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Abstract—In this paper, we consider an aggregator that man-
ages a large number of Electrical Vehicle (EV) charging jobs,
each of which requests a certain amount of energy that needs
to be charged before a deadline. The goal of the aggregator is
to minimize the peak consumption at any time by planning the
charging schedules in order. A key challenge that the aggregator
faces in the planning is that there exists significant uncertainty
in future arrivals of EV charging jobs. In contrast to existing
approaches that either require precise knowledge of future
arrivals or do not make use of any future information at all,
we consider a more practical scenario where the aggregator
can obtain a limited amount of future knowledge. Specifically,
we consider a model where a fraction of the users reserve EV
charging jobs (with possible reservation uncertainty) in advance
and we are interested in understanding how much limited future
knowledge can improve the performance of the online algorithms.
We provide a general and systematic framework for determining
the optimal competitive ratios for an arbitrary set of reservation
parameters, and develop simple online algorithms that attain
these optimal competitive ratios. Our numerical results indicate
that reservation can indeed significantly improve the competitive
ratio and reduce the peak consumption.

I. INTRODUCTION

Electrification of transportation is a major national priority
due to its environmental and societal benefits. Converting
fossil-fueled vehicles to EVs can increase the penetration of
cleaner energy sources, improve energy efficiency, decrease
the reliance on fossil fuels, and thus be more sustainable [1].
However, large-scale transportation electrification comes with
both challenges and opportunities. In the US, transportation
consumes 29% of total energy, while electricity consumes
40%. Thus, once a significant portion of transportation is
electrified, if left uncontrolled they will significantly stress the
capacity of the electrical grid. On the other hand, EV charging
is a typical example of a deferrable load, and there is often
considerable flexibility in the charging schedule, which may
be exploited for the purpose of demand response to improve
the overall system stability and efficiency [2].

In this paper, we are interested in developing intelligent EV
charging algorithms under the scenario of an EV aggregator
serving potentially a large number of EVs. Such an EV ag-
gregator can represent a parking lot for an apartment complex
and/or an office building that manages the EV charging of their
customers. The EVs arrive with charging requests, each of
which has a deadline for the charging request to be completed.
This scenario was studied in [10][11] with the goal of mini-
mizing the total energy cost of the aggregator subject to time-

of-day pricing. In contrast, in this paper we focus on a different
optimization objective, where the EV aggregator attempts to
minimize the peak energy consumption at any given time
during a billing period. Such a peak-minimizing objective is
relevant due to the following reasons. First, meeting a higher
peak demand requires a larger generation capacity, which is
usually more expensive and “dirtier”. Further, a large peak
demand closer to the system capacity can potentially be a
source of grid instability. Hence, from the utility provider’s
point of view, it is beneficial if the peak energy consumption
can be reduced. In this regard, having the aggregator to reduce
the peak consumption of a set of EVs can be taken as a
first step towards reducing the overall peak consumption of
the grid. Second, in light of the importance of controlling
the peak consumption, some utility providers have introduced
some forms of peak-based pricing. In this tyoe of pricing
schemes, the customers are charged based on both the total
usage in a billing period and the maximum (peak) usage at
any time in the billing period. Specifically, if a customer’s
energy consumption is given as a sequence (E1, E2, ..., En),
then the total bill is of the form c1

∑
i Ei + c2 maxi{Ei} [9].

In typical schemes (e.g., the Fort Collins Utility [4]), the unit
charge for peak usage c2 (between 4.75$/kWh and 5.44$/kWh)
is over 100 times more than the unit charge for total usage c1
(between 0.0245$/kWh and 0.0367$/kWh). Under this type
of pricing schemes, when the aggregator defers EV charging
jobs, the total energy consumption does not change. It is the
peak demand that is changed. Hence, minimizing the EV
aggregator’s operating cost is also equivalent to minimizing
the peak consumption.

A main challenge for designing peak-minimizing EV charg-
ing algorithms is the uncertainty of future arrivals and de-
partures of EV charging requests. If all future EV charging
jobs are known in advance, one can then readily compute
the optimal charging schedule that minimizes the peak [5][6].
Unfortunately, knowing the entire future demand is usually
infeasible in practice. On the other hand, if the statistics of
the future demand are known, one can potentially formulate
a stochastic control problem, e.g., as a Markov Decision
Program (MDP) [13]. However, estimating the future statis-
tics may not be easy either. If the statistics are incorrect,
the performance guarantee from the MDP solution will also
become unreliable. (Further, MDP typically suffers from the
“curse of dimensionality” when the problem size is large.)
At the other extreme, one may choose not to obtain or use



any future information at all. For example, a myopic policy
may compute the optimal charging schedule based only on
the jobs that have arrived before time t and that remain to
be served, as if it is an offline problem. Then, the myopic
policy can use the corresponding optimal decision at time t [6].
However, we will show later that such a heuristic algorithm
can have extremely poor performance under non-stationary
demand. The Lyapunov optimization approach in [10][11] also
does not require any prior knowledge of future information.
However, it is commonly used to derive algorithms that
approach the optimal average-performance (e.g., the operating
cost) as queues [10] or other key system resources (e.g.,
battery size [11])) go to infinity. As such, it is unclear how
it can be applied to obtain solutions for achieving optimal
peak-performance with finite deadline or resource constraints.
Another approach to deal with future uncertainty is to develop
competitive online algorithms. [12] has studied EV charging
using such a framework. However, the goal there is not to
reduce the peak either. In constrast, our problem is most
similar to the speed-scaling problem in the CPU scheduling
literature [5][7]. An online algorithm called BKP is shown to
achieve a competitive ratio of e. In other words, no matter
what the future workload patterns look like, the peak of the
BKP algorithm is at most e times the peak of the optimal
offline algorithm. Further, the ratio e is shown to be the optimal
competitive ratio [7], in the sense that there exists worst-case
workload patterns such that no online algorithms can perform
better. This algorithm can also be used in the setting of EV
charging with the same performance bound, when there is no
future information at all.

In reality, a competitive ratio of e is still quite large. (Having
to pay e times more on the peak charge seems to be a
costly proposition.) How can we design online algorithms
that can achieve even better competitive ratios? We believe
that a promising avenue is to study the settings that are in-
between the two extremes described above, with either full
future information or no future information. In practice, we
usually have some degree of limited future information, which
intuitively should help us design more efficient EV-charging
algorithms. There are a number of interesting questions. First,
how much benefit can we obtain by leveraging such limited
future information, as compared to utilizing no future infor-
mation at all? Second, how can we design online algorithms
that optimially realize such benefits.

Specifically, in this work we study a practical setting with
reservation. Customers can make reservations in advance for
future EV-charging jobs. Note that such reservations naturally
“reveal” future information to the aggregator, without the need
for expensive forecasting1. In practice, the aggregator may of-
fer price incentives to encourage reservations. However, not all
customers will reserve in advance, and hence there will still be

1In the literature, another way to capture limited future information is to
use the look ahead window [3]. We note the the case with precise look-ahead
window can be viewed as a special case of our general model. See the detailed
discussion in Section II.

uncertainty due to “walk-in” jobs2. Suppose that the reserved
jobs account for at least p fraction of the total EV-demand
(the value of p will likely increase as the price incentives
become more attractive), we can then study the two questions
outlined earlier. To the best of our knowledge, competitive
online algorithms under reservation have not been studied in
the literature. A key contribution of our work is to develop
a general framework that can quantify the best competitive
ratio under an arbitrary set of parameters. Specifically, this
general framework not only gives a lower bound on the optimal
competitive ratio under each set of parameters, but also gives
the corresponding online algorithm with a competitive ratio
that attains this lower bound. Using these results, we can
then quantify the gain in the optimal competitive ratio and the
reduction of the peak energy consumption as key reservation
parameters change (e.g., the reservation time L and the ratio p
of the reserved demand). For example, when 60% of the jobs
are reserved 1

4 of the total time horizon ahead of their arrival
times, the optimal competitive ratio is reduced to 1.39. Our
numerical results indicate that our proposed online algorithm
is effective in reducing the peak consumption.

The rest of the paper is organized as follows. In Section II,
we present the system model. We discuss the necessity for the
design of better online peak-minimizing algorithms in Section
III. In Section IV, we develop a general framework that can
quantify the best competitive ratio under an arbitrary set of
parameters, and propose an online algorithm, called EPS, that
attains the optimal competitive ratio. The optimal competitive
ratio involves solving a linear programming problem. We
propose an effective way of reducing the complexity of the
linear program, and then study the impact of reservation on
the optimal competitive ratio in Section V. Finally, we conduct
simulations to demonstrate the effectiveness and robustness of
our proposed EPS algorithm in Section VI.

II. SYSTEM MODEL

We consider an aggregator managing the EV-charging jobs3

of its customers. We assume that time is slotted. Let T be the
total number of time-slots in a billing period, which can be
one day or one month depending on the billing policy. We use
t ∈ T to represent a typical time-slot, where T = {1, 2, ..., T}.
The goal of the aggregator is to reduce the peak consumption
across all time-slots in the billing period. Consider a sequence
J of EV-charging jobs. Each job k ∈ J can be represented by
a 4-tuple (sk, dk, ek, vk), which indicates that this EV arrives
at the beginning of time slot sk ∈ T, departs at the end of time
slot dk ∈ T, and requires ek amount of energy to finish its
request (we also refer to ek as the demand). The 4-th term vk
is the reservation time for the job k. If this EV charging job
k is reserved in advance, we will have vk < sk. Otherwise,
vk = sk, and we refer to the job as a “walk-in” job. In practice,
we expect that the aggregator will offer price incentives to

2We use the term “walk-in” since it is analogous to patients visiting a
doctor’s office without appointments.

3In this paper, we will use the terms “EVs”, “EV charging jobs”, or “jobs”
interchangeably.



encourage its customers to make reservations in advance. We
assume that each reserved job k must be reserved L time slots
in advance, i.e., vk ≤ sk−L. In other words, only jobs reserved
“truly” in advance can qualify for price incentives. Later on,
we will study the benefit of reservation as the parameter L
varies. Here, we allow vk to be non-positive, i.e., vk ≤ 0, in
which case this EV-charging job is known at the beginning of
the billing period4.

With suitable price incentives, we would expect that at least
a certain fraction of the users will reserve their EV-charging
jobs in advance. This assumption is modeled as follows. Given
a sequence of EV arrivals J , let rJi,j be the total reserved
demand with arrival time i and departure time j, and let
RJ

i,j =
∑j

j′=i r
J
i,j′ be the total reserved demand with arrival

time i and departure time no greater than j. Similarly, let aJi,j
be the total walk-in demand with arrival time i and departure
time j, and let AJ

i,j =
∑j

j′=i a
J
i,j′ be the total walk-in demand

with arrival time i and departure time no greater than j.
According to our reservation model, all rJi,j’s are known at
least L time-slots ahead of time i, while aJi,j’s can only be
known at time i. In order to model the relationship between
the reserved demand and the walk-in demand, we assume that
the following inequality holds for all i, j,

pl(R
J
i,j +AJ

i,j) ≤ RJ
i,j ≤ pu(R

J
i,j +AJ

i,j), (1)

where pl and pu are two positive constants that bound the
fraction of reserved demand over the total demand. Note that
in practice, even if a customer makes reservations, he may not
be able to honor the reservation 100% of the time. He may
predict his arrival time, deadline, or even demand imprecisely,
or he may cancel the reservation altogether. Our model in
(1) is sufficiently general to incorporate the case where the
reservations are not 100% certain. Specifically, we can view
RJ

i,j as the mean of the reserved demand, and use AJ
i,j to

represent both the walk-in demand and the uncertainty from
the reservation demand itself.

Note that the above model captures limited future informa-
tion in two ways. First, each reservation naturally “reveals”
to the aggregator about future demand patterns, without the
need for expensive forecasting. This revelation property can
be particularly useful when the demand patterns exhibits
daily changes. Second, the parameters pl and pu can be
extracted from historical data on consumer behavior, which
also represent limited knowledge of the future. Our goal in
this paper is thus to study how the aggregator can exploit
such limited future information to improve its decisions.

In the literature, a related way to model limited future infor-
mation is through a look-ahead window, i.e., at time t, future
arrivals for the time interval [t, t + L] are known precisely

4In this paper, we have assumed that the EV-charing jobs are the only
jobs that the aggregator needs to control as far as the peak consumption is
concerned. If there are other uncontrollable background load that contributes
to the peak consumption, it is also possible to extend our model to incorporate
background load. For example, assuming that the background load can be
estimated in advance, we can treat the background load at time t as a reserved
demand known at time vk = 0 with sk = dk = t. The rest of the model
will then apply.

[3]. Note that this precise look-ahead model can be taken as
a special case of our model by setting pl = pu = 1. However,
in practice look-ahead information may not be precise either.
Our model allows such uncertainty to be captured. Further, in
practice, some EV charging jobs may be reserved more than
L time-slots ahead, in which case we will obtain some future
information beyond L time slots. Thus, our model with limited
future information is more general and practical.

Given a sequence J of EV charging jobs, the aggregator
needs to determine the amount of energy EJ

t drawn from
the power grid at each time slot t ∈ T. We use EJ =
{EJ

1 , E
J
2 , ..., E

J
T } to denote the service profile of the aggrega-

tor. We are interested in minimizing the peak consumption, i.e.,
max

t
{EJ

t }, subject to the constraint that all jobs are completed
before their deadlines.

If all the charging jobs are known in advance, the problem
can be written as follows and solved by an offline algorithm
like the one in [5].

min
All jobs are completed before their deadlines

max
t

{EJ
t }. (2)

Let E∗
J,off be the optimal offline solution to (2). However, in

practice, such perfect future knowledge is hard to obtain. An
algorithm π is called an online algorithm if this algorithm
computes EJ

t (π) based only on the EV jobs arrived or reserved
before or at time t. This online algorithm π is called feasible
if all jobs are completed before their deadlines. Let E∗

J(π) =
max{EJ

t (π)} be the peak energy drawn from the grid using
a feasible online algorithm π. We study the performance of
the online algorithm π using its competitive ratio (CR) η(π),
which is defined as the maximum ratio between E∗

J(π) and
E∗

J,off under all possible job sequences J , i.e.,

η(π) = max
J

{
E∗

J(π)

E∗
J,off

}
.

An feasible online algorithm π is called optimal, if it attains
the smallest competitive ratio. Our goal in this paper is to
find such optimal online algorithms, and reveal how limited
future information (e.g., reservation) improves the optimal
competitive ratio.

III. MOTIVATION FOR BETTER ONLINE ALGORITHM

Unfortunately, developing competitive online algorithms is
not an easy task, either with or without reservation. In this
section, we will show that a myopic online algorithm (possibly
a very natural one) could perform very poorly. Therefore, it is
important to find better algorithms for online EV-charging.

To start with, we briefly review the offline optimal algorithm
(called the YDS algorithm) proposed in [5].

A. Review of the Offline-Optimal YDS Algorithm
Let J be a sequence of EV-charging jobs. Define the

intensity on an interval I = [i, j] with respect to the job
sequence J as

gJ(I) =

∑j
i′=i(R

J
i′,j +AJ

i′,j)

j − i+ 1
. (3)



Then, the YDS algorithm [5] is re-stated in Algorithm 1.

1 Repeat steps 2-4 until the set J is empty.
2 Let I∗ = [i, j] be the time interval with the maximum

intensity, i.e., gJ(I∗) = maxI{gJ(I)}.
3 Let the service profile during interval I be
EJ

t = gJ(I
∗), t ∈ I , and serve all the jobs within the

interval I∗, i.e., all jobs satisfying i ≤ sk ≤ dk ≤ j, by
the earliest deadline policy.

4 Modify the job sequence J as if the time interval I∗ does
not exist. More precisely, first delete from J all the jobs
within the interval I∗. Second, all deadlines dk ≥ i are
reduced to max{i− 1, dk − (j − i+ 1)}, and all arrival
times sk ≥ i are reduced to max{i, sk − (j − i+ 1)}.

Algorithm 1: Offline-optimal YDS algorithm

Note that we do not update the reservation times in step
4 of the YDS algorithm. This is because that the reservation
times do not matter in the offline optimal algorithm, when all
future jobs are known in advance. Furthermore, it is easy to see
that the intensity of the maximum-intensity interval decreases
as the YDS algorithm proceeds. Therefore, the optimal offline
value E∗

J,off of the peak consumption is given by the maximum
intensity at the first run of step 2, i.e.,

E∗
J,off = max

I
{gJ(I)}. (4)

B. A Myopic Online Algorithm

The YDS algorithm cannot be used online when future EV-
charging jobs are not known in advance. The following myopic
algorithm represents a natural online algorithm. At each time
slot t, the myopic online algorithm uses the YDS algorithm to
compute the optimal serving rate based only on the remaining
workload and the future reserved workload known at time
t. It then uses this rate to serve its known workload by the
earliest deadline policy. A similar idea has been proposed in
[6]. However, we will show that this myopic algorithm could
have an arbitrarily poor competitive ratio (CR).

Lemma 1. If there is no reservation, the competitive ratio η∗

of the myopic algorithm can be arbitrarily large as T → ∞,
i.e., for any constant M > 0, there exists T > 0 and an arrival
pattern, such that the peak rate under the myopic algorithm
is at least M times the optimal peak rate under the optimal
offline algorithm.

Proof: See Section VII-A.
One would expect that reservation may improve the perfor-

mance of the myopic algorithm. Unfortunately, the following
lemma states that no matter how large is the fraction of the
reserved demand, the myopic online algorithm still has an
arbitrarily large CR.

Lemma 2. Under our reservation model (see Section II), for
any L and pl < pu = 1, the competitive ratio η∗ of the myopic
algorithm can be arbitrarily large as T → ∞.

Proof: See Section VII-B.

The above two lemmas indicate that, if EV charing is not
scheduled properly, the aggregator may potentially face a huge
peak rate. Hence, it is important to design better (even optimal)
online algorithms.

In fact, if there is no reservation, an online algorithm called
BKP is proposed in [7] and shown to achieve a CR of e.
Further, this CR e is shown to be the optimal. However, in
practice e is still a large number. In this work, we are inter-
ested in how limited future knowledge (through reservation)
may help us to significantly improve the competitive ratio.
Unfortunately, the techniques for proving the competitive ratio
and its optimality in [7] are very specific and seems difficult to
handle reservation. In the next section, we will develop a very
general framework that can lead to optimal online algorithms
under an arbitrary set of reservation parameters.

IV. OPTIMAL PEAK-MINIMIZING ONLINE EV CHARING

In this section, we propose a general framework for design-
ing optimal online EV-charging algorithms with reservations.
For ease of exposition, we will focus on the case where pu
is 1 in constraint (1). In other words, the reserved demand
and the walk-in demand now satisfy the following simplified
constraint:

p(RJ
i,j +AJ

i,j) ≤ RJ
i,j ≤ RJ

i,j +AJ
i,j . (5)

We note that there is no loss of generality in this sim-
plification. If pu ̸= 1, we know that there will be at least
( 1
pu

− 1)RJ
i,j future walk-in demand. Thus, we can view this

part of walk-in demand as some pseudo “reserved demand”.
Specifically, let R̃J

i,j = RJ
i,j + ( 1

pu
− 1)RJ

i,j =
RJ

i,j

pu
, and

ÃJ
i,j = AJ

i,j − ( 1
pu

− 1)RJ
i,j , then constraint (1) can be

equivalently expressed as
pl
pu

(R̃J
i,j + ÃJ

i,j) ≤ R̃J
i,j ≤ R̃J

i,j + ÃJ
i,j .

Let p = pl

pu
. The constraint (1) is then converted to the form

in (5).
In addition, if we let C = 1−p

p , constraint (1)can be further
simplified as

0 ≤ AJ
i,j ≤ CRJ

i,j . (6)

The following analysis will be based on constraint (6).

A. Lower Bound on the Competitive Ratio

We first present a lower bound on the competitive ratio (CR)
of an arbitrary online algorithm. As readers will see, the lower
bound can be obtained by considering the following sequence
of job arrivals.

Fix n ∈ T. Consider a job sequence Jn with the following
form. The arrival time of each job k ∈ Jn satisfies 1 ≤ sk ≤ n.
All jobs have the same deadline n. Further, for all reserved
jobs with arrival time i, they are reserved exactly L time-slots
ahead, i.e., at time i−L. The reserved demand and the walk-in
demand satisfy constraint (6). Let Jn be the set of all Jn’s
with such form.



Consider an arbitrary feasible online algorithm πn with CR
ηn. We apply this algorithm to an EV-arrival sequence Jn ∈
Jn. Then, we have the following lemma.

Lemma 3. Given an online algorithm πn with CR ηn, its
service profile EJn(πn) = {EJn

1 (πn), E
Jn
2 (πn), ..., E

Jn
n (πn)}

under an EV-arrival sequence Jn ∈ Jn must satisfy

EJn
t (πn) ≤ ηnE

Jn
pe (t), t = 1, 2, ..., n

where

EJn
pe (t) = max

j=1,...,hn(t)

{∑t
i=j A

Jn
i,n +

∑hn(t)
i=j RJn

i,n

n− j + 1

}
, (7)

and hn(t) = min{t+L, n}. (In (7), the subscript “pe” stands
for “peak estimation”.)

Proof: See Section VII-C.
The intuition of Lemma 3 is as follows. At time t, the

aggregator knows all the walk-in demand with arrival time no
greater than t and all the reserved demand with arrival time
no greater than hn(t) = min{t+L, n} (since all the reserved
jobs are reserved exactly L time-slots ahead). Based on such
known demand, we can take EJn

pe (t) as the estimate of the peak
consumption at time t. In fact, if there were no more new jobs
after time t, EJn

pe (t) would have been the offline-optimal peak
service rate. If EJn

t (πn) > ηnE
Jn
pe (t), then in the case where

there is no demand after time t, πn will violate the assumption
that its CR is ηn.

With Lemma 3 in mind, we study another constraint on
πn. The feasibility of πn implies that all jobs can be finished
before the end of the time slot n (recall that all jobs have the
same deadline n). Therefore, we must have

n∑
t=1

EJn
t (πn) ≥

n∑
t=1

(
AJn

t,n +RJn
t,n

)
. (8)

Combining Eqn. (8) with Lemma 3, we then obtain

ηn ≥
∑n

t=1

(
AJn

t,n +RJn
t,n

)∑n
t=1 E

Jn
pe (t)

.

Define the following optimization problem:

sup
Jn

∑n
t=1

(
AJn

t,n +RJn
t,n

)∑n
t=1 E

Jn
pe (t)

subject to (6), (7) (9)

Let η∗n be the optimal solution to the optimization problem (9).
Let η∗ = maxn∈T{η∗n}. Then, the following theorem shows
that η∗ gives a lower bound on the optimal CR, i.e.,

Theorem 4. For any feasible online algorithm π, its CR must
be greater than or equal to η∗.

Proof: We prove by contradiction. Suppose that there
exists a feasible online algorithm π̃ with CR η(π̃) < η∗. Let
ϵ = η∗ − η(π̃) > 0.

According to the definition of η∗, there must exist n ∈ T,

and a job sequence Jn ∈ Jn, such that∑n
t=1

(
AJn

t,n +RJn
t,n

)∑n
t=1 E

Jn
pe (t)

> η∗ − ϵ = η(π̃).

Apply the algorithm π̃ to the job sequence Jn. According
to Lemma 3, we must have EJn

t (π̃) ≤ η(π̃)EJn
pe (t). Then,

n∑
t=1

EJn
t (π̃) ≤ η(π̃)

n∑
t=1

EJn
pe (t)

<
n∑

t=1

(
AJn

t,n +RJn
t,n

)
Thus, some job with deadline d ≤ n cannot be finished

before its deadline, which contradicts to the assumption that
π̃ is feasible.

In general, the optimization problem (9) can be easily
converted into a linear programming problem and solved using
standard solvers. We will provide more details in Section V.

Remark 1. Our formulation of the CR in (9) shares some
similarity to the results in [14]. However, [14] does not
consider reservation, and there is substantial difficulty in
extending the techniques in [14] to the case with reservation.
Specifically, a key step in [14] is to show that the problem
with variable deadlines has the same CR as the problem with
a single deadline (see Theorem 4.26 in [14]). However, for
our reservation model, there is another degree of freedom,
i.e., the time when the job is reserved. The formulation in (9)
suggests that we may focus on the case when the jobs are
reserved least in advance (i.e., exactly L time-slots ahead).
However, it is unclear that how to generalize the techniques
of [14] to show that the problem when reservation can be
made at least L time-slots ahead of arrival time also has
the same CR as the problem when all reservations are made
exactly L time-slots ahead of arrival time. In this paper, we
use a different strategy: in Theorem 4, we only show that (9)
provides a lower bound on the CR. In the following, we then
provide an online algorithm that attains this lower bound, thus
avoiding the above difficulty. This technique may also be of
independent interest for other problem settings.

B. Optimal Online Algorithms

Interestingly, the optimization problem (9) not only gives
a lower bound on the competitive ratio, but also leads to
an online algorithm that can attain the lower bound as we
will demonstrate below. Next, we propose the Estimated Peak
Scaling (EPS) algorithm, and show that the competitive ratio
of this online algorithm achieves the lower bound η∗.

Given a sequence J of EV-charging jobs (jobs in J could
have different deadlines), let J(t) ⊆ J be the set of jobs known
before or at time t, which includes all the walk-in jobs with
arrival time no greater than t, and all the reserved jobs with
reservation time no greater than t. Then, the EPS algorithm is
formally stated as follows.

The following theorem states that the EPS algorithm is a
feasible online algorithm with competitive ratio η∗. Thus, the



Input: Job sequence J , time slot t
1 Assume that there is no new jobs after time t, use the

YDS algorithm on the known jobs J(t) to compute the
optimal peak, i.e., E∗

J(t),off as if it is an offline problem.
Let EJ

pe(t) = E∗
J(t),off.

2 Set EJ
t = η∗EJ

pe(t).
3 Serve jobs by the earliest deadline policy. Specifically,

we sort all unfinished EV jobs with arrival time no
greater than t according to their deadlines in an
ascending order, i.e., dk1 ≤ dk2 ≤ ... Then, we use EJ

t

amount of energy to charge the EV k1, and then
k2, k3, ... until all these EV jobs are completed or the
amount of energy EJ

t is exhausted.
Algorithm 2: EPS algorithm

EPS algorithm is an optimal online algorithm.

Theorem 5. Given any job sequence J , the EPS algorithm
satisfies the following two requirements:

1) (η∗ optimality) at each time slot t, the service rate EJ
t

satisfies EJ
t ≤ η∗E∗

J,off;
2) (feasibility) all jobs can be completed before their dead-

lines.

The first part of Theorem 5 is easy. Note that since J(t) ⊆
J , we must have E∗

J(t),off ≤ E∗
J,off. Then,

EJ
t = η∗EJ

pe(t) = η∗E∗
J(t),off ≤ η∗E∗

J,off.

Now, we focus on the second part. The proof of the feasibility
of the EPS algorithm is based on the following lemma.

Lemma 6. A sufficient and necessary condition for a service
profile EJ = {EJ

1 , E
J
2 , ..., E

J
T } to be feasible, i.e., all jobs

can be completed before their deadlines, is that for all t1 ≤
t2, t1, t2 ∈ T, the following inequality holds,

t2∑
t=t1

(AJ
t,t2 +RJ

t,t2) ≤
t2∑

t=t1

EJ
t .

Proof: See Section VII-D.
Now, we are ready to present the proof of Theorem 5.

Proof: Based on Lemma 6 and the above discussion, we
only need to show that for all t1 ≤ t2, t1, t2 ∈ T,

t2∑
t=t1

(AJ
t,t2 +RJ

t,t2) ≤
t2∑

t=t1

η∗E∗
J(t),off.

Equivalently, we need to show that

η∗ ≥
∑t2

t=t1
(AJ

t,t2 +RJ
t,t2)∑t2

t=t1
E∗

J(t),off

. (10)

To show inequality (10), we need to draw a connection be-
tween the right hand side (R.H.S.) of (10) and the optimization
problem (9). We first simplify (9) by substituting AJn

t,n by at,
RJn

t,n by rt, and EJn
pe (t) by bt. Then, (9) can be transformed

to the following equivalent optimization problem:

max
at,rt≥0

∑n
t=1(at + rt)∑n

t=1 bt

subject to bt = max
j=1,...,hn(t)

{∑t
i=j at +

∑hn(t)
i=j rt

n− j + 1

}
0 ≤ at ≤ Crt (11)

For n = t2 − t1 + 1, the optimal solution of the optimization
problem (11) is then η∗t2−t1+1.

We now consider (10). Since the job sequence J satisfies
(6), we must have 0 ≤ AJ

t,t2 ≤ CRJ
t,t2 for all t = t1, ..., t2.

Suppose that the following inequality holds,

E∗
J(t),off ≥ max

j=t1,...,h′(t)

{∑t
i=j A

J
i,t2

+
∑h′(t)

i=j RJ
i,t2

t2 − j + 1

}
, (12)

where h′(t) = min{t + L, t2}. Then, if we substitute AJ
t,t2

by a′t−t1+1, RJ
t,t2 by r′t−t1+1, and E∗

J(t),off by b′t−t1+1 for
all t = t1, ..., t2, we must have that the R.H.S. of (10) is no
greater than the optimal value of the following optimization
problem.

max
a′
t,r

′
t≥0

∑t2−t1+1
t=1 (a′t + r′t)∑t2−t1+1

t=1 b′t
(13)

subject to 0 ≤ a′t ≤ Cr′t

b′t ≥ max
j=1,...,ht2−t1+1(t)


∑t

i=j a
′
t +

∑ht2−t1+1(t)
i=j r′t

t2 − t1 + 1− j + 1


It is easy to see that the optimal value of (13) is smaller than or
equal to the optimal value of (11) with n replaced by t2−t1+1.
Therefore,

R.H.S. of (10) ≤ η∗t2−t1+1 ≤ η∗,

where the second inequality comes from the fact that η∗ =
maxn∈T{η∗n}.

Based on the above discussion, it only remains to prove Eqn.
(12). Recall that E∗

J(t),off is equal to the maximum intensity
over all possible intervals (see Section III-A). Consider only
a subset of intervals as follows.

I = {[t1, t2], [t1 + 1, t2], ..., [h
′(t), t2]}.

We must have

E∗
J(t),off = max

I
{gJ(t)(I)} ≥ max

I∈I
{gJ(t)(I)}. (14)

For each interval I = [j, t2] ∈ I, the intensity with respect
to J(t) is given by (3), i.e.,

gJ(t)(I) =

∑t2
i=j(A

J(t)
i,t2

+R
J(t)
i,t2

)

t2 − j + 1
. (15)

Note that at time t = t1, ..., t2, for any walk-in job k that
contributes to the term

∑t
i=j A

J
i,t2

(i.e., it arrives no later than
t), it must belong to the set of walk-in jobs in J(t). Thus, it
must also contribute to the term

∑t2
i=j A

J(t)
i,t2

. Similarly, for



any reserved job k that contributes to the term
∑h′(t)

i=j RJ
i,t2

(i.e., it arrives no later than h′(t) = min{t + L, t2}), it must
be reserved no later than h′(t) − L ≤ t. Hence, this job k
must belong to the set of reserved jobs in J(t), and thus also
contributes to the term

∑t2
i=j R

J(t)
i,t2

. Therefore, we must have

t2∑
i=j

(A
J(t)
i,t2

+R
J(t)
i,t2

) ≥
t∑

i=j

AJ
i,t2 +

h′(t)∑
i=j

RJ
i,t2 . (16)

Combining Eqn. (15), (14) and (16), we immediately obtain

E∗
J(t),off ≥ max

j=t1,...,h′(t)

{∑t
i=j A

J
i,t2

+
∑h′(t)

i=j RJ
i,t2

t2 − j + 1

}
.

Therefore, Eqn. (12) holds, and thus Eqn. (10) follows.
We then conclude that the EPS algorithm is a feasible online
algorithm with CR η∗.

Remark 2. The above results can be viewed as a superset of
the results in [7][14]. Specifically, when there is no reservation
(p = 0 or C = ∞), the above algorithm reduces to one that
is similar to the BKP algorithm [7]. The competitive ratio is
also close to e. (It is not exactly e because the time horizon is
finite [14].) However, with reservation, the competitive ratio
will improve as can be seen soon in Section V.

V. COMPUTATION AND DISCUSSION OF THE OPTIMAL CR

In the previous section, we propose a peak-minimizing
online EV-charing algorithm with the optimal competitive ratio
(CR). Note that the proposed EPS algorithm needs the value
of the optimal CR η∗ in its operation (see Algorithm 2). In
this section, we propose an effective way of calculating η∗.
We also discuss the impact of the demand reservation on the
optimal CR η∗.

A. Computation of η∗

Recall that η∗ = maxn∈T{η∗n}. Therefore, to obtain η∗, we
need to find an effective way of computing η∗n, which involves
solving the optimization problem (9).

1) Variable Reduction: We first show that when solving
(9), we can simply focus on the case where AJn

i,n = CRJn
i,n for

all i = 1, 2, ..., n.
Consider an arbitrary Jn satisfying (6). We pick any t0 =

1, 2, ..., n, and construct J ′
n that satisfies the following two

constraints:

1) for i ̸= t0, AJ ′
n

i,n = AJn
i,n, RJ ′

n
i,n = RJn

i,n;

2) for i = t0, AJ ′
n

i,n and R
J ′
n

i,n satisfy

A
J′
n

i,n = CR
J ′
n

i,n, A
J′
n

i,n +R
J ′
n

i,n = AJn
i,n +RJn

i,n. (17)

Based on (6) and (17), it is easy to verify that RJ ′
n

i,n ≤ RJn
i,n

for all i = 1, 2, ..., n. Therefore, from Eqn. (7), we then have,

for all t and j = 1, 2, ..., h(t),∑t
i=j A

Jn
i,n +

∑h(t)
i=j RJn

i,n

n− j + 1
=

∑h(t)
i=j (1{i≤t}A

Jn
i,n +RJn

i,n)

n− j + 1

≥
∑h(t)

i=j (1{i≤t}A
J′
n

i,n +R
J ′
n

i,n)

n− j + 1
=

∑t
i=j A

J ′
n

i,n +
∑h(t)

i=j R
J ′
n

i,n

n− j + 1
,

where 1{·} is an indicator function. Thus, we have EJn
pe ≥

E
J ′
n

pe . Then,∑n
t=1

(
AJn

t,n +RJn
t,n

)∑n
t=1 E

Jn
pe (t)

≤
∑n

t=1

(
A

J′
n

t,n +R
J ′
n

t,n

)∑n
t=1 E

J ′
n

pe (t)
.

We can apply the above procedure for t0 = 1, 2, ..., n

sequentially. Let J
(n)
n be the EV-demand sequence obtained

after n iterations. Then, we have A
J(n)
n

i,n = CR
J(n)
n

i,n , and∑n
t=1

(
AJn

t,n +RJn
t,n

)∑n
t=1 E

Jn
pe (t)

≤
∑n

t=1

(
A

J(n)
n

t,n +R
J(n)
n

t,n

)
∑n

t=1 E
J

(n)
n

pe (t)
.

Thus, only considering those Jn’s satisfying AJn
i,n = CRJn

i,n is
sufficient for obtaining the optimal solution of (9).

Based on the above discussion, we can simplify the expres-
sion of EJn

pe (t) as

EJn
pe (t) = max

j=1,...,h(t)

{∑h(t)
i=j (1 + C1{i≤t})R

Jn
i,n

n− j + 1

}
, (18)

and simplify (9) as

sup
Jn

(1 + C)
∑n

t=1 R
Jn
t,n∑n

t=1 E
Jn
pe (t)

subject to (18). (19)

2) Converting (19) to a Linear Programming (LP) Problem:
Eqn. (18) can be converted to a set of linear constraints, i.e.,

EJn
pe (t) ≥

∑h(t)
i=j (1 + C1{i≤t})R

Jn
i,n

n− j + 1
, j = 1, ..., h(t). (20)

Define the following fractional LP problem, i.e.,

sup
Jn

(1 + C)
∑n

t=1 R
Jn
t,n∑n

t=1 E
Jn
pe (t)

subject to (20). (21)

Note that in the optimal solution of (21), Eqn. (18) must hold
for all t. Otherwise, we can decrease EJn

pe (t) to get a better
solution of (21). Hence, problem (21) has the same optimal
solution as (19).

Finally, note that if all RJn
t,n’s and EJn

pe (t)’s are scaled by
a constant, both the objective function and the constraint (20)
remain the same. Let

n∑
t=1

EJn
pe (t) = 1. (22)

Then, the fractional LP problem (21) can be converted to the



following equivalent LP problem, i.e.,

sup
Jn

(1 + C)
n∑

t=1

RJn
t,n

subject to (20), (22). (23)

Next, we will solve η∗n based on (23).
3) An Example: In this section, we use an example to

illustrate the shape of the demand in the optimal solution of
(23), and how η∗n varies with respect to n. In this example,
we assume that the billing period is a day, and the duration
of each time slot is 10 minutes. Therefore, T = 144, and
η∗ = max144n=1{η∗n}. We assume that the reserved EV charging
jobs must be reserved at least 4 hours ahead. Thus, L = 24.
Further, we assume that C = 1, which indicates that at least
half of the total demand is reserved demand.

First, we compute η∗n for a specific value of n = 120. We
use the MATLAB CVX package [15] to numerically solve
(23). The result is η∗120 = 1.7614, and the corresponding
RJ120

t,120’s and EJ120
pe (t)’s are plotted in Fig. 1.(a) (AJ120

t,120 is not
shown in this figure because we know AJ120

t,120 = CRJ120
t,120).
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(a) Optimal solution of (23) in the
case C = 1, L = 24, n = 120.
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Fig. 1. Example.

Fig. 1.(a) suggests that RJ120
t,120 is increasing in t. This

observation is consistent with the intuition that, the more
uncertainty future demands have, the more difficult it is for
online algorithms to make decisions.

Next, we compute η∗n for different n’s ranging from 1 to
144. Fig. 1.(b) shows how η∗n varies with respect to n. Based
on the values of η∗n’s, we finally obtain η∗ = 1.8185.

B. Impact of Reservation on η∗

In this section, we show how the optimal competitive ratio
η∗ varies as the key reservation parameters change. Again,
we set T = 144. There are two parameters related to the
reservation, p (or C) and L. We will vary p and L, and
characterize their impact on η∗. Such results will help us
understand how reservation improve the performance of the
online algorithm.

For L = 0, 36, 72, 108, 144, we compute η∗ for different
p’s. From Fig. 2, we can see that when L = 0, η∗ remains at
the highest value5 of 2.39 regardless of the value of p. The
reason is that in the case of L = 0, the reserved jobs are
allowed to reserve upon its arrival, and thus the worst case

5Note that here we have η∗ < e because the time horizon T = 144 is
finite. If T → ∞, we will have η∗ → e [14].

CR would be the same as if there is no reservation. As this
L increases, we know more advance information about the
future. Therefore, as L increases, η∗ will decrease. As for p,
it is the fraction of reserved demand over the total demand.
As p increases, the total demand uncertainty will decrease, and
thus the CR η∗ will decrease. For example, when L = 72 and
p = 0.6 (i.e., 60% of the total demand is from the jobs that are
reserved 1

2 of the time horizon ahead of their arrivals times),
the optimal competitive ratio is reduced to 1.39. In the extreme
case where L = 144 and p = 1, i.e., all the future knowledge
are known exactly at the beginning, the CR becomes η∗ = 1.
An interesting observation is that, for a moderate value of
L, e.g., L = 36, we already attain most part of the benefits
from reservation. Hence, in practice, the aggregator can focus
on price incentives for comparable time-intervals of advanced
reservation.
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Fig. 2. Impact of Reservation on CR η∗.

VI. SIMULATION

In this section, we compare the performance of our EPS
algorithm with two online algorithms for EV charging. The
first algorithm does not coordinate among different EV’s.
For each EV k, the aggregator simply charge this EV k
at a constant rate of ek

dk−sk+1 . We call this algorithm the
uncoordinated algorithm, which can be view as the scenario
when each user manages its own EV charging. The second
algorithm is the myopic algorithm we discussed in Section
III-B.

We generate the arrival pattern in the following way. We
assume that there are EV charging jobs arriving continuously
from time t1, but all of these jobs must leave before time
t2. Specifically, we simulate 200000 jobs. The arrival time of
each job is uniformly distributed in [t1, t2 − σ], the deadline
of each job is t2, and the EV-charging demand is a random
variable uniformly distributed in [0, 1]. Such an arrival pattern
may arise for a parking lot near an office complex, where most
offices open at 8am, and close at 6pm. Thus, we set t1 = 48,
and t2 = 108. An example of this arrival pattern is plotted in
Fig. 3. (a).
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Fig. 3. Two arrival patterns.

We would like to see the benefit of reservation on reducing
the peak-load. We assume that the reserved demand ri,j is at
lease p fraction of the total demand ri,j + ai,j (Fig. 3.(a)).
Specifically, we assume that ri,j

ri,j+ai,j
is a random variable

uniformly distributed in [p, 1]. Further, we assume that the
reserved EV-charging jobs are reserved exactly L time slots
ahead. Given an online algorithm, we define its empirical
ratio ηe as the ratio between the peak consumption under
this algorithm and the optimal peak consumption under the
offline optimal algorithm. Then, we vary L, and compute
the empirical ratio ηe, for different p’s under all the three
algorithms. From Fig. 4-6.(a), we can see that both the EPS
algorithm and the myopic algorithm perform much better than
the uncoordinated algorithm, while the EPS algorithm and the
myopic algorithm have comparable performance. Therefore,
by coordinating among different EV’s, we can significantly
reduce the peak consumption.

To better understand the performance of the EPS algorithm
and the myopic algorithm, we generate another arrival pattern
(Fig. 3.(b)). The second arrival pattern is similar to the arrival
pattern we studied in Section III-B. In Section III-B, we have
shown that if we have infinite batches of jobs, the myopic
algorithm does not have a finite CR. However, the second
arrival pattern here only has finite batches of jobs. Thus, we
would expect that the gap between the empirical ratio of the
myopic algorithm and the optimal CR will not be as dramatic.
Nevertheless, from Fig. 4-6.(b), we can see that the EPS
algorithm performs much better than the myopic algorithm.
Further, we note that the empirical rate ηe’s are the same
for the two arrival patterns under the EPS algorithm, while
the empirical rate ηe’s are dramatically different across the
two arrival patterns under the myopic algorithm. Such an
observation indicates that the EPS algorithm is more robust
in reducing the peak than the myopic algorithm. One may
argue that the arrival pattern in Fig. 3.(b) may occur rarely
in practice. However, from the grid stability point of view, it
is indeed rare events that lead to costly failures [16]. Hence,
the ability of the EPS algorithm to gracefully handle the peak
even in the worst case is highly desirable in practice.

VII. PROOF

A. Proof of Lemma 1

Proof: Consider the job arrival pattern depicted in Fig.
7. All jobs have the same deadline T . Without of loss of
generality, assume that T = 2n. The first batch of jobs arrives
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(a) ηe vs. p for the first arrival pattern.
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Fig. 4. L = 36.
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(a) ηe vs. p for the first arrival pat-
tern.
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(b) ηe vs. p for the second arrival
pattern.

Fig. 5. L = 72.
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(b) ηe vs. p for the second arrival
pattern.

Fig. 6. L = 144.

at time 0, and has a total demand of T . The second batch
of jobs arrives at time T

2 , and has a total demand of T
2 . The

n-th batch of jobs arrives at time T − T
2n−1 , and has a total

demand of T
2n−1 . It is easy to see that the peak rate in the

Fig. 7. EV-demand arrival pattern.

optimal offline YDS solution is 2 (Fig. 8.(a)). With a serving
rate of 2, every batch of jobs can be finished right before the
arrival of the next batch of jobs. However, the myopic online



(a) The offline optimal algorithm. (b) The myopic online algorithm.

Fig. 8. The service profiles of two algorithms.

algorithm will behave quite differently (Fig. 8.(b)). In the time
period [0, T

2 ], the myopic algorithm only knows the first batch
of jobs. Hence, the serving rate is 1. At time T

2 , only half of
the demand of batch 1 is served. Then, the second batch of
jobs arrives, which adds to the remaining half from the first
batch of demand. The total outstanding demand is T , and it
needs to be served in the interval [T2 , T ]. Hence, the service
rate of the myopic algorithm increases to 2 in the interval
[T2 ,

3T
4 ]. In a similar manner, we can see that in the interval

[T − T
2n−1 , T − T

2n ], the service rate of the myopic algorithm
will be n (Fig. 8.(b)). As n goes to infinity, the peak-serving
rate of the myopic algorithm is unbounded. Thus, the CR of the
myopic online algorithm can be arbitrarily large as T → ∞.

B. Proof of Lemma 2

Proof: Consider the same job arrival pattern shown in
Fig. 7. We assume that for each batch of EV demand, exact
pl fraction of the demand is reserved at or before time 0 (the
constraint rk ≤ sk −L is thus met for any L), and the rest is
walk-in demand. We use xk to denote the serving rate during
the time interval [T − T

2k−1 , T − T
2k
] under the myopic online

algorithm. In the time period [0, T
2 ], the myopic algorithm

knows the total reserved demand, which is 2plT , and the
demand of the first batch of walk-in jobs, which is (1− pl)T .
Then, based on (4), it is easy to check that

x1 =
2plT + (1− pl)T

T
= 1 + pl. (24)

Further, we can derive an induction formula for the sequence
{xk}. In the time interval [T − T

2n−1 , T − T
2n ]. The myopic

algorithm knows the total reserved demand, which is 2plT , and
the demand of the first n batches of walk-in jobs, which is (1−
pl)T

∑k−1
s=0 2

−s. Among these known demand, T
∑k−1

s=1 2
−sxs

amount of it has been served. Then, we can show that

xk =
2plT + (1− pl)T (

∑k−1
s=0 2

−s)− T
∑k−1

s=1 2
−sxs

2−(k−1)T
.

(25)
Solving the above recursive formula gives xn = 2pl + n(1−
pl). Therefore, as long as pl < 1, the peak-serving rate is
unbounded as n → ∞. Thus, the CR of the myopic online
algorithm can be arbitrarily large as T → ∞.

C. Proof of Lemma 3

Proof: We prove by contradiction. Suppose that there
exist t0, such that EJn

t0 (πn) > ηnE
Jn
pe (t0).

Consider the job sequence J ′
n. J ′

n only contains the same
set of walk-in jobs in Jn arriving before or at time t0, and
the same set of reserved jobs reserved before or at time t0.
Thus, if we apply the same online algorithm πn to J ′

n, it must
produce the same decisions at time t ≤ t0, i.e.,

E
J ′
n

t (πn) = EJn
t (πn), t = 1, 2, ..., t0.

On the other hand, if the job sequence is indeed J ′
n, we

actually know all the job arrivals at time t0. Therefore, we
can compute the offline optimal peak of J ′

n using the YDS
algorithm. Note that all jobs in J ′

n have the same deadline n.
Therefore, when computing the offline optimal peak E∗

J′
n,off,

we only need to focus on the intervals with right end-point
being n, i.e., I = [j, n], j = 1, 2, ..., n. Furthermore, J ′

n does
not have any demand after time h(t) = min{t+L, n}. Hence,
we can further restrict j to be from 1 to h(t). Based on the
above discussion, we have

E∗
J ′
n,off = max

j=1,...,h(t)
{gJ′

n
([j, n])}.

Note that in J ′
n, the total demand of jobs with arriving time

s ≥ j and departure time d ≤ n is equal to
∑t

i=j A
Jn
i,n +∑h(t)

i=j RJn
i,n. Therefore,

E∗
J′
n,off = max

j=1,...,h(t)

{∑t
i=j A

Jn
i,n +

∑h(t)
i=j RJn

i,n

n− j + 1

}
= EJn

pe (t).

Then,

E
J′
n

t0 (πn) = EJn
t0 (πn) > ηnE

Jn
pe (t0) = ηnE

∗
J ′
n,off,

which contradicts to the fact that πn has CR ηn.

D. Proof of Lemma 6

Proof: The necessity is obvious. We focus on the suffi-
ciency in the following proof.

Suppose that AJ
t1,t2 + RJ

t1,t2 ≤
∑t2

t=t1
EJ

t for any 1 ≤
t1 ≤ t2 ≤ T . We will show that EJ is feasible based on the
earliest-deadline-first policy.

We prove by contradiction. If EJ is not feasible, then there
must exist at least one job request k that misses its deadline.
Without loss of generality, we assume that this job’s deadline
is at time slot d. We say a time slot t < d is good, if and
only if all the energy Et is used to serve job requests with
deadline no later than d. It is easy to see that time slot d is
always good.

If all the time slots t = 1, 2, ..., d − 1 are good, then there
is no energy wasted during the first d time slots, and all of
the energy is used to serve jobs with deadlines no later than
d. Note that AJ

1,d + RJ
1,d ≤

∑d
t=1 E

J
t . Then, job k must be

completed before time d, which contradicts to our assumption.
If there exists some time slots t < d that is not good,

let tb = max{t < d|t is not good}. Then, in time slots
t = tb + 1, ..., d, no energy is wasted, and only job requests
with deadline smaller or equal to d are served. Furthermore,
all jobs with arrival time no later than tb and deadline no



later than d must have been completed before or at time
slot tb. (Otherwise, tb would have been good because the
energy EJ

t could have been used to serve these jobs according
to the earliest-deadline-first policy.) It also implies that job
k cannot arrive before tb (otherwise it would have been
completed). Further, in time slots t = tb + 1, ..., d, all the
energy must be used to first serve requests with arrival time
later than tb and deadline smaller or equal to d. Note that
AJ

tb+1,d + RJ
tb+1,d ≤

∑d
t=tb+1 E

J
t . Then, job k must be

finished before time d, which contradicts to our assumption.

VIII. CONCLUSION

We study online peak-minimizing algorithms for an aggre-
gator, which manages a large set of EV charging jobs with
deadlines. Existing algorithms either require precise future
knowledge or do not make use of any future knowledge. In
contrast, we focus on a more practical scenario where some
limited future knowledge can be obtained. Specifically, we
consider the scenario where such limited future knowledge
is revealed by job reservation. We then propose a general
and systematic approach to design competitive online algo-
rithms. Our proposed algorithm, called EPS, can attain the
optimal competitive ratio under an arbitrary set of reservation
parameters. We also characterize the benefit of reservation in
reducing the peak consumption. Compared to the previous
online algorithms (e.g. BKP [7]) that do not make use of any
future knowledge, the proposed EPS algorithm can signifi-
cantly reduce the competitive ratio. Finally, Simulation results
demonstrate that the EPS algorithm is indeed very robust and
effective in reducing the peak.
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