l=1

H l
sxs , l ∈ L

]

∈ γCo(R).

By the definition of the imperfect scheduling policy Sγ,

L
∑

l=1

ql(t)rl(t) ≥ γ max
~r≥0,~r∈R

L
∑

l=1

rlq
l(t) = γ max

~r≥0,~r∈Co(R)

L
∑

l=1

rlq
l(t) ≥ (1 + ε)

L
∑

l=1

ql(t)H l
sxs.

42

Substituting into (43), we have,

Vq(~q(t + 1)) − Vq(~q(t)) ≤ −ε

L
∑

l=1

ql(t)H l
sxs + E0

1 .

By Theorem 2 of [17], the system in stable. Q.E.D.

D Proof of Proposition 5

Since the utility function is logarithmic, we have,

xs(t) =
ws

L
∑

l=1

H l
sq

l(t)

for all t.

Taking limits as t → ∞, we have,

x∗,I
s =

ws

L
∑

l=1

H l
sq

l,∗
I

. (44)

Fix a positive number ε such that

ε < min
l:ql,∗

I
6=0

ql,∗
I .

Then there exists a time slot T0 such that for all t ≥ T0

|xs(t) − x∗,I
s | ≤ ε, and (45)

|ql(t) − ql,∗
I | ≤ ε. (46)

For each link l ∈ L, there are two cases:

Case 1: If ql,∗
I > 0, then (46) implies that ql(t) > 0 for all t ≥ T0. Hence, using (17), we have

αl

(

S
∑

s=1

H l
sxs(t) − rl(t)

)

= ql(t + 1) − ql(t) for all t ≥ T0. (47)

For any T > 0, summing (47) over t = T0, T0 + 1, ..., T0 + T , we have,

αl

∣

∣

∣

∣

∣

T0+T
∑

t=T0

S
∑

s=1

H l
sxs(t) −

T0+T
∑

t=T0

rl(t)

∣

∣

∣

∣

∣

=
∣

∣ql(T0 + T + 1) − ql(T0)
∣

∣ ≤ ql,∗
I + ε.

43

We can thus pick T large enough such that
∣

∣

∣

∣

∣

1

T

T0+T
∑

t=T0

S
∑

s=1

H l
sxs(t) −

1

T

T0+T
∑

t=T0

rl(t)

∣

∣

∣

∣

∣

< ε.

Using (45), we have

1

T

T0+T
∑

t=T0

rl(t) ≤
S
∑

s=1

H l
sx

∗,I
s + O(ε), (48)

where we have used O(ε) to denote the class of functions f(ε) such that lim supε→0 f(ε)/ε < +∞.

Multiplying both side of (48) by ql,∗
I and using (46) again, we have

ql,∗
I

1

T

T0+T
∑

t=T0

rl(t) ≤ ql,∗
I

S
∑

s=1

H l
sx

∗,I
s + O(ε). (49)

Case 2: If ql,∗
I = 0, the inequality (49) also holds trivially.

Summing (49) over all l ∈ L and using (44), we have

L
∑

l=1

ql,∗
I

1

T

T0+T
∑

t=T0

rl(t)

≤
L
∑

l=1

ql,∗
I

S
∑

s=1

H l
sx

∗,I
s + O(ε)

=
S
∑

s=1

x∗,I
s (

L
∑

l=1

H l
sq

l,∗
I) + O(ε)

=
S
∑

s=1

ws + O(ε). (50)

Let ~x ∗,γ denote the solution to the γ-reduced problem. Then, ~x ∗,γ

γ
∈ Λ by definition. Hence,

by the definition of the imperfect schedule policy Sγ, rl(t) must satisfies

L
∑

l=1

ql(t)rl(t) ≥ γ

L
∑

l=1

ql(t)

S
∑

s=1

H l
sx

∗,γ
s

γ

=
L
∑

l=1

ql(t)
S
∑

s=1

H l
sx

∗,γ
s for all t.

Using (46) again, we obtain,

L
∑

l=1

ql,∗
I rl(t) ≥

L
∑

l=1

ql,∗
I

S
∑

s=1

H l
sx

∗,γ
s − O(ε) for all t ≥ T0.

44

Substituting into (50), we have,

L
∑

l=1

ql,∗
I

S
∑

s=1

H l
sx

∗,γ
s

≤
L
∑

l=1

ql,∗
I

1

T

T0+T
∑

t=T0

rl(t) + O(ε)

≤
S
∑

s=1

ws + O(ε).

Noting that
L
∑

l=1

ql,∗
I

S
∑

s=1

H l
sx

∗,γ
s =

S
∑

s=1

x∗,γ
s

L
∑

l=1

H l
sq

l,∗
I =

S
∑

s=1

wsx
∗,γ
s

x∗,I
s

,

we have,
S
∑

s=1

wsx
∗,γ
s

x∗,I
s

≤
S
∑

s=1

ws + O(ε).

Finally, let ε → 0. The result then follows. Q.E.D.

E Proof of Proposition 6

Let A denote the S × S diagonal matrix whose l-th diagonal element is α0
l . Let H denote the

L × S matrix whose (l, s)-element is H l
s. Then ||~q||A = ~q trA−1~q. By (17), we have

||~q(t + 1) − ~q ∗,0||A ≤ ||~q(t) − ~q ∗,0||A + 2h[H~x(t) − ~r(t)] tr[~q(t) − ~q ∗,0]

+h2[H~x(t) − ~r(t)] trA[H~x(t) − ~r(t)]. (51)

Note that

Dγ(~q(t)) =
S
∑

s=1

Us(xs(t)) − [H tr~q(t)] tr~x(t) + γ max
~r∈Co(R)

~r tr~q(t)

≤
S
∑

s=1

Us(xs(t)) − [H tr~q(t)] tr~x(t) + ~r tr(t)~q(t),

45

and

D(~q ∗,0) = max
0≤xs≤Ms

{

S
∑

s=1

Us(xs) − [H tr~q ∗,0] tr~x

}

+ max
~r∈Co(R)

~r tr~q ∗,0

≥
S
∑

s=1

Us(xs(t)) − [H tr~q ∗,0] tr~x(t) + ~r tr(t)~q ∗,0.

Hence,

D(~q ∗,0) − Dγ(~q(t)) ≥ [H~x(t) − ~r(t)] tr[~q(t) − ~q ∗,0].

Substituing into (51), we have

||~q(t + 1) − ~q ∗,0||A

≤ ||~q(t) − ~q ∗,0||A + 2h[D(~q ∗,0) − Dγ(~q(t))] + h2[H~x(t) − ~r(t)] trA[H~x(t) − ~r(t)]

Fix η > 0. Let

Φγ(η) = {~q|Dγ(~q) ≤ D(~q ∗,0) + η}. (52)

Since both ~x(t) and ~r(t) are bounded, there exists M < +∞ such that

max
0≤xs≤Ms,~r∈Co(R)

(H~x − ~r) trA(H~x − ~r) ≤ M.

If we pick

h ≤ η/M,

then as long as ~q(t) /∈ Φγ(η), we have

||~q(t + 1) − ~q ∗,0||A ≤ ||~q(t) − ~q ∗,0||A − hη.

Hence, eventually, ~q(t) will enter the set Φγ(η). On the other hand, if we pick

h ≤ η/
√

M,

then once ~q(t) ∈ Φγ(η), we have

√

||~q(t + 1) − ~q ∗,0||A ≤
√

||~q(t) − ~q ∗,0||A +
√

||~q(t + 1) − ~q(t)||A ≤
√

||~q(t) − ~q ∗,0||A + η.

46

Hence, if

h ≤ min{η/M, η/
√

M}.

then there exists a time T0 such that

√

||~q(t) − ~q ∗,0||A ≤ ξ(η) for all t ≥ T0,

where

ξ(η) = max
~p∈Φγ(η)

√

||~p − ~q ∗,0||A + η.

It is easy to show that, as η → 0,

ξ(η) → max
~p∈Φγ

√

||~p − ~q ∗,0||A.

The result then follows.

Q.E.D.

F Proof of Proposition 7

Define

V(~n, ~q) = (1 + ε)Vn(~n) + Vq(~q),

where

Vn(~n) =
S
∑

s=1

wsn
2
s

2λs

, Vq(~q) =
L
∑

l=1

(ql)2

2αl

,

and ε is a positive constant to be chosen later. We shall show that V(·, ·) is a Lyapunov function

of the system. We begin with a few lemmas. The first two lemmas bound the changes in Vn(·).

Lemma 9

E[Vn(~n((k + 1)T) − Vn(~n(kT))|~n(kT), ~q(kT)]

47

≤
S
∑

s=1

{[

L
∑

l=1

H l
sq

l(kT)

][

ρsT −
∫ (k+1)T

kT

E[ns(t)xs(t)|~n(kT), ~q(kT)]dt

]

− 3ws

8ρsMs

∫ (k+1)T

kT

E[n2
s(t)x

2
s(t)|~n(kT), ~q(kT)]dt

}

+ E1 (53)

where E1 is a finite positive constant.

Proof: Over a small time interval δt, we have

E

[

ws

2λs

[

n2
s(t + δt) − n2

s(t)
]

|~n(t), ~q(t)

]

=
ws

2λs

{

[(ns(t) + 1)2 − n2
s(t)]λsδt + [(ns(t) − 1)2 − n2

s(t)]µsns(t)xs(t)δt
}

+ o(δt)

=
ws

λs

[ns(t)λsδt − ns(t)µsns(t)xs(t)δt] +
ws

2λs

[λsδt + µsns(t)xs(t)δt] + o(δt)

Let ρs = λs/µs. We have,

E[Vn(~n(t + δt)) − Vn(~n(t))|~n(t), ~q(t)]

δt

≤
S
∑

s=1

{

wsns(t)

λs

[λs − µsns(t)xs(t)] +
ws

2λs

[λs + µsns(t)xs(t)]

}

+ o(1)

=
S
∑

s=1

{

wsns(t)

ρs

[ρs − ns(t)xs(t)] +
ws

2
(1 +

ns(t)xs(t)

ρs

)

}

+ o(1) (54)

≤
S
∑

s=1

{[

L
∑

l=1

H l
sq

l(t)

]

[ρs − ns(t)xs(t)]

+

[

ws

xs(t)
−

L
∑

l=1

H l
sq

l(t)

]

[ρs − ns(t)xs(t)] (55)

+ws

[

ns(t)

ρs

− 1

xs(t)

]

[ρs − ns(t)xs(t)] (56)

+
ws

2
(1 +

ns(t)xs(t)

ρs

)

}

(57)

+o(1),

where ρs = λs/µs. We shall bound the three terms (55-57). By (24),

ws

xs(t)
= max

{

L
∑

l=1

H l
sq

l(t),
ws

Ms

}

.

48

Hence, the term (55) can be bounded by

[

ws

xs(t)
−

L
∑

l=1

H l
sq

l(t)

]

[ρs − ns(t)xs(t)]

≤
[

ws

xs(t)
−

L
∑

l=1

H l
sq

l(t)

]

ρs

≤
[

ws

Ms

−
L
∑

l=1

H l
sq

l(t)

]+

ρs

≤ wsρs

Ms

. (58)

For the term (56), note that

[

ns(t)

ρs

− 1

xs(t)

]

[ρs − ns(t)xs(t)]

= − [ρs − ns(t)xs(t)]
2

ρsxs(t)

≤ − [ρs − ns(t)xs(t)]
2

ρsMs

.

Using

[ρs − ns(t)xs(t)]
2 + ρ2

s ≥
n2

s(t)x
2
s(t)

2
,

we have,

[

ns(t)

ρs

− 1

xs(t)

]

[ρs − ns(t)xs(t)]

≤ − 1

ρsMs

[

n2
s(t)x

2
s(t)

2
− ρ2

s

]

= −
[

n2
s(t)x

2
s(t)

2ρsMs

− ρs

Ms

]

. (59)

Finally, for the last term (57), we have

ns(t)xs(t)

2ρs

≤ n2
s(t)x

2
s(t)

8ρsMs

+
Ms

2ρs

. (60)

Substituting (58-60) back to (55-57), we have,

E[Vn(~n(t + δt)) − Vn(~n(t))|~n(t), ~q(t)]

δt

49

≤
S
∑

s=1

{[

L
∑

l=1

H l
sq

l(t)

]

[ρs − ns(t)xs(t)]

+
wsρs

Ms

− ws

[

n2
s(t)x

2
s(t)

2ρsMs

− ρs

Ms

]

+ ws

[

1

2
+

n2
s(t)x

2
s(t)

8ρsMs

+
Ms

2ρs

]}

+ o(1)

=
S
∑

s=1

{[

L
∑

l=1

H l
sq

l(t)

]

[ρs − ns(t)xs(t)] −
3wsn

2
s(t)x

2
s(t)

8ρsMs

+ ws

[

1

2
+

Ms

2ρs

+
2ρs

Ms

]}

+ o(1). (61)

Integrating over [kT, (k + 1)T], and letting

E1 =
S
∑

s=1

wsT

[

1

2
+

Ms

2ρs

+
2ρs

Ms

]

,

the result (53) follows. Q.E.D.

Lemma 10

E[Vn(~n((k + 1)T)) − Vn(~n(kT))|~n(kT), ~q(kT)]

≤
S
∑

s=1

{

ρsT

[

L
∑

l=1

H l
sq

l(kT)

]

− ws

∫ (k+1)T

kT

E[ns(t)|~n(kT), ~q(kT)]dt

+
ws

8ρsMs

∫ (k+1)T

kT

E[n2
s(t)x

2
s(t)|~n(kT), ~q(kT)]dt

}

+ E2, (62)

where E2 is a finite positive constant.

Proof: From (54),

E[Vn(~n(t + δt)) − Vn(~n(t))|~n(t), ~q(t)]

δt

≤
S
∑

s=1

{

wsns(t)

ρs

[ρs − ns(t)xs(t)] +
ws

2
(1 +

ns(t)xs(t)

ρs

)

}

+ o(1)

≤
S
∑

s=1

{

ws

xs(t)
[ρs − ns(t)xs(t)] +

ws

2
(1 +

ns(t)xs(t)

ρs

)

}

+ o(1)

=
S
∑

s=1

{[

wsρs

xs(t)
− wsns(t)

]

+
ws

2
(1 +

ns(t)xs(t)

ρs

)

}

+ o(1)

50

By (24),

wsρs

xs(t)
= ρs max

{

L
∑

l=1

H l
sq

l(t),
ws

Ms

}

≤ ρs

(

L
∑

l=1

H l
sq

l(t) +
ws

Ms

)

.

Combining with (60), we have,

E[Vn(~n(t + δt)) − Vn(~n(t))|~n(t), ~q(t)]

δt

≤
S
∑

s=1

{[

ρs

L
∑

l=1

H l
sq

l(t) − wsns(t)

]

+
wsn

2
s(t)x

2
s(t)

8ρsMs

+ ws

[

1

2
+

ρs

Ms

+
Ms

2ρs

]

}

+ o(1). (63)

Integrating over [kT, (k + 1)T], and letting

E2 =
S
∑

s=1

wsT

[

1

2
+

ρs

Ms

+
Ms

2ρs

]

,

the result (62) then follows. Q.E.D.

The next lemma bounds the change in Vq(·). For simplicity, we use the following matrix

notation. Let A denote the L × L diagonal matrix whose l-th diagonal element is αl. Let H

denote the L × S matrix whose (l, s)-element is H l
s. Further, let Xs(t) = ns(t)xs(t) and let

~X(t) = [X1(t), ..., XS(t)]. Then

Vq(~q) =
~q trA−1~q

2
,

and the update on the implicit costs (25) can be written as

~q((k + 1)T) =

[

~q(kT) + A

(

H

∫ (k+1)T

kT

~X(t)dt − ~r(kT)T

)]+

. (64)

Lemma 11

E[Vq(~q((k + 1)T) − Vq(~q(kT))|~n(kT), ~q(kT)]

≤ ~q tr(kT)

[

H

∫ (k+1)T

kT

E[~X(t)|~n(kT), ~q(kT)]dt − ~r(kT)T

]

+TαmaxS̄L̄
S
∑

s=1

[

∫ (k+1)T

kT

E[n2
s(t)x

2
s(t)|~n(kT), ~q(kT)]dt

]

+ E3, (65)

where

αmax = max
l∈L

αl, L̄ = max
s

L
∑

l=1

H l
s, S̄ = max

l

S
∑

s=1

H l
s,

and E3 is a finite positive constant, .

51

Proof: By (64),

Vq(~q((k + 1)T) − Vq(~q(kT))

≤ ~q tr(kT)

[

H

∫ (k+1)T

kT

~X(t)dt − ~r(kT)T

]

+
1

2

[

H

∫ (k+1)T

kT

~X(t)dt − ~r(kT)T

] tr

A

[

H

∫ (k+1)T

kT

~X(t)dt − ~r(kT)T

]

≤ ~q tr(kT)

[

H

∫ (k+1)T

kT

~X(t)dt − ~r(kT)T

]

+

[

H

∫ (k+1)T

kT

~X(t)dt

] tr

A

[

H

∫ (k+1)T

kT

~X(t)dt

]

+ T 2[~r(kT)] trA~r(kT)

where [·] tr denotes the transpose. Let

αmax = max
l∈L

αl, L̄ = max
s

L
∑

l=1

H l
s, S̄ = max

l

S
∑

s=1

H l
s.

Then, we have,
[

H

∫ (k+1)T

kT

~X(t)dt

] tr

A

[

H

∫ (k+1)T

kT

~X(t)dt

]

=
L
∑

l=1

αl

[

S
∑

s=1

H l
s

∫ (k+1)T

kT

ns(t)xs(t)dt

]2

≤
L
∑

l=1

αl

[

S
∑

s=1

H l
s

]





S
∑

s=1

H l
s

(

∫ (k+1)T

kT

ns(t)xs(t)dt

)2




≤ S̄

L
∑

l=1

αl





S
∑

s=1

H l
s

(

∫ (k+1)T

kT

ns(t)xs(t)dt

)2




≤ T S̄

L
∑

l=1

αl

S
∑

s=1

H l
s

∫ (k+1)T

kT

n2
s(t)x

2
s(t)dt

= T S̄

S
∑

s=1

[

∫ (k+1)T

kT

n2
s(t)x

2
s(t)dt

][

L
∑

l=1

αlH
l
s

]

≤ TαmaxS̄L̄

S
∑

s=1

[

∫ (k+1)T

kT

n2
s(t)x

2
s(t)dt

]

.

Letting

E3 = max
~r∈Co(R)

T 2~r trA~r,

52

the result (65) then follows. Q.E.D.

Proof of Proposition 7 : Multiply (62) by ε < 1 and add to (53). We have

(1 + ε)E[Vn(~n((k + 1)T)) − Vn(~n(kT))|~n(kT), ~q(kT)]

≤
S
∑

s=1

{[

L
∑

l=1

H l
sq

l(kT)

][

(1 + ε)ρsT −
∫ (k+1)T

kT

E[ns(t)xs(t)|~n(kT), ~q(kT)]dt

]

−εws

∫ (k+1)T

kT

E[ns(t)|~n(kT), ~q(kT)]dt

− ws

4ρsMs

∫ (k+1)T

kT

E[n2
s(t)x

2
s(t)|~n(kT), ~q(kT)]dt

}

+ E1 + E2 (66)

Adding (65) to (66), and noting that

S
∑

s=1

{[

L
∑

l=1

H l
sq

l(kT)

]

∫ (k+1)T

kT

E[ns(t)xs(t)|~n(kT), ~q(kT)]dt

}

=
L
∑

l=1

ql(kT)
S
∑

s=1

H l
s

∫ (k+1)T

kT

E[ns(t)xs(t)|~n(kT), ~q(kT)]dt

= ~q tr(kT)

[

H

∫ (k+1)T

kT

E[~X(t)|~n(kT), ~q(kT)]dt

]

,

we have

E[V(~n((k + 1)T), ~q((k + 1)T)) − V(~n(kT), ~q(kT))|~n(kT), ~q(kT)]

≤
S
∑

s=1

[

L
∑

l=1

H l
sq

l(kT)

]

(1 + ε)ρsT − ~q tr(kT)~r(kT)T

−ε
S
∑

s=1

ws

∫ (k+1)T

kT

E[ns(t)|~n(kT), ~q(kT)]dt

−
S
∑

s=1

[

ws

4ρsMs

− TαmaxS̄L̄

]
∫ (k+1)T

kT

E[n2
s(t)x

2
s(t)|~n(kT), ~q(kT)]dt (67)

+E0,

where E0 = E1 + E2 + E3. If (26) is satisfied, then

TαmaxS̄L̄ ≤ ws

4ρsMs

for all s.

53

Hence, the term in (67) is negative. By a rearrangement of the order of the summation, we have,

E[V(~n((k + 1)T), ~q((k + 1)T)) − V(~n(kT), ~q(kT))|~n(kT), ~q(kT)]

≤ T~q tr(kT) [(1 + ε)H~ρ − ~r(kT)]

−ε
S
∑

s=1

ws

∫ (k+1)T

kT

E[ns(t)|~n(kT), ~q(kT)]dt + E0,

where ~ρ = [ρ1, ..., ρs]. By assumption, ~ρ lies strictly inside γΛ. Hence, there exists some ε > 0

such that (1 + 2ε)~ρ ∈ γΛ, i.e.,

(1 + 2ε)H~ρ ∈ γCo(R).

Use this value of ε in the definition of V(·, ·). Further, by the definition of the imperfect scheduling

policy Sγ,

~q tr(kT)~r(kT) ≥ γ max
~r∈Λ

~q tr(kT)~r ≥ (1 + 2ε)~q tr(kT)H~ρ.

Hence,

E[V(~n((k + 1)T), ~q((k + 1)T)) − V(~n(kT), ~q(kT))|~n(kT), ~q(kT)]

≤ −εT~q tr(kT)H~ρ − ε
S
∑

s=1

ws

∫ (k+1)T

kT

E[ns(t)|~n(kT), ~q(kT)]dt + E0

≤ −εT~q tr(kT)H~ρ − ε′
S
∑

s=1

wsns(kT) + E0

for some ε′ > 0. By Theorem 2 of [17], the result then follows. Q.E.D.

G Proof of Proposition 8

Recall that

Qi =
∑

j:(i,j)∈L

qij +
∑

j:(j,i)∈L

qji

denote the total cost of the links that either start from, or end at node i. Define

V(~n, ~q) = (1 + ε)Vn(~n) + Vq(~q),

54

where

Vn(~n) =
S
∑

s=1

wsn
2
s

2λs

, Vq(~q) =

∑N

i=1 Q2
i

α
, (68)

and ε is a positive constant to be chosen later. (Note that the definition of Vq(·) is different from

that in the earlier proofs.) We shall show that V(·, ·) is a Lyapunov function of the system. In

fact, analogous to Lemmas 9 and 10, we can show that,

E[Vn(~n((k + 1)T) − Vn(~n(kT))|~n(kT), ~q(kT)]

≤
S
∑

s=1









2
∑

(i,j)∈L

H ij
s

Qi(kT) + Qj(kT)

cij





[

ρsT −
∫ (k+1)T

kT

E[ns(t)xs(t)|~n(kT), ~q(kT)]dt

]

− 3ws

8ρsMs

∫ (k+1)T

kT

E[n2
s(t)x

2
s(t)|~n(kT), ~q(kT)]dt

}

+ E1 (69)

and

E[Vn(~n((k + 1)T)) − Vn(~n(kT))|~n(kT), ~q(kT)]

≤
S
∑

s=1







ρsT



2
∑

(i,j)∈L

H ij
s

Qi(kT) + Qj(kT)

cij



− ws

∫ (k+1)T

kT

E[ns(t)|~n(kT), ~q(kT)]dt

+
ws

8ρsMs

∫ (k+1)T

kT

E[n2
s(t)x

2
s(t)|~n(kT), ~q(kT)]dt

}

+ E2, (70)

where E1 and E2 are finite positive constants. Multiply (70) by ε < 1 and add to (69). We have

(1 + ε)E[Vn(~n((k + 1)T)) − Vn(~n(kT))|~n(kT), ~q(kT)]

≤
S
∑

s=1









2
∑

(i,j)∈L

H ij
s

Qi(kT) + Qj(kT)

cij





[

(1 + ε)ρsT −
∫ (k+1)T

kT

E[ns(t)xs(t)|~n(kT), ~q(kT)]dt

]

−εws

∫ (k+1)T

kT

E[ns(t)|~n(kT), ~q(kT)]dt

− ws

4ρsMs

∫ (k+1)T

kT

E[n2
s(t)x

2
s(t)|~n(kT), ~q(kT)]dt

}

+ E1 + E2 (71)

As in Lemma 11, we shall prove the following lemma bounding the change in Vq(·).

55

Lemma 12 If α < 1/T , then

E[Vq(~q((k + 1)T)) − Vq(~q(kT))|~n(kT), ~q(kT)]

≤ 2
∑

(i,j)∈L

qij(kT)







∑

m:(i,m)∈L

S
∑

s=1

H im
s

∫ (k+1)T

kT

E[ns(t)xs(kT)|~n(kT), ~q(kT)]

cim

dt

+
∑

m:(m,i)∈L

S
∑

s=1

Hmi
s

∫ (k+1)T

kT

E[ns(t)xs(kT)|~n(kT), ~q(kT)]

cmi

dt

+
∑

h:(j,h)∈L

S
∑

s=1

Hjh
s

∫ (k+1)T

kT

E[ns(t)xs(kT)|~n(kT), ~q(kT)]

cjh

dt

+
∑

h:(h,j)∈L

S
∑

s=1

Hhj
s

∫ (k+1)T

kT

E[ns(t)xs(kT)|~n(kT), ~q(kT)]

chj

dt − T







+αE3

S
∑

s=1

[

∫ (k+1)T

kT

E[n2
s(t)x

2
s(t)|~n(kT), ~q(kT)]dt

]

+ E4, (72)

where E3 and E4 are positive constants.

Proof: By the definition of the maximal matching M(kT), (i, j) ∈ M(kT) implies qij(kT) ≥ 1.

Further, since α < 1/T , the projection operator in (35) is not needed. Hence,

[Qi((k + 1)T)]2 − [Qi(kT)]2

= 2αT





∑

j:(i,j)∈L

qij(kT) +
∑

j:(j,i)∈L

qji(kT)





×





∑

j:(i,j)∈L

(

1

T

S
∑

s=1

H ij
s

∫ (k+1)T

kT

ns(t)xs(kT)

cij

dt − 1{(i,j)∈M(kT)}

)

+
∑

j:(j,i)∈L

(

1

T

S
∑

s=1

Hji
s

∫ (k+1)T

kT

ns(t)xs(kT)

cji

dt − 1{(j,i)∈M(kT)}

)





+α2T 2





∑

j:(i,j)∈L

(

1

T

S
∑

s=1

H ij
s

∫ (k+1)T

kT

ns(t)xs(kT)

cij

dt − 1{(i,j)∈M(kT)}

)

+
∑

j:(j,i)∈L

(

1

T

S
∑

s=1

Hji
s

∫ (k+1)T

kT

ns(t)xs(kT)

cji

dt − 1{(j,i)∈M(kT)}

)





2

.

56

Substituting into (68) and rearranging the terms, we have,

Vq(~q((k + 1)T)) − Vq(~q(kT))

= 2
∑

(i,j)∈L

qij(kT)





∑

m:(i,m)∈L

S
∑

s=1

H im
s

∫ (k+1)T

kT

ns(t)xs(kT)

cim

dt

+
∑

m:(m,i)∈L

S
∑

s=1

Hmi
s

∫ (k+1)T

kT

ns(t)xs(kT)

cmi

dt

+
∑

h:(j,h)∈L

S
∑

s=1

Hjh
s

∫ (k+1)T

kT

ns(t)xs(kT)

cjh

dt

+
∑

h:(h,j)∈L

S
∑

s=1

Hhj
s

∫ (k+1)T

kT

ns(t)xs(kT)

chj

dt





−2T
∑

(i,j)∈L

qij(kT)





∑

m:(i,m)∈L

1{(i,m)∈M(kT)} +
∑

m:(m,i)∈L

1{(m,i)∈M(kT)}

+
∑

h:(j,h)∈L

1{(j,h)∈M(kT)} +
∑

h:(h,j)∈L

1{(h,j)∈M(kT)}



+ E4(k), (73)

where

E4(k) = αT 2

N
∑

i=1





∑

j:(i,j)∈L

(

1

T

S
∑

s=1

H ij
s

∫ (k+1)T

kT

ns(t)xs(kT)

cij

dt − 1{(i,j)∈M(kT)}

)

+
∑

j:(j,i)∈L

(

1

T

S
∑

s=1

Hji
s

∫ (k+1)T

kT

ns(t)xs(kT)

cji

dt − 1{(j,i)∈M(kT)}

)





2

.

Similar to the proof of Lemma 11, we can show that

E4(k) ≤ αE3

S
∑

s=1

[

∫ (k+1)T

kT

n2
s(t)x

2
s(t)dt

]

+ E5, (74)

where E3 and E5 are positive constants. (Note that E3 can be shown to only depend on the

topology of the network.) Further, by the definition of the maximal matching M(kT),

∑

m:(i,m)∈L

1{(i,m)∈M(kT)} +
∑

m:(m,i)∈L

1{(m,i)∈M(kT)}

+
∑

h:(j,h)∈L

1{(j,h)∈M(kT)} +
∑

h:(h,j)∈L

1{(h,j)∈M(kT)} ≥ 1,

for all (i, j) such that qij(kT) ≥ 1.

57

Hence,

−qij(kT)





∑

m:(i,m)∈L

1{(i,m)∈M(kT)} +
∑

m:(m,i)∈L

1{(m,i)∈M(kT)}

+
∑

h:(j,h)∈L

1{(j,h)∈M(kT)} +
∑

h:(h,j)∈L

1{(h,j)∈M(kT)}



 ≤ −qij(kT) + 1,

for all (i, j) ∈ L. (75)

Substituting (74) and (75) into (73), the result (72) then follows with E4 = E5 + 2LT , where L

is the total number of links. Q.E.D.

Proof of Proposition 8 : Note that for all as, s = 1, ..., S,

∑

(i,j)∈L

qij(kT)
∑

m:(i,m)∈L

S
∑

s=1

H im
s as

cim

=
S
∑

s=1

as

∑

(i,m)∈L

H im
s

∑

j:(i,j)∈L qij(kT)

cim

=
S
∑

s=1

as

∑

(i,j)∈L

H ij
s

∑

m:(i,m)∈L qim(kT)

cij

. (76)

Similarly,

∑

(i,j)∈L

qij(kT)
∑

m:(m,i)∈L

S
∑

s=1

Hmi
s as

cmi

=
S
∑

s=1

as

∑

(i,j)∈L

H ij
s

∑

m:(m,i)∈L qmi(kT)

cij

∑

(i,j)∈L

qij(kT)
∑

h:(j,h)∈L

S
∑

s=1

Hjh
s as

cjh

=
S
∑

s=1

as

∑

(i,j)∈L

H ij
s

∑

h:(j,h)∈L qjh(kT)

cij

∑

(i,j)∈L

qij(kT)
∑

h:(h,j)∈L

S
∑

s=1

Hhj
s as

chj

=
S
∑

s=1

as

∑

(i,j)∈L

H ij
s

∑

h:(h,j)∈L qhj(kT)

cij

. (77)

Hence, by Lemma 12,

E[Vq(~q((k + 1)T) − Vq(~q(kT))|~n(kT), ~q(kT)]

≤ 2
S
∑

s=1





∑

(i,j)∈L

H ij
s

Qi(kT) + Qj(kT)

cij





∫ (k+1)T

kT

E[ns(t)xs(t)|~n(kT), ~q(kT)]dt

−2T
∑

(i,j)∈L

qij(kT) + αE3

S
∑

s=1

[

∫ (k+1)T

kT

E[n2
s(t)x

2
s(t)|~n(kT), ~q(kT)]dt

]

+ E4. (78)

58

Adding (78) to (71), we have

E[V(~n((k + 1)T), ~q((k + 1)T)) − V(~n(kT), ~q(kT))|~n(kT), ~q(kT)]

≤ 2T (1 + ε)
S
∑

s=1

ρs





∑

(i,j)∈L

H ij
s

Qi(kT) + Qj(kT)

cij



− 2T
∑

(i,j)∈L

qij(kT)

−ε

S
∑

s=1

ws

∫ (k+1)T

kT

E[ns(t)|~n(kT), ~q(kT)]dt

−
S
∑

s=1

[

ws

4ρsMs

− αE3

]
∫ (k+1)T

kT

E[n2
s(t)x

2
s(t)|~n(kT), ~q(kT)]dt (79)

+E7,

where E7 = E1 + E2 + E4. When α is sufficiently small, the product term in (79) is negative.

Further, by assumption, [ρs] lies strictly inside Λ
2
. Hence, there exists some positive number ε

such that, for all node i,

(1 + 2ε)





∑

j:(i,j)∈L

S
∑

s=1

H ij
s ρs

cij

+
∑

j:(j,i)∈L

S
∑

s=1

Hji
s ρs

cji



 ≤ 1/2.

Hence, applying (76-77) again on the inequality (79), we have,

E[V(~n((k + 1)T), ~q((k + 1)T)) − V(~n(kT), ~q(kT))|~n(kT), ~q(kT)]

≤ 2T
∑

(i,j)∈L

qij(kT)





∑

m:(i,m)∈L

S
∑

s=1

H im
s (1 + ε)ρs

cim

+
∑

m:(m,i)∈L

S
∑

s=1

Hmi
s (1 + ε)ρs

cmi

+
∑

h:(j,h)∈L

S
∑

s=1

Hjh
s (1 + ε)ρs

cjh

+
∑

h:(h,j)∈L

S
∑

s=1

Hhj
s (1 + ε)ρs

chj

− 1





−ε
S
∑

s=1

ws

∫ (k+1)T

kT

E[ns(t)|~n(kT), ~q(kT)]dt + E7

≤ −2Tε
∑

(i,j)∈L

qij(kT)





∑

m:(i,m)∈L

S
∑

s=1

H im
s ρs

cim

+
∑

m:(m,i)∈L

S
∑

s=1

Hmi
s ρs

cmi

+
∑

h:(j,h)∈L

S
∑

s=1

Hjh
s ρs

cjh

+
∑

h:(h,j)∈L

S
∑

s=1

Hhj
s ρs

chj





−ε
S
∑

s=1

ws

∫ (k+1)T

kT

E[ns(t)|~n(kT), ~q(kT)]dt + E7.

59

By Theorem 2 of [17], the result then follows. Q.E.D.

References

[1] L. Xiao, M. Johansson, and S. Boyd, “Simultaneous Routing and Resource Allocation via

Dual Decomposition,” in Proceedings of 4th Asian Control Conference, Singapore, Septem-

ber 2002, pp. 29–34.

[2] M. Johansson, L. Xiao, and S. Boyd, “Simultaneous Routing and Power Allocation in CDMA

Wireless Data Networks,” in Proceedings of IEEE International Conference on Communi-

cations, Anchorage, Alaska, May 2003, pp. 51–55.

[3] M. J. Neely, E. Modiano, and C. E. Rohrs, “Dynamic Power Allocation and Routing for

Time Varying Wireless Networks,” in Proceedings of IEEE INFOCOM, San Francisco, April

2003.

[4] S. Toumpis and A. J. Goldsmith, “Capacity Regions for Wireless Ad Hoc Networks,” IEEE

Transactions on Wireless Communications, vol. 2, no. 4, pp. 736–748, July 2003.

[5] A. Eryilmaz, R. Srikant, and J. Perkins, “Stable Scheduling Policies for Fading Wireless

Channels,” to appear in the IEEE/ACM Transactions on Networking, earlier versions pre-

sented at the IEEE International Symposium on Information Theory, 2002, also available

at http://comm.csl.uiuc.edu/∼srikant/pub.html.

[6] R. L. Cruz and A. V. Santhanam, “Optimal Routing, Link Scheduling and Power Control

in Multi-hop Wireless Networks,” in Proceedings of IEEE INFOCOM, San Francisco, April

2003.

60

[7] L. Tassiulas and A. Ephremides, “Stability Properties of Constrained Queueing Systems

and Scheduling Policies for Maximum Throughput in Multihop Radio Networks,” IEEE

Transactions on Automatic Control, vol. 37, no. 12, pp. 1936–1948, December 1992.

[8] X. Lin and N. B. Shroff, “Joint Rate Control and Scheduling in Multihop Wireless Net-

works,” in Proceedings of the IEEE Conference on Decision and Control, Paradise Island,

Bahamas, December 2004.

[9] M. Johansson and L. Xiao, “Scheduling, Routing and Power Allocation for Fairness in

Wireless Networks,” in IEEE VTC - Spring, Milan, Italy, May 2004.

[10] M. Chiang, “To Layer or Not to Layer: Balancing Transport and Physical Layers in Wireless

Multihop Networks,” in Proceedings of IEEE INFOCOM, Hong Kong, March 2004.

[11] S. H. Low and R. Srikant, “A Mathematical Framework for Designing a Low-Loss Low-Delay

Internet,” Network and Spatial Economics, vol. 4, no. 1, pp. 75–102, March 2004.

[12] S. Sarkar and L. Tassiulas, “End-to-end Bandwidth Guarantees Through Fair Local Spec-

trum Share in Wireless Ad-hoc Networks,” in Proceedings of the IEEE Conference on Deci-

sion and Control, Maui, Hawaii, December 2003.

[13] Y. Yi and S. Shakkottai, “Hop-by-hop Congestion Control over a Wireless Multi-hop Net-

work,” in Proceedings of IEEE INFOCOM, Hong Kong, March 2004.

[14] Y. Xue, B. Li, and K. Nahrstedt, “Price-based Resource Allocation in Wireless Ad Hoc

Networks,” in Proceedings of the Eleventh International Workshop on Quality of Service

(IWQoS 2003), also Lecture Notes in Computer Science, ACM Springer-Verlag, vol. 2707,

Monterey, CA, June 2003, pp. 79–96.

[15] T. Bonald and L. Massoulie, “Impact of Fairness on Internet Performance,” in Proceedings

of ACM Sigmetrics, Cambridge, MA, June 2001, pp. 82–91.

61

[16] N. Z. Shor, Minimization Methods for Non-Differentiable Functions. Berlin: Springer-

Verlag, 1985.

[17] M. J. Neely, E. Modiano, and C. E. Rohrs, “Power Allocation and Routing in Multibeam

Satellites with Time-Varying Channels,” IEEE/ACM Transactions on Networking, vol. 11,

no. 1, pp. 138–152, February 2003.

[18] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Com-

plexity. Englewood Cliffs, New Jersey: Prentice-Hall, 1982.

[19] E. Leonardi, M. Mellia, F. Neri, and M. A. Marsan, “On the Stability of Input-Queued

Switches with Speed-Up,” IEEE/ACM Transactions on Networking, vol. 9, no. 1, pp. 104–

118, February 2001.

[20] J. G. Dai and B. Prabhakar, “The Throughput of Data Switches with and without Speedup,”

in Proceedings of IEEE INFOCOM, Tel Aviv, Israel, March 2000, pp. 556–564.

[21] J. M. Borwein and A. S. Lewis, Convex Analysis and Nonlinear Optimization: Theory and

Examples. New York: Springer, 2000.

62

