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Abstract

In this paper, we are interested in using large-deviation to characterize the asymptotic
decay-rate of the queue-overflow probability for distributed wireless scheduling algorithms,
as the overflow threshold approaches infinity. We consider ad-hoc wireless networks where
each link interferes with a given set of other links, and we focus on a distributed scheduling
algorithm called Q-SCHED, which is introduced by Gupta et al. First, we derive a lower
bound on the asymptotic decay rate of the queue-overflow probability for Q-SCHED. We
then present an upper bound on the decay rate for all possible algorithms operating on the
same network. Finally, using these bounds, we are able to conclude that, subject to a given
constraint on the asymptotic decay rate of the queue-overflow probability, Q-SCHED can
support a provable fraction of the offered loads achievable by any algorithms.

1 Introduction

Link scheduling is an important problem for ad-hoc wireless networks. In wireless networks the
transmission at neighboring links can interfere with each other. Hence, in order to maximize
the capacity of the system, it is critical to schedule only a subset of non-interfering links at each
time. There have been many studies on designing and analyzing scheduling algorithms for wire-
less network. A notable result is the well-known maximum-weight scheduling algorithm, which
has been shown to be throughput-optimal, i.e., it can stabilize the network at the largest set
of offered loads [3]. However, this algorithm is centralized and with high computational com-
plexity. Therefore, many researchers have proposed low-complexity and distributed scheduling
algorithms, (see, e.g. [1, 2]). Often, the goal is to be able to stabilize the network for a provable
fraction of the capacity region. For example, the low-complexity algorithm in [1] has been shown
to sustain close to 1/2 of the capacity region under the node-exclusive interference model.

To date most studies of wireless scheduling algorithms have mainly focused on stabilities.
In other words, they ensure that the queues do not grow to infinity. Although stability is
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an important criterion, for many real-time applications stability is far from being sufficient.
For example, when watching streaming video or listening to streaming audio, the user would
expect that the delay of every packet can be upper bounded with high probability. As stability
only ensures that the queue-length of each link remains finite, it cannot guarantee such type of
stringent quality-of-service (QoS) requirements.

In certain cases, the probability of delay violation can be mapped to the probability of queue
overflow. Unfortunately, both problems have been known to be very difficult. First, the exact
probability distribution is usually mathematically intractable. Hence, one often has to turn to
asymptotic techniques, such as large-deviation. For wireline networks, many results have been
obtained using large-deviation techniques [5], based on the assumption that the packet arrival
process is known and the service rate of each link is time-invariant. However, in wireless networks,
the service rate process is time-varying. Some progress has been made for the case when the
scheduling decision is based only on the channel state, which means that the service rate process
has known statistics [7]. However, for many wireless scheduling algorithms, even the statistics of
the service rate process are unknown.

Recently, the delay-violation or queue-overflow probability for a number of queue-length based
scheduling algorithm, for which the statistics of the service rate process are unknown, have
been studied in [9] - [11] using sample-path large-deviation. In these works, the algorithms are
centralized and are for a single cell. Further, the algorithms are deterministic in the sense that
the scheduling decision is a deterministic function of the system state.

In this paper, we will develop techniques to estimate and control the QoS of distributed
scheduling algorithms for ad hoc networks. We will focus on a random access algorithm for ad
hoc wireless networks called Q-SCHED [1] . Note that due to the distributed and random nature
of Q-SCHED, the techniques in prior works [9] - [11] do not apply directly. As in [9] - [11], the
questions that we are interested in are: a) how to estimate the decay rate of the queue overflow
probability of this algorithm, and b) given an overflow constraint, how to calculate the set of offer
loads that this algorithm can support. To answer these questions, we will first obtain an lower
bound on the decay rate of the overflow probability for Q-SCHED. Then, based on this bound,
we provide a lower bound on the set of offer-load that this algorithm could support at a given
queue-overflow constraint. To the best of our knowledge, this is the first work that characterizes
the queue-overflow probability of distributed scheduling algorithms for ad-hoc networks in a
large-deviation setting. Finally, we show that subject to a given queue-overflow constraint, the
offer load supported by Q-SCHED is at least a provable fraction of the offered load supported
by any other algorithms.

2 System Model

We use the model from [1]. We consider a wireless network of N nodes. Let V be the set of
nodes, E be the set of directed links between nodes, and G(V,E) be the directed connectivity
graph of the network. Each link l ∈ E interferes with a set of other links in E, which we denote
as El. We assume that if k ∈ El then l ∈ Ek, i.e., the interference relationship is symmetric. We
also let l ∈ El, i.e.,

El = {l} ∪ {l′ ∈ E : l′ interferes with l}.
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This interference set varies when different communication techniques are used. For example, for
bluetooth, we use the node-exclusive interference model, also known as the primary interference
model or the one-hop interference model, where El is the set of all links that are connected to
either end-point of l. In IEEE 802.11 WLAN, the interference set El will be the two-hop neighbors
of l, including l.

We assume a slotted system. Let al(n) denotes the number of packets that arrive at link l in
time-slot n. We assume that for each l, al(1), al(2), ... are i.i.d. and λl = E[al(1)]. Moreover, we
assume that al(n) is upper bounded by AM for all n > 0 and all l ∈ E, i.e., 0 ≤ Al(n) < AM ,
which means the number of arrival packets is finite in each time slot.

Let dl(n) denote the number of packets that can be served by link l in time-slot n. Assume
that the capacity of each link is a fixed number cl. Let sl(n) = 1 indicates that link l is scheduled
in time-slot n, sl(n) = 0 otherwise. Clearly, dl(n) = clsl(n). We assume a single-hop system,
i.e., packets served at link l immediately leave the system. Let ql(n) denote the backlog of link
l in slot n, and ~q(n) =

(
q1(n), q2(n), ..., q|E|(n)

)
. Then the evolution of each ql(n) is given by

ql(n+ 1) = [ql(n) + al(n)− dl(n)]+, where [·]+ denote the projection to [0,∞).
We consider the algorithm Q-SCHED that was introduced in [1]. In this algorithm, it is

assumed that at the beginning of each time-slot every link l knows the queue-lengths of all links
in its interference set El and also the queue-lengths of all links in the interference set Ek for every
k ∈ El. Each time slot is divided into two parts: a scheduling slot and a data transmission slot.
Links that are chosen in the scheduling slot will transmit their packets in the data transmission
slot. The scheduling slot is further divided into M mini-slots. At the beginning of each time-slot
n, each link l first computes:

Pl(n) = α

ql(n)
cl

maxi∈El
∑

k∈Ei
qk(n)
ck

,

where α = log(M). Then, each link l picks a backoff time Yl(n) from {1, 2, ...,M + 1} according
to the following probabilities:

P(Yl(n) = M + 1) = e−Pl(n),

P(Yl(n) = m) = e−Pl(n)m−1
M − e−Pl(n)m

M ,m = 1, 2, ...,M.

A link that chooses backoff time Yl(n) = k ≤ M will start transmission at the k-th mini-slot
unless it has already heard a transmission from one of its interfering links. If a link chooses a
backoff time equals to M + 1 it will not attempt to transmit in this time slot. If two or more
links that interfere with each other begin to transmit simultaneously, collision will occur and
all of these transmissions will fail. Finally, any link that hears the collision will not attempt to
transmit in this time slot.

We now present an important lemma proved in [1] for Q-SCHED, which will be used in our
derivation. Define

V (n) = max
i∈E

∑
l∈Ei

ql(n)

cl
,

which denotes the largest sum of backlog in any interference neighborhood.
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Lemma 1. Q-SCHED scheduling policy guarantees that for any ε0 ≥ 0 and constants C1, C2 ≥ 0,
there exists a constant R such that if V (n) ≥ R, then for any η ∈ [0, 1] and for any link i such
that ∑

l∈Ei

ql(n)

cl
≥ η (V (n)− C1 − C2ε0) ,

the following holds,∑
l∈Ei

Pr{Link l is scheduled} ≥ η

(
1− log(M) + 1

M
− ε0

)
.

Note that although the original statement of Lemma 1 in [1] requires that ε0, C1, C2 > 0,
the proof there also trivially holds for the case when ε0, C1, C2 ≥ 0. Letting η = 1, this then
implies that, when V (n) is large, with high probability at least one link will be scheduled in
those interference neighborhood with sum of backlog close to V (n). In [1], this lemma has been
used to establish the negative drift of the Lyapunov function V (n) whenever that the offered
load satisfies, for some ε0 > 0,∑

l∈Ei

λl
cl
≤ 1− log(M) + 1

M
− ε0, for all links i. (1)

For the rest of the paper, we assume that (1) holds because otherwise we do not know the stability
of the system.

In this paper, we are interested in queue-overflow probabilities. For example, we may want
to know the probability that the maximum queue length exceeds a given threshold B. On the
other hand, with the techniques developed in this paper, it is more convenient to work with the
probability

P

(
max
i∈E

∑
l∈Ei

ql
cl
≥ B

)
. (2)

However, even calculating this probability is mathematically intractable. Hence, we will use
large-deviation theory to estimate it. We are interested in the following limits:

I0(~λ) , − lim sup
B→∞

1

B
log P

(
max
i∈E

∑
l∈Ei

ql
cl
≥ B

)
,

J0(~λ) , − lim inf
B→∞

1

B
log P

(
max
i∈E

∑
l∈Ei

ql
cl
≥ B

)
.

Clearly, I0(~λ) provides a lower bound on the decay rate of (2) and J0(~λ) provides an upper
bound.

3 The lower bound

We first develop a lower bound for I0(~λ). For any link i in E, define the scaled queue length:

qBi (t) =
1

B
qi (bBtc) .
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Note that this expression represents the standard large-deviation scaling that shrinks both time
and magnitude. We also define the scaled version of the Lyapunov function:

vB(t) = V (~qB(t)).

The queue overflow criterion is
{
vB(t) ≥ 1

}
. For ease of exposition, we consider a system that

starts at t = 0. For a given T > 0, we are interested in the following probability:

IT0 (~λ) , − lim sup
B→∞

1

B
log P

(
vB(T ) ≥ 1

∣∣vB(0) = 0
)
.

Intuitively, as T → ∞, one would expect that IT0 (~λ) approaches I0(~λ), the lower bound on the
decay rate of the stationary overflow probability [10, 11]. We will use Lemma 1 to derive a

lower bound for IT0 (~λ). Note that Lemma 1 provides a lower bound on the service rate of those
interference sets whose backlogs are almost the largest. However, these interference sets with
largest backlog can change from time to time, which makes it difficult for us to track the system
dynamics directly by Lemma 1. To address the problem, in the following derivation we divide
the entire scaled time into many small intervals. In each small interval, the interference sets
that have almost the largest backlog do not change and therefore we are able to use Lemma 1
to estimate IT0 (~λ).

3.1 Local Rate Function

For a fixed t, let δ > 0 be a small number. Let ∆vB(δ, t) = vB(t+ δ)− vB(t) denote the drift of
the scaled Lyapunov function. Let Q be a closed and bounded set such that V (~q) ≥ v > 0 for
all ~q ∈ Q. Our first goal is to find the following limit given ~q 6= ~0 and W > 0.

lim
B→∞

1

B
log sup

~q∈Q
P
(
∆vB(δ, t) ≥ δW

∣∣~qB(t) = ~q
)
, (3)

We call (3) the local rate function, which is the asymptotic decay rate of the probability that
the growth rate of vB is no smaller than W , conditioned on ~qB(t) = ~q. Since the arrival and
departure are both bounded, for any i ∈ E there must exist Ci such that∣∣∣∣∣∑

l∈Ei

ql(n+ 1)

cl
−
∑
l∈Ei

ql(n)

cl

∣∣∣∣∣ ≤ Ci

for all n. We next define the set I(~q, δ) as

I(~q, δ) =

{
i ∈ E

∣∣∣∣∣∑
l∈Ei

ql
cl
≥ V (~q)− δCi

}
. (4)

Intuitively, I(~qB(t), δ) is the set of links that have the close-to-largest sum of backlog
∑

l∈Ei
qBl (t)

cl

in their respective interference range. Given that W > 0, if the event {∆vB(δ, t) ≥ δW}
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happens, we will have vB(t) < vB(δ + t). For any B, if i ∈ E and i /∈ I(~qB(t), δ), then∑
l∈Ei

qBl (t)

cl
< vB(t)− δCi, and hence

∑
l∈Ei

qBl (t+ δ)

cl
< vB(t)− δCi + δCi < vB(t) < vB(δ + t).

Therefore, for any large B, only i ∈ I(~qB(t), δ) could potentially maximize
∑

l∈Ei
qBl
cl

at time

t + δ. So the change between vB(t) and vB(t + δ) can be bounded by the maximum increment

of
∑

l∈Ei
qBl
cl

among those i ∈ I(~qB(t), δ). More specifically, we have

∆vB(δ, t) ≤ max
i∈I(~qB(t))

bB(t+δ)c∑
n=bBtc+1

1

B

∑
l∈Ei

al(n)− dl(n)

cl
.

Define:

Ai(n) ,
∑
l∈Ei

al(n)

cl
, Di(n) ,

∑
l∈Ei

dl(n)

cl
. (5)

Let Āi be the mean of Ai(n). Note that by our assumption, there exists ε0 > 0 such that

Āi < 1− log(M)+1
M

− ε0, for all links i.
Now consider Equation (3), since q(t) is Markovian, so is qB(t). We thus have

lim
B→∞

1

B
log sup

~q∈Q
P
(
∆vB(δ, t) ≥ δW

∣∣~qB(t) = ~q
)

= lim
B→∞

1

B
log sup

~q∈Q
P
(
∆vB(δ, 0) ≥ δW

∣∣~qB(0) = ~q
)
.

Hence, for the following derivation, we will take t = 0, and drop the variable t when there is no
source of confusion. Moreover, for ease of exposition, let P~q(·) denote the probability distribution
conditioned on ~q(0) = ~q.

Lemma 2. Assume that ~qB(0) = ~q and V (~q) ≥ v > 0. For any i ∈ I(~q, δ), Di(n) is defined in
(5). For any v, ξ > 0, there exists a δ0 such that for all δ ≤ δ0 and for all large enough B, the
following holds for 1 ≤ n ≤ bBδc,

P~q(Di(n) ≥ 1 |Di(n− 1), Ai(n− 1), ..., D(1), A(1)) ≥ 1− ε,
P~q(Di(n) = 0 |Di(n− 1), Ai(n− 1), ..., D(1), A(1)) ≤ ε.

where ε = logM+1
M

+ ξ .

Proof. For any η ∈ [0, 1), choose δ such that

δ ≤ (1− η)v

4 maxi∈E Ci
, δ0.
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If vB(0) = V (~q) ≥ v > 0, because the rate of decrease of vB(t) is at most maxi∈E Ci, it follows

vB(0) +
(1− η)v

4
≥ vB(n/B) ≥ 3v

4
, for all n ∈ [0, bBδc].

Hence for i ∈ I(~q, δ), we have∑
l∈Ei

qBl (n/B)

cl
≥
∑
l∈Ei

qBl (0)

cl
− δCi

≥ vB(0)− 2δCi

≥ vB(n/B)− 3

4
(1− η)v

≥ ηvB(n/B).

Therefore, the unscaled backlog must satisfy∑
l∈Ei

ql(n)

cl
≥ ηV (n), for all n ∈ [0, bBδc].

We now use Lemma 1. Take the constants ε0 = 0, C1 = 0, C2 = 0 in Lemma. Also, since
vB(n/B) > v/2 for n ∈ [0, bBδc], then for large enough B, V (n) ≥ R for n ∈ [0, bBδc]. Therefore
for any i ∈ I(~q, δ), the following holds according to the lemma.∑

l∈Ei

P~q (Link l is scheduled) ≥ η

(
1− log(M) + 1

M

)
.

For any ξ > 0, we could choose η close enough to 1 so that the lemma holds.

Lemma 2 implies that, when δ is small, the service rate at each neighborhood of link i ∈ I(~q, δ)
is no smaller than than 1 with probability no smaller than 1− ε.

Let D̂(n), n = 1, 2, ... be i.i.d random variables such that with distribution

D̂(n) =

{
1, with prob. 1− ε
0, with prob. ε

Let ABi (δ) , 1
B

∑[Bδ]
n=1 Ai(n), DB

i (δ) , 1
B

∑[Bδ]
n=1Di(n), D̂B(δ) , 1

B

∑[Bδ]
n=1 D̂(n), Zi(n) , Ai(n) −

Di(n), ZB
i (δ) , ABi (δ)−DB

i (δ), Ẑ(n) , Ai(n)− D̂i(n), and ẐB
i (δ) , ABi (δ)− D̂B

i (δ). We then
have

∆vB(δ) ≤ max
i∈I(~qB(0),δ)

ZB
i (δ), (6)

For each i ∈ E, let

H Ẑ
i , lim sup

B→∞

1

B
log sup

~q∈Q
P
(
ZB
i (δ) ≥ δW

∣∣~qB(0) = ~q
)
.

Moreover, let

HZ
max , lim sup

B→∞

1

B
log P

(
max
i∈I(~q,δ)

ẐB
i (δ) ≥ δW

∣∣~qB(0) = ~q

)
.
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From (6), we have

lim sup
B→∞

1

B
log sup

~q∈Q
P
(
∆vB(δ) ≥ δW

∣∣~qB(0) = ~q
)
≤ HZ

max.

Unfortunately, HZ
max is difficult to compute directly. On the other hand, H Ẑ

i ’s are fairly easy to

compute. Next, we will establish a relationship between HZ
max and H Ẑ

i ’s so that we can estimate

HZ
max by H Ẑ

i ’s.

Lemma 3. Assume that ~qB(0) = ~q and V (~q) ≥ v > 0. For any ξ > 0, define ε as in Lemma
2. For any v > 0, there exists δ0 > 0, such that for any W > 0, any i ∈ I(~q, δ) and for all
0 < δ ≤ δ0, when B is large enough, we will have

P~q(Z
B
i (δ) ≥ W ) ≤ P(ẐB

i (δ) ≥ W ).

Proof. The inequality we need to show is equivalent to the following:

P~q

bBδc∑
n=1

Zi(n) ≥ BW

 ≤ P

bBδc∑
n=1

Ẑi(n) ≥ BW

 .

According to Lemma 2, when B is large enough, we could choose δ0 such that for any i ∈ I(~q, δ),

P~q(Di(n) ≥ 1 |Di(n− 1), Ai(n− 1), ..., D(1), A(1)) ≥ 1− ε,
P~q(Di(n) = 0 |Di(n− 1), Ai(n− 1), ..., D(1), A(1)) ≤ ε.

Note that, δ0 exists because I(~q, δ) is a finite set. We use induction to prove that for any N ,
1 ≤ N ≤ bBδ0c

P~q

(
N∑
n=1

Zi(n) ≥ BW

)
≤ P

(
N∑
n=1

Ẑi(n) ≥ BW

)
, (7)

and then the Lemma will holds.
We first show that the induction hypothesis (7) holds for N = 1. Note that, for i ∈ I(~q, δ),

P~q(Di(n) ≥ 0 |Di(n− 1), Ai(n− 1), ..., D(1), A(1))

=1 = P(D̂(n) ≥ 0),

and,

P~q(Di(n) ≥ 1 |Di(n− 1), Ai(n− 1), ..., D(1), A(1))

≥1− ε = P(D̂(n) ≥ 1)

Moreover, for any k ≥ 2,

P~q(Di(n) ≥ k |Di(n− 1), Ai(n− 1), ..., D(1), A(1))

≥0 = P(D̂(n) ≥ k).
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Hence, for any k

P~q(Di(n) ≥ k |Di(n− 1), Ai(n− 1), ..., D(1), A(1))

≥P(D̂(n) ≥ k).

and,

P~q(Di(n) ≤ k |Di(n− 1), Ai(n− 1), ..., D(1), A(1))

≤P(D̂(n) ≤ k).

Since Ai(1), Di(1) and D̂(1) are independent, we have for any k,

P~q(Di(1) ≤ k |Ai(1)) = P~q(Di(1) ≤ k)

≤ P(D̂(n) ≤ k)

= P(D̂(1) ≤ k |Ai(1)).

Hence,
P~q(Di(1) ≤ Ai(1)−BW |Ai(1)) ≤ P(D̂(1) ≤ Ai(1)−BW |Ai(1)).

Using total probability equation, we have

P~q(Di(1) ≤ Ai(1)−BW ) ≤ P(D̂(1) ≤ Ai(1)−BW ),

which means that the induction hypothesis (7) holds for N = 1.

P~q(Zi(1) ≥ BW ) ≤ P(Ẑ(1)) ≥ BW ).

Now assume the induction hypothesis (7) holds for N − 1, i.e., for any i ∈ I(~q, δ),

P~q(
N−1∑
n=1

Zi(n) ≥ BW ) ≤ P(
N−1∑
n=1

Ẑi(n) ≥ BW ).

Then

P~q

(
N∑
n=1

Zi(n) ≥ BW

)
= P~q

(
Di(n) ≤

N−1∑
n=1

Zi(n) + Ai(n)−BW

)
(8)

Since Ai(N), Di(N) and D̂(N) are independent, using similar method as we did previously, we
can show that

P~q

(
Di(N) ≤

N−1∑
n=1

Zi(n) + Ai(n)−BW |Ai(N), Di(N − 1), ..., D(1), A(1)

)

≤ P~q

(
D̂(N) ≤

N−1∑
n=1

Zi(n) + Ai(n)−BW |Ai(N), Di(N − 1), ..., D(1), A(1)

)
.
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Therefore from total probability equation, we have

P~q

(
Di(N) ≤

N−1∑
n=1

Zi(n) + Ai(N)−BW

)

≤P~q

(
D̂(N) ≤

N−1∑
n=1

Zi(n) + Ai(N)−BW

)

=P~q

(
N−1∑
n=1

Zi(n) ≥ D̂(N)− Ai(N) +BW

)
. (9)

However,
∑N−1

n=1 Zi(n) is independent from D̂(N) and Ai(N), from the induction hypothesis for
N − 1, we have

P~q

(
N−1∑
n=1

Zi(n) ≥ D̂(N)− Ai(N) +BW
∣∣∣Ai(N), D̂(N)

)

≤P

(
N−1∑
n=1

Ẑ(n) ≥ D̂(N)− Ai(N) +BW
∣∣∣Ai(N), D̂(N)

)

Once again, using total probability equation, we get that

P~q

(
N−1∑
n=1

Zi(n) ≥ D̂(N)− Ai(N) +BW

)

≤P

(
N−1∑
n=1

Ẑ(n) ≥ D̂(N)− Ai(N) +BW

)
(10)

From (8), (9) and (10), we can conclude that

P~q

(
N∑
n=1

Zi(n) ≥ BW

)
≤ P

(
N∑
n=1

Ẑi(n) ≥ BW

)
.

This proves the induction hypothesis (7) for N . The result of the Lemma then follows.

Lemma 4. Let Q be a closed and bounded set such that V (~q) ≥ v > 0 for all ~q ∈ Q. For
any ξ > 0, define ε as in Lemma 2. There exists δ0 > 0, such that for any W > 0 and for all
0 < δ ≤ δ0, we have

lim sup
B→∞

1

B
log sup

~q∈Q
P~q

(
max
i∈I(~q,δ)

ZB
i (δ) ≥ δW

)
≤ max

i∈E
lim sup
B→∞

1

B
log P

(
ẐB
i (δ) ≥ δW

)
. (11)

Proof. Choose δ0 as in Lemma 3. According to Lemma 3, for 0 < δ ≤ δ0, when B is large enough,
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we have

P~q

(
max
i∈I(~q,δ)

ZB
i (δ) ≥ δW

)
≤
∑

i∈I(~q,δ)

P~q

(
ZB
i (δ) ≥ δW

)
≤
∑

i∈I(~q,δ)

P
(
ẐB
i (δ) ≥ δW

)
≤
∑
i∈E

P
(
ẐB
i (δ) ≥ δW

)
≤|E|max

i∈E
P
(
ẐB
i (δ) ≥ δW

)
.

Hence,

sup
~q∈Q

P~q

(
max
i∈I(~q,δ)

ZB
i (δ) ≥ δW

)
≤ |E|max

i∈E
P
(
ẐB
i (δ) ≥ δW

)
.

It follows that

lim sup
B→∞

1

B
log sup

~q∈Q
P~q

(
max
i∈I(~q,δ)

ZB
i (δ) ≥ δW

)
≤ lim sup

B→∞

1

B
log |E|max

i∈E
P
(
ẐB
i (δ) ≥ δW

)
= lim sup

B→∞

1

B
log |E|+ max

i∈E
lim sup
B→∞

1

B
log P

(
ẐB
i (δ) ≥ δW

)
= max

i∈E
lim sup
B→∞

1

B
log P

(
ẐB
i (δ) ≥ δW

)
.

Theorem 5. Assume that for some ε0 > 0, inequality (1) holds. For any small and positive ξ
such that 0 < ξ < ε0, define ε as in Lemma 2. Given t, also assume that ~qB(t) = ~q ∈ Q, where
Q is a closed and bounded set such that V (~q) ≥ v > 0 for all ~q ∈ Q. There exists δ0 > 0 such
that for all 0 < δ ≤ δ0,

lim sup
B→∞

1

B
log sup

~q∈Q
P
(
∆vB(δ, t) ≥ δW

∣∣~qB(t) = ~q
)

≤− δmin
i∈E

inf
0≤d≤1−ε

(IAi (d+W ) + ID̂(d)). (12)

Proof. Since we assume finite arrivals, we have 0 ≤ Ai(n) < AM , 0 ≤ D̂(n) ≤ 1. From Theorem
4.5.3 of [13], since the set {(a, d)|W ≤ a− d ≤ AM , 0 ≤ d ≤ 1− ε} is compact for any W > 0,

there exist upper bound rate function IAD̂i (a, d) such that

lim sup
B→∞

1

B
log P

(
ABi (δ)− D̂B(δ) ≥ δW )

≤ −δ inf
W≤a−d≤AM

IAD̂i (a, d),
(13)
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where

IAD̂i (a, d) = sup
(θ1,θ2)∈R2

{
θ1a+ θ2d

− lim sup
B→∞

1

Bδ
log E

(
eBθ1A

B
i (δ)+Bθ2D̂B

)}
,

(14)

Since Ai(n) and D̂(n) are independent, we have

IAD̂i (a, d) = IAi (a) + ID̂(d),

where

ID̂(d) = sup
θ∈R

{
θd− log E

(
eθD̂1

)}
= sup

θ∈R

{
θd− log

(
ε+ (1− ε)eθ2

)}
.

Choose δ0 as in Lemma 4. According to (6), (11) and (13), we have

lim sup
B→∞

1

B
log sup

~q∈Q
P
(
∆vB(δ, t) ≥ δW

∣∣~qB(t) = ~q
)

≤− δmin
i∈E

inf
W≤a−d≤AM

(IAi (a) + ID̂(d))

The mean of D̂(n) is 1 − ε. It follows that ID̂(d) ≥ ID̂(1 − ε) = 0 when d ≥ 1 − ε. When
0 < ξ < ε0, we have W +1− ε > Āi for all links i by our assumption. If d ≥ 1− ε and a−d > W ,
we have

a > W + d ≥ W + 1− ε > Āi.

Because IAi (a) is increasing when a > Āi, we have,

inf
W≤a−d≤AM

d≥1−ε

(IAi (a) + ID̂(d)) = inf
d≥1−ε

(IAi (W + d) + ID̂(d)) = IAi (W + 1− ε).

In fact, if d = 1− ε, we will have

IAi (W + 1− ε) = inf
W≤a−d≤AM

d=1−ε

(IAi (a) + ID̂(d)).

Therefore,

inf
W≤a−d≤AM

d≥1−ε

(IAi (a) + ID̂(d)) ≥ inf
W≤a−d≤AM

0≤d≤1−ε

(IAi (a) + ID̂(d))

which means

lim sup
B→∞

1

B
log P

(
∆vB(δ, t) ≥ δW

∣∣~qB(t) = ~q
)

≤− δmin
i∈E

inf
W≤a−d≤AM

0≤d≤1−ε

(IAi (a) + ID̂(d)).

12



Further, we claim that

inf
W≤a−d≤AM

0≤d≤1−ε

(IAi (a) + ID̂(d)) = inf
0≤d≤1−ε

(IAi (d+W ) + ID̂(d)).

To see this, note that

inf
W≤a−d≤AM

0≤d≤1−ε

(IAi (a) + ID̂(d)) = min  inf
W≤a−d≤AM

0≤d≤1−ε
d+W≥Āi

(IAi (a) + ID̂(d)) , inf
W≤a−d≤AM

0≤d≤1−ε
d+W<Āi

(IAi (a) + ID̂(d))

 .

For the first term, since a ≥ d+W ≥ Āi, and IAi (a) is increasing when a > Āi, we have,

inf
W≤a−d≤AM

0≤d≤1−ε
d+W≥Āi

(IAi (a) + ID̂(d)) = inf
a−d=W
d≤1−ε
d+W≥Āi

(IAi (a) + ID̂(d)).

For the second term, since a could be equal to the mean, we have

inf
W≤a−d≤AM

0≤d≤1−ε
d+W<Āi

(IAi (a) + ID̂(d)) = inf
0≤d≤1−ε
d+W<Āi

ID̂(d).

However, because Āi−W < 1− ε and ID̂(d) is decreasing when d ≤ 1− ε, the above quantity is

actually no greater than ID̂(Āi −W ), which is included in the first term. Hence the claim holds
and the local rate function can be bounded as (12).

3.2 The Lower Bound

For fixed T > 0, we now derive a lower bound on IT0 (~λ) in this part. Fix a small v ∈ (0, 1), choose
δ0 as in Theorem 5. Let 0 < δ < δ0 such that δ = T/n for some integer n. By the assumption that
the system is stable, for any B, there exists vmax > 0, such that vB(t) ≤ vmax for all t ∈ [0, T ]. Fix
ζ > 0, given v0 = 0, vn = 1, 0 ≤ v1, ..., vn−1 ≤ vmax, define Γk(vk) =

{
vk − ζ ≤ vB(kδ) ≤ vk + ζ

}
for k = 1, 2, ..., n−1, Γ0(v0) =

{
vB(0) = v0

}
and Γn(vn) =

{
vB(nδ) ≥ vn

}
. Let mv, 0 ≤ mv < n,

be the largest integer m such that vm−1 < v. First fix v0, ..., vn. For ease of exposition, we will
use Γk to denote Γk(vk) when there is no source of confusion. Consider the follow probability:

P

(
n⋂
i=1

Γi |Γ0

)
Roughly speaking, this is the probability that the trajectory vB(t) follows v0, v1, ..., vn given that
it starts at v0. Clearly,

P

(
n⋂
i=1

Γi |Γ0

)
≤ P

(
n⋂

i=mv

Γi |Γ0

)
=P (Γn |Γn−1, ...,Γmv ,Γ0 ) (15)

×P (Γn−1 |Γn−2, ...,Γmv ,Γ0 )× ...×P (Γmv |Γ0 ) .

13



Define ΨB
k (δ, ζ) ,

{
∆vB(δ, (k − 1)δ) ≥ vk − vk−1 − 2ζ

}
. Let

Qk =

{
{~q |V (~q) ∈ [vk−1 − ζ, vk−1 + ζ]} , k = 2, ..., n
{~q |V (~q) = v0} , k = 1

.

Also define
φBk (δ, ζ) = sup

~q∈Qk
P
(
ΨB
k (δ, ζ)

∣∣~qB((k − 1)δ) = ~q
)
.

We then have the following lemma holds.

Lemma 6. For any k, mv < k ≤ n, the following holds

P (Γk |Γk−1, ...,Γmv ,Γ0 ) ≤ φBk (δ, ζ). (16)

Proof.

P (Γk |Γk−1, ...,Γmv ,Γ0 )

≤ P
(
ΨB
k (δ, ζ) |Γk−1, ...,Γmv ,Γ0

)
=

P
((⋂k−1

i=mv
Γi

)⋂
ΨB
k (δ, ζ) |Γ0

)
P
(⋂k−1

i=mv
Γi |Γ0

) . (17)

The numerator of (17) can be written as

E
{

1{(⋂k−1
i=mv

Γi)
⋂

ΨBk (δ,ζ)} |Γ0

}
= E

{
E
{

1{(⋂k−1
i=mv

Γi)
⋂

ΨBk (δ,ζ)}
∣∣~qB((k − 1)δ), ..., ~qB(mvδ)

}∣∣∣Γ0

}
= E

{
E
{

1{ΨBk (δ,ζ)}
∣∣~qB((k − 1)δ), ..., ~qB(mvδ)

}
· 1{⋂k−1

i=mv
Γi}
∣∣∣Γ0

}
(18)

Since vB(t) satisfy the Markov property, conditioned on ~qB((k − 1)δ),
{
~qB(t), t > (k − 1)δ

}
is

independent from
{
~qB(t), t < (k − 1)δ

}
. Define,

fk(~qk−1, ..., ~qmv)

,E
{

1{ΨBk (δ,ζ)}
∣∣~qB((k − 1)δ) = ~qk−1, ..., ~q

B(mvδ) = ~qmv

}
=P

(
ΨB
k (δ, ζ)

∣∣~qB((k − 1)δ) = ~qk−1

)
.

By the definition of φBk (δ, ζ), we have

fk(~qk−1, ..., ~qmv) ≤ φBk (δ, ζ),

14



when ~qk−1 ∈ Qk. Then

(18) = E
{
fk(~q

B((k − 1)δ), ..., ~qB(δ)) · 1{⋂k−1
i=mv

Γi}
∣∣∣Γ0

}
≤ φBk (δ, ζ) · E

{
1{⋂k−1

i=mv
Γi}
∣∣∣Γ0

}
.

Note that

E
{

1{⋂k−1
i=mv

Γi}
∣∣∣Γ0

}
= P

(
k−1⋂
i=mv

Γi |Γ0

)
,

we therefore have (17) ≤ φBk (δ, ζ).

Theorem 7. For any T, the lower bound on the decay rate function satisfies

IT0 (~λ) ≥ inf
W≥0

min
i∈E

inf
d≤(1−ε)

(IAi (d+W ) + ID̂(d))

W
, L. (19)

Proof. For any ζ > 0, there exists a finite set V of vectors (vn, ..., v0), v0 = 0, vn = 1, 0 ≤
v1, ..., vn−1 ≤ vmax, such that⋃

(vn,...,v0)∈V

Γn−1(vn−1)× ...× Γ1(v1)

⊇
{(

vB((n− 1)δ), ..., vB(δ)
) ∣∣0 ≤ vB((n− 1)δ) ≤ vmax,

..., 0 ≤ vB(δ) ≤ vmax

}
,

where × denotes the Cartesian product. Then

P
(
vB(T ) ≥ 1

∣∣vB(0) = v0

)
≤

∑
(vn,...,v0)∈V

P

(
n⋂
k=1

Γk(vk) |Γ0(v0)

)

≤
∑

(vn,...,v0)∈V

P

(
n⋂

k=mv

Γk(vk) |Γ0(v0)

)

≤
∑

(vn,...,v0)∈V

n∏
k=mv+1

φBk (δ, ζ).

The last inequality comes from Lemma 6. If we take the log and let B goes to infinity, we will
have

lim sup
B→∞

1

B
log P

(
vB(T ) ≥ 1

∣∣vB(0) = v0

)
≤ min

(vn,...,v0)∈V
lim sup
B→∞

1

B

n∑
k=mv+1

log φBk (δ, ζ).
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To estimate the limit in the above inequality, we will use the local rate, i.e., Theorem 5. From
the definition of φBk (δ, ζ) and Theorem 5, since vk ≤ v,mv < k ≤ n, we have

lim sup
B→∞

1

B
log φBk (δ, ζ) ≤ −(vk − vk−1 − 2ζ)L

if vk − vk−1− 2ζ ≥ 0. However if vk − vk−1− 2ζ < 0, the above inequality still holds because the
left hand side is always less than 0. Therefore taking the sum from k = mv + 1 to n, one will get

min
(vn,...,v0)∈V

lim sup
B→∞

1

B

n∑
k=mv+1

log φBk (δ, ζ)

≤ min
(vn,...,v0)∈V

(1− v − 2(n−mv)ζ)L

Let v → 0 and ζ → 0, we have

IT0 (~λ) = lim sup
B→∞

1

B
log P

(
vB(T ) ≥ 1

∣∣vB(0) = 0
)
≤ −L.

Note that the bound in Theorem 7 is independent from T . As T →∞ we could that IT0 (~λ)→
I0(~λ). Hence we could expect that

I0(~λ) ≥ L.

Such a limiting argument can be rigorously shown using the Freidlin-Wentzell construction as in
[11].

4 An Upper Bound

In this section, we will develop a upper bound of the decay-rate function J0(~λ) under the node-
exclusive interference model. In the node-exclusive model, each interference set may have at
most two links scheduled in the same slot. Consider an fictitious algorithm such that

P

(∑
l∈Ei

dl(n)

cl
= 2

)
= 1, for all n.

Clearly, this fictitious algorithm will provide a lower bound on the overflow probability over
all possible algorithms. We denote such algorithm as OPTIMAL, Note that OPTIMAL may
not exist, and it is only used to derive an upper bound. We now consider (2) under algorithm
OPTIMAL. Let ZB

i (t), ABi (t), DB
i (t) have the same meaning as before. Now, the derivation are

much easier since ZB
i (t) are i.i.d. across t. According to Theorem 6.6 in [6], the overflow rate

function of OPTIMAL for each link i is given by

lim
B→∞

1

B
log P

(∑
l∈Ei

qBl (0)

cl
> 1

)
= − inf

x>0

IZi,opt(x)

x
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where IZi,opt(x) is the rate function of ZB
i under OPTIMAL algorithm. It is trivial to show that

IZi,opt(x) = IAi (x+ 2). (20)

Hence, the decay-rate of the queue-overflow probability of this fictitious system is given by

lim
B→∞

1

B
log P

(
vB(0) > 1

)
= −min

i∈E
inf
a>0

IAi (a+ 2)

a
. (21)

Then, we have the upper bound:

J0(~λ) ≤ Iopt , min
i∈E

inf
a>0

IAi (a+ 2)

a
.

We now pose a constraint on this decay rate function. Suppose that we want to guarantee that
Iopt ≥ θ0. Define the limit of the moment generating function of the arrival process as:

ΛA
i (θ) = lim sup

B→∞

1

Bδ
log E

(
eBθA

B
i (δ)
)
.

The rate function (??) for arrival could be written as

IAi (a) = sup
θ∈R

{
θa− ΛA

i (θ)
}
.

In other words, IAi is the Legendre transform of ΛA
i . Since IAi is convex, ΛA

i is also the Legendre
transform of IAi . Therefore the following holds

Iopt ≥ θ0 ⇔ min
i∈E

inf
a>0

IAi (a+ 2)

a
≥ θ0

⇔ inf
a>0

IAi (a+ 2)

a
≥ θ0,∀i ∈ E

⇔ sup
a

{
θ0a− IAi (a)

}
− 2θ0 ≤ 0,∀i ∈ E

⇔ ΛA
i (θ0)− 2θ0 ≤ 0,∀i ∈ E

⇔ max
i∈E

ΛA
i (θ0)

θ0

≤ 2. (22)

The quantity
ΛAi (θ0)

θ0
is often called the effective bandwidth of the arrival process. The inequal-

ity (22) implies that the maximum possible effective capacity region of the system under any
algorithm is such that the effective bandwidth in every interference range must be no greater
than 2.

5 Comparison

We now compare our lower bound in Section III with the upper bound in Section IV in three
cases.
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5.1 Deterministic Arrival

We first consider the case when the arrivals are deterministic, i.e., ai(n) = λi for all i ∈ E and
n = 1, 2, .... Recall that Āi =

∑
l∈Ei

λl
cl

is the mean of Ai(n), and the rate function of Ai will be,

IAi (a) =

{
0, a = Āi
∞, otherwise

Then, the lower bound of the decay rate of the queue-overflow probability is

L = inf
W≥0

min
i∈E

ID̂(Āi −W )

W
.

We then put a constraint on the decay rate. Using similar technique as we did when deriving
(22), we could get

L ≥ θ0 ⇔ ΛD̂(θ0)/θ0 ≥ Āi,∀i ∈ E.

Note that under the assumption of deterministic arrival, we have the effective bandwidth of
arrival process equals to its mean, i.e., ΛA

i (θ0)/θ0 = Āi. Therefore, the effective capacity region
of Q-SCHED is such that the sum of effective bandwidth in each interference range is no greater
than ΛD̂(θ0)/θ0. Note that

ΛD̂(θ0)

θ0

=
ε+ (1− ε)eθ0

θ0

≥ 1− ε, for all θ0 > 0.

Thus, under the assumption of deterministic arrival the effective capacity region of Q-SCHED
at a given constraint is at least 1−ε

2
of that of any other algorithms.

5.2 Infinite Number of Minislot

In this case, we assume that the number of minislot M is infinite. We also assume that the
variable η in Lemma 2 is 1, which implies that ε in Lemma 2 equals to 0. It follows that the rate
function of D̂ will be:

ID̂(d) =

{
0, d = 1
∞, otherwise

Consequently, the right-hand-side of (12) can be simplified

−min
i∈E

inf
a≥W+1

IAi (a).

The lower bound of I0(~λ) will be:

L = inf
W≥0

min
i∈E

inf
a≥W+1

IAi (a)/W

For any i, we know Āi < 1 < W + 1. Hence

L = inf
W≥0

min
i∈E

IAi (W + 1)

W
.
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Using the same method as in the previous section, if we pose a constraint on the decay rate, e.g.
if we want to guarantee that L ≥ θ0, then we could get the “effective bandwidth” in this case:

max
i∈E

ΛA
i (θ0)

θ0

≤ 1.

This result implies that, at a given θ0, the effective capacity region of the Q-SCHED algorithm
is such that the sum of the effective bandwidth in each interference range is no greater than 1.
Comparing with (19), we note that the effective capacity region of Q-SCHED is at least 1/2 of
that of any other algorithms.

5.3 Bounded Subgradient of Arrival Rate Function IA
i (a)

We now assume that the subgradient of the arrival rate function IAi (a) could be bounded on
[W,W + 1− ε], i.e., ∃K ≥ 0 such that

∣∣∂IAi (a)
∣∣ ≤ K. Let βε ∈ [0, 1− ε] be the point such that

ID̂(βε) = −K. Note that if d < βε, then
∣∣∂IAi (d+W )

∣∣ < K ≤
∣∣∣ d

dd
ID̂(d)

∣∣∣. Because the point t

that minimizes IAi (d+W ) + ID̂(d) should satisfy

∂IAi (t+W ) + I ′D̂(t) = 0,

t must then be greater than βε, otherwise equality cannot hold. Hence,

inf
d≤1−ε

IAi (d+W ) + ID̂(d) = IAi (t+W ) + ID̂(t) ≤ IAi (βε).

Then, we get a lower bound of I0(~λ):

I0(~λ) ≥ L ≥ inf
W≥0

min
i∈E

IAi (βε)

W
.

For a given arrival process, as ε goes to 0, the graph of I ′D̂(d) become sharper and sharper. The

absolute value of its derivate will also increase at all points. We know that I ′D̂(1− ε) = 0, so we
can conclude that as ε goes to 0, βε will approach 1. Therefore, this lower bound will approach
our result in the previous section.

Again, using the concept of effective bandwidth, we have

max
i∈E

ΛA
i (θ0)

θ0

≤ βε.

This means the effective capacity region of Q-SCHED is at least βε
2

of that of any other algorithms.

6 Conclusion

In this paper, we developed a lower bound on the decay rate of the overflow probability for
scheduling algorithm for ad-hoc wireless networks the Q-SCHED. We also show that the effective
capacity that Q-SCHED could support is a provable fraction of the maximum possible effective
capacity over all other algorithms, subjects to a given constraint on the decay-rate of the queue-
overflow probability. For future works, we will extend the approach of this paper to other wireless
scheduling algorithms and other types of performance guarantees.
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