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Abstract. In smart power grids, a smart meter placed at a consumer-
end point reports fine-grained usage information to utility providers.
Based on this information, the providers can perform demand predic-
tion and set on-demand pricing. However, this also threatens user pri-
vacy, since users’ specific activity or behavior patterns can be deduced
from the finely granular meter readings. To resolve this issue, we de-
sign Privatus, a privacy-protection mechanism that uses a rechargeable
battery. In Privatus, the meter reading reported to the utility is prob-
abilistically independent of the actual usage at any given time instant.
Privatus also considerably reduces the correlation between the meter
readings and the actual usage pattern over time windows. Further, us-
ing stochastic dynamic programming, Privatus charges/discharges the
battery in the optimal way to maximize savings in the energy cost, given
prior knowledge of time periods for the various price zones.

Keywords: smart grid, smart meter, privacy, cost saving, dynamic pro-
gramming, battery

1 Introduction

A smart grid is a type of the electrical grid in which electricity delivery systems
are equipped with computer-based remote control and automation, which can
revolutionize the way that energy is generated and consumed. A key component
of the smart grid is the use of the smart meters, which measure energy usage at
a fine granularity (e.g., once in a few minutes). However, by gathering hundreds
of data points even in a day via the smart meter, the utility companies and third
parties may learn a lot about our daily lives, e.g., when we wake up, when we
go out for work, and when we come back after work. In an industrial setting,
this may be used to reveal details of the industrial process being used, or when a
new process is adopted (which is achievable if the new machinery has electricity
usage very distinct from prior machinery). Because of this privacy concern, there
have been lawsuits to stop the installation of smart meters [1]. As a result, such
privacy concerns have delayed the wide and quick deployment of smart grids.

There are a number of possible threat models for the above privacy risks.
Given that we do need to report our energy usage profile to the utility company,
the most important threat is that the metering data may be unwittingly disclosed
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from the utility company to third-party vendors. This problem is well illustrated
in an article in MSNBC RedTape [2]. This article introduces a possible scenario
with the smart grid that you get a discount with your power company at the cost
that your auto insurance company may learn when you are home from the utility
company. Additionally, due to possibly poor implementation of cryptography
mechanisms, an eavesdropper on the wireless channel between the consumer’s
premises and the wireless network collection point may also determine the usage.

To resolve this issue, the first objective of this paper is to make it difficult
for an adversary to infer, based on the energy usage profile reported to the util-
ities, what is going on inside the house. We achieve this objective by putting
a rechargeable battery at the user-end point (e.g., a home). The rechargeable
battery acts like a buffer between the power grid and the end user in such a
way that the actual energy usage pattern looks different from the energy usage
pattern reported to the utility.

Additionally, the rechargeable battery provides us with an opportunity to
lower the energy bill, by exploiting the time-of-use (TOU) pricing feature of
smart grid, whereby electricity price varies according to pre-established time
zones during a day. Basically, the cost-saving will be accomplished by charging
the battery when the price is low and using the saved energy from the battery
when the price is high. However, the two goals of privacy protection and cost
saving are not always compatible with each other. Our goal is therefore to achieve
as much energy cost savings as possible, subject to privacy protection constraints.
To the best of our knowledge, we are the first to propose a mechanism that
considers both privacy protection and cost saving simultaneously.

In this paper, we present Privatus, our solution that guarantees that in-
stantaneous values of the actual usage and the energy draw visible outside the
home are independent in an information-theoretic sense. Further, the patterns
of both of these variables are also designed to look dissimilar. We set up a dy-
namic programming problem that minimizes the energy cost while preserving
the privacy guarantee mentioned above.

We evaluate our solution in terms of both the privacy information leakage
and the cost saving, and compare it to a previous solution that masked high
frequency variation in energy usage [3]. In our simulation environment, Privatus
can preserve at least 83% of the uncertainty of the actual usage sequences. In
addition, Privatus can achieve 72% of the theoretically-possible maximum cost
saving with a 6.43kWh battery. This translates to a saving of $16 per month in a
typical residential pricing plan [4], assuming the average daily usage of 30kWh.
We believe that this saving could provide an extra and significant incentive for
users to invest in our solution in addition to privacy protection. The interested
reader is referred to Appendix A for further discussion about this incentive.

2 Related Works

There has been extensive research about privacy protection in the area of database
systems, where the goal is to provide statistical information (such as sum, av-
erage, or maximum) without revealing sensitive information about individuals.
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The common approach to achieve this goal is data perturbation [5–7]. However,
none of methods in this area is directly applicable to hide the privacy informa-
tion in the meter readings from the smart meters, because the utility companies
do have to know precise meter reading records for billing purpose.

Recently, many studies raised the privacy concern in the smart grid both from
a technical perspective and from a legal perspective [8–11]. However, only a few
works have been proposed so far on the design of technical solutions to handle the
privacy issue in the smart grid. Rial et. al. [12] proposed a privacy-preserving me-
tering system, where the energy bill for a specific period is calculated by the user
and then sent to the utility company. This system allows the user not to report
the fine-granularity meter readings. However, it limits the power grid operator’s
capability such as demand prediction. Kalogridis et. al. [3] used a rechargeable
battery to perform low-pass filtering over the load profile. Their algorithm forces
the battery to charge (or discharge) a certain amount of energy if possible, when
the required load is smaller (or larger) than the previously metered load. Thus,
the high-frequency variation on energy usage profile is not visible to the smart
meter. This approach can help eliminate load signatures that indicate which ap-
pliance is being used. However, the low-frequency components of a load profile
are still revealed without any protection. Further, the proposed solution did not
consider the cost-saving opportunity of using the rechargeable battery. Another
work using the rechargeable battery is proposed by Varodayan et. al. [13]. They
considered a simple binary-state battery model, where the battery is probabilis-
tically charged by drawing the energy from the grid and discharged to feed the
appliances. However, in their model, the charging and discharging processes at a
given time instant are not independent of each other. This leads to a high level
of information leakage (at least 0.5 bit for one-bit information). The authors
also failed to consider the possible saving in the electricity cost by using the
rechargeable battery.

Our work also adopts the rechargeable battery to protect the user privacy,
but we design a mechanism by which the charging and discharging processes are
guaranteed to be independent of each other at a given time instant. Further,
our design also considers to reduce the correlation between the sequences of
the charging and discharging processes over multiple time instants (instead of
just for a single time instant). This makes it difficult for the adversary to make
a meaningful guess on the user behavior by observing the sequence of meter
readings. In addition, our design ensures that the way of charging the battery is
optimal in the sense that we can maximize the average saving in the energy cost.
This is achieved by controlling the charging process by dynamic programming
[14].

3 System Model

Suppose that the smart meter measures the energy consumption once in every
fixed interval (e.g., 15 minutes), which we call the measurement interval. We
denote by X(n) the amount of energy consumed in the n-th measurement inter-
val. We call X(n) the use process. Denote the amount of energy that we draw
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(a) Abstract model to draw and use
energy.

(b) The battery as a buffer.

Fig. 1. System model.

from the power grid in the n-th measurement interval by Y (n), which we call
the draw process. The smart meter measures Y (n) and reports it to the utility.
Without any special technique, i.e., as it happens today, the draw process Y (n)
is the same as the use process X(n). What we want to achieve in this paper is
to de-correlate X(n) and Y (n) so that even if an adversary can observe Y (n),
no information is leaked about the use process X(n). Toward this end, we put a
rechargeable battery at the user-end as shown in Figure 1(a). The rechargeable
battery acts as a buffer between X(n) and Y (n): instead of directly feeding X(n)
by Y (n), we charge the battery by Y (n), and use the saved energy in the battery
to supply X(n). We will design an algorithm in the charging controller, which
will choose the value of Y (n) carefully to ensure that the battery always has the
appropriate level of energy (i.e., no shortage to feed X(n) or no overflow), and
that X(n) looks independent of Y (n).

We assume that the values of X(n) and Y (n) may take any of the M different
levels {0, u, 2u, . . . , (M − 1)u}, where u represents a unit amount of energy. We
denote by B(n) the energy level remaining in the battery at the end of the n-th
measurement interval. Assuming for simplicity that there is no energy loss when
charging and discharging the battery (for extension to the case with energy loss,
see Appendix A), the value of B(n) can be expressed as

B(n) = B(0) +

n∑
m=1

D(m), (1)

where D(m) = Y (m)−X(m) and B(0) is the initial energy level of the battery
that is also a multiple of u. Note that D(n) also takes its value as a multiple
of u, which is over the range [−(M − 1)u, (M − 1)u]. We model the battery as
a buffer of size K as illustrated in Figure 1(b), which implies that the battery
capacity is Ku, i.e., the range of B(n) is 0 ≤ B(n) ≤ Ku.

The probability distributions of X(n) and Y (n) are described by pX(i;n) and
pY (i;n), respectively, where pX(i;n) = P (X(n) = iu) and pY (i;n) = P (Y (n) = iu).
Define the distribution vectors ofX(n) and Y (n) as PX(n)=[pX(0;n),pX(1;n),...,pX(M−1;n)]

and PY (n)=[pY (0;n),pY (1;n),...,pY (M−1;n)], respectively. We assume that PX(n) is
known to the user (i.e., the home owner). We also assume that X(n) is inde-
pendent, but does not need to be identically distributed across the measurement
interval index n. This means that for instance, X(5) is independent of X(11), but
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PX(5) can be different from PX(11). As we will see later, PY (n) is our control
parameter.

We are interested in the case where the electricity price per unit amount of
energy varies from time to time. More specifically, we first focus on the case
where there exist two time zones within a day, one of which has a low rate
RL (dollars/u) and the other has a high rate RH (dollars/u). The zone with a
low rate is called the low-price zone and the other is called the high-price zone.
For ease of exposition, we assume that the measurement intervals from n = 1
to n = nL fall into the low-price zone, and the measurement intervals from
n = nL + 1 to n = nH correspond to the high-price zone. We treat the initial
point n = 0 as the beginning of a day and the end of the measurement interval
of n = nH as the end of the day. In Appendix A, we will discuss how we can
generalize the solution to handle the case with more than two price zones in a
day, and the case when the low-price and high-price zones are interleaved.

Because of the page limit, this paper assumes that the total amount of energy
usage per day is the same over days on average. Appendix A introduces a way
to release this assumption and generalize our solution.

4 Solution Approach I: Basic Formulation

4.1 Mapping between X(n) and Y (n)

In order to hide X(n) from an external adversary (i.e., an adversary outside
the home), we make Y (n) be independent of X(n). This implies that observing
Y (n) gives no meaningful information aboutX(n). This is achieved when we map
X(n) to Y (n) in such a way that pY (i;n) ≡ P (Y (n) = iu) = P (Y (n) = iu|X(n) = ju)
for any possible i and j. Practically, we achieve this by probabilistically choosing
the value of Y (n) according to PY (n), which is decided before the n-th measure-
ment interval starts, without considering what the value of X(n) will be.

However, selecting Y (n) randomly without being aware of X(n) may cause
energy shortage or overflow in the battery. For example, when B(n− 1) = 0
(i.e., there is no energy remaining in the battery before the n-th measurement
interval starts), if Y (n) is chosen to be zero, we cannot feed any non-zero value of
X(n). This means that sometimes we cannot use the appliances when we want.
Similarly, when B(n − 1) = Ku (i.e., the battery is full), a non-zero value of
Y (n) does not make sense if X(n) = 0, since we cannot draw the energy from
the power grid unless we throw it away.

To handle this issue, we put a restriction on PY (n) when the energy left in
the battery is smaller than (M−1)u (near-empty) or larger than (K−(M−1))u
(near-full), which we call the corner cases. More specifically, when B(n−1) = ju
for j < (M − 1), we choose PY (n) such that pY (i;n) = 0 for i < (M − 1) − j.
Similarly, when B(n− 1) = (K − j)u for j < (M − 1), we choose PY (n) such
that pY (i;n) = 0 for i > j. We refer the readers to Appendix B for more detailed
explanation of what this restriction means. The rationale behind this restriction
on PY (n) is that the battery must always have enough amount of energy to feed
X(n) even at the near-empty case, and that we never charge the battery more
than its capacity whatever X(n) is.
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Fig. 2. Desired battery state profile.

4.2 Strategy for charging/discharging the battery

The only way to achieve cost saving by exploiting the time-of-use pricing policy
is to charge the battery in the low-price zone and use the stored energy in the
high-price zone. If we charge iu amount of energy in the low-price zone and use
it in the high price zone, we can save (RH − RL)i (dollars). For this reason,
the maximum possible cost saving is (RH − RL)K (dollars) per day, which is
obtained when we charge the battery from empty to full in the low-price zone
and discharge the battery to zero by feeding X(n) in the high-price zone. Note
that the maximum cost saving is proportional to the battery capacity Ku.

Therefore, our strategy to achieve the saving in the energy bill is to force the
battery state to follow the trend shown in Figure 2. We achieve this by changing
PY (n) for every n, which is discussed in detail in the following subsection.

4.3 Basic approach

We first define the distribution vector space P as follows.

P =

{
[p0, p1, . . . , p(M−1)] :

M−1∑
i=0

pi = 1, 0 ≤ pi ≤ 1

}
, (2)

where we limit the value of pi to be a multiple of a constant c (0 < c < 1), in order
to make P be a finite set. For example, when c = 0.1 and M = 4, the distribution
vector space P contains [0.1, 0.2, 0.3, 0.4] and [0.5, 0.5, 0, 0] as two of its elements.
Then, PY (n) is assigned one element in P in the n-th measurement interval.
Recall that we force some elements of PY (n) to be zero, depending on the battery
level (Section 4.1). Therefore, the possible choice set in the n-th measurement
interval is dependent on B(n − 1) and we denote it by PB(n−1). Now, the key
question for us is “what would be the best choice for PY (n) ∈ PB(n−1) for each n
to maximize the cost saving?” This question is answered by solving the following
stochastic optimal control problems:

max
PY (n)∈PB(n−1)

0<n≤nL

E (B(nL)|B(0), PY (1), PY (2), . . . , PY (nL)) (3)
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Fig. 3. An example to derive the dynamic programming framework.

in the low-price zone, and

min
PY (n)∈PB(n−1)

nL<n≤nH

E (B(nH)|B(nL), PY (nL + 1), PY (nL + 2), . . . , PY (nH)) (4)

in the high-price zone. Namely, we maximize (or minimize) the expected amount
of the energy in the battery when each zone ends, given the battery level at
the beginning of the zone and the distribution vectors PY (1) through PY (nL)
(or PY (nL + 1) through PY (nH)). We solve these optimization problems using
dynamic programming [14].

To see how we use dynamic programming, let us first consider the following
simple example in the low-price zone, where nL = 3. Then, the optimization
objective is to maximize E (B(3)|B(0), PY (1), PY (2), PY (3)), which is equal to

B(0) +E
(∑3

n=1D(n)|B(0), PY (1), PY (2), PY (3)
)

, where D(n) = Y (n)−X(n)

as introduced earlier. Since B(0) is given, we only need to focus on maximizing

E
(∑3

n=1D(n)|B(0), PY (1), PY (2), PY (3)
)

, which can be re-written as shown in

Figure 3. Note in the figure that the calculations can be done recursively. Stage
2 calculations are based on stage 3, stage 1 only on stage 2. Thus, the optimal
solution can be performed by maximizing the stage 3, stage 2, and stage 1 in
this order. In this manner, we first compute the optimal value of PY (3) given
B(2), then we compute the optimal value of PY (2) given B(1) until we reach and
compute the optimal value of PY (1). In the general case, PY (nL) is computed
first and then other PY (n)’s are computed in a backward direction (time-wise)
till PY (1) is computed.

Namely, the optimal solution for (3) is obtained by a backward-directional
computation procedure. In general, this procedure can be described by the fol-
lowing recursive equation, called the Bellman equation:

J(nL + 1, B(nL)) = 0,

J(n,B(n− 1)) = max
PY (n)∈PB(n−1)

E (D(n) + J(n+ 1, B(n))|B(n− 1), PY (n)) ,

(5)

for n = nL, (nL− 1), . . . , 1. Solving (5) results in the optimal decision for PY (n)
when the value of B(n − 1) is given, in the sense that PY (n) will maximize
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Fig. 4. Simulation results for the basic approach.

E(B(nL)). Refer to Appendix C for further detail to solve (5). The optimal
solution for (4) can also be obtained in a similar way.

In summary, what we have done is to calculate a decision table. Each entry in
the decision table maps the given values of n and B(n−1) to the optimal vector
PY (n) at the state. Note that the decision table can be pre-calculated before the
run-time. During the run-time, we just look up the decision table for a given
state, i.e., n and B(n − 1), and probabilistically choose the value of Y (n) via
the distribution specified by the decision table entry. The size of this table can
be large in practice if K and nH are large. Thus, calculating the decision table
can be computationally expensive. However, note that the table can be reused
from one day to another till the distribution of the use process X(n) changes
significantly. Appendix A provides discussion about the table complexity.

4.4 Simulation study for the basic approach

We now present simulation results for our basic solution approach. By this sim-
ulation study, we will identify the issues with the basic approach, which will
motivate us to improve our solution in Section 5.1 and propose Privatus.

In the simulation, we choose M = 4, K = 20, and c = 0.1. We fix each mea-
surement interval to be 15 minutes and thus we have 96 measurement intervals
a day. Thus, the value of nH becomes nH = 96 and we set nL = 32. In order
to see more clearly what Y (n) looks like compared to X(n), we make X(n) as a
known repeated pattern, instead of generating it randomly (Figure 4).

A sample result of the simulation is shown in Figure 4, where “PY (n) (index)”
in the bottom graph means the index number of the element in P selected as
PY (n). We can see that at each measurement interval, the values of X(n) and
Y (n) are mapped to each other in a random fashion. Further, the battery level
indeed moves according to the trend that it is charged to the full level in the
low-price zone and fully discharged in the high-price zone. However, we also
observe that there exist similar patterns for the sequences of X(n) and Y (n) for
the measurement intervals of 16 ≤ n ≤ 32 and 70 ≤ n ≤ 96. More precisely, we
see that the value of X(n) highly likely reappears as the value of Y (n+ 1) when
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the battery is at the corner cases. This is an undesirable behavior because if the
adversary learns this characteristic, he or she may infer the original values of
X(n) with high accuracy by observing the values of Y (n+ 1). Through this, we
realize that our point-by-point de-correlation between X(n) and Y (n) leaves an
obvious vulnerability in practice.

After more careful study, we find that this issue occurs because of two rea-
sons: (R1) The first reason is that we charge/discharge the battery too fast. In
the low-price zone, the battery reaches the full state much earlier than the end
of the zone. Once at the full state, the battery stays close to the near-full states,
since there is no benefit to bring the energy level down to a lower one according
to our optimization objective in (3). The near-constant energy level of the bat-
tery implies that whatever the value of X(n) is, the draw process Y (n) should
somehow compensate for it. Since the value of Y (n) is chosen before the value
of X(n), we see this compensation effect in Y (n+1). Similar logic applies to the
high-price zone; (R2) The second reason is that we have too much freedom when
choosing PY (n). As a result, the draw process can take a specific symbol with a
very high probability to compensate the use process. For example, if X(n) = 3u
and the draw process needs to compensate it (due to the first reason), the basic
approach will likely choose PY (n + 1) = [0, 0, 0, 1]. This implies that we will
charge with the current value of 3u with probability 1 at the (n + 1)-th mea-
surement interval. In other words, due to the high degree of freedom to choose
PY (n), Y (n) is chosen to be very similar to X(n− 1) in the corner cases.

In the next section, we will propose Privatus that suppresses these unde-
sirable effects (R1) and (R2).

5 Solution Approach II: Advanced Formulation

5.1 Advanced approach: Privatus

In order to fix (R1), we introduce penalty areas for when the battery level
gets too close to empty or too close to full as shown in Figure 5. The penalty
areas correspond to the battery states higher than the upper threshold TH or
lower than the lower threshold TL. In each zone (low-priced or high-priced), the
penalty areas begin after n0 measurement intervals, and end n0 measurement
intervals before the end of the zone. We modify our optimization objective in
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such a way that we incur some penalty, whenever the battery state B(n) falls
into the penalty areas. Hence, the optimal decision for PY (n) would be changed
to the one that still charges or discharges the battery according to the trend in
Figure 2, but does not hit the penalty areas in the middle of the zones. In this
sense, the modified optimization objective would result in “path 1”-like battery
profile rather than “path 2”-like one in Figure 5. The “path 2”-like battery profile
is what we have seen in the basic approach.

We consider the effective battery state Be(n) in the optimization objective
function, instead of the actual battery state B(n). The effective battery state
Be(n) is designed to increase as the actual battery state B(n) increases in the
low-price zone (or B(n) decreases in the high-price zone). However, every time
B(n) goes into a penalty area, Be(n) is deducted by some penalty amount.
Denote by [x]+ the projection of x to non-negative values, i.e., [x]+ = x if
x > 0, and [x]+ = 0 if x ≤ 0. Then, the effective battery state Be(n) in the low-
price zone is defined as Be(n) = Be(0)+

∑n
m=1De(m). Here, Be(0) = αB(0) and

De(m) is given as, if m ≤ n0 or m > nL−n0 (i.e., in near-beginning or near-end
of the low-price zone), De(m) = αD(m), and if m > n0 and m ≤ nL − n0,

De(m) = αD(m)− β
(
[B(m)− TH ]+ + [TL −B(m)]+

)
, (6)

where α and β are positive integers, TL = (M − 1)u, and TH = (K − (M − 1))u.
In the high-price zone, we define Be(n) as Be(n) = Be(nL) +

∑n
m=nL+1De(m),

where Be(nL) = α(Ku−B(nL)), and further, if m ≤ nL + n0 or m > nH − n0,
De(m) = −αD(m), and if m > nL + n0 and m ≤ nH − n0,

De(m) = −αD(m)− β
(
[B(m)− TH ]+ + [TL −B(m)]+

)
. (7)

Note that if we ignore the second terms in (6) and (7), we simply have
Be(n) = αB(n) in the low-price zone, and Be(n) = α(Ku−B(n)) in the high-
price zone. That is, Be(n) increases from zero to the maximum αKu in both
zones as B(n) moves like in Figure 2. Thus, our optimization objective for achiev-
ing the maximal cost saving is to maximize E(Be(nL)) in the low-price zone and
E(Be(nH)) in the high-price zone, given initial conditions. On the other hands,
the terms leading by β in (6) and (7) take into account the penalty. Whenever
D(n) causes B(n) to fall into a penalty area, we subtract β[B(n)− TH ]+ or
β[TL −B(n)]+ from Be(n). Hence, we will expect that in the optimal decision
for PY (n), B(n) would avoid hitting the penalty area, or B(n) would attempt
to get out of a penalty area if B(n − 1) was already in the penalty area. The
relative magnitudes of α and β determines how sensitive we are to the penalty.
If β is very large compared to α, B(n) may not even go close to the penalty area
to avoid any chance of incurring a high penalty score. Refer to Appendix A to
see more detail about the choices for α and β.

On the other hand, to address (R2), we adopt two strategies. First, we
put the restriction on PB(n−1) that it only contains the vectors v ∈ P such
that ‖v − Vk‖ < Tk. Here, Tk is a threshold at B(n − 1) = ku, and Vk is the
distribution vector of Y (n) for which the possible values of Y (n) at B(n−1) = ku
are selected equi-probably. For instance, when M = 4 and K = 10, we have
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V5 = [0.25, 0.25, 0.25, 0.25] when B(n − 1) = 5u, and V1 = [0.5, 0.5, 0, 0] when
B(n− 1) = u. With this strategy, we are forcing the different elements of PY (n)
to be more or less equal, thus eliminating the possibility that Y (n) is chosen
deterministically (or with a high probability). By controlling the threshold Tk,
we can control how close to equal probability we want. If Tk is low, then the
choices are close to equally probable, but we also lose controllability in forcing
B(n) to the desired state according to the trend in Figure 2.

Second, we add one more restriction on PY (n) in non-corner cases (i.e.,
battery neither empty nor full) such that it does not differ significantly from
PY (n − 1). If the two differ significantly, then Y (n) may try compensating for
the use value in the previous measurement interval and will hence track X(n−1).
Therefore, our strategy is that ‖PY (n) − PY (n − 1)‖ < TD, where TD is called
the distance threshold. We enforce this restriction to be applied only when the
actual battery state stays in non-corner cases for two consecutive measurement
intervals, i.e., TL ≤ B(n− 2) ≤ TH and TL ≤ B(n− 1) ≤ TH . Our intention be-
hind this is to quickly get out of the corner cases (which hits the penalty areas).
In the extreme case, with this strategy, PY (n− 1) = PY (n) implying that Y (n)
is independent of X(n− 1).

Reflecting all the changes, the optimal choice for PY (n) in the low-price zone
is obtained by solving the following Bellman equation.

J(S(nL + 1)) = 0,

J(S(n)) = max
PY (n)∈P∗

B(n−1)

E (De(n) + J(S(n+ 1))|S(n)), (8)

for n = nL, (nL − 1), . . . , 1. Here, S(n) represents the state vector defined as
S(n) = [n,B(n− 1), Be(n− 1), PY (n− 1)]. P∗B(n−1) is defined as a subset of P
whose element v is such that the two restrictions described above are satisfied,
i.e., v ∈ PB(n−1), and if TL ≤ B(n − 2) ≤ TH and TL ≤ B(n − 1) ≤ TH ,
‖v−PY (n− 1)‖ < TD. The optimal choice for PY (n) in the high-price zone can
also be decided in a similar way.

5.2 Simulation study for Privatus

Now, we conduct a simulation test for Privatus. In order to see the difference
from the basic approach, we use the same simulation environment as in Section
4.4. We choose Tk = 0.3 for k = 3, 4, . . . , 17; Tk = 0.25 for k = 2, 18; Tk = 0.2 for
k = 1, 19; Tk = 0.1 for k = 0, 20. With these threshold values, Pk only contains
[0, 0, 0.4, 0.6], [0, 0, 0.5, 0.5], and [0, 0, 0.6, 0.4] for k = 1, 19, for instance. For the
remaining parameters, we set α = 2, β = 1, n0 = 3, and TD = 0.2.

Figure 6 shows a sample result for the simulation, where the solid red lines
in the “B(n)/u” graph indicate the energy levels corresponding to the penalty
area thresholds TH and TL. First, we can see that B(n) follows the trend in
Figure 2, and it seldom hits the penalty area as we desired. Although B(n)
enters the penalty area at around n = 39, 76, 92, we can also see that B(n)
tries to get out of penalty area quickly. As a result, the battery neither goes to
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Fig. 6. Simulation results for Privatus.

the full-state too quickly in the low-price zone, nor goes to the empty-state too
quickly in the high-price zone. Second, in the “PY (n)(index)” graph, we observe
that for many times, the decision for PY (n) remains the same, or the speed of
changing a decision becomes much slower (compared to the result in Figure 4).
By these two fixes, we see that the correlation between the use process and the
draw process is significantly reduced. We can no longer find similar patterns
between the two. The point-by-point comparison of X(n) and Y (n) still gives
no meaningful clue from Y (n) to X(n), as this is by design that is maintained in
the basic approach and Privatus. Of course, this might be seen as a subjective
interpretation of the result. Thus, in the experiment section, we will consider
a metric to quantitatively measure how well we are protecting the privacy and
re-visit these results.

6 Experiment

6.1 Metrics and simulation parameters

First, we define the metric of information leakage from the use process to the
draw process as follows: for a positive integer m,

Ls
(n,m) = I(X̄(n,m); Ȳ

s
(n,m))/H(X̄(n,m)), (9)

where X̄(n,m)=[X(n−m+1),X(n−m),...,X(n)], and Ȳ s
(n,m)=[Y (n−m+1+s),Y (n−m+s),...,Y (n+s)],

and s is a non-negative integer called the timeshift offset. Here, H(X ) denotes
the uncertainty of X , and I(X ;Y) is the mutual information between X and Y.
Namely, H(X ) = −

∑
i P (X = i) logP (X = i) and

I(X ;Y)=
∑

i

∑
j P (X=i,Y=j) log

P (X=i,Y=j)
P (X=i)P (Y=j)

(10)

Note that X̄(n,m) and Ȳ s
(n,m) represent sequences of length m in the use process

and the draw process, respectively, with the draw process being time delayed by s
measurement intervals. Since I(X̄(n,m); Ȳ

s
(n,m)) = H(X̄(n,m))−H(X̄(n,m))|Ȳ s

(n,m)),
the metric Ls

(n,m) can be interpreted as a measure of the uncertainty reduction
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(b) Privatus (α = 2; β = 1).

Fig. 7. Information leakage when K = 20 and m = 1.

in X̄(n,m) by observing Ȳ s
(n,m), normalized to the uncertainty of X̄(n,m). Thus,

by this metric, we can quantify how uncertain the adversary is when he attempts
to guess the sequence X̄(n,m) of the use process, based on the observed sequence
Ȳ s

(n,m) of the draw process. For example, the adversary knows that X̄(n,m) is

surely the same as Ȳ s
(n,m), when Ls

(n,m) = 1. In contrast, Ls
(n,m) = 0 means that

Ȳ s
(n,m) gives no clue about X̄(n,m) at all.

Second, given that the battery capacity is Ku, we define the metric for the
cost saving for a day as

S(r,K) = E

(
−

nL∑
m=1

rRHD(m)−
nH∑

m=nL+1

RHD(m)

)
, (11)

where r denotes the ratio of RL to RH . The term S(r,K) is the expected difference
between the original cost for what the user actually consumes (

∑nL

m=1 rRHX(m)+∑nH

m=nL+1RHX(m)), and the money that a user pays to the utility company

(
∑nL

m=1 rRHY (m) +
∑nH

m=nL+1RHY (m)). A positive value of S(r,K) means that
we achieve cost saving. If S(r,K) is negative, it means that we have to pay more
compared to the baseline no-privacy-protection scheme.

To be consistent with the previous simulations (in Figures 4 and 6), we use
the same parameters as before (i.e., M = 4; K = 20; nL = 32; nH = 96; α = 2;
β = 1; n0 = 3; c = 0.1) throughout the whole experiments, unless otherwise
stated. However, we randomly generate X(n) through PX(n) = [0.5, 0.2, 0.2, 0.1]
in the low-price zone and PX(n) = [0.1, 0.3, 0.4, 0.2] in the high-price zone. This
setting results in about 138u for the expected daily usage E(

∑nH

n=1X(n)). To
get the results, we run 100,000 days in such a way that the remaining energy in
the battery at the end of a day becomes the initial energy level of the battery
in the next day.

6.2 Information leakage and cost saving

General performance trend: Figure 7 shows the general performance trend
of our solution approaches (for m = 1). We can see that when s = 0, X(n)
and Y (n) are indeed independent in both the basic approach and Privatus.
We can also see that information leakage is the highest when s = 1, i.e., X(n)
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Fig. 8. Effects of sequence length m and capacity K in Privatus (α = 2; β = 1).

and Y (n + 1) has the highest dependency in our solution approaches. This is
due to our solution’s inherent nature that Y (n) is chosen to change the current
battery state resulting from X(n − 1) and the previous battery state. Figure
7(a) confirms again that in the basic approach, this issue can be quite significant
because Y (n) perfectly compensates X(n− 1) and reveals all information about
X(n − 1) (i.e., L1

(n,1) = 1) when the battery is in the corner cases. However,

we see in Figure 7(b) that this compensation effect is greatly reduced. That
is, in Privatus, Y (n) results in mostly near-zero uncertainty reduction about
X(n − 1). In even the worst case (for some measurement intervals, with delay
of 1 measurement interval), the uncertainty reduction is less than 10%. We see
that the worst-case information leakage in the advanced approach occurs around
the price zone boundaries. We suspect that this is because around the price zone
boundaries, there is no penalty defined and thus the battery state has a relatively
higher chance to remain costant, which again makes it more likely that Y (n) tries
to compensate for X(n− 1). On the other hand, we can see from the case when
s = 10 that, with higher delays (i.e., larger values of s), the sequences of the use
process and the draw process become independent.

Effect of sequence length: In Figure 8(a), we see that in Privatus, the
information leakage increases as the sequence length m increases. This seems to
imply that the adversary gains more information when he observes longer se-
quences. However, note from Figure 8(b) that the uncertainty of the use-process
sequence H(X̄(n,m)) also grows as m increases. In Figure 8(b), x-bit uncertainty
can be understood in such a way that approximately the use-process sequence
has 2x possible realizations with equal probability 1/2x. Since M = 4, the un-
certainty of the use-process sequence becomes larger by a factor close to log2 4
(more precisely, log2 21.7 in our simulation setting) as m increases by 1. Thus,
the minor increment in percentage-wise uncertainty reduction does not make it
easier for the adversary to make guesses about the use-process sequence. For
example, when m = 3 and n = 32, the uncertainty of the use-process sequence is
5.3 bits and uncertainty reduction is 11%. This implies that the remaining uncer-
tainty of the use-process sequence after observing the draw-process sequence is
5.3(1−0.11) = 4.72 bits, i.e., the adversary faces the uncertainty to pick one out
of 25.3(1−0.11) = 26.3 possible sequences, in order to make a guess about the use-
process sequence. On the other hand, when m = 4 and n = 32, the uncertainty is
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Fig. 9. Information leakage comparison between Privatus with α = 2 and β = 1
(legend: ‘prop’) and an existing scheme [3] (legend: ‘conv’), when K = 20 and m = 2.
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Fig. 10. Cost saving comparison between Privatus and an existing scheme [3]. Here,
we set u = 0.2143kWh and RH = $0.033/u = $0.155/kWh. This results in the average
daily usage (i.e., E(

∑nH
n=1X(n))) equal to 30kWh.

7.0 bits and the uncertainty reduction is 17%. This results in 27.0(1−0.17) = 56.1
possible sequences as candidates for the use-process sequence. Therefore, we con-
clude that the adversary has no advantage in observing a longer sequence in the
draw process.

Effect of battery capacity: Figure 8(c) shows how Privatus acts when
the battery capacity varies. We can infer from the figure that when the battery
capacity is too small, information leakage may be significant. This can be ex-
plained again by the compensation effect of our solution. If the battery capacity
is too small, there is not much room for the battery state to fluctuate between
the two penalty area thresholds TL and TH (see Figure 6). This means that the
battery state remains relatively constant, which makes the compensation effect
prominent. On the other hand, once the battery capacity is above a threshold,
further increasing the battery capacity leads to little benefit in terms of further
reducing the information leakage.

Comparison to prior work: In Figures 9 and 10, we compare Privatus
(‘prop’ in the figures) with an existing scheme (‘conv’ in the figures) proposed
by Kalogridis et. al. [3]. Kalogridis’ scheme performs a simple low-pass filtering
over the use process in a best-effort manner without considering the energy
cost factor. Thus, it reduces the high frequency variations in the resulting draw
process. Kalogridis’ scheme needs to estimate the value of X(n) beforehand (refer
to [3] for detail). We assume in the simulation that the estimation is perfect (i.e.,
without errors). Figure 9(a) shows a sample realization of X(n), obtained from
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PX(n) given in Section 6.1. Note that since X(n) is randomly chosen among
M possible values from PX(n), which is the same within each price-zone, there
is not a significant low-frequency component in X(n). In this case, we can see
from Figure 9(b) that Privatus performs slightly better than Kalogridis’ to
keep the privacy information, except at the price zone boundaries. However,
if there is a significant low-pass component in X(n), Privatus will provide
much better privacy protection than Kalogridis’. This is because Kalogridis’
scheme still allows the low-pass component of load profile to be revealed. To see
this, we generate X(n) by adding a random value 0 or u to a rectangular pulse
whose period is 20 measurement intervals, as shown in Figure 9(c). Comparison
result in such a case is given in Figure 9(d). Indeed, Privatus results in better
lower information leakage than Kalogridis’ when there exists a considerable low-
frequency component in X(n). Meanwhile, Figure 10 shows that from the cost
saving point of view, Privatus has a huge advantage against Kalogridis’. In
all of the cases studied, Kalogridis’ scheme does not achieve a significant cost
saving. On the other hand, compared to the maximum possible cost saving,
computed according to Section 4.2 (‘max’ in the figures), Privatus achieves
the saving of 48% of the maximum when K = 10, 66% of the maximum when
K = 20, and 72% of the maximum when K = 30. Thus, Privatus strikes a
desirable balance between privacy and cost saving. Considering that the average
electricity consumption for a U.S. residential customer was 30kWh per day [15],
Figure 10(c) shows that a typical home can achieve about $16 saving for a month
with a 6.43kWh battery, based on the following tariff example: RL = 0.04/kWh
and RH = 0.15/kWh [4].

7 Conclusion and Future Work

In order to resolve the privacy issue in smart grid, we proposed Privatus to
de-correlate the meter reading information from user behavior. Privatus uses
a rechargeable battery to make the meter reading reported to the utilities look
independent of the actual usage at any given measurement interval. The corre-
lation between the meter readings and the actual usage pattern over multiple
measurement intervals is also reduced by changing the probability distribution
of charging the battery in each interval through careful design. Privatus is
also geared to the future of time-of-use pricing of electricity and it ensures that
the battery is charged to achieve the maximal savings in the energy cost. We
formulate the problem rigorously and use stochastic dynamic programming to
devise our solution. The experiment results show that Privatus is successfully
able to hide the actual usage from what is drawn from the grid, and achieves
considerable amount of saving in the energy cost, subject to the availability of a
reasonable-sized battery. Compared to prior work, we achieve much better pri-
vacy when there is a conspicuous low-frequency component in load profile, and
significantly higher cost savings.

Our future work will focus on generalizing Privatus under more dynamic
scenarios, e.g., where the price zones are dynamically changed from one day to
the next, or the price varies over time in a demand-driven and adaptive manner.
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A Discussion

Battery cost: In Section 6, we showed that a 6.43kWh battery can achieve
$16 saving per month, assuming 30kWh use in a day. People may argue that
this is the relatively small savings compared to the high battery cost. Indeed,
initial costs for residential batteries range from $80 to $200 per kWh [16], and
thus the battery cost of 6.43kWh may range from $514 to $1,280. However,
note that people buy a hybrid car to save the fuel-cost and the environment,
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although it requires a considerable initial cost due to the battery. Even though
the fuel saving of the hybrid cars does not completely offset its high cost, the
fuel saving serves as a significant incentive for consumers (who may only be
mildly environment-conscious) to buy hybrid cars. Similarly, in our case, the
cost savings will encourage privacy-conscious customers to buy our solution. In
addition, given a 6.43kWh battery and $16 saving per month, the battery cost
may be balanced out by the saving in 2.6 to 6.6 years. We think that this is
similar to the period to recover the additional cost of a hybrid car compared to
a normal car.

Energy loss in a battery: By multiplying coefficients (< 1) by X(n) and
Y (n) in (1), our model can be easily extended to include the energy loss in the
battery that occurs when charging and discharging.

More than two price zones: Once we know the rates of energy usage and
the boundaries of each price zone, we can calculate the desired pattern of battery
charge and discharge—akin to that in Figure 2. Namely, what we need to do is
to calculate to what level the battery can be charged or discharged in each zone.
Then, the solution approach outlined earlier applies directly to the case with
more than two price zones.

Interleaved low-price and high-price zones: This situation is equivalent
to the case where there are multiple price zones, one group of which have a low
price, and the other group have a high price. Thus, this case can be treated in
the same way as the above.

The amount of energy usage per day varying over days: This paper
focuses on hiding the energy consumption pattern within a day. Across days, the
total usage per day can still be revealed to the adversary (by which the adversary
may know whether you are home or not for a given day). The other part of
Privatus, which is not presented in this paper due to the page limit, handles this
issue. At the high level, the solution is to flatten the energy use across days, by
charging more in days with less usage and by using the saved energy in days with
more usage. The solution does not affect the current randomization framework
within each day; it only modifies the total use in each day, and requires larger
capacity battery.

Complexity: We saw that Privatus may result in better privacy protection
than our basic approach. However, a tradeoff is that its computation complex-
ity is increased, mainly because of the increment in the size of the decision
table for PY (n). Let us compare the number of the decision table entries in
the low-price zone. Basically, the number of entries in the decision table is the
number of possible state vectors (i.e., [n,B(n − 1)] for the basic approach and
[n,B(n− 1), Be(n− 1), PY (n− 1)] for Privatus). Thus, the decision table in
the basic approach has nL(K + 1) entries. Regarding the effective battery state,
it can have its minimum value when B(n) = 0 for all the times in the zone. In
this case, the penalty score is −β(M−1)(nL−2n0)u. The maximum value of the
effective battery state becomes αKu. On the other hand, the possible choices for
PY (n) in Privatus are the elements in the set ∪Kk=0Pk. Denoting the number of
elements in this set byQ, Privatus has nL(K+1)(αK+β(M−1)(nL−2n0)+1)Q
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Fig. 11. Effects of α and β in Privatus (K = 20).

entries in the decision table. Note that the number of the entries is proportional
to O(nLK) in the basic approach, but O(n2

LK + nLK
2) in Privatus. For ex-

ample, with the parameters used in Sections 4.4 and 5.2, the decision tables in
the basic approach and Privatus have 672 and 3, 358, 656 entries, respectively.
Although Privatus’s decision table gets much larger, we think that, compared
to the cost saving, the memory cost to accommodate such a table is reasonable
(see the memory price trend in [17]: the per-Mbyte cost in 2010 is only $0.0122).
Further, the computation overhead to obtain the decision table is proportional to
its size. However, the table calculation needs to be carried out infrequently, i.e.,
only when PX(n) changes significantly. The computation overhead of Privatus
in normal operations (i.e., looking up the decision table) is very low.

Effect of different values of α and β: Figure 11(a) shows the average
number of times that Privatus hits the penalty areas, given α and β. As ex-
plained before, when the ratio of α to β goes down, the frequency to hit the
penalty areas also decreases. However, from Figure 11(b), we see a negative ef-
fect in terms of information leakage, when the ratio of α to β is too low. In that
case, the actual battery state wants to stay in the middle of the two penalty
area thresholds TH and TL to avoid getting a penalty score. This makes the
compensation effect larger.

B An example of the probabilistic symbol mapping
between X(n) and Y (n) in the corner cases

Consider the example in Figure 12 where K = 20 and M = 4. The possible
realizations of Y (n) at the near-empty case are: 3u when B(n − 1) = 0; 3u
or 2u when B(n − 1) = u; 3u, 2u or u when B(n − 1) = 2u. At the near-full
case, the possible realizations of Y (n) are: 0 when B(n− 1) = 20u; 0 or u when
B(n− 1) = 19u; 0, u or 2u when B(n− 1) = 18u.

C Solving the Bellman equation in (5)

Note that J(n,B(n−1)) in (5) represents the maximum possible value of E(
∑nL

m=nD(m))
when B(n−1) is given and the optimal decision is made at time n, (n+1), . . . , nL.
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(a) B(n− 1) = 0 (b) B(n− 1) = u (c) B(n− 1) = 2u

(d) B(n−1) = 20u (e) B(n− 1) = 19u (f) B(n− 1) = 18u

Fig. 12. An example of the probabilistic symbol mapping between X(n) and Y (n) in
the corner cases when K = 20 and M = 4 ((a)-(c): empty or near-empty battery;
(d)-(f): full or near-full battery). The symbol ’*’ in PY (n) represents the element that
can be non-zero.

In (5), the expectation is with respect to the conditional distribution of D(n)
given B(n− 1) and PY (n), and thus it can be written as

E (D(n) + J(n+ 1, B(n))|B(n− 1), PY (n))

=
∑

−(M−1)≤j≤(M−1),
0≤i+j≤K

pi,(i+j)(n) (j + J(n+ 1, (i+ j)u)) (12)

with i = B(n− 1)/u. Here, pi,(i+j)(n) denotes the probability of transition from
B(n − 1) = iu to B(n) = (i + j)u, resulting from D(n) = ju. Take M = 4 as
an example. The transition from B(n − 1) = u to B(n) = 3u can happen if
X(n) = 0 and Y (n) = 2u, or X(n) = u and Y (n) = 3u. Thus, it is easy to see
that the transition probability pi,(i+j)(n) is in general given as follows: for j = 0,

pi,(i+j)(n) =

M−1∑
m=0

pX(m;n)pY (m;n), (13)

for j > 0 such that j ≤ (M − 1) and i+ j ≤ K,

pi,(i+j)(n) =

M−1−j∑
m=0

pX(m;n)pY (m+ j;n), (14)

and for j < 0 such that j ≥ −(M − 1) and i+ j ≥ 0,

pi,(i+j)(n) =

M−1−j∑
m=0

pX(m+ j;n)pY (m;n), (15)

and pi,(i+j)(n) = 0, otherwise.


