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Abstract—A pseudo-random beamforming (PRBF) based ran-
dom access (RA) system is proposed to enable uplink (UL)
machine-type communications (MTC) with ultra low signaling
overheads. Specifically, a pseudo random (PR) sequence is used
as public information to coordinate the beamforming vectors
used at the base station (BS) and the devices. Within the
coherence time window, each device distributively determines
in advance the “good” time slots and receiving beams for
transmission. This UL protocol reduces the overheads due to the
feedback of channel state information and the control signals for
centralized scheduling. This paper derives the throughput and
user scaling of the proposed M-PRBF-CA protocol for achieving
spatial multiplexing gain, under both an i.i.d. slow fading channel
and a correlated slow fading channel. Our simulation results
confirm the analysis in both fading channel models.

I. INTRODUCTION

The upcoming fifth generation (5G) wireless network aims
to achieve ubiquitous connectivity of billions of devices,
objects and machines, to form the so-called massive internet-
of-things (IoT). 3GPP defines that massive IoT consists of
at least 1M devices/km2. To support such massive machine-
type communication (MTC) for IoT, wireless networks are
required to more efficiently support the simplest devices
communicating sporadically and to be highly energy efficient
so that massive IoT devices can deliver exceedingly long
battery life.

One of the toughest challenges for IoT communication
is in the uplink (UL), where massive number of devices
try to access shared resources with limited coordination.
ALOHA is a common random access (RA) protocol for
organizing multiple access in a decentralized manner. How-
ever, the original slotted-ALOHA does not consider wireless
channel fading. In [1], the authors propose “Channel-aware
ALOHA” (CA-ALOHA), which allows only those users with
“good” channels to enter the contention. It is shown that the
asymptotic throughput of CA-ALOHA is equal to 1/e of the
optimal throughput of centralized opportunistic scheduling.
Recently, a similar channel-aware ALOHA scheme in a multi-
cell interference model was studied in [2]. CSMA-type is
another common RA protocol, but its gain over ALOHA will
be limited when the IoT payload is short. There have also been
significant progress on designing non-orthogonal multiple ac-
cess (NOMA), such as sparse code multiple access (SCMA),
to multiplex (overload) users using different codebooks over

the same resource block [3]. However, the above studies often
overlook the use of MIMO technology either, which has been
the key driving force of performance gain in the 4G system.
The reason is likely due to the complexity of MIMO. Despite
its spatial multiplexing gain provided by MIMO, one has to
keep track of the Channel State Information (CSI) for all time
and make careful scheduling decisions, which incur significant
overhead for IoT multiple access [4]. Thus, it remains an open
question how to design UL IoT multiple access schemes that
can explore the MIMO gain at low complexity and with low
overheads.

In order to obtain MIMO gains for IoT, some research
efforts have been made on combining random beamforming
(RBF) with opportunistic scheduling [5]. For low-mobility
IoT devices with slow channel dynamics, RBF can induce
more channel fluctuations, and thus achieve a MUD gain.
Traditional RBF architecture requires each device to feedback
the effective channel gain to the base station (BS) whenever
the RBF vector changes [4]. This requirement is unrealistic
in IoT UL communication because the massive number of
channel feeckback can easily overwhelm the communication
channel. To address this issue, [6] proposes to reduce the
overhead by sampling only a small subset of the IoT devices,
which will likely lead to a much lower MUD gain. In [7],
the authors propose a pseudo-random beamforming (PRBF)
approach where each device can determine its channel quality
before-hand. However, the system forms only one beam at
each time, thus does not provide any spatial multiplexing gain.

The most closely related papers to our work are [8] and
[9], which derive the throughput and user scaling for multi-
beam RBF. They study the multi-beam RBF downlink (DL)
case in the context of millimeter wave (mmWave). Despite
achieving the spatial multiplexing gain of MIMO, they rely
on centralized scheduling to resolve contention, which incurs
high overhead due to the need of CSI feedback. If one removes
centralized scheduling, it is unclear how UL multiple access
can be organized in a low-overhead way so that the spatial
multiplexing gain of MIMO can still be attained. Second,
they both focus on the DL. In contrast, we focus on the UL,
which is fundamentally more difficult due to massive random
access. Specifically, in DL the number of interference sources
to a given receiver is equal to the number of other beams. In
contrast, in UL the number can be as large as the number of



Fig. 1. An illustration for the slow block fading channel model.

all other users. It is thus critical to design a multiple-access
scheme that can limit the interference. Third, instead of the
classic block fading channel (or fast block fading) in [8] and
[9], in this paper we consider a slow block fading channel,
which is more suitable for low-mobility IoT devices. We shall
see in Remark 1 in Section III that some well-known results
from the fast fading case cannot be directly applied in case
of slow block fading channel. Therefore, it remains unclear
whether similar throughput and user scaling can be attained
in the use of a MIMO massive IoT system.

In this paper, we propose a multi-beam PRBF channel-
aware (M-PRBF-CA) random access scheme in Section II
that can achieve the spatial multiplexing gain with ultra-low
overhead. Specifically, in slow fading channel, we show that
M-PRBF-CA can achieve a total throughput linear in the
number of antennas in Sections III and IV. Moreover, while
an exponential user scaling in the number of BS antennas is
required to achieve this spatial multiplexing gain in the i.i.d.
slow fading channel, only a linear user scaling is required for
a correlated channel, which is confirmed by our simulation
results in Section V.

II. SYSTEM MODEL

We consider a single-cell system, where a BS equipped
with M ≥ 3 antennas serves N � 1 single-antenna IoT
devices. To keep the cost of RF components low, a narrowband
channel is allocated for IoT communication purposes. We
focus on a time division duplex system and assume that the
channel reciprocity property holds. Note that the extension to
frequency division duplex is also possible.

The BS can simultaneously use B = Θ(M) random
receiving beamforming vectors. Time is slotted. To coordinate
the beamforming vectors at each time, a pseudo random (PR)
sequences is known in both BS and IoT devices. This can
be done by storing hard-coded PR sequence information in
devices’ chip sets [7]. Denote the i-th random beamforming
vector at time t by wi(t) for 1 ≤ i ≤ B. The M × 1 channel
gain vector for user k is denoted by hk(t). Since IoT devices
are static or admit very low mobility, the channel gain vector
hk(t) changes slowly across time, i.e., the coherence time is
large (multiple hundreds of milliseconds in practice) compared
to the time scale of multiple-access decision (1ms in 4G LTE).
Thus, as shown in Fig. 1, we assume static hk within a long
coherence time period T , where hk only changes between
blocks. Due to static hk (within each block) and known wi(t),
each device k can compute its effective receiving gain at the
BS for each beam i and only wake up when the effective
channel gain is high (unless the coherence time has passed,
in which case the device has to re-measure its channel).

Due to the short message payload of IoT traffic and mas-
sive number of IoT devices, centralized scheduling becomes
expensive due to the overhead of exchanging control signals
and solving optimal schedule. Hence, we eliminate centralized
scheduling or the need of feeding back effective channel
gains to the BS. Instead, we propose to use a distributed
protocol similar to slotted-ALOHA for UL random access.
We assume the infinite backlog case so that each user always
has packets to send. At the BS, simultaneous transmissions
from multiple IoT devices aiming at the same beam may
collide, and thus fail to be decoded by the BS. This contention
will be controlled by the channel-aware RA described below.
As for inter-beam interference, we assume that the BS can
successfully decode for the message at an achievable rate
determined by the received signal-to-interference-plus-noice
ratio (SINR) by treating the inter-beam interference as noise.

We consider two models of channel fading with and without
spatial correlation between antennas. First, we study classic
independent and identically distributed (i.i.d.) Rayleigh fading
channel, where each element in hk follows CN(0, 1). Then,
motivated by the fact that channel gain vector hk often
exhibits correlation among different antennas in practice, we
also study a correlated channel model, assuming the uniform
random single path (UR-SP) model of [8]. The overall system
operation is summarized as follows.

Multi-beam PRBF Channel-aware (M-PRBF-CA) Proto-
col

1) Channel Estimation Phase: In this phase, BS broadcasts
DL pilot signals that devices can use to estimate the channel
vector hk. This phase is carried out during every coherence
time period to update the channel vector.

2) Sleep/Wake-up Phase: Since device knows the PRBF
vectors that are applied in different time slots, it can go to a
sleep mode when the effective beamforming gain is low, and
wake up when the good PRBF vectors occur.

3) Random Access Phase: Each device k makes transmis-
sion decision individually, and only picks a beam i to attempt
transmission when the following conditions are satisfied:

i Target beam condition is good, i.e., |hTkwi|2 > ΦG.
ii The interference caused on other beams is small.

• For i.i.d. channel:
∑
j 6=i |hTkwj |2 < (B − 1)ΦI .

• For correlated channel: |hTkwj |2 < ΦI for all j 6= i.
By properly setting thresholds ΦG and ΦI , we can make

sure that each user k sees only one good beam (and there can
be multiple transmitting users in each beam). Then, multiple
beamforming vectors divide users into groups. In the rest
of the paper, we are interested in whether ΦG and ΦI can
be chosen such that the throughput of the system increases
linearly in M , and how large the number of users has to scale
in order to achieve such a linear sum-rate in M .

Overhead Comparison with Centralized Scheduling

We note that our M-PRBF-CA scheme incurs much lower
channel estimation overhead and control signaling overhead.
To see the reduction in overhead, we can consider a time



span of T slots. For the i.i.d. slow block-fading channel,
our M-PRBF-CA broadcasts M pilots (one for each antenna)
for channel estimation at the beginning of a block. In the
following T slots, each device attempts random access using
knowledge of the PRBF vectors, and thus no control signals
for scheduling are needed. The total overhead for M-PRBF-
CA UL access is hence Θ(M). In contrast, when a centralized
scheduling is used, at every time slot, the BS has to send M
pilots (one for each PRBF vector). Each device reports the
effective channel gain of the best beam back to the BS. After
receiving all the channel reports, the BS grants transmission to
M selected devices. The total overhead for UL using central
scheduling is hence T · (M + N + M) = Θ((M + N)T ).
Thus, the overheads differ by a factor of Θ((1 +N/M)T ).

Power consumption is another important concern for IoT
devices. In Phase 2 of M-PRBF-CA scheme, each device
can decide to sleep when no data needs to be sent, or the
threshold conditions are violated. This allows IoT devices to
reduce power consumption. Compared to centralized scheme,
given a transmission attempt by device k, message may fail
to be delivered due to collision. However, as we shall see
later in Section III, the success probability approaches 1/e
when N is large. Thus, the average number of transmissions
before a packet is delivered is close to e, a constant difference
compared to centralized scheduling.

III. INDEPENDENT SLOW BLOCK FADING CHANNELS

Due to the low mobility of IoT devices, the channels vary
much more slowly compared to traditional mobile handsets.
Compared to the well-studied slot-by-slot fast fading case in
[8] and [9], such slow fading will cause large delay if not
treated properly. To see this, note that if some users are stuck
in poor channels, they will never get a chance to transmit
within a long coherence time. To alleviate such fairness issue,
it is necessary for each IoT device to adopt some form of
power control. Specifically, suppose that the channel vector
for user k is hk ∼ CN(0, I). We set the transmission power
to Pk = 1/||hk||2 to maintain a constant expected receiving
power at the BS. As we discussed earlier, at each time t, the
BS forms M orthogonal beams. The PRBF vectors wi’s form
a random orthonormal matrix W(t) in CM , such that every
column wi is uniform on the unit-sphere in C. After applying
the BF vector wi(t), we obtain the effective received gain for
device k at beam i

P
(r)
ki =

∣∣∣(√PkhTk )wi(t)
∣∣∣2 , (1)

where (
√
Pkh

T
k ) is a unit-length vector fixed over a coherence

time. According to the M-PRBF-CA random access scheme
described in Section II, each user will see a good channel at
beam i for transmission with probability

pt = Pr

P (r)
ki ≥ ΦG,

∑
j 6=i

P
(r)
kj ≤ (M − 1)ΦI

 . (2)

We can write the expression (2) for pt in terms of ΦG and
ΦI . Before proceeding, we introduce the following lemma.

Lemma 1. Suppose i.i.d. random variables Xi ∼ CN(0, 1)

for all i. Then Pr
{

|Xi|2∑n
j=1 |Xj |2 ≥ a

}
= (1− a)n−1.

Proof. See detailed proof in Appendix A.

From (1) and (2), we can derive an expression for pt. In
(1), since hk and wi are uniform, we can use change of
coordinates, i.e., we can fix wi(t) to be the unit vector on
the i-th axis of CM , and assume that

√
Pkh

T
k is rotating

uniformly in space. Without loss of generality, we can assume
that the beam 1 is the desired beam, and that wi(t) = ei for
i ∈ [1 : M ], e.g., w1 = (1, 0, . . . , 0)T . Then, we have, for
any beam i,

pt = Pr{P (r)
ki ≥ ΦG;

∑
j 6=i

P
(r)
kj ≤ (M − 1)ΦI}

= Pr{P (r)
k1 ≥ ΦG;

∑
j≥2

∣∣∣(√PkhTk )wj(t)
∣∣∣2 ≤ (M − 1)ΦI}

= Pr{Pk|ĥk1|2 ≥ ΦG;Pk
∑
j≥2

|ĥkj |2 ≤ (M − 1)ΦI}

= Pr
{
Pk|ĥk1|2 ≥ max{ΦG, 1− (M − 1)ΦI}

}
=
(
1−max{ΦG, 1− (M − 1)ΦI}

)M−1
, (3)

where in the third step we have used (
√
Pkh

T
k )wj(t) =√

Pkĥkj , and in the fourth step we have used
∑
j Pk|ĥkj |2 =

1. In the above equations, ĥk is an uniformly rotating vector
with unit norm. The last equality comes from Lemma 1.

Within each beam i, the users compete for transmission turn
by using slotted-ALOHA. The received signal from device k
on beam i at the BS is

yk =
√
Pkh

T
kwisk +

NI∑
u=1

√
Puh

T
uwisu + n,

where |sk|2 = 1 is the power constraint per transmit symbol,
NI is the number of interfering users from other beams j 6= i
and n ∼ CN(0, σ2) is the additive noise. The throughput for
beam i is thus Ti = Npt(1 − pt)N−1 · E [log (1 + SINRi)] ,
where SINRi of the transmitting user k in beam i is

SINRi =
P

(r)
ki∑NI

u=1 P
(r)
ui + σ2

, (4)

and E refers to the expectation over hk, wi and NI . Now, we
are ready to derive the result for the throughput scaling.

Theorem 1. If log(N) = Ω(M), M-PRBF-CA can set ΦG
and ΦI such that the asymptotic throughput is Ttotal = Ω(M).

Proof. The total sum rate over M beams is

Ttotal = M ·Npt(1− pt)N−1 · E [log (1 + SINRi)] , (5)



where pt is given by (3). Under the M-PRBF-CA protocol,
the expectation term in (5) is lower-bounded as

E [log(1 + SINRi)] = E

[
log

(
1 +

P
(r)
ki∑NI

u=1 P
(r)
ui + σ2

)]

≥ E
[
log

(
1 +

ΦG
NIΦI + σ2

)]
≥ log

(
1 +

ΦG
E[NI ]ΦI + σ2

)
,

where EN [P
(r)
ui ] ≤ (M − 1)ΦI/(M−1) = ΦI . The third step

follows from Jensen’s inequality, as f(x) = log
(

1 + a
bx+c

)
is

convex for a, b, c > 0. If we set pt = 1/N , we have E[NI ] =
Npt(M − 1) = (M − 1). Then, the total throughput admits
the lower bound

Ttotal ≥M
(

1− 1

N

)N−1

· log

(
1 +

ΦG
(M − 1)ΦI + σ2

)
.

Since log(N) = Ω(M), (1−1/N)N−1 approaches e−1 when
M is sufficiently large. Then, to show Ttotal = Ω(M), it is
sufficient to check that we can choose ΦG and ΦI such that

1) pt = 1/N ; 2) ΦG

(M−1)ΦI+σ2 = Θ(1).
Thereby, we verify that the two conditions above are satisfied.
Suppose N ≥ aM−1 with a > 1. We can set the thresholds
of M-PRBF-CA as ΦG = 1 − N−

1
M−1 ≥ 1 − 1

a > 0 and
ΦI = b

M−1 with 1 > b > 1
a . Under this parameterization,

we have 1 − (M − 1)ΦI = 1 − b ≤ ΦG. By (3), we have
pt = (1 − ΦG)M−1 = 1/N, which is precisely condition 1).
Also, we have

ΦG
(M − 1)ΦI + σ2

≥ 1− 1/a

b+ σ2

∆
= c.

Hence, we have shown the condition 2). The asymptotic
throughput thus satisfies Ttotal ≥ M

e log(1 + c) = Ω(M).

Remark 1. Here we highlight a key difference between the
case with power control and the one without in [8], [9]. In
fast fading, hTk (t)wi(t) is an i.i.d. complex Gaussian r.v.. In
slow block fading, due to static hk and power control, the
norm of

√
Pkhk is always 1. As a result, from (3), we can see

that the channel’s degree of freedom is M − 1, instead of M
in fast fading case. Thus, as we discussed earlier, the results
in [8] based on fast fading cannot be directly applied.

Remark 2. Note that the condition logN = Ω(M) for M-
PRBF-CA to achieve linear sum-rate scaling in Theorem 1
is also necessary. The necessity of Θ(logN) = M for i.i.d.
Rayleigh block fading and centralized scheduling is shown in
[10, Theorem 2]. The same can be shown for UL random
access as well.

IV. CORRELATED SLOW BLOCK FADING CHANNEL

The i.i.d. fading assumption is a simplification. In practice,
correlation can exist among users, or even within same user’s
subchannels, especially when a dominant path exists between
senders and receivers, e.g., in mmWave communications.
Next, we consider a channel model similar to the UR-SP

Fig. 2. M-PRBF-CA system diagram for the correlated slow fading channel.
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Fig. 3. The square root of beamforming gain
√
G(Vk,Ψi) as a function of

Vk −Ψi, where M = 100 and d/λ = 1.

model in [4] and [8]. However, in our model the low-mobility
IoT devices experience the slow block fading channel. The
channel vectors between two devices are still assumed to be
independent.

A. Device Scaling for a Linear Sum Rate

We first define the correlated channel model. Each device k
is associated with an angle-of-arrival (AoA) φk. The channel
of device k to antenna m at BS is hkm = lk exp(jφkm),
where {lk} is a device-specific path loss term and φkm is the
phase shift w.r.t. antenna m. Specifically,

φkm =
2(m− 1)dπ cosφk

λ
,

where d is the distance between two adjacent antennas and λ
is the carrier wavelength. Let D = 2d

λ and Vk = cosφk. Then
φkm = (m − 1)DπVk, where Vk ∈ [−1, 1] is the equivalent
angle of φk in a cosine-domain.

Our proposed M-PRBF-CA system diagram is shown in
Fig. 2. Similar to Section III, we consider the power control
such that user k transmits at power Pk = 1/(M |lk|2). The BS
forms M beams at each time. Each beam i is determined by a
parameter ψi to be chosen later. For beam i, its beamforming
vector is given by wi = [wim] for m = [1 : M ], where

wim =
1√
M

exp{−j(m− 1)DπΨi}



and Ψi = cosψi. Then, the overall channel gain of user k on
beam i is given by

∣∣√PkhTkwi

∣∣2 as

G(Vk,Ψi) = Pk|lk|2
∣∣∣ M∑
m=1

1√
M
ej(m−1)Dπ(Vk−Ψi)

∣∣∣2
=

1

M2

∣∣∣ sin(π dλM(Vk −Ψi))

sin(π dλ (Vk −Ψi))

∣∣∣2, (6)

where the last step above can be obtained using a half-angle
trick. Note that (6) only depends on the difference between
Vk and Ψi. For simplicity of exposition, we assume d

λ = 1 in
the rest of this section (but similar results also hold for other
values of d

λ ). Then, zeros of G(·, ·) occur where Vk − Ψi

equals to a multiple of 1/M , as shown by red solid curve in
Fig. 3. We choose Ψi’s such that

Ψi = Ψ +
(i− 1)

M
, i = 1, 2, . . . ,M,

where Ψ is uniformly distributed in [0, 1
M ]. We can place the

adjacent beam as the blue dashed curve in Fig. 3. This ensures
that the separation of beams is at least 1

M , and implies that the
cross-interference between beams is small. Since Ψi ∈ [0, 1],
the BS can form M orthogonal beams.

To obtain a high SINR and low cross-interference, our M-
PRBF-CA scheme only assigns user k to beam i if

|Vk −Ψi| ≤
1

3M
. (7)

Let Ωkj = Vk −Ψj . The interference from user k to the j-th
nearest beam can be upper-bounded by the value of G(·) at
Ωkj = 2j−1

2M . For notation purposes, we define the peak of 0-th
nearest side-lobe of beam i is at Ωk1 = 1/2M (which locates
in main lobe). Then, the j-th nearest side-lobe is determined
by π dλMΩkj = 2j+1

2 π. From (6), the cross-interference by
device k to beam j is upper-bounded by the peak of the (j−1)-
th nearest side-lobe

Ikj ≤
1

M2

∣∣∣∣∣ sin( 2j−1
2 π)

sin( 2j−1
2M π)

∣∣∣∣∣
2

=
1

M2

1

sin2( 2j−1
2M π)

∆
= Imax

kj .

In particular, the 0-th side-lobe satisfies

Ik1 ≤
1

M2

1

sin2( 1
2M π)

. (8)

Similar to the i.i.d. slow fading case in Section III, our
threshold-based random access scheme allows user transmis-
sion if (1) G(Vk,Ψi) > ΦG and (2) Ikj = G(Vk,Ψj) < ΦI
for all j 6= i. The transmission probability is

pt = Pr{G(Vk,Ψi) > ΦG; Ikj < ΦI for all j 6= i}. (9)

By (6) and (8), for transmission event (9) to happen, it is
sufficient to have (noting that d

λ = 1){
1

M2

∣∣∣ sin(πMΩki)

sin(πΩki)

∣∣∣2 > ΦG, Ik1 ≤ ΦI

}
. (10)

Before we derive the asymptotic throughput for the correlated
slow fading channel, we first give a lemma.

Lemma 2. For positive integer M , the following inequality
holds

M−1∑
j=1

1

sin2( 2j−1
2M π)

≤M2.

Proof. See the proof in Appendix B.

Theorem 2. For the correlated slow fading channel, if N =
Ω(M), our M-PRBF-CA scheme can set ΦG and ΦI such that
the asymptotic system throughput scales as Ttotal = Ω(M).

Proof. Similar to the i.i.d. slow fading case in Section III, the
system sum rate is given by (5). To ensure Ttotal = Ω(M)
under the M-PRBF-CA scheme, it is sufficient to check that
we can choose ΦG and ΦI such that

1) Ikj ≤ ΦI for all Vk satisfying (7);
2) If G(Vk,Ψi) > ΦG, then (7) holds for beam i only;
3) In (9), pt = 1/N can be achieved;
4) In (5), SINR ≥ Θ(1).

Towards this end, we can set ΦI = b, where b = 25
4π2 . From

(8), we have

Ikj ≤
1

M2

1

sin2( 1
2M π)

≤ 1

M2

1

( 4
5

1
2M π)2

=
25

4π2
for all j 6= i,

since sinx ≥ 4x
5 when x ∈ [0, π/6]. Thus, condition 1) is

satisfied. Suppose N ≥ aM where a > 1.5. Setting ∆φ =

2 − 2
√

1− 1
2N , we have ∆φ ≤ 1

3M . Since ∆φ ≤ 1
3M , by

setting

ΦG =
1

M2

∣∣∣∣ sin(πM∆φ)

sin(π∆φ)

∣∣∣∣2 , (11)

we have G(Vk,Ψi) > ΦG if |Vk−Ψi| < ∆φ. Thus, substitute
∆φ into (11), we have

ΦG ≥
1

M2

∣∣∣∣ sin(π3 )

sin( π
3M )

∣∣∣∣2 =
3

4M2

1

sin2( π
3M )

≥ 27

4π2
.

Thus, for j 6= i, G(Vk,Ψj) < Ik1 < ΦG. Thus, condition 2)
holds. The event (10) occurs with probability Pr{|Vk−Ψi| <
∆φ} = 1

N = pt, which gives condition 3). Finally, by (5), we
can write the lower bound for expected SINR as

E[log(1 + SINRi)] ≥ E

[
log

(
1 +

ΦG∑NI

u=1 Iui + σ2

)]

≥ log

(
1 +

ΦG

E[
∑NI

u=1 Iui] + σ2

)
,

(12)

where NI is the number of cross-interfering devices. The total
interference term in (12) can be bounded by

E

[
NI∑
u=1

Iui

]
≤
M−1∑
j

E[NI(j)I
max
kj ]

=

M−1∑
j

Imax
kj E[NI(j)]

=

M−1∑
j

2

M2

1

sin2( 2j−1
2M π)

(Lemma 2)

≤ 2.

(13)



where NI(j) is the number of interfering devices in beam
j. Hence, we have SINRi ≥ 27/(4π2)

2+σ2 ≥ Θ(1). This gives
condition 4) and completes the proof.

B. Access Delay Scaling: IID vs Correlated Channel

One way to define the delay is the average waiting time
for a device to attempt a transmission. In other words, the
probability of coverage is the same as the transmission event
in (2). The expected delay is therefore E[D] = 1

pt
. If the

transmission probability pt = 1
N , the expected delay E[D]

scales as the number of devices N . Thus, for the i.i.d.
slow fading channel in Section III, if N = Θ(eM ), the
expected delay also scales as O(eM ), i.e., exponentially as
M . However, as pt depends on N , it may suggest that the
delay could be improved at smaller values of N (i.e., smaller
load). This is unfortunately not the case. Even for smaller N ,
the delay is still of this order. To see this, note that even if N
is not sufficiently large, the i.i.d. interference term |hTkwj |2
still needs to be satisfied for every j 6= i. In other words, even
if only a few users are in the system, each user has to wait till
its interference to other beams becomes small. Therefore, pt
still decays exponentially with M , and the delay scales at least
exponentially w.r.t. M . On the other hand, for the correlated
channel in Section IV, if N = Θ(M), the access delay scales
linearly with N . For small N , as ∆φ < 1

3M , the delay also
scales linearly with M .

V. EXPERIMENTAL RESULTS

In this section, we present the numerical analysis of our
proposed M-PRBF-CA protocol for UL massive IoT com-
munications. As we discussed earlier in Sections III and IV,
we simulate the performance of M-PRBF-CA under the i.i.d.
slow fading channel and the correlated slow fading channel.
In both cases, we run our M-PRBF-CA protocol using the
corresponding PRBF vectors for T = 500 time slots, and
compare the time-average performance.

In Fig, 4(a), we show, based on our choice of ΦG and ΦI ,
how the time-average of aggregate throughput in the i.i.d. slow
fading channel in Section III scales with N under different
numbers of the BS antennas (M = 4 and 8). First, aggregate
throughput increases sub-linearly with the device population.
Second, the throughputs under M-PRBF-CA (solid curves)
are close to 1/e of those in centralized scheduling (dashed
curves, where the BS also uses PRBF and selects one user with
the best effective gain in each beam to transmit). The above
result illustrates that our proposed M-PRBF-CA architecture
achieves the MUD gain by inducing more fluctuations in
the channel dynamics for fixed-location IoT devices. Similar
observations can be made in Fig. 4(b) for the correlated slow-
fading model. However, the increase in aggregate throughput
from M = 4 to M = 8 is more significant in Fig. 4(b). This
is because the number of users to achieve a linear sum-rate
scaling (in M ) is much lower for the correlated fading model
of Fig. 4(b) than for the i.i.d. fading model of Fig. 4(a).

Next, we verify the user scaling result derived in Sections
III and IV. In Fig. 4(c), we plot the number of devices to
achieve a target per-beam throughput for different numbers of
the BS antennas M . Note that a higher target for the per-beam
throughput is used in the correlated fading model because
the interference tends to be lower in the correlated fading
model than that in the i.i.d. fading model. We observe that,
for both channel models, the lower bound on N increases as
M increases. For i.i.d. slow fading, as we discussed in Section
III, the lower bound of N increases exponentially to more than
300 when M increases from 4 to 12. Clearly, such exponential
scaling under i.i.d. slow fading is undesired, especially for the
modern communication system where the BS’s are equipped
with a large number of antennas. In contrast, for the correlated
channel, we can see that the lower bound for N increases only
linearly with M . Compared to the exponential user scaling for
i.i.d. slow fading, the above result in the correlated slow fading
case is more desirable.

VI. CONCLUSION

We propose M-PRBF-CA for massive IoT with ultra-low
overhead. We derive the user scaling to achieve the spatial
multiplexing gain of MIMO under i.i.d. and correlated slow
fading, which implies that the channel correlation may signif-
icantly reduce the number of devices to achieve the MIMO
gain. In the future, we plan to extend our results to more
general correlation models.
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APPENDIX A
PROOF OF LEMMA 1

Proof. Since Xi ∼ CN(0, 1), we have |Xi|2 ∼ Exp(1) for
all i and

∑n
j=1 |Xj |2 ∼ Gamma(n, 1). Note that Exp(1)
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Fig. 4. Throughput scaling and user scaling under the M-PRBF-CA UL scheme. The interference threshold is set to 1/M and σ2 = 0.5 (normalized by
received signal power).

is the same distribution as Gamma(1, 1). We define Y =∑n
j 6=i |Xj |2 ∼ Gamma(n− 1, 1). Then

Z =
|Xi|2∑n
j=1 |Xj |2

=
|Xi|2

|Xi|2 + Y
∼ Beta(1, n− 1).

The cumulative distribution function of Z is given by

FZ(z) = FBeta(z, 1, n− 1) = IZ(1, n− 1) = 1− (1− z)n−1,

where IZ(·) is the regularized incomplete beta function. Thus,
the probability

Pr{Z ≥ a} = 1− FZ(a) = (1− a)n−1.

Hence, the result of Lemma 1 follows.

APPENDIX B
PROOF OF LEMMA 2

.

Proof. Before proving Lemma 2, we first prove a useful
identity

K−1∑
j=1

1

sin2( jKπ)
=
K2 − 1

3
. (14)

Consider the spread polynomials SK(x) = 1−TK(1−2x)
2 ,

where TK(x) is the Chebyshev polynomials. Then, we have

1− 2SK(sin2 θ) = TK(1− 2 sin2 θ)

= TK(cos 2θ)

= cos(K(2θ))

= 1− 2 sin2(Kθ).

(15)

Thus, SK(x) satisfies SK(sin2 θ) = sin2(Kθ). From the
recurrence of Chebyshev polynomials Tn+1(x) = 2xTn(x)−
Tn−1(x), we can derive the recurrence for SK(x) as

SK+1(x) = 2(1− 2x)SK(x)− SK−1(x) + 2x.

Note that sin2(kπK ), k = 0, 1, . . . ,K − 1 is the roots for
SK(x) = 0. From k = 0, i.e., sin2(kπ/K) = 0, we

know that the constant term of Sm(x) is zero. Thus, let
Pm(x) = Sm(x)/x, so that sin2(kπK ), k = 1, . . . ,K − 1 is
the roots for PK(x) = 0. Further, the recurrence for PK(x)
is

PK+1(x) = 2(1− 2x)PK(x)− PK−1(x) + 2.

If we denote PK(x) = aK+bKx+x2RK(x), by using Vieta’s
formula, we have

K−1∑
j=1

1

sin2( jπK )
=

∑K−1
j=1

∏
h6=k sin2(hπK )∏K−1

k=1 sin2(kπK )
= − bK

aK
.

To prove (14), it is sufficient to show aK = K2 and bK =
(K2−1)K2

3 . Then, we prove the statement by induction.
Induction Base: When K = 1, SK(x) = x and thus PK(x) =
1 = (12)− (12 − 1)12/3. Thus, statement is true for K = 1.
Induction Step: Suppose the statement holds for K = i −
1 and i, i ≥ 2. Then,

Pi+1(x) = 2(1− 2x)(ai + bix+Ri(x)x2)

− (ai−1 + bi−1x+Ri−1(x)x2) + 2.

Rearrange the equation, we have

ai+1 = 2ai − ai−1 + 2 = (i+ 1)2,

and

bi+1 = 2bi − 4ai − bi−1 =
((i+ 1)2 − 1)(i+ 12)

3
.

Therefore, we have proved that aK = K2 and bK =
(K2−1)K2

3 for all K, and hence the trigonometric identity (14).
Finally, to show Lemma 2, we substitute for K = M and
K = 2M into (14), we have

M−1∑
j=1

1

sin2( j
M π)

=
M2 − 1

3
(16)

and
2M−1∑
j=1

1

sin2( j
2M π)

=
(2M)2 − 1

3
. (17)



Subtract (16) from (17), we have
M∑
j=1

1

sin2( 2j−1
2M π)

=
(4M2 − 1)− (M2 − 1)

3
= M2.

By only taking the first M − 1 terms in the summation, we
show Lemma 2.
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