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Abstract— We propose two new distributed scheduling poli-
cies for ad hoc wireless networks that can achieve provable
capacity regions. Known scheduling policies that guarantee
comparable capacity regions are either centralized or need
computation time that increases with the size of the network.
In contrast, the unique feature of the proposed distributed
scheduling policies is that they are constant-time policies, i.e.,
the time needed for computing a schedule is independent of
the network size. Hence, they can be easily deployed in large
networks.

I. INTRODUCTION

In this paper, we study the link scheduling problem in
ad hoc wireless networks. In wireless networks, the radio
transmissions at different links can interfere with each other.
Hence, in order to achieve the optimal capacity, it is usually
more efficient to only use a subset of the radio links at each
time [1]. Determining which subset of links should be active
at each time becomes the link scheduling problem, which is
mainly at the MAC layer in the OSI reference model.

Good scheduling policies are those that can achieve large
capacity regions and can be easily computed. Consider a
wireless network with L links, and let λl be the data
rate offered to link l. Let ~λ = [λ1, ..., λL]. The capacity
region under a particular scheduling policy is the set of
data-rate vectors ~λ that the scheduling policy can support
while keeping the queues at all links finite. A scheduling
policy is said to be throughput-optimal if it can achieve the
largest possible capacity region. Known throughput-optimal
policies require solving a global optimization problem at
each time [2], [3], [4], [5]. Such scheduling policies are
inappropriate for ad hoc networks because the distributive
nature of these networks requires simple and decentral-
ized scheduling solutions. Recently, a number of distributed
scheduling policies have been proposed in the literature
[6], [7], [8], [9], [10]. Since the capacity region under a
distributed policy is typically smaller than the optimal one
achieved by the throughput-optimal policy, we define the
efficiency ratio of such a sub-optimal scheduling policy as
the largest number γ such that, given any network topology,
for any ~λ that can be supported by the throughput-optimal
policy, this policy can support γ~λ. In other words, the
scheduling policy with efficiency ratio γ can achieve at least
γ fraction of the optimal capacity region. Related works have
studied a number of distributed scheduling policies that are

shown to achieve provable efficiency ratios. For example,
the maximal matching policy has been shown to achieve an
efficiency ratio of no less than 1/2 under the node-exclusive
interference mode [6]. Similar maximal scheduling policies
are also studied under the bidirectional-equal-power model
and the two-hop interference model [7], [8], [9], [10], where
different bounds on the efficiency ratio are derived.

The problem with these existing distributed scheduling
policies, however, is that the time needed to compute a
schedule still increases with the size of the network. For
example, one of the best known distributed algorithms in
graph theory can compute maximal matching on a graph
in O(log4 N) rounds, where N is the total number of
vertices in the graph [11]. Note that we need to be extra
careful in interpreting this type of results under the context
of ad hoc networks, because these distributed algorithms
assume reliable message passing among neighboring nodes
in each round of the computation. In ad hoc networks, these
messages themselves can interfere with each other. Hence, it
is likely that the actual amount of time needed for computing
maximal matching in ad hoc networks can be much larger
than O(log4 N).

In this paper, we propose two new distributed scheduling
policies. A unique feature of these new policies is that they
are constant-time policies, i.e., the time needed to compute
a schedule is independent of the size of the network. In fact,
our proposed policies only require one round of computation.
Hence, they are more scalable and easier to implement in
large networks. We will provide constant-time distributed
scheduling policies for two types of interference models,
i.e., the node-exclusive interference model and the two-
hop interference model. We will show that our proposed
scheduling policies can achieve comparable efficiency ratios
as some of the non-constant-time policies in the literature.

We believe that the results in the paper offer new insights
for the design of simple and efficient scheduling policies
for ad hoc networks. The rest of the paper is organized
as follows. In Section II, we outline the network model
and review related results. In Sections III and IV, we will
propose the constant-time distributed scheduling policies
for the node-exclusive interference model and the two-hop
interference model, respectively, and derive their efficiency
ratios. We discuss implementation issues in Section V, and
present simulation results in Section VI. Then we conclude.



II. THE SYSTEM MODEL

Consider a wireless network with N nodes and L links.
Each link corresponds to a pair of transmitter node and
receiver node. Let b(l) and e(l) denote the transmitter node
and the receiver node, respectively, of link l. Two nodes
are one-hop neighbors of each other if they are the end-
points of a common link. For each node i, let E(l) denote
the set of links that connect to the one-hop neighbors of
node i, i.e., E(l) is the set of links that node i either acts
as a transmitter or as a receiver. Two links are one-hop
neighbors of each other if they share a common node. Two
links are two-hop neighbors of each other if they have a
common one-hop neighboring link. For each link l, let N 1(l)
denote the set of one-hop neighbors of link l, i.e., N 1(l) =
[E(b(l))∪E(e(l))]\{l}. Further, let N 2(l) denote the set of
two-hop neighbors, i.e., N2(l) =

⋃
k∈N1(l) N1(k)\{l}.

We first assume a single-hop traffic model, i.e., each packet
only needs to traverse one of the L links and then leave the
system. (The extension to the multi-hop case is treated in
Section V.) We assume that time is divided into slots of unit
length. Let Al(t) denote the number of packets arrive at link
l at time slot t. We assume that packets are of unit length,
and the packet arrival process Al(t) is stationary and ergodic.

We will study two types of interference models that govern
the radio transmission. In both models, we say that two
links interfere with each other if they cannot transmit data
together. Under the node-exclusive interference model, each
link l interferes with all of its one-hop neighboring links.
Under the two-hop interference model, each link l interferes
with all of its two-hop neighboring links. In both models,
if the above interference constraints are satisfied, an active
link l can transfer cl packets within the time slot. We further
assume that the system has carrier-sensing capabilities. In
particular, under the one-hop interference model, we assume
that all the one-hop neighboring links of link l can sense the
transmission at link l. Under the two-hop interference model,
we assume that all one-hop neighboring nodes of node i can
sense the transmission from node i.

Remark: The node-exclusive interference model can be
viewed as a generalization of the bipartite graph model for
modeling high-speed packet switches [12], [13]. It has been
used in [6], [14], [15] to model wireless networks. While this
is a somewhat simplified model, the main results can often
be readily generalized to other more complex interference
models, e.g., the two-hop interference model. Note also that
the latter model is very close to the interference model that
IEEE 802.11 DCF (Distributed Coordination Function) deals
with [10].

At time slot t, let M(t) denote the outcome of the schedul-
ing policy, which is defined as the set of non-interfering
links that are chosen to be active at time t. Let Dl(t) denote
the number of packets that link l can serve at time slot t.
Then Dl(t) = cl if l ∈ M(t), and Dl(t) = 0 otherwise.
Let Ql(t) denote the number of packets queued at link l at
the beginning of time slot t, then the evolution of Ql(t) is

governed by

Ql(t + 1) = [Ql(t) + Al(t) − Dl(t)]
+, (1)

where [·]+ denote the projection to [0,+∞).
We say that the system is stable if the queue lengths at

all links remain finite [3], i.e.

lim
T→∞

1

T

T∑

t=1

1
{

L∑
l=1

Ql(t)>η}
→ 0, almost surely as η → ∞.

(2)
Let λl be the mean packet arrival rate at link l, i.e., λl =
E[Al(t)]. Let ~λ = [λ1, ...λL]. As we defined in the Intro-
duction, the capacity region under a particular scheduling
policy is the set of ~λ such that the system remains stable. The
optimal capacity region Ω is the supremum of the capacity
regions of all scheduling policies. A scheduling policy is
throughput-optimal if it can achieve the optimal capacity
region Ω. The efficiency ratio of a (possibly sub-optimal)
scheduling policy is the largest number γ such that the
scheduling policy can stablize the system under any load
~λ ∈ γΩ. By definition, a throughput-optimal scheduling
policy has an efficiency ratio of 1.

A. Related Results

1) Scheduling Policies for the Node-Exclusive Interference
Model: One of the known throughput-optimal scheduling po-
lices under the node-exclusive interference model computes
the set M(t) of non-interfering links at time-slot t such that
M(t) maximizes the sum of the queue-weighted-rates

∑

l∈M(t)

Ql(t)cl. (3)

This scheduling policy is a direct application of the more
general result in [2], [3], [4], [5]. The resulted schedule
corresponds a Maximum-Weighted-Matching (MWM) of
the underlying graph, where the weight of each link is
Ql(t)cl. (Note that a matching is a subset of the links
such that no two links share the same node. The weight
of a matching is the total weight over all links belonging
to the matching. A maximum-weighted-matching (MWM)
is the matching with the maximum weight.) An O(N 3)-
complexity centralized algorithm for MWM can be found
in [17], where N is the number of nodes. On the other
hand, the following much simpler algorithm can be used
to compute a suboptimal schedule that corresponds to a
Greedy Maximal Matching (GMM) [13]: Start from an
empty schedule; From all possible links, pick the link with
the largest weight Ql(t)cl; Add this link to the schedule;
Remove all links that are incident with either the transmitter
node or the receiver node of link l; Pick the link with the
largest weight Ql(t)cl from the remaining links, and add to
the schedule; Continue until there are no links left. The above
centralized GMM algorithm has only O(L log L)-complexity
(where L is the number of links), and is much easier to
implement than MWM. Using the technique in Theorem 10
of [13], we can show that the GMM policy achieves an
efficiency ratio no less than 1/2. There also exist distributed



algorithms that can compute the GMM schedule in O(L)
rounds [18].

The optimal capacity region Ω under the node-exclusive
model is known to be bounded by [16]:

2

3
Ψ0 ⊆ Ω ⊆ Ψ0, (4)

where

Ψ0 =





~λ

∣∣∣∣∣∣
∑

l∈E(i)

λl

cl

≤ 1, for all nodes i



 . (5)

The following Maximal-Matching (MM) policy can be
shown to achieve a capacity region of Ψ0/2, and thus also
has an efficiency ratio of at least 1/2 [6]. The MM policy
simple picks a set M(t) of non-interfering links such that no
more links can be added to M(t) without violating the node-
exclusive interference constraint. To be precise, a Maximal
Matching M(t) is a set of non-interfering links such that:
(a) Ql(t) ≥ 1 for all l ∈ M, and (b) for each link l in the
network, either Ql(t) < 1 or some links in E(b(l))∪E(e(l))
is included in M. The distributed algorithm in [11] can
compute a maximal matching in O(log4 N) rounds.

2) Scheduling Policies for the Two-Hop Interference
Model: Under the top-hop interference model, the optimal
capacity region Ω is bounded by Ω ⊆ Ψ′

0, where

Ψ′
0 =





~λ

∣∣∣∣∣∣
∑

k∈N1(l)

λl

cl

≤ 1, for all l



 . (6)

The policy that maximizes (3) among all set M(t) of
non-interfering links is still throughput-optimal. However,
finding such a set M(t) is generally an NP-Complete
problem [19], [20]. Greedy Maximal Scheduling policy and
Maximal Scheduling policy under the two-hop interference
model can be defined analogously to the GMM and MM
policies, respectively, under the node-exclusive interference
model. The efficiency ratio of these policies is 1/N̂1, where
N̂1 , 1/maxl |N

1(l)| is the maximum number of one-hop
neighboring links of any link [7], [8], [9], [10]. Neither of
the two policies are constant-time scheduling policies.

III. A CONSTANT-TIME DISTRIBUTED SCHEDULING
POLICY FOR THE NODE-EXCLUSIVE INTERFERENCE

MODEL

None of the distributed scheduling policies in Section II-
A can compute a schedule in constant time (i.e., in a time
that is independent of the network size). In this section, we
propose a new distributed scheduling policy for the node-
exclusive interference model that only needs O(1) time to
compute a schedule, and we will show that it achieves an
efficiency ratio at least close to 1/3. The new policy operates
as follows:

Constant-Time Distributed Scheduling Policy P :
At each time slot t:
• Each link l computes a probability pl(t) based on its

own queue-length and that of its one-hop neighboring

links as follows:

pl(t) =

Ql(t)
cl

max[
∑

k∈E(b(l))

Qk(t)
ck

,
∑

k∈E(e(l))

Qk(t)
ck

]
. (7)

• Each link l attempts transmission with probability pl(t),
and does not attempt transmission with probability
1−pl(t). For those links that attempt transmission, each
of them randomly and independently chooses a backoff
time uniformly from {0, 1, ...,M − 1}, where M is a
system-wide positive integer constant. We assume that
all backoff timers start at the beginning of the time slot.
When a link’s backoff timer expires, the transmission at
the link starts, provided that it has not overheard (i.e.,
through carrier-sensing) any other transmission from its
one-hop neighboring links. Hence, the link l whose
backoff timer expires ahead of all of its interfering
links will win, and will be able to successfully transfer
packets in the time-slot. It is possible that two or more
links’ backoff timers expire at the same time, in which
case collision occurs and none of the interfering links
can transfer packets in time-slot t.

We make the following remarks before we derive the
efficiency ratio of Policy P .

Random Backoff: Note that the random backoff proce-
dure in the second step of the policy is typical in random
access protocols (e.g., IEEE 802.11 and Ethernet) to avoid
excessive contention. In practical implementations, the actual
backoff time depends both on the constant M and on how
long each unit of backoff time lasts. In practice, due to
propagation and processing delays, the length of each unit
of backoff time cannot be arbitrarily small. For example, in
IEEE 802.11, each unit of backoff time lasts 20µs. Therefore,
in order to compute the schedule in constant time, we need
to provide an upper bound on M . In Section III-A, we will
see how the efficiency ratio of Policy P depends on M .

Attempt Probability: The choice of the attempt proba-
bility pl is also essential to obtain constant-time scheduling
policies with an efficiency ratio independent of the network
topology. Otherwise, if pl is lower bounded by a constant,
we can show below that the throughput of the system may
drop to zero. To see this, consider the simple example of
L nodes transmitting to a common receiver. Hence, the L
links interfere with each other. Given a fixed value of M ,
the probability that any one of the L links can successfully
transfer data in a given time slot is bounded from above by
the sum of the probability that one link wins with backoff
time equal to 1, plus the probability that no links have
backoff times equal to 1, i.e., bounded by

L∑

l=1

pl

M

∏

k 6=l

(1 −
pk

M
) +

L∏

l=1

(1 −
pl

M
).

If pl is bounded from below by a constant p, then the above
bound will go to zero as L → ∞. Hence, the total system
throughput will drop to zero for any fixed value of M . On
the other hand, since in (7) we set the attempt probability



inversely proportional to the sum of the queue-length at the
interfering links, we reduce the chance of contention in the
neighborhood. As we will see in Section III-A, a fixed value
of M will then be sufficient to guarantee a fixed efficiency
ratio for arbitrary network topologies.

Finally, we note that Policy P can be viewed as an
extension of the Longest-Queue-Driven (LQD) scheduling
algorithm from the switching literature [13]. However, there
are two key differences: (a) in the switching literature, the
network topology is a bipartite graph, while ad hoc network
topology is non-bipartite; (b) in the switching literature,
the transmitting nodes (i.e., input ports) and receiving node
(i.e., output ports) are determined a priori, while in ad hoc
networks a node can alternate its role as transmitter or
receiver from time-slot to time-slot. The proposed policy
P has carefully accounted for these differences through the
random backoff phase in the second part of the policy.

A. The Efficiency Ratio of Policy P

We next show that the efficiency ratio of the above policy
P is at least close to 1/3. We start with some definitions.

Definition 1: Let ~x be a component-wise positive vector
in R

L and let Θ be a convex, closed and bounded subset
in the positive quadrant of R

L. Assume that Θ contains a
neighborhood of the origin. The norm of ~x with respect to
Θ is given by

||~x||Θ =
1

max{k|k ≥ 0, k~x ∈ Θ}
.

The normalized vector x̃ of ~x with respect to Θ is defined
as

x̃ =
~x

||~x||Θ
, (8)

i.e., x̃ is the longest vector in Θ that is in the same direction
as ~x.

The following lemma shows that the above-defined norm
is indeed a norm. Denote ~y � ~x if ~y is component-wise
greater than or equal to ~x.

Lemma 1: 1) ||~x|| ≥ 0.
2) ||x̃|| = 1.
3) If ~y = α~x, where α is a real number, then ||~y|| =

|α| ||~x||.
4) If ~y � ~x, then ||~y|| ≥ ||~x||.
5) ||~x + ~y|| ≤ ||~x|| + ||~y||.

Proof: Parts 1 to 4 follow trivially from the definition.
To show Part 5, let k1 = ||~x|| and k2 = ||~y||. Thus,

~x

k1
∈ Θ,

~y

k1
∈ Θ.

Hence, by the convexity of Θ, we have,

~x + ~y

k1 + k2
=

~x

k1

k1

k1 + k2
+

~y

k2

k2

k1 + k2
∈ Θ.

By the definition of the ||~x + ~y||, we thus have

||~x + ~y|| ≤ k1 + k2.

Now, let ~Q(t) = [Q1(t), ..., QL(t)], where Ql(t) denote
the queue length of link l at the beginning of time slot t. Let
d0

l (t) = pl(t)cl, and let ~d0 = [d0
1, ..., d

0
L].

Lemma 2: ~d0(t) � Q̃(t), where the normalization is with
respect to Ψ0.

Proof: From (5) and (8), we have Q̃(t) = k0
~Q(t), where

k0 is the largest positive number k that satisfies,

∑

l∈E(i)

kQl(t)

cl

≤ 1 for all i.

Hence,

k0 =
1

maxi

∑
l∈E(i)

Ql(t)
cl

.

Using (7), we have pl(t) ≥
k0Ql(t)

cl
. The result then follows.

Lemma 2 shows that, if links that attempt transmission
were to win every time, then the expected amount of service
provided by link l at time-slot t is component-wise no less
than Q̃(t). However, due to the random-backoff procedure
in the second part of Policy P , only a few links that attempt
transmission will win. We next show that, if a link attempts
transmission, the conditional probability that it wins is no
less than 1

3 − 1
M

. In fact, we will prove a more general
result as follows. Fix a particular link 0. Label its interfering
links as 1, .2, ...,K. Let xk denote the the probability that
the k-th interfering link attempts transmission. Assume that
all links follow the random backoff procedure in the second
part of Policy P .

Lemma 3: If
∑K

k=1xk ≤ H , where H ≥ 0, then the
conditional probability that link 0 wins, conditioned on it
attempts transmission, is no less than 1

H+1 − 1
M

.
Proof: Condition the following derivation on the event

that link 0 attempts transmission. Let Y be the random
variable that denote the backoff time of link 0, Conditioned
on Y = y, the probability that link 0 wins is no less than
the probability that all K interfering links either do not
attempting transmission, or have backoff time greater than
y. Note that each interfering link attempts transmission and
chooses its backoff time independently. Let S denote the
event that link 0 wins. We thus have,

P[S|Y = y] ≥

K∏

k=1

[
(M − 1 − y)xk

M
+ (1 − xk)

]

=

K∏

k=1

[
1 −

y + 1

M
xk

]
.

Since Y is uniformly distributed among {0, ...,M − 1}, we
have

P[S] =

M−1∑

y=0

P[S|Y = y]

M

≥

M−1∑

y=0

1

M

K∏

k=1

[
1 −

y + 1

M
xk

]
.



Since
∏K

k=1(1 − uxk) is decreasing in u, we have,

P[S] ≥

∫ 1

1

M

K∏

k=1

(1 − uxk) du

≥

∫ 1

0

K∏

k=1

(1 − uxk) du −
1

M
. (9)

By comparing the derivatives, we can show that
K∏

k=1

(1 − uxk) ≥ (1 − u)H .

Hence,

P[S] ≥

∫ 1

0

(1 − u)H du −
1

M
=

1

H + 1
−

1

M
.

Remark: A special case of Lemma 3 that corresponds to
H = 1 and M = ∞ was shown in Theorem 5 of [13]. Here
we provide a more general result using a much different
proof technique.

Under Policy P , we infer from (7) that, for any link l, the
attempt probabilities of its one-hop neighboring links must
satisfy

∑
k∈E(b(l))

pk(t) ≤ 1 and
∑

k∈E(e(l))

pk(t) ≤ 1. Hence,

the sum of the attempt probabilities over its interfering links
is no greater than 2. We thus obtain the following corollary
to Lemma 3.

Corollary 4: Under Policy P , the conditional probability
that link l wins, conditioned on it attempts transmission, is
no less than 1

3 − 1
M

.
Using Lemma 2 and Corollary 4, we thus conclude that

the average service provided by link l at time-slot t is no
less than Q̃(t)( 1

3 − 1
M

). We can now prove our main result.
Proposition 5: Under Policy P , the network is stable

when ~λ lies strictly inside the set ( 1
3 − 1

M
)Ψ0.

Proof: We will prove stability by finding a Lyapunov
function with negative drift for the fluid model of the
system. The fluid model is defined as follows [12], [21]. We
first interpolate the values of Ql(t) to all non-negative real
number t by linear interpolation between btc and btc + 1
(where btc denote the largest integer no greater than t).
We also define the values of Al(t) and Dl(t) for all real
number t by letting Al(t) = Al(btc), and Dl(t) = Dl(btc).
Then, using the techniques of Theorem 4.1 of [21], we can
show that, for almost all sample paths and for any positive
sequence xn → ∞, there exists a subsequence xnj

with
xnj

→ ∞ such that

1

xnj

Ql(xnj
t) → ql(t) for all l,

1

xnj

∫ xnj
t

0

Al(s) ds → λlt for all l,

1

xnj

∫ xnj
t

0

Dl(s) ds →

∫ t

0

dl(s) ds for all l, (10)

uniformly over compact intervals. Further, let ~q(t) =
[q1(t), q2(t), ...qL(t)] and ~d(t) = [d1(t), d2(t), ..., dL(t)].

Using Lemmas 2 and 3, and the techniques of Theorem 4.1
of [21] again, we can show that the limits ~q(t) and ~d(t)
satisfy the following set of equations: for all l,

d

dt
ql(t) =





λl − dl(t), if λl − dl(t) ≥ 0,
or ql(t) > 0

0, otherwise

ql(t) ≥ 0, and ~d(t) � q̃(t)(
1

3
−

1

M
), (11)

where q̃(t) is the normalized vector of ~q(t) with respect to
Ψ0. Any such limit [~q(t), ~d(t)] is called a fluid limit of the
system. We say that a fluid limit model of the system is stable
if there exists a constant T that depends only on the network
topology, the arrival rates λl and the active link capacities
cl, such that for any fluid limit with ||~q(0)|| = 1, we have
||~q(t)|| = 0 for all t ≥ T [12], [21].

We now use the following Lyapunov function

V (~q(t)) = ||~q(t)||

to show that the fluid limit model of the system is stable,
where the norm is defined with respect to Ψ0. For any small
positive number δt, we have,

V (~q(t + δt))

≤ ||~q(t) + ~λδt − ~d(t)δt|| + o(δt)

≤ ||~q(t) − ~d(t)δt|| + ||~λ||δt + o(δt)

(by Part 5 of Lemma 1)

≤ ||~q(t) − q̃(t)(
1

3
−

1

M
)δt|| + ||~λ||δt + o(δt)

(by (11) and Part 4 of Lemma 1)

= ||~q(t)|| − (
1

3
−

1

M
)δt + ||~λ||δt + o(δt)

(by Parts 2 and 3 of Lemma 1).

When ~λ lies strictly inside the set ( 1
3 − 1

M
)Ψ0, we have

||~λ|| ≤ (
1

3
−

1

M
) − β,

for some constant β > 0. Hence, we have,

dV (~q(t))

dt
≤ −β.

This then shows that the fluid limit model of the system is
stable. By Theorem 4.2 of [21], the original system is also
stable (i.e., positive Harris recurrent).

Remark: For any given ε > 0, we can choose the
maximum backoff time M = 1/ε, which then ensures that
the efficiency ratio of Policy P is no less than 1/3 − ε.
Note that for each ε, the value of M is independent of
the network topology. Hence, we have shown that Policy
P only takes constant time and can guarantee an efficiency
ratio close to 1/3 for arbitrary network topologies. As M →
∞, the guaranteed efficiency ratio goes to 1/3. Hence, the
difference ε is the loss in efficiency due to the constant-
time requirement. We also note that the same technique for
proving Proposition 5 can be used to establish the result of
Theorems 6 and 7 in [13]. Compared with the proofs there,
our construction of the Lyapunov function is new and much



easier to understand. Alternatively, the result of Proposition 5
may be shown using the Lyapunov function in [22].

IV. A CONSTANT-TIME DISTRIBUTED SCHEDULING
POLICY FOR THE TWO-HOP INTERFERENCE MODEL

We next extend the constant-time distributed policy in the
previous section to the two-hop interference model. Under
the two-hop interference model, the best known distributed
scheduling policy can guarantee an efficiency ratio of 1/N̂1,
where N̂1 , maxl |N

1(l)| is the maximum number of one-
hop neighboring links for any link [7], [8], [9], [10]. The
distributed policies in these prior works are not constant-
time policies. We now propose a constant-time distributed
scheduling policy Q that can guarantee a comparable effi-
ciency ratio.

Constant-Time Distributed Scheduling Policy Q:
Let W be a positive number between 1 and N̂1. At each

time slot t:
• Each link l computes a probability pl(t) based on its

own queue-length and that of the interfering links, i.e.

pl(t) =

Ql(t)
cl

max
k∈N1(l)

∑
h∈N1(k)

Qh(t)
ch

×min


1,

W

max
k∈N1(l)

|N1(k)|


 .

• Each link l attempts transmission with probability pl(t),
and does not attempt transmission with probability
1−pl(t). For those links that attempt transmission, each
of them randomly chooses a backoff time uniformly
from {0, 1, ...,M − 1}. We assume that all backoff
timers start at the beginning of the time slot. When
the backoff time of a link l expires, the transmitter
node b(l) of link l will broadcast an RTS to all of its
one-hop neighboring nodes, provided that node b(l) has
not overheard any RTS from these one-hop neighboring
nodes. Once the receiver node e(l) correctly receive the
RTS, it will then respond with a CTS broadcasted to
all of its neighboring nodes. Through this RTS-CTS
procedure, the link l that sends out an RTS before any
of its two-hop neighboring links will win. This link L
can then transfer packets at the rate of cl during the rest
of the time slot. It is possible that two or more links
in a two-hop neighborhood send out RTS together, in
which case collision occurs and none of the interfering
links can transfer data in time-slot t.

We can use similar techniques as in Section III to show
that policy Q guarantees an efficiency ratio close to 1/N̂1.
To see this, note that under the two-hop interference model,
the optimal capacity region Ω is upper bounded by Ψ′

0 in
(6). Define d0

l (t) = pl(t)cl, and let ~d0 = [d0
1, ..., d

0
L]. Using

the technique of Lemma 2, we have

~d0(t) �
W

N̂1
Q̃(t),

where Q̃(t) is the normalized vector of ~Q(t) with respect to
Ψ′

0. Further, for each link l, the sum of the attempt proba-
bilities of its interfering links (i.e., its two-hop neighboring
links) satisfies

∑

k∈N2(l)

pk ≤
∑

k∈N1(l)

∑

h∈N1(k)

ph

≤
∑

k∈N1(l)

W

N1(l)
= W.

Therefore, using Lemma 3 with H = W , and using the
technique of Proposition 5, we can show the following main
result.

Proposition 6: Under Policy Q, the network is stable
when ~λ lies strictly inside the set W

N̂1
( 1
1+W

− 1
M

)Ψ′
0.

Remark: For any fixed W , by choosing M ≥
1

(1+W )(2+W ) , the efficiency ratio of Policy Q is at least
W

(2+W )N̂1
. For each W , the value of M is independent of

the network topology. Hence, we have shown that Policy
Q only takes constant time. As W → N̂1 and M → ∞,
the guaranteed efficiency ratio goes to 1/(1 + N̂1). The
difference

(
1

1+N̂1
− W

(2+W )N̂1

)
is the loss of capacity due

to the constant-time requirement.

V. EXTENSION TO MULTI-HOP NETWORKS AND
DISCUSSIONS

In this section, we extend the constant-time scheduling
policies of the previous sections to multi-hop networks, and
also address the practical implementation issue of commu-
nicating the queue lengths. We will focus on the node-
exclusive interference model (and Policy P ), while the same
methodology can be applied to the two-hop interference
model (and Policy Q) as well.

A. Constant-Time Scheduling Policy for Multihop Wireless
Networks

In Section II, we have assumed a single-hop traffic model,
i.e., each packet only needs to traverse one of the L links and
then leaves the system. We next extend policy P to multi-hop
networks with fixed routing. Assume that there are S end-
users in the system. Each user injects packets at the rate of
xs packets per time-slot. Assume that each user has a fixed
path through the network, and let [H l

s] denote the routing
matrix, where H l

s = 1 if the path of user s traverse link l,
and H l

s = 0 otherwise. Thus, the aggregate data rate on link

l, denoted by λl, is given by λl =
S∑

s=1
H l

sxs. Redefine the

capacity region of the network under a particular scheduling
policy to be the set of ~x = [x1, ..., xS ] such that the system
can remain stable. Then the optimal capacity region ΩM is
upper bounded by,

ΩM ⊂

{
~x

∣∣∣∣∣

[
S∑

s=1

H l
sxs

]
∈ Ψ0

}
,



where Ψ0 is given in (5). If we assume that the “queues” are
updated by

Ql(t + 1) =

[
Ql(t) +

S∑

s=1

H l
sxs − Dl(t)

]+

, (12)

then we can show as in Section III that the system is stable
under Policy P , i.e., Ql(t) satisfies (2), as long as

[
S∑

s=1

H l
sxs

]
∈ (

1

3
−

1

M
)Ψ0.

Thus, we have shown that, under Policy P , the capacity
region of the system is at least ( 1

3 − 1
M

) fraction of the
optimal capacity region ΩM . In other words, the efficiency
ratio of Policy P remains the same for multi-hop networks.

In the above argument, we have assumed in (12) that the
“queues” are updated as if the data rate from each end-
user is applied instantaneously at each link l along the
path. In practice, the packets from each source have to
traverse the path link-by-link. One can show that the above
efficiency ratio will still hold when this additional dynamics
are properly taken into account, e.g. using the “regulator”
technique of [9], [10], or the “virtual queue” technique of
[23], [24].

B. Overhead of Updating the Queue-lengths

Policy P requires knowledge of the queue-length at neigh-
boring links to compute the attempt probability pl(t) at
each link. In practice, updating the queue-length informa-
tion will incur certain amount of communication overhead.
Fortunately, note that in order to ensure the efficiency ratio
in Proposition 5, even delayed queue-length information is
sufficient. To see this, assume that each link periodically
update its queue-length to its one-hop neighboring links.
Let Policy P compute the attempt probability at each link
based on its most recent information about the queue-lengths
at neighboring links. As long as the expected delay in the
queue-length updates is bounded, this delay will not affect
the fluid model (10) of the system, because by the definition
of the fluid model the time-scale has increased to infinity.
Hence, Policy P can still achieve an efficiency ratio no less
than 1

3 − 1
M

even if it is based on delayed queue-length
information.

VI. SIMULATION RESULTS

We have simulated the proposed scheduling policies using
the network topology in Fig. 1. There are 16 nodes (repre-
sented by circles) and 24 links (represented by dashed lines).
The capacity is labeled next to each link. The flows are
represented by arrows. We simulate single-hop flows, and
we let the rate of each flow be λ. Note that although the
rates of the flows are the same, the link capacities and the
flows have been chosen to avoid uniform patterns.

We first simulate Policy P for the node-exclusive inter-
ference model. In Fig. 2, we plot the mean total queue
backlog summed over all links of the network, as the offered
load λ increases. When λ approaches a certain limit, the
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Fig. 2. Performance comparison under the node-exclusive interference
model

average total backlog will increase to infinity. This limit
can then be viewed as the boundary of the capacity region.
We have plotted the curves for Policy P with maximum
backoff window M = 1, M = 10, and M = 20. We can
see that the performance of the scheduling policy is much
worse when M = 1. Hence, the random backoff procedure
is essential. However, once M is above a reasonable number,
the performance will be virtually the same (as we can see for
M = 10 and M = 20). We have also plotted the performance
of the Maximal Matching (MM) policy and the Greedy
Maximal Matching (GMM) policy. Although the efficiency
ratio that can be guaranteed in Proposition 5 is slightly worse
than that of MM, the simulation results indicate that their
actual performance are roughly the same.

We next simulate Policy Q for the two-hop interference
mode and plot the results in Fig. 3. Again, we observe that
the performance of policy Q changes little when the maxi-
mum backoff window changes from M = 10 to M = 20.
Further, the performance is also comparable to the maximal
scheduling policy [7], [10].

VII. CONCLUSION

In this paper, we have proposed two new distributed
scheduling policies for ad hoc wireless networks. The unique
feature of these new distributed scheduling policies is that
they are constant-time policies, i.e., the time needed for com-
puting a schedule is independent of the network size. Hence,
they can be easily deployed in large networks. We have
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Fig. 3. Performance comparison under the two-hop interference model

shown that both scheduling policies can guarantee efficiency
ratios comparable to other known distributed scheduling
policies in the literature.

For future work, we plan to generalize the main techniques
and results to other types of interference models, e.g., the bi-
directional equal power model in [7]. We also note that Pol-
icy Q for the two-hop interference model operates in a very
similar way as IEEE 802.11 DCF (Distributed Coordination
Function). The main difference is: when there is excessive
contention, IEEE 802.11 DCF will increase the backoff
window exponentially; however, Policy Q will reduce the
attempt probability, and keep the backoff window unchanged.
It would be an interested direction for future work to explore
the performance differences of these two approaches. Finally,
in both Fig. 2 and Fig. 3 we observe that the performance
of Greedy Maximal Scheduling policies are typically better
than that of Policies P and Q. This may indicate that the
efficiency ratio of Greedy Maximal Scheduling policies could
have been under-estimated. Further, it would be interesting
to study whether one can develop constant-time distributed
scheduling policies that achieve comparable performance as
these Greedy Maximal Scheduling policies.
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