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Abstract

In this paper, we characterize the performance limits of an important class of scheduling schemes,

called Greedy Maximal Matching (GMM), for multi-hop wireless networks. For simplicity, we focus

on the well-established node-exclusive interference model, although many of the stated results can be

readily extended to more general interference models. The study of the performance of GMM is intriguing

because although a lower bound on its performance is well known, empirical observations suggest that

this bound is quite loose, and that the performance of GMM is often close to optimal. In fact, recent

results have shown that GMM achieves optimal performance under certain conditions. In this paper, we

provide new analytic results that characterize the performance of GMM through the topological properties

of the underlying graphs. To that end, we generalize a recently developed topological notion called the

local pooling condition to a far weaker condition called the σ-local pooling. We then define the local-

pooling factor on a graph, as the supremum of all σ such that the graph satisfies σ-local pooling. We

show that for a given graph, the efficiency ratio of GMM (i.e., the worst-case ratio of the throughput of

GMM to that of the optimal) is equal to its local-pooling factor. Further, we provide results on how to

estimate the local-pooling factor for arbitrary graphs and show that the efficiency ratio of GMM is no

smaller than d∗/(2d∗− 1) in a network topology of maximum node-degree d∗. We also identify specific

network topologies for which the efficiency ratio of GMM is strictly less than 1.
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I. INTRODUCTION

Over the last few years there has been significant interest in studying the scheduling problem for

multi-hop wireless networks [1]–[11]. In general, this problem involves determining which links should

transmit (i.e., which node-pairs should communicate) and at what times, what modulation and coding

schemes should be used, and at what power levels should communication take place. While the optimal

solution of this scheduling problem has now been known for a long time [2], the resultant solution is

extremely complex and virtually impossible to implement.

Recently, several researchers have developed simpler scheduling solutions for an important class of

interference models called the node-exclusive (or primary interference model. Under this interference

model, a node cannot simultaneously transmit or receive, and cannot simultaneously communicate with

two or more nodes in the network. The node-exclusive model is a good representation for practical wireless

systems using Bluetooth or FH-CDMA networks [1], [12], [13]. Under this model, the scheduling problem

can be mapped to a matching problem, i.e., any active set of links must form a matching of the nodes in

the network. In this setting, there exists a polynomial-time optimal solution called the Maximum Weighted

Matching (MWM) policy. However, the complexity of MWM is roughly O(N 3) [14], where N is the total

number of nodes in the network. Hence, it is still too complex to implement in most practical scenarios.

To address this issue, a well-known suboptimal solution called the Greedy Maximal Matching (GMM)

has been developed that significantly reduces the scheduling complexity [1], [15], [16]. We can charac-

terize the performance of GMM through its efficiency ratio γ∗, which is the largest number γ such that

for any offered load ~λ that the optimal MWM policy can support, GMM can support γ~λ. It is relatively

straightforward to show that the efficiency ratio of GMM is at least 1/2, i.e., GMM can sustain at least

half of the throughput of the optimal MWM policy. In fact, simulation results suggest that the performance

of GMM is often much better than this lower bound in most network settings. Further, it has been shown

recently that if the network topology satisfies the so-called local pooling condition [17], [18], then GMM

can in fact achieve the full capacity region. Unfortunately, realistic network topologies may not satisfy

the local pooling condition, and hence their true efficiency ratio remains unknown.

In this paper, our main contribution is to provide new analytical results on the achievable efficiency

ratio of GMM for a large class of network topologies. Such an evaluation is important for the following

reasons:

• It has been empirically observed in [3] that the throughput achieved by GMM is virtually the same

as the maximum achievable throughput for a variety of networking scenarios.
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• GMM can be implemented in a distributed manner [19], which is critical from the point of view

of many multi-hop networking systems. Further, even simpler constant-time-complexity random

algorithms can be developed to approximate the performance of GMM [3].

• Although many distributed scheduling schemes have been recently developed [7], [9]–[11], the

study of GMM continues to remain attractive because, empirically, GMM performs better than these

schemes [8], either in terms of the achievable throughput, or in terms of the resultant queueing delay.

In this paper, we provide two main results along this direction. First, we generalize the notion of

local pooling in [17], and derive an equivalent characterization of the efficiency ratio of GMM through

a topological property, i.e., the local-pooling factor, of the underlying network graph. In particular, we

show that the efficiency ratio of GMM under a given network topology is equal to its local-pooling factor.

Second, we provide preliminary results for estimating the local-pooling factor of arbitrary network graphs.

Using these results, we are able to identify network topologies where the efficiency ratio of GMM could

be low.

The rest of the paper is organized as follows. We first describe our model in Section II. We then

introduce the notion of local-pooling factor and show in Section III that the efficiency ratio of GMM

under an arbitrary network topology is equal to its local-pooling factor. In Section IV, by characterizing

the set of unstable links under GMM, we provide preliminary results for estimating the local-pooling

factors under arbitrary network graphs. These results lead to the discovery of network graphs where the

efficiency ratio of GMM is low. We conclude in Section V.

II. NETWORK MODEL

We model a wireless network by a graph G(V,E), where V is the set of nodes, and E is the set

of undirected links. We assume a time-slotted system, where the length of each time slot is of unit

length. We assume that in each time slot, a link can transmit one packet provided that the following

node-exclusive interference constraint is satisfied: if a link l is transmitting data, then no other links that

share a common transmitter node or receiver node with link l can transmit at the same time. Hence, any

active set of links must form a matching of the nodes in V .

Let ME be a maximal matching on E, i.e., no more links can be added to ME without violating the

node-exclusive interference constraint. We use a vector in {0, 1}|E| to denote a maximal matching ME

such that the k-th element is set to 1 if link k ∈ E is included in the maximal matching ME , and to

0 otherwise. Let ME be the set of all possible maximal matchings and let Co(ME) denote its convex

hull.
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We assume that packets arrive to each link l according to a stationary and ergodic process, and the

average arrival rate is λl. The capacity region (or the stability region) under a given scheduling policy

is defined as the set of arrival rate vectors ~λ = [λ1, λ2, . . . , λE ] such that the system is stable (i.e., all

queues are kept finite). It can be shown that the optimal capacity region Λ is given by [2], [20]–[22],

Λ =
{

~λ
∣

∣ ~λ � ~φ, for some ~φ ∈ Co(ME)
}

, (1)

where ~x � ~y denotes that ~x is component-wise dominated by ~y. It is well-known that the Maximal

Weighted Matching (MWM) policy can achieve this optimal capacity region under the node-exclusive

interference model. However, its computational complexity (O(N 3)) is high. In this paper, we are

interested in a suboptimal (but much simpler) policy called Greedy Maximal Matching (GMM). GMM

operates as follows: at each time slot, it first picks the link l with the largest backlog; it then discards

all links that interfere with link l; it then picks the link with the largest backlog from the remaining

links; and this process continues until no links are left. As we discussed in the introduction, in this paper

we are interested in characterizing the efficiency ratio of GMM under arbitrary network topologies. We

formally define the notion of efficiency ratio as follows.

Definition 1: For a suboptimal scheduling policy, e.g., GMM, we say that it achieves a fraction γ of

the capacity region under a given network topology if it can keep the system stable for any offered load
~λ ∈ γΛ.

Definition 2: The efficiency ratio γ∗ of a scheduling policy under a given network topology is the

supremum of all γ such that the policy can achieve a fraction γ of the capacity region, i.e.,

γ∗ := sup{γ | the system is stable under all offered

load vectors ~λ such that ~λ � γ~φ

for some ~φ ∈ Co(ME)}.

(2)

III. AN EQUIVALENT CHARACTERIZATION OF THE EFFICIENCY RATIO OF GMM

In this section, we derive an equivalent characterization of the efficiency ratio of GMM under arbitrary

network topologies. We first recall the following definition of local pooling from [17]:

Definition 3: Given a network graph G(V,E), a set of links L ⊂ E satisfies local pooling, if there

exists a nonzero ~α ∈ R|L|
+ such that ~αT ~φ is a positive constant for all ~φ ∈ Co(ML). The graph G(V,E)

satisfies local pooling if every L ⊂ E satisfies local pooling.
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An example of graphs that satisfy local pooling is the triangular network topology with three nodes

and three links. In this graph, we have three maximal matchings; [1, 0, 0], [0, 1, 0], and [0, 0, 1], where

[·] represents a column vector. For any convex combination ~φ of these three vectors, we have ~αT ~φ = 1

with ~α = [1, 1, 1].

Note that if a set of links L satisfies local pooling, no vector in Co(ML) strictly dominates another

vector in Co(ML)1. Dimakis and Walrand [17] have shown that if a network graph satisfies local pooling,

GMM achieves the full capacity region.

In this paper, we are interested in arbitrary network topologies that may not satisfy local pooling. We

now generalize the notion of local pooling to that of the local-pooling factor.

Definition 4: A set of links L satisfies σ-local pooling, if σ~µ � ~ν for all ~µ, ~ν ∈ Co(ML). In other

words, for all ~µ, ~ν ∈ Co(ML), there must exist some k ∈ L such that σµk < νk.

Note that if a graph, e.g., the triangular network topology, satisfies local pooling, then it must satisfy

σ-local pooling for any σ < 1. We can prove this by contradiction. Suppose that there exist two convex

combinations ~φ1, ~φ2 and σ < 1 such that σ~φ1 − ~φ2 � ~0. Since the graph satisfies local pooling, there

exists ~α such that ~αT ~φ1 = ~αT ~φ2 > 0. Multiplying ~α to both sides of σ~φ1− ~φ2 � ~0, we obtain σ−1 ≥ 0,

which contradicts the assumption.

Definition 5: The local-pooling factor of a graph G(V,E) is the supremum of all σ such that every

subset L ∈ E satisfies σ-local pooling. In other words,

σ∗ := sup{σ| σ~µ � ~ν for all L and all ~µ, ~ν ∈ Co(ML)}

= inf{σ| σ~µ � ~ν for some L and some ~µ, ~ν ∈ Co(ML)}.

(3)

By definition, if the local-pooling factor of a graph is σ∗, then every subset L ⊂ E must satisfy σ∗-local

pooling. Note that Definition 3 of local pooling corresponds to σ∗ = 1. The results of [17] imply that if

the local-pooling factor of the graph is 1, then the efficiency ratio of GMM will be 1. We next generalize

this result to the case when σ∗ < 1. We start with two lemmas.

Lemma 6: If the local-pooling factor of a graph G(V,E) is σ∗, then the efficiency ratio γ∗ of GMM

under this network topology is no smaller than σ∗.

Proof: We need to show that for any offered load ~λ strictly within σ∗Λ, the network is stable under

GMM. We prove stability by finding a Lyapunov function with negative drift for the fluid limit model of

1We can prove this by contradiction. Suppose that there exist ~φ1, ~φ2 ∈ Co(ML) such that ~φ1 � ~φ2. Multiplying ~α to both
sides, we obtain ~αT ~φ1 > ~αT ~φ2, which contradicts the assumption.
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the system.

We first define the fluid limit model of the system as in [4], [23]. Let Al(t) denote the number of

packets that arrive at link l at time slot t and let Sl(t) denote the number of packets that link l can serve

at time slot t. Let Ql(t) denote the number of packets queued at link l at the beginning of time slot t.

The queue length then evolves according to the following equation:

Q(t + 1) = [Ql(t) + Al(t) − Sl(t)]
+,

where [·]+ denote the projection to non-negative real numbers. We can interpolate the values of Al(t)

and Sl(t) to all non-negative real number t by setting Al(t) = Al(btc) and Sl(t) = Sl(btc), where btc

denotes the largest integer smaller than or equal to t. We also interpolate the values of Ql(t) by linear

interpolation between btc and btc+ 1. Then, using the techniques of Theorem 4.1 of [23], we can show

that, for almost all sample paths and for all positive sequence xn → ∞, there exists a subsequence xnj

with xnj
→ ∞ such that the following convergence holds uniformly over compact intervals of time t:

For all l ∈ E,

1

xnj

∫ xnj
t

0
Al(s)ds → λlt,

1

xnj

∫ xnj
t

0
Sl(s)ds →

∫ t

0
πl(s)ds,

1

xnj

Ql(xnj
t) → ql(t).

Moreover, for all l ∈ E, the limits ql(t) and πl(t) satisfy

d

dt
ql(t) =







λl − πl(t), if λl − πl(t) ≥ 0, or ql(t) > 0,

0, otherwise,

and πl(t) must satisfy the requirement of GMM. Any such limit [~q(t), ~π(t)] is called a fluid limit of the

system.

We now use the idea from [17] and show that for any offered load λ strictly within σ∗Λ, the largest

queue length of the fluid limit model always decreases under GMM. Note that ql(t) is absolutely

continuous, and hence its derivative exists almost everywhere. Consider those times t when the derivative
d
dt

ql(t) exists for all l ∈ E. Let L0(t) denote the set of links with the longest queue at time t, i.e.,

L0(t) :=

{

l ∈ E
∣

∣

∣
ql(t) = max

k∈E
qk(t)

}

.
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Let L(t) denote the set of links with the largest derivative of the queue length among the links in L0(t),

L(t) :=

{

l ∈ L0(t)
∣

∣

∣

d

dt
ql(t) = max

k∈L0(t)

d

dt
qk(t)

}

.

Then, the links in L(t) will have the longest queue within a small time interval (t, t + δ]. Hence, GMM

will try to serve these links first. Let the service rate vector of GMM be ~π(t). Note that ~π(t) must be a

convex combination of the maximal matchings on L(t), i.e., ~π(t) ∈ Co(ML(t)). Since the local-pooling

factor is σ∗, and ~λ falls strictly within σ∗Λ, there must exist a k ∈ L(t) such that λk < πk(t).

Define

ε∗ := inf
~π∈Co(ML),L⊂E

{

max
k∈L

(πk − λk)

}

. (4)

Note that ε∗ > 0 since the local pooling factor is σ∗ and ~λ falls strictly within σ∗Λ. Hence, by the earlier

argument, there exists a k ∈ L(t) such that λk −πk(t) ≤ −ε∗. This implies that d
dt

ql(t) = d
dt

qk(t) ≤ −ε∗

for all l ∈ L(t), i.e., the largest queue length must decrease in the time interval (t, t + δ].

Therefore, we can pick the Lyapunov function as V (t) := maxl∈E ql(t). We have, if V (t) > 0,

D+

dt+
V (t) ≤ max

l∈L0(t)

d

dt
ql(t) =

d

dt
qk(t)

∣

∣

∣

∣

k∈L(t)

≤ −ε∗,

where D+

dt+
V (t) = limδ↓0

V (t+δ)−V (t)
δ

. Since this is true for almost every t, it implies that the fluid limit

model of the system is stable. By Theorem 4.2 of [23], the original system is also stable.

Lemma 6 shows that the efficiency ratio of GMM under an arbitrary network graph is no smaller than

the local-pooling factor, i.e., γ∗ ≥ σ∗.

The next lemma shows that γ∗ ≤ σ∗.

Lemma 7: If there exist a subset of links L ⊂ E, a positive number σ, and two vectors ~µ, ~ν ∈ Co(ML)

such that σ~µ � ~ν, then, for arbitrarily small ε > 0, there exists a traffic pattern with offered load ~ν + ε~eL

such that the system is unstable under GMM, where ~eL is a vector with el = 1 for l ∈ L and el = 0 for

l /∈ L.

Remark: Since ~ν ∈ σΛ, Lemma 7 implies that the efficiency ratio of GMM under this network topology

is no greater than the local-pooling factor, i.e., γ∗ ≤ σ∗.

Proof: We will construct a traffic pattern with offered load ~ν +ε~eL based on ~ν, and show that under

this traffic pattern, the queue length will increase to infinity under GMM.
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Let ℵ denote the number of all maximal matchings Mi on L. Since ~ν is a convex combination of these

maximal matchings, it can be written as

~ν =
ℵ−1
∑

i=0

wiMi,

where wi ≥ 0 for all 0 ≤ i ≤ ℵ− 1, and
ℵ−1
∑

i=0

wi = 1.

(5)

For each wi, we can find a rational number vi such that |wi − vi| ≤
δ
ℵ for any δ > 0 and thus,

ℵ−1
∑

i=0

|wi − vi| ≤ δ. (6)

Using these rational numbers, we define a new vector ~ν ′ :=
∑ℵ−1

i=0 viMi.

We now construct a traffic pattern with offered load ~λ = ~ν ′ + ε~eL such that the system is unstable

under GMM. We assume that packets arrive to a link before a time slot and the queue of all links in L

is empty at the beginning.

Let T denote the smallest number such that, for all i, viT is an integer. Let ti = viT . Assume without

loss of generality that tℵ−1 ≥ 1.

• For the first t0 time slots, we apply one packet every time slot to links included in M0. Then, each

time slot, GMM serves all the links included in M0 since they have the longest queues and do not

interfere with each other. Hence, at the end of t0 time slots, all queues in L will have the same

queue length.

• Similarly, for each i = 1, 2, . . . ,ℵ− 2, we apply one packet every time slot for ti time slots to links

included in Mi. For the same reason as above, in each of ti time slots, GMM serves all links in

Mi since they have the longest queues. At the end of each of the ti time slots, all queues in L will

have the same queue length.

• For i = ℵ − 1, we apply one packet every time slot for tℵ−1 − 1 time slots to links included in

Mℵ−1. Then in the next time slotm with probability 1 − ε′, we apply one packet to links included

in Mℵ−1, and with probability ε′, apply two packets to links included in Mℵ−1 and one packet to

all other links in L. Note that GMM still serves the links in Mℵ−1 in each of the tℵ−1 time slots.

Hence, at the end of tℵ−1 time slots, all queues L will still have the same queue length. However,

with probability ε′, the queue length increases by 1.

The above pattern then repeats itself so that the same pattern of arrivals occurs every
∑ℵ−1

i=0 ti time slots.
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(a) Topology (b) Maximal matching M0 (c) Maximal matching M2

Fig. 1. The 6-link cycle network and the instances of maximal matching. The solid lines in (b) and (c) are the active links.

Note that the average arrival rate of this traffic pattern is (
∑ℵ−1

i=0 tiMi+ε′~eL)/(
∑ℵ−1

i=0 ti) and the queue

length increases by 1 with probability ε′ every
∑ℵ−1

i=0 ti time slots. Letting ε = ε′
P

ti
, then (

∑ℵ−1
i=0 tiMi +

ε′~eL)/(
∑ℵ−1

i=0 ti) = ~ν ′+ε~eL. Hence, we have shown that the system with offered load ~ν ′+ε~eL is unstable

under GMM. From (6), we can choose δ such that the difference between ~ν ′ and ~ν arbitrary small. Hence,

the system with ~ν + ε~eL is unstable under GMM.

Note that the key to the proof is to construct a traffic pattern such that (i) it keeps all queues in L of

the same length, and (ii) it injects packets according to the maximal matchings that form the vector ~ν so

that these maximal matchings will be picked by GMM.

Example: The following example illustrates how such a traffic pattern can be constructed in the 6-

link cycle network shown in Fig. 1. We number all links clockwise from 0 to 5. All possible maximal

matchings under this network graph are listed below.

• M0 = [1, 0, 1, 0, 1, 0], M1 = [0, 1, 0, 1, 0, 1],

• M2 = [1, 0, 0, 1, 0, 0], M3 = [0, 0, 1, 0, 0, 1[, M4 = [0, 1, 0, 0, 1, 0].

Note that the number of links included in a maximal matching is three for M0 and M1, and is two for

M2, M3, and M4. Figs. 1(b) and 1(c) show the two instances of the maximal matchings, i.e., M0 and

M2. Note that if we choose two vectors ~µ, ~ν from the convex set of maximal matchings Co({Mi}) as

~µ =
1

2
M0 +

1

2
M1 =

[

1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2

]

~ν =
1

3
M2 +

1

3
M3 +

1

3
M4 =

[

1

3
,
1

3
,
1

3
,
1

3
,
1

3
,
1

3

]

.

then 2
3~µ � ~ν.
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We now construct a traffic pattern with offered load ~λ = ~ν + ε
3~e such that the system is unstable under

GMM, where ~e = [1, 1, 1, 1, 1, 1] and ε is a small positive number. Assume that all queues in the system

are of the same length at time 0.

1) 1st time slot: One packet is applied to links 0 and 3. Since GMM gives priority to links with a

longer queue, it will serve links 0 and 3. Therefore, at the end of time slot 1, all queues will still

have the same length.

2) 2nd time slot: One packet is applied to links 1 and 4. For the same reason as above, GMM will

serve links 1 and 4, and all queues will still have the same length at the end of time slot 2.

3) 3rd time slot: With probability 1 − ε, one packet is applied to links 2 and 5. With probability ε,

two packets are applied to links 2 and 5, and one packet is applied to all other links. In both cases,

links 2 and 5 have the longest queue and will be served by GMM. At the end of time slot 3, all

queues still have the same length. However, with probability ε, the queue length increases by 1.

The pattern then repeats itself.

Over all links, the arrival rate is 1
3 + ε

3 and the queue length increases by 1 with probability ε every

three time slots. Hence, the system with offered load ~ν + ε
3~e is unstable under GMM. However, the

optimal MWM policy can support the offered load ~µ = 3
2~ν in this example. Hence, the efficiency ratio

of GMM is no greater than 2
3 in this 6-link cycle network.

From Lemmas 6 and 7, we can conclude that:

Proposition 8: The efficiency ratio γ∗ of GMM under a given network topology is equal to its local-

pooling factor σ∗.

This result provides an equivalent characterization of the efficiency ratio of GMM through the topologi-

cal properties (i.e., the local-pooling factor) of the given graph. Unfortunately, it can still be quite difficult

to compute the local-pooling factor for an arbitrary network graph. We next present some preliminary

results for estimating the local-pooling factors.

IV. ESTIMATES OF THE LOCAL-POOLING FACTOR FOR ARBITRARY NETWORK GRAPHS

In this section, we would like to answer the following questions: (i) how do we estimate the local-

pooling factor of a given graph? and (ii) what types of graphs will have low local-pooling factors?

We now argue that both questions are intimately related to the characterization of the possible sets of

unstable links. Note that in order to claim σ∗ ≤ σ, we must find a subset of links L, and two vectors

~µ, ~ν ∈ Co(ML) such that σ~µ � ~ν. In fact, in the proof of Lemma 7, we show that for any ε > 0, there
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exists a traffic pattern with offered load ~ν + ε~eL such that the queues of all links in L increase to infinity

together under GMM. Hence, a starting point to search for ~µ and ~ν would be to find out which subset

of links L could have queue length increasing to infinity together under GMM at such an offered load
~λ ∈ Λ = ~ν + ε~eL and under such a traffic pattern. In this paper, we provide some preliminary results

along this direction.

To avoid confusion, we let Y denote the set of links in E whose queue lengths increase to infinity

together under GMM at offered load ~λ = ~ν + ε~eY , where ~ν ∈ Co(MY ). By constructing the traffic

pattern as in (1)-(3) earlier in the proof of Lemma 7, we have Ql(t) = 0 for all l /∈ Y , Ql(t) = Q(t) for

all l ∈ Y , and Q(tk) → ∞ for a sequence {t1, t2, . . . ,∞}. We refer to the links in Y as the unstable

links. Let X denote the set of nodes connected to any of the links in Y . We call the graph U(X,Y )

an unstable subgraph of G(V,E), We next define the notion of an isolated unstable link and an open

unstable link in the unstable subgraph U(X,Y ).

Definition 9: A link l ∈ Y connecting two nodes n1 and n2 is an isolated unstable link if both n1

and n2 are of degree 1 in the unstable subgraph U(X,Y ).

Definition 10: A link l ∈ Y connecting two nodes n1 and n2 is an open unstable link if either n1 or

n2 is of degree 1 in the unstable subgraph U(X,Y ).

We have the following two results.

Lemma 11: If ~λ = ~ν + ε~eY is strictly within Λ, then there is no isolated unstable link in Y under

GMM.

Proof: Suppose that Y includes an isolated link l. By assumption, link l has no neighboring links

in Y and should be included in all maximal matchings on Y . As a result, link l will be selected at all

time slots by GMM. Since λl < 1, the queue length of link l cannot increase to infinity. This contradicts

the assumption that link l is unstable.

Lemma 12: If ~λ = ~ν + ε~eY is strictly within Λ, there is no open unstable link in Y under GMM.

Proof: Suppose that Y includes an open unstable link l0 = (n1, n2). Without loss of generality,

assume that node n1 is shared by other unstable links {l1, l2, . . . , li} ⊂ Y , and node n2 is of degree 1

in Y .

Note that every maximal matching on Y should include at least one of the links l0, l1, . . . , li; because,

if none of l1, . . . , li is included, link l0 should then be included in order for the matching to be maximal

in Y . Hence, under GMM, the sum of the service rates over all of these links is 1 at all time slots. Recall

that all queues of links l0, l1, . . . , li are of the same length at t = t1, t2, . . . . Since
∑

k∈{l0,l1,...,li}
λk < 1,
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(a) Node n0 is black (b) Node n0 is white

Fig. 2. Maximal matchings on an unstable network with a degree-d node n0.

these links cannot be unstable. This contradicts the assumption that the queues of these links increase to

infinity together.

The above two lemmas imply that any link in Y must belong to a cycle formed by links in Y . Note

that it immediately implies the result that GMM achieves the full capacity region in tree networks [17],

[18].

In the following lemma, we characterize the property of the unstable subgraph when the arrival rate ~λ

is within γΛ.

Lemma 13: Suppose γ ∈ (1/2, 1] and ~λ = ~ν + ε~eY is strictly within γΛ, then the degree of every

node v ∈ X in the unstable subgraph U(X,Y ) must be larger than γ
2γ−1 .

Proof: We consider a node n0 ∈ X of degree d (in X) with neighbors {n1, n2, . . . , nd} ⊂ X .

Let li denote link (n0, ni) and let Li denote the set of unstable links connected to ni, excluding li, i.e.,

Li = Y ∩ E(ni)\{li}, where E(ni) ⊂ E is the set of links that are connected to node ni.

Observe that all maximal matchings on Y must fall into one of the following two cases:

1) A maximal matching on Y includes a link li. In this case, we say that node n0 is black (see

Fig. 2(a)).

2) A maximal matching on Y includes a link from each Li. In this case, we say that node n0 is white

(see Fig. 2(b)).
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We first show that the fraction of time that n0 is black (the first case) is no more than γ. Let λn :=
∑

l∈E(n) λl denote the arrival rate at node n, and let Dn :=
∑

l∈E(n) Dl denote the departure rate at node

n, where Dl is the departure rate at link l. Note that the optimal capacity region Λ is bounded by

Λ ⊂ Ψ :=







~λ
∣

∣

∣

∑

l∈E(n)

λl ≤ 1, for all n ∈ E







.

By assumption ~λ ∈ γΛ, we have

∑

l∈E(n0)∩Y

λl ≤
∑

l∈E(n0)

λl = λn0
≤ γ. (7)

If the fraction of time that n0 is black is greater than γ, then the arrival rate at node n0 will be smaller

than the service rate at n0, which implies that the queues at the links incident to node n0 cannot increase

to infinity together. This contradicts our assumption.

We next count the total service rates over all nodes n0, n1, . . . , nd. Let β denote the fraction of time

that node n0 is black, 0 ≤ β ≤ γ. If node n0 is black, then at least two nodes (one is n0) are served. If

node n0 is white, then nodes {n1, n2, . . . , nd} are served. Hence, we have

d
∑

k=0

Dnk
≥ 2β + d(1 − β) ≥ 2γ + d(1 − γ). (8)

In the last inequality, we have used 0 ≤ β ≤ γ and d ≥ 2 (by Lemma 12).

Using the assumption that ~λ falls strictly in γΨ, we have

d
∑

k=0

λnk
< γ(d + 1). (9)

We must have
d

∑

k=0

Dnk
≤

d
∑

k=0

λnk
, (10)

since, otherwise, the queue lengths of these links cannot increase to infinity together. Combining (8), (9),

and (10), we obtain

d >
γ

2γ − 1
. (11)

The above lemma immediately implies the second main result of the paper.

Proposition 14: For a given network graph G(V,E) where the largest node degree is d∗, the efficiency
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ratio γ∗ of GMM must be no smaller than d∗

2d∗−1 .

Proof: Suppose that the efficiency ratio is smaller than d∗

2d∗−1 . Then, according to Proposition 8,

we have σ∗ < d∗

2d∗−1 . Hence, from Definition 5, there must exist a subset L ⊂ E and ~µ, ~ν ∈ Co(ML)

such that σ~µ ≥ ~ν for some σ < d∗

2d∗−1 . Using Lemma 7, there exists a traffic pattern with ~λ = ~ν + ε~eL,

such that the queue lengths of links in L increase to infinity together. By choosing ε small, we can have
~λ fall strictly in d∗

2d∗−1Λ. Then, using Lemma 13, the degree of every node in the unstable graph must

be larger than d∗. This contradicts the assumption that the largest node-degree is d∗.

According to Proposition 14, in order to find network topologies where the efficiency ratio of GMM

is low, we must look at those graphs where the maximum node-degree is high. We have been able to

find such graphs where the bound in Proposition 14 is tight with d∗ = 2 and d∗ = 3.

A. An example network scenario with d∗ = 2 and γ∗ = 2
3

We consider graphs with degree two. If the graph is a line, then GMM achieves the full capacity region

by Lemma 12. Let us instead consider th case when the graph forms a cycle. In the proof of Lemma 7,

we show an example of a 6-link cycle network, which has γ∗ ≤ 2
3 . Since this graph has a maximum

node-degree of two, Lemma 13 implies that γ∗ ≥ 2
3 . Therefore, GMM has an efficiency ratio γ∗ = 2

3

in the 6-link cycle network. To the best of our knowledge, this is the first result that provides the exact

efficiency ratio for a network graph where GMM cannot achieve the full capacity region.

B. An example network scenario with d∗ = 3 and γ∗ = 3
5

Fig. 3. Star-pentagon Topology

We consider the graph with node-degree three as shown in Fig. 3. We now find two vectors ~µ, ~ν ∈

Co(ME) such that 3
5~µ = ~ν. Fig. 4 shows six maximal matchings and their corresponding weights.
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(a) M0, weight = 1

6
(b) M1, weight = 1

6
(c) M2, weight = 1

6

(d) M3, weight = 1

6
(e) M4, weight = 1

6
(f) M5, weight = 1

6

Fig. 4. Maximal matchings for constructing ~µ.

The solid lines indicate active links. We choose vector ~µ as a combination of these matchings, i.e.,

~µ =
∑5

i=0

(

1
6Mi

)

. Fig. 5 illustrates another set of maximal matchings. We choose ~ν using these matchings

as ~ν =
∑10

j=6

(

1
5Mj

)

. Note that µl = 1
3 and νl = 1

5 for all links l.

Since 3
5~µ = ~ν, the local-pooling factor σ∗ cannot be greater than 3/5, which implies that the efficiency

ratio of GMM is no greater than 3/5. However, since the node degree is 3, Proposition 14 implies that

the efficiency ratio is no smaller than 3/5. Hence, the efficiency ratio is exactly 3/5.

V. CONCLUSION

In this paper, we have provided new analytical results on the achievable performance of GMM for

a large class of network topologies. We derive our results via a topological approach that extends the

recently developed notion of local pooling to a more general topological notion called σ-local pooling, and

a corresponding notion called local-pooling factor. We show that for a given graph, the efficiency ratio of

GMM is equal to its local-pooling factor. Thus, we are able to focus on the topological property of graphs

to obtain the achievable performance of GMM. However, it turns out that estimating the local-pooling

factor is non-trivial, and may require high complexity for arbitrary network topologies. Nonetheless, by

studying the properties of unstable networks, we are able to provide preliminary results on estimating the

local-pooling factor of arbitrary network topologies. In particular, we show that the local-pooling factor

(and hence the efficiency ratio γ∗ of GMM) of a graph with maximum node degree d∗ is no smaller than
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(a) M6, weight = 1

5
(b) M7, weight = 1

5

(c) M8, weight = 1

5
(d) M9, weight = 1

5
(e) M10, weight = 1

5

Fig. 5. Maximal matchings for constructing ~ν.

d∗/(2d∗ − 1). The tightness of the bound is demonstrated through the 6-link cycle and the Star-pentagon

topologies, where d∗ = 2 and d∗ = 3, respectively.

There remain many interesting open problems in these directions. For example, further research on

the topological properties of graphs could result in a better estimate of the performance limits. We also

expect that different interference models will affect the capacity region of GMM. While our results on

the relationship between the performance of GMM and the local-pooling factor remain the same for a

more general class of interference models, more work needs to be done to evaluate the local-pooling

factor for general interference models. Finally, the authors of [17] show that, if the arrivals satisfy certain

randomness property, GMM may achieve the full capacity region even if the network graph does not

satisfy local pooling. It would be interesting to study whether the results in this paper can be improved

under similar assumptions.
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