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Abstract

We show that for a large class of scheduling algorithms, when the

algorithm minimizes the drift of a Lyapunov function, the algorithm

is optimal in maximizing the asymptotic decay-rate of the probabil-

ity that the Lyapunov function value exceeds a large threshold. The

result in this paper extends our prior results to the important and

practically-useful case when the Lyapunov function is not linear in

scale, in which case the evolution of the fluid-sample-paths becomes

more difficult to track. We use the notion of generalized fluid-sample-

paths to address this difficulty, and provide easy-to-verify conditions

for checking the large-deviations optimality of scheduling algorithms.

As an immediate application of the result, we show that the log-rule

is optimal in maximizing the asymptotic decay-rate of the probability

that the sum queue exceeds a threshold B.

1 Introduction

In this paper we are interested in link scheduling algorithms for wireless
networks supporting delay-sensitive applications. In many cases, the per-
formance objective of these applications can be mapped to a bound on the
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queue-overflow probability [1–6]. Specifically, in order to meet delay con-
straints with high probability, we would like to ensure that the probability
with which some function of the global queue-length vector exceeds an over-
flow threshold is below a small value. For example, such a function of the
queue-length vector could be the maximum queue length among all users,
or the sum of the queue length over all users. Often, a closed-form solu-
tion of the queue length distribution is not available. In that case, we could
instead use large-deviations theory [7] to study the asymptotic decay-rate
of the queue-overflow probability, as the overflow threshold increases to in-
finity [1–6]. A larger decay-rate may then be interpreted as better delay
performance.

Unfortunately, due to both the radio interference and the time-varying
channel conditions in wireless systems, even the large-deviation decay-rate
can be difficult to characterize. Specifically, in order to minimize the queue-
overflow probability, it is often necessary to use queue-length-based link
scheduling algorithms, which compute the link schedule at each time based on
the current queue backlog vector [1,2]. However, for such queue-length-based
scheduling algorithms, computing the asymptotic decay-rate of the queue-
overflow probability involves a multi-dimensional calculus-of-variations prob-
lem that is very difficult to track [1, 2]. Recently, there have been some
progress in using Lyapunov functions to deal with this difficulty [4]. Through
this new approach, the form of scheduling algorithms that maximize the
asymptotic decay-rate of the probability of some specific form of overflow
event is characterized [4, 5]. See also the related results in [3]. However, the
proof techniques in these papers tend to be quite involved.

In this paper, we would like to establish a simpler and more general result
of the following type.

Statement 1: If an algorithm minimizes the drift of a Lyapunov func-
tion at every time, then such an algorithm is optimal in the sense that it max-
imizes the asymptotic decay-rate of the probability that the Lyapunov function
value exceeds a threshold, as the threshold approaches infinity.

Note that many queue-length-based scheduling algorithms are designed
by minimizing the drift of some Lyapunov functions. For example, the max-
weight algorithm minimizes the drift of the Lyapunov function V ( ~X) =
∑

i X
2
i where Xi is the queue length of user i. Similarly, the α-algorithm

in [4, 5] minimizes the drift of the Lyapunov function V ( ~X) =
∑

i X
α+1
i .

Hence, if the above result indeed holds, it will allow us to easily conclude



the large-deviations optimality of a large class of link scheduling algorithms.
Further, it will help us to search for the optimal scheduling algorithm by
choosing the appropriate Lyapunov function.

In our prior work [6], we have established Statement 1 for Lyapunov
functions that satisfy the following conditions. First, the Lyapunov function
V ( ~X) must be linear in scale. In other words, if the global queue-length

vector ~X is multiplied by a positive scalar β, then V (β ~X) = βV ( ~X). Second,
the Lyapunov function must be convex. These conditions are satisfied by
Lyapunov functions of the form Vα( ~X) = (

∑

i X
α
i )1/α. Note that as α →

∞, Vα( ~X) → maxi Xi. Hence, we can conclude that, as α → ∞, the α-
algorithms asymptotically achieve the maximum asymptotic decay-rate of
the probability that maxi Xi ≥ B. Note that this conclusion recovers the
result that was first reported in [4, 5].

However, not all Lyapunov functions (and their corresponding scheduling
algorithms) satisfy the afore-mentioned conditions required in [6]. A notable
case is the so-called log-rule [8], which has been conjectured to maximize
the asymptotic decay-rate of the overflow probability that

∑

i Xi ≥ B. The
log-rule can be viewed as minimizing the drift of the Lyapunov function
V ( ~X) =

∑

i(Xi + 1) log(Xi + 1) − Xi. This Lyapunov function is not linear
in scale. Hence, we cannot use the result of [6] to study its optimality.

In this paper, we extend the result of [6] to more general forms of Lya-
punov function, which include the Lyapunov function for the log-rule. We
show that under suitable conditions, Statement 1 is true even when the Lya-
punov function is not linear in scale. A main difficulty in establishing State-
ment 1 for Lyapunov functions that are not linear in scale is that the resulting
fluid-sample-paths are more difficult to track. We use the recently-developed
theory of generalized fluid-sample-paths [3] to address this difficulty. The
result of this paper allows us to apply Statement 1 to a much larger class
of Lyapunov functions and scheduling algorithms. In particular, as an im-
mediate application, we show that the log-rule maximizes the asymptotic
decay-rate of the probability that

∑

i Xi ≥ B. This result generalizes the
result of [8], which was for a log-rule-like scheduling algorithm and was for
only two users.



2 The System Model

For simplicity, we focus on the downlink of a single-cell serving multiple users
(although the techniques here can also be applied to more general network
settings, e.g., multi-hop wireless networks). The wireless channel can be in
one of S states. We assume that time is divided to slots with unit-length. At
time-slot t, let C(t) denote the channel state. We assume that the channel
states are i.i.d. over time, and let pj = P[C(t) = j], j = 1, 2, ...,S, denote
the probability that the channel state is j at time t. The base-station serves
N users. Let Ai(t) denote the number of packets for user i that arrive at the
base-station at time-slot t. We assume that Ai(t) are i.i.d. over time, and
are independent across users. We further assume that Ai(t) is bounded for

all users i and all time-slots t. Define λi , E[Ai(t)] and ~λ = (λ1, . . . , λN).

We assume that ~λ belongs to the interior of the capacity region [9], and hence
the system can be stabilized by some scheduling policy. Due to interference,
at each time-slot the base-station can only serve packets for one user. Let
F i

j denote the rate that the base-station can serve user i when the channel
state is j, if the base-station chooses to serve user i. Let U(t) denote the
index of the user that the base-station chooses to serve at time-slot t. Then
the evolution of the queue backlog for user i can be written as:

Xi(t + 1) =

[

Xi(t) + Ai(t) −

S
∑

j=1

F i
j1{C(t)=j,U(t)=i}

]+

.

Let ~X = [Xi, i = 1, ..., N ]. Let Ṽ ( ~X) denote a given non-negative and

component-wise non-decreasing function of the global queue vector ~X. In
this paper, we are interested in the asymptotic decay-rate of the probability
that Ṽ ( ~X) exceeds some threshold f̃(B), when the scaling parameter B
approaches infinity. In other words, for a particular scheduling policy π
under which the system is stationary and ergodic, we are interested in the
following quantity:

I(π) = − lim
B→∞

1

B
log Pπ[Ṽ ( ~X(0)) ≥ f̃(B)], (1)

whenever such a limit exists, where Pπ[·] denote the stationary distribution
under the scheduling policy π. Further, let Iopt denote the maximum value
of I(π) over all policies. we are interested in finding the scheduling policy
that can achieve the maximum decay rate Iopt.



Remark: The function f̃(B) needs to be properly chosen so that the limit
in (1) does not become trivial. We will provide more comments on the choice
of f̃(B) at the end of Section 3.

For any B > 0 and T > 0, define the scaled channel-state process sB
j (t),

scaled arrival process gB
i (t), and scaled queue process xB

i (t) as sB
j (0) =

gB
i (0) = 0, xB

i (0) = Xi(0)/B,

sB
j (t) =

1

B

Bt
∑

τ=1

1{C(τ)=j}, gB
i (t) =

1

B

Bt
∑

τ=1

Ai(τ),

xB
i (t) =

1

B
Xi(Bt),

for t = m
B

, m = 1, ..., BT , and by linear interpolation otherwise. Let ~sB(t) =
[sB

j (t), j = 1, ...,S], ~gB(t) = [gB
i (t), i = 1, ..., N ], and ~xB(t) = [xB

i (t), i =

1, ..., N ]. For any ~φ = [φj, j = 1, ...,S] ≥ 0 and
S
∑

j=1

φj = 1, define H(~φ||~p) =

S
∑

j=1

φj log
φj

pj
. (Here we use the convention that 0 log 0 = 0.) Further, define

Li(a) = sup
θ

(θa − log E[exp(θAi(0))]) .

For any ~a = [ai, i = 1, ..., N ], let L(~a) =
N
∑

i=1

Li(ai). With a suitable choice of

the topological space, the sequence of processes ~sB(·) and ~gB(·) are known to
satisfy sample-path large deviation principles [7, p176] with large-deviation
rate-functions given by

IT
s (~s(·)) =

∫ T

0

H(
d~s(t)

dt
||~p)dt

IT
g (~g(·)) =

∫ T

0

L(
d~g(t)

dt
)dt,

whenever the processes ~s(·) and ~g(·) are absolute continuous. Finally, for any
(~s(·), ~g(·)), define the large-deviations cost over a time interval [t1, t2] as

J[t1,t2](~s(·), ~g(·)) =

∫ t2

t1

H(
d~s(t)

dt
||~p) + L(

d~g(t)

dt
)dt.



3 An Upper Bound on the Asymptotic Decay-

Rate of the Queue Overflow Probability

Given any non-negative and component-wise non-decreasing function Ṽ ( ~X)

of the global queue-length vector ~X, define the following optimization prob-
lem for all B > 0, ~φ and ~a:

l̃B(~φ,~a) = min Ṽ (B ~X)

subject to Xi = [ai −
S

∑

j=1

F i
ju

i
j]

+

[ui
j] ≥ 0,

N
∑

i=1

ui
j = φj

for all channel states j = 1, ...,S.

The parameter ui
j can be interpreted as the long-term fraction of time that

the base-station serves user i at state j. The value l̃B(~φ,~a) can then be viewed

as the slowest way that Ṽ ( ~X) can grow when the channel-state process and

the arrival process satisfy d~s
dt

= ~φ and d~g
dt

= ~a at all time. For an increasing

overflow threshold function f̃(B), assume that the following limit exists for

all ~φ and ~a:

w̃(~φ,~a) = lim
B→∞

1

B
f̃−1(l̃B(~φ,~a)). (2)

Roughly speaking, w̃(~φ,~a) can be interpreted as the slowest speed of growth

of f̃−1(Ṽ ( ~X)) and hence 1/w̃(~φ,~a) is the maximum-time Ṽ ( ~X) would take
to exceed f̃(B) when the channel-state process and the arrival process satisfy
d~s
dt

= ~φ and d~g
dt

= ~a. Let

Iopt = inf
w̃(~φ,~a)>0

H(~φ||~p) + L(~a)

w̃(~φ,~a)
.

We first have the following upper bound on the asymptotic decay-rate of the
queue-overflow probability.

Proposition 1 Assume that the limit in (2) exists for all ~φ and ~a. Then

lim inf
B→∞

1

B
logPπ[Ṽ ( ~X(0)) ≥ f̃(B)] ≥ −Iopt.



Remark: The function f̃(B) must be chosen such that the value Iopt is not

trivial. Roughly speaking, f̃(B) must be on the same order as Ṽ (B ~X) when

B → ∞. For example, when Ṽ ( ~X) =
∑

i X
2
i , then f̃(B) may be chosen as

f̃(B) = B2. If f̃(B) “grows” too fast, it may happen that w̃(~φ,~a) = 0 for all
~φ and ~a. In this case, Iopt = +∞, and hence the probability P[Ṽ ( ~X(0)) ≥
f̃(B)] decreases super-exponentially to zero as B → ∞. The other extreme

is when f̃(B) “grows” too slowly. Specifically, if for all ~X

lim
B→∞

f̃−1(Ṽ (B ~X))

B
= +∞,

then w̃(~φ,~a) = +∞ and Iopt = 0. In this case, the probability P[Ṽ ( ~X(0)) ≥
f̃(B)] may approach a non-zero constant as B → ∞. Neither of these two
situations are desirable for an LDP result. To summarize, the suitable choice
of f̃(B) should ensure that:

(a) w̃(~φ,~a) > 0 for some ~φ and ~a.

(b) For some ~X, limB→∞
f̃−1(Ṽ (B ~X))

B
< +∞.

Proof of Proposition 1 : Fix a small ǫ > 0. By the definition of Iopt,

there exist ~φ0 and ~a0 such that

H(~φ0||~p) + L(~a0)

w̃(~φ0,~a0)
≤ Iopt + ǫ.

Let T0 = 1

(1−ǫ)w̃(~φ0,~a0)
and T = T0/(1 − ǫ). Consider a scaled channel-state

process ~s0(·) and a scaled arrival process ~g0(·) in the interval [0, T ] such that

~s0(t) = t~φ0 and ~g0(t) = t~a0. Let δ > 0 be a small number, which we will
choose soon. Consider a set Γ of pairs of scaled channel-state process ~s(·) and
scaled arrival process ~g(·) such that for each (~s(·), ~g(·)) ∈ Γ, the following
holds

sup
t∈[0,T ]

||~s(t) − ~s0(t)|| < δ, sup
t∈[0,T ]

||~g(t) − ~g0(t)|| < δ.

We will show that with a suitable choice of δ the queue must overflow (in the

sense that Ṽ ( ~X) > f̃(B) ) at time BT for any (~s(·), ~g(·)) ∈ Γ. To see this,

for any (~s(·), ~g(·)) ∈ Γ, let ~φ = (~s(T ) − ~s(0))/T and ~a = (~g(T ) − ~g(0))/T .



Further, let ūi
j be the corresponding fraction of time in the interval [0, T ]

that user i is served whenever the channel state is j. Note that
N
∑

i=1

ūi
j = 1 for

all states j. Let

xi =

[

ai −

S
∑

j=1

φiF
i
j ū

i
j

]+

, xi,0 =

[

ai,0 −

S
∑

j=1

φi,0F
i
j ū

i
j

]+

,

where ai, ai,0, φi and φi,0 are the components of ~a,~a0, ~φ, and ~φ0, respectively.
Let ~x = [xi], and ~x0 = [xi,0]. Then by choosing δ to be sufficiently small, we
can ensure that xi ≥ (1 − ǫ)xi,0 for all (~s(·), ~g(·)) ∈ Γ. Hence, we have

V ( ~X(BT )) ≥ V ( ~X(BT ) − ~X(0)) ≥ V (BT~x)

≥ V (BT0~x0) ≥ l̃BT0(~φ0,~a0).

By the definition of w̃(~φ,~a), there exists B0 such that for all B ≥ B0, we
have

f̃−1(l̃BT0(~φ0,~a0)) ≥ (1 − ǫ)BT0w̃(~φ0,~a0) = B.

Hence, we have
Ṽ ( ~X(BT )) ≥ l̃BT0(~φ0,~a0) ≥ f̃(B).

In other words, the queue must overflow at time BT for any (~s(·), ~g(·)) ∈ Γ.
Hence,

lim inf
B→∞

1

B
logPπ[Ṽ ( ~X(0)) ≥ f̃(B)]

= lim inf
B→∞

1

B
logPπ[Ṽ ( ~X(BT )) ≥ f̃(B)]

≥ − inf
(~s(·),~g(·))∈Γo

J[0,T ](~s(·), ~g(·)) ≥ −J[0,T ](~s0(·), ~g0(·))

= −T (H(~φ0||~p) + L(~a0)) ≥ −
Iopt + ǫ

(1 − ǫ)2
.

Since this is true for all ǫ > 0, the result of the proposition then follows
by letting ǫ → 0. Q.E.D.



4 A Lower Bound on the Asymptotic Decay-

Rate of the Queue-Overflow Probability

Next, we construct a lower bound on the asymptotic decay-rate of the queue
overflow probability using a Lyapunov function.

4.1 Lyapunov functions

Often, the stability of the system under a particular scheduling policy π is
established through a Lyapunov function. Let || ~X|| be an Lp norm with

p ≥ 1. The Lyapunov function V ( ~X) for a given scheduling policy π is a
function that satisfies the following conditions:

Assumption 1 (a) V ( ~X) is a continuous function of ~X, and V ( ~X) ≥ 0.

(b) V ( ~X) → +∞ as || ~X|| → ∞.

(c) There exists a large B such that whenever || ~X|| ≥ B,

E[V ( ~X(t + 1)) − V ( ~X(t))| ~X(t) = ~X] < −ξ, (3)

for some ξ > 0.

The last condition implies a negative drift of the Lyapunov function.
Hence, the system under policy π must be stable. Often, the negative drift is
attained when the scheduling policy π chooses a schedule that minimizes the
drift V ( ~X(t + 1)) − V ( ~X(t)) at each time slot t. Note that if the Lyapunov
function is differentiable, then under fairly general assumptions, the drift of
the Lyapunov function may be written (for large ~X(t)) as

V ( ~X(t + 1)) − V ( ~X(t)) =

N
∑

i=1

∂V

∂Xi

∣

∣

∣

~X(t)
Ai(t)

−
S

∑

j=1

1{C(t)=j}

N
∑

i=1

∂V

∂Xi

∣

∣

∣

~X(t)
F i

j1{U(t)=i}

+o(∇V ( ~X(t))),

where ∇V ( ~X) is the gradient of V ( ~X) and is given by ∇V ( ~X) =
[

∂V
∂Xi

, i = 1, ..., N
]

.

Hence, ignoring the small-o term, we can define a scheduling policy that min-
imizes the drift of the Lyapunov function as follows.



Definition 2 A scheduling policy π is said to minimize the drift of the Lya-
punov function V ( ~X) if at any time t, when the channel state is j, the

scheduling policy picks the user i that maximizes the value ∂V
∂Xi

∣

∣

∣

~X(t)
F i

j .

With such a scheduling policy, the one-step drift of V ( ~X) can be further
simplified to

V ( ~X(t + 1)) − V ( ~X(t)) =

N
∑

i=1

∂V

∂Xi

∣

∣

∣

~X(t)
Ai(t) (4)

−

S
∑

j=1

1{C(t)=j} max
i=1,...,N

∂V

∂Xi

∣

∣

∣

~X(t)
F i

j + o(∇V ( ~X(t))).

In this section, we will establish a lower bound on the asymptotic decay-
rate of the queue-overflow probability for scheduling policies of the above
form, which will then help us prove Statement 1 for this class of scheduling
policies. However, for this purpose we need some stronger conditions on the
Lyapunov functions. These conditions essentially require that the scheduling
policy not only minimizes the one-step drift of the Lyapunov function, it
must also minimize the drift over each time-interval of length Bη for some
η ∈ (0, 1), whenever the queue-length vector ~X(t) preceding this time-interval
is on the order B. Such drift-minimization must hold even when compared to
another policy that knows the channel-states and arrivals in this time-interval
of length Bη in advance. For this purpose, the condition below essentially
requires that the gradient of the Lyapunov function does not change much
during such a time-interval of length Bη (please see part (b) of Assumption 2).
Since the drift of the Lyapunov function is dependent on its gradient, under
these conditions a scheduling policy that minimizes the one-step drift should
also (approximately) minimize the Bη-step drift (see Proposition 4 below).

Assumption 2 (a) ∇V ( ~X) ≥ 0 for all ~X, and

∂V

∂Xi
→ +∞ as Xi → ∞ for all i.

Further, for all M > 0 and i, ∂V
∂Xi

is bounded whenever Xi ≤ M .



(b) For any ǫ > 0, M > 0 and 0 < v0 < v1, there exists B0 and η0 ∈

(0, 1) such that for all B ≥ B0, 0 < η < η0, || ~X0|| ∈ (v0B, v1B), and

||∆ ~X|| ≤ MBη, the following holds

||∇V ( ~X0 + ∆ ~X) −∇V ( ~X0)|| ≤ ǫ||∇V ( ~X0)||.

(c) For any ǫ > 0, M > 0 and 0 < v0 < v1, there exists B0 and η0 ∈ (0, 1)

such that for all B ≥ B0, 0 < η < η0, || ~X0|| ∈ (v0B, v1B), and || ~X1|| ≤
MBη, the following holds,

||∇V ( ~X1)|| ≤ ǫ||∇V ( ~X0)||, for all i.

(d) The function f(B) is convex and increasing, and the following condition
holds

lim sup
B→∞

1

f ′(B)
sup

{ ~X:V ( ~X)=f(B)}

||∇V ( ~X)|| < +∞.

From these conditions, we can obtain the following lemma.

Lemma 3 Suppose that the Lyapunov function V ( ~X) satisfies Assumptions 1 and 2.
For any ǫ > 0, M > 0, and 0 < v0 < v1, there exists B0 and η0 ∈ (0, 1) such

that for all B ≥ B0, 0 < η < η0, || ~X0|| ∈ (v0B, v1B), and ||∆ ~X|| ∈ (0, MBη),
the following holds,

V ( ~X0 + ∆ ~X) − V ( ~X0) ≤

N
∑

i=1

∂V

∂Xi

∣

∣

∣

~X0

∆ ~Xi

+ǫ||∇V ( ~X0)|| · ||∆ ~X||.

Proof: Let h(t) = V ( ~X0 + t∆ ~X). Then

h′(t) =

N
∑

i=1

∂V

∂Xi

∣

∣

∣

~X0+t∆ ~X
∆Xi.

Hence, by the mean-value theorem, we have

V ( ~X0 + ∆ ~X) − V ( ~X0) = h(1) − h(0)

=

N
∑

i=1

∂V

∂Xi

∣

∣

∣

~X0+t∆ ~X
∆Xi,



for some t ∈ (0, 1). By part (b) of Assumption 2, we can find B0 and

η0 ∈ (0, 1) such that for all B ≥ B0, 0 < η < η0, || ~X0|| ∈ (v0B, v1B), and

||∆ ~X|| ≤ MBη, we have,
∣

∣

∣

∣

∂V

∂Xi

∣

∣

∣

~X0+t∆ ~X
−

∂V

∂Xi

∣

∣

∣

~X0

∣

∣

∣

∣

≤ ǫ||∇V ( ~X0)||, for all i.

Hence, we have,
∣

∣

∣

∣

∣

N
∑

i=1

∂V

∂Xi

∣

∣

∣

~X0+t∆ ~X
∆Xi −

N
∑

i=1

∂V

∂Xi

∣

∣

∣

~X0

∆Xi

∣

∣

∣

∣

∣

≤ ǫN ||∇V ( ~X0)|| · ||∆ ~X||.

The result of the lemma then follows. Q.E.D.

We can then obtain the following proposition, which can be viewed as a
stronger version of (4). Recall that both the arrivals and the departures are
assumed to be bounded.

Proposition 4 Suppose that the scheduling policy minimizes the drift of the
Lyapunov function V ( ~X), and the Lyapunov function V ( ~X) satisfies As-
sumptions 1 and 2. For any ǫ > 0 and 0 < v0 < v1, there exists B0 and
η0 ∈ (0, 1) such that for all B ≥ B0, 0 < η < η0, || ~X(t0)|| ∈ (v0B, v1B), and
t ∈ (0, Bη), the following holds,

V ( ~X(t0 + t)) − V ( ~X(t0)) (5)

≤ t

[

N
∑

i=1

∂V

∂Xi

∣

∣

∣

~X(t0)
(ai + ǫ)

−
S

∑

j=1

φj max
i=1,...,N

∂V

∂Xi

∣

∣

∣

~X(t0)
F i

j

]

where

ai =
1

t

t−1
∑

k=0

Ai(t0 + k) for all users i

φj =
1

t

t−1
∑

k=0

1{C(t0+k)=j} for all states j.



Proof: Fix ǫ > 0 and 0 < v0 < v1. Since both the arrivals and the service are
bounded, there exists M such that || ~X(t + 1)− ~X(t)|| ≤ M for all t. Hence,
using Lemma 3 and with a suitable choice of M1, there must exist B0 and
η0 ∈ (0, 1) such that for all B ≥ B0, 0 < η < η0, || ~X(t0)|| ∈ (v0B, v1B), and
t ∈ (0, Bη),

V ( ~X(t0 + t)) − V ( ~X(t0)) ≤

N
∑

i=1

∂V

∂Xi

∣

∣

∣

~X(t0)
(Xi(t0 + t)

−Xi(t0)) + ǫM1t

N
∑

i=1

∂V

∂Xi

∣

∣

∣

~X(t0)
. (6)

The first term on the right-hand-side can be rewritten as

N
∑

i=1

∂V

∂Xi

∣

∣

∣

~X(t0)
(Xi(t0 + t) − Xi(t0))

=

N
∑

i=1

∂V

∂Xi

∣

∣

∣

~X(t0)

t−1
∑

k=0

Ai(t0 + k) (7)

−
N

∑

i=1

∂V

∂Xi

∣

∣

∣

~X(t0)

t−1
∑

k=0

Di(t0 + k),

where Di(t0 + k) is the actual amount of service that user i receives at time
t0 + k. Note that at any time-slot t = t0 + k,

Di(t) ≤

S
∑

j=1

F i
j1{C(t)=j,U(t)=i},

and equality holds whenever Xi(t) ≥ M . Further, at each time-slot t, if the
channel state is j, then the scheduling policy chooses the user that maximizes
∂V
∂Xi

∣

∣

∣

~X(t)
F i

j . Hence, we must have

N
∑

i=1

∂V

∂Xi

∣

∣

∣

~X(t)
Di(t)

≥

S
∑

j=1

1{C(t)=j} max
i=1,...,N

∂V

∂Xi

∣

∣

∣

~X(t)
F i

j − M2,



where M2 is a constant that bounds ∂V
∂Xi

∣

∣

∣

~X(t)
M for all Xi ≤ M and for all i.

(Such a constant M2 can be found due to part (a) of Assumption 2.) Hence,
we have,

N
∑

i=1

∂V

∂Xi

∣

∣

∣

~X(t0)
Di(t0 + k)

=
N

∑

i=1

∂V

∂Xi

∣

∣

∣

~X(t0+k)
Di(t0 + k)

−

N
∑

i=1

(

∂V

∂Xi

∣

∣

∣

~X(t0+k)
−

∂V

∂Xi

∣

∣

∣

~X(t0)

)

Di(t0 + k)

≥
S

∑

j=1

1{C(t0+k)=j} max
i=1,...,N

∂V

∂Xi

∣

∣

∣

~X(t0+k)
F i

j

−
N

∑

i=1

(

∂V

∂Xi

∣

∣

∣

~X(t0+k)
−

∂V

∂Xi

∣

∣

∣

~X(t0)

)

Di(t0 + k) − M2

≥

S
∑

j=1

1{C(t0+k)=j} max
i=1,...,N

∂V

∂Xi

∣

∣

∣

~X(t0)
F i

j

−

N
∑

i=1

∣

∣

∣

∣

∂V

∂Xi

∣

∣

∣

~X(t0+k)
−

∂V

∂Xi

∣

∣

∣

~X(t0)

∣

∣

∣

∣

×( max
j=1,...,S

F i
j + Di(t0 + k)) − M2

≥
S

∑

j=1

1{C(t0+k)=j} max
i=1,...,N

∂V

∂Xi

∣

∣

∣

~X(t0)
F i

j

−ǫM3

N
∑

i=1

∂V

∂Xi

∣

∣

∣

~X(t0)
− M2

for some M3 > 0, where in the last step we have used part (b) of Assump-
tion 2. Substituting into (7), we have

N
∑

i=1

∂V

∂Xi

∣

∣

∣

~X(t0)
(Xi(t0 + t) − Xi(t0))



=
N

∑

i=1

∂V

∂Xi

∣

∣

∣

~X(t0)

t−1
∑

k=0

Ai(t0 + k)

−

N
∑

i=1

∂V

∂Xi

∣

∣

∣

~X(t0)

t−1
∑

k=0

Di(t0 + k)

≤ t
N

∑

i=1

∂V

∂Xi

∣

∣

∣

~X(t0)
ai − t

S
∑

j=1

φj max
i=1,...,N

∂V

∂Xi

∣

∣

∣

~X(t0)
F i

j

+tǫM3

N
∑

i=1

∂V

∂Xi

∣

∣

∣

~X(t0)
+ tM2.

Substituting into (6), and choose a sufficient large B so that M2 is bounded

by ǫ
N
∑

i=1

∂V
∂Xi

∣

∣

∣

~X(t0)
for any || ~X(t0)|| ≥ v0B, the result of the Proposition then

follows. Q.E.D.

4.2 The Lower Bound

Next, define the following optimization problem. For all ~φ and ~a, let

lB(~φ,~a) = max

N
∑

i=1

∂V

∂Xi
ai −

S
∑

j=1

φj max
i=1,...,N

∂V

∂Xi
F i

j

subject to V ( ~X) = f(B).

Comparing with (5), the value lB(~φ,~a) can be viewed as, given V ( ~X(t0)) =

f(B), the fastest way with which V ( ~X(t)) can grow locally when the channel-

state process and the arrival process satisfy d~s
dt

= ~φ and d~g
dt

= ~a at time t0.

Assume that the following limit exists for all ~φ and ~a:

w(~φ,~a) = lim
B→∞

1

f ′(B)
lB(~φ,~a).

Roughly speaking, w(~φ,~a) is the fastest way for f−1(V ( ~X)) to grow when

V ( ~X) = f(B). Hence 1

w(~φ,~a)
is the earliest time that V ( ~X) can exceed f(B).

Let

θ0 = inf
w(~φ,~a)>0

H(~φ||~p) + L(~a)

w(~φ,~a)
.



Let P0[·] denote the distribution conditioned on ~X(0) = 0. Then we have
the following result.

Proposition 5 Suppose that the scheduling policy minimizes the drift of the
Lyapunov function V ( ~X), and the Lyapunov function V ( ~X) satisfies As-

sumptions 1 and 2. Assume that ~X(0) = 0. Then for all T ≥ 0,

lim sup
B→∞

1

B
log P0[V ( ~X(BT )) ≥ f(B)] ≤ −θ0.

To prove Proposition 5, we will need the following Lemma 6 and Lemma 7
on the properties of w(~φ,~a).

Lemma 6 If the limit in the definition of w(~φ,~a) exists for all ~φ and ~a, then

the function w(~φ,~a) is continuous with respect to ~φ and ~a.

Proof: Because the arrivals and the services are both bounded, we have for
all B,

||lB(~φ + ∆~φ,~a + ∆~a) − lB(~φ,~a)||

≤ [
N

∑

i=1

|∆ai| +
S

∑

j=1

|∆φj| max
i=1,...,N

F i
j ]

× sup
~X:V ( ~X)=f(B)

||∇V ( ~X)||.

Hence,

||w(~φ + ∆~φ,~a + ∆~a) − w(~φ,~a)||

≤ [
N

∑

i=1

|∆ai| +
S

∑

j=1

|∆φj| max
i=1,...,N

F i
j ]

× lim sup
B→∞

1

f ′(B)
sup

~X:V ( ~X)=f(B)

||∇V ( ~X)||.

The continuity of w(~φ,~a) then follows from Assumption 2(d). Q.E.D.

Remark: If, in addition to the above result, ~φ and ~a are constrained
within a bounded set (which is true for our problem setting because the

arrivals are bounded), then the function w(~φ,~a) is uniformly continuous.



Lemma 7 If the limit in the definition of w(~φ,~a) exists for all ~φ and ~a within
a closed and bounded set, then the convergence of the limit is uniform for all
~φ and ~a. In other words, for any ǫ > 0, there exists B0 such that for all
B ≥ B0 and for all ~φ and ~a, the following holds

|
1

f ′(B)
lB(~φ,~a) − w(~φ,~a)| ≤ ǫ.

Proof: Suppose in contrary that the convergence is not uniform. Then there
must exist some ǫ > 0, and a sequence of ~φn, ~an and Bn such that Bn → ∞
and

|
lB

n

(~φn,~an)

f ′(Bn)
− w(~φn,~an)| ≥ ǫ, for all n = 1, 2, ....

Since (~φn,~an) are bounded, there exists a converging subsequence. Without

loss of generality, denote this converging subsequence as (~φn,~an) and let (~φ,~a)

denote its limit. By Lemma 6, w(~φn,~an) → w(~φ,~a). Hence, using similar
bounding technique as in the proof of Lemma 6, we can find N0 such that
for all n ≥ N0,

∣

∣

∣

∣

∣

lB
n

(~φ,~a)

f ′(Bn)
− w(~φ,~a)

∣

∣

∣

∣

∣

≥
ǫ

2
.

This contradicts to the assumption that the limit in the definition of w(~φ,~a)
converges. Hence, the result of the lemma must hold. Q.E.D.

To prove Proposition 5, we will use the notion of a Generalized Fluid
Sample Path (GFSP) introduced in [3]. Consider a sequence of scaled sam-
ple paths (~sB(·), ~gB(·), ~xB(·)) on the time-interval [0, T ]. Define µB(t) =
f−1(V (B~xB(t)))

B
. Fix η ∈ (0, 1). For each B, divide the time interval [0, T ] into

sub-intervals of length Bη/B, i.e., [0, Bη/B], [Bη/B, 2Bη/B], [2Bη/B, 3Bη/B],
and so on. For any scaled sample path (~sB(·), ~gB(·)) (which is an element
of the above sequence), linearize ~sB and ~gB on each such sub-interval. Let
UB(~sB, ~gB) denote such a linearized version of ~sB and ~gB. For each t, let
θB(t) = Bη

B
⌊ t

Bη/B
⌋. We can then define the refined cost of the scaled sample

path (~sB(·), ~gB(·)) on the time-interval [0, t] as J̄B(t) = J[0,θ(B)(t)](U
B(~sB, ~gB)).

Taking subsequence if necessary, assume that the sequence

(~sB(·), ~gB(·), ~xB(·), µB(·), J̄B(·))



converges to (~s(·), ~g(·), ~x(·), µ(·), J̄(·)) uniformly over the time interval [0, T ].
This entire sequence (along with its limit) is called a Generalized Fluid Sam-
ple Path (GFSP).

The following theorem from [3] (in a slightly-varied form) establishes a
lower bound on the asymptotic decay-rate of the queue overflow probability
using GFSP.

Theorem 8 Assume that ~X(0) = 0. For any η ∈ (0, 1) the following holds:
For any T > 0,

lim sup
B→∞

1

B
logP0[V ( ~X(BT )) ≥ f(B)]

≤ − inf{J̄(T )| for all GFSP’s such that µ(0) = 0

and µ(T ) ≥ 1}.

We are now ready to show Proposition 5.
Proof of Proposition 5 : Fix T > 0. From Theorem 8, we only need to

show that there exists a function β(δ) such that β(δ) → 0 as δ → 0 and that
for every δ > 0, there exists η ∈ (0, 1) such that

J̄(T ) ≥ θ0 − β(δ) (8)

for all GFSP (corresponding to η) with µ(0) = 0 and µ(T ) ≥ 1.
Fix δ > 0. Let v0 = δ and v1 be a large number such that ||~xB(t)|| ≤ v1

for all B ≥ B1 (for some B1 > 0) and t ∈ (0, T ). (Such a v1 must exist
because the arrivals are bounded.) Note that for any GFSP, the derivatives
of ~s(·) and ~g(·) exist almost everywhere and are within a closed and bounded

set. By Lemma 6, there exists ǫ > 0 such that w(~φ,~a + ~ǫ) ≤ w(~φ,~a) + δ

for all ~φ and ~a within this set, where ~ǫ denote a vector whose components
are all ǫ. Let M be the bound on the change of ~X in one time-slot. Then,
according to Proposition 4, there exists B2 ≥ B1 and η0 ∈ (0, 1) such that
the statement of Proposition 4 holds for ǫ, v0, v1 and M .

Take any 0 < η < η0. Take any GFSP corresponding to this η such that
µ(0) = 0 and µ(T ) ≥ 1. Define the following for the limiting sample path
(~s(·), ~g(·), ~x(·), µ(·)). Let T1 = inf{t ≥ 0|µ(t) ≥ 1} be the first time such that
µ(t) ≥ 1. Let T0 = sup{t ≤ T1 | ||~x(t)|| ≤ 3δ or µ(t) ≤ 3δ} be the last time
before T1 such that ||~x(t)|| ≤ 3δ or µ(t) ≤ 3δ. Further, there exists B3 such
that for all B ≥ B3, the difference between (~sB(·), ~gB(·), ~xB(·), µB(·), J̄B(·))



and (~s(·), ~g(·), ~x(·), µ(·), J̄(·)) is less than δ. Hence, during the time interval
(T0, T1), we must have, for all B ≥ B3 and t ∈ [T0, T1],

||~xB(t)|| ≥ 2δ, 2δ ≤ µB(t) ≤ 1 + δ,

µB(T0) ≤ 4δ and µB(T1) ≥ 1 − δ.

Finally, according to Lemma 7, we can take another large B4 ≥ B3 such that
for all B ≥ B4 and for all ~φ and ~a,

|
1

f ′(Bδ)
lBδ(~φ,~a) − w(~φ,~a)| ≤ δ. (9)

Fix some B ≥ max{B2, B4} and divide the interval [0, T ] to sub-intervals
of length Bη/B. Let [k0B

η/B, (k0 +1)Bη/B] and [k1B
η/B, (k1 +1)Bη/B] be

the first and last sub-intervals, respectively, that are completely contained in
[T0, T1]. By choosing a sufficiently large B, we can ensure that k0 < k1, and
µB(k0B

η/B) ≤ 5δ and µB((k1 + 1)Bη/B) ≥ 1 − 2δ.
Consider any such sub-interval k between k0 and k1. Denote it by

[kBη/B, (k + 1)Bη/B].

Let t0 = kBη/B and t = Bη/B. According to Proposition 4, the change of
the Lyapunov function must satisfy:

V ( ~X(B(t0 + t))) − V ( ~X(Bt0))

≤ Bt

[

N
∑

i=1

∂V

∂Xi

∣

∣

∣

~X(Bt0)
(ai + ǫ)

−

S
∑

j=1

φj max
i=1,...,N

∂V

∂Xi

∣

∣

∣

~X(Bt0)
F i

j

]

where

ai =
1

t
[gB

i ((t0 + t)) − gB
i (t0)] for all users i

φj =
1

t
[sB

j ((t0 + t)) − sB
j (t0)] for all states j.

Consider the function µB(V ) = 1
B

f−1(V ). Its derivative is given by dµB

dV
=

1
Bf ′(BµB)

. Further, we assume in part (d) of Assumption 2 that f(·) is convex



and increasing. Hence, f−1(·) is concave and increasing. Therefore, the drift
of µB(t) must satisfy

µB(t0 + t) − µB(t0)

≤
t

f ′(BµB(t0))

[

N
∑

i=1

∂V

∂Xi

∣

∣

∣

~X(Bt0)
(ai + ǫ)

−

S
∑

j=1

φj max
i=1,...,N

∂V

∂Xi

∣

∣

∣

~X(Bt0)
F i

j

]

.

Note that the quantity in the bracket on the right hand side is no greater
than lBµB(t0)(~φ,~a + ~ǫ). Further, by (9), the quantity on the right hand side

is no greater than t[w(~φ,~a + ~ǫ) + δ] since µB(t0) ≥ δ.
Using the above inequality and the definition of θ0, the refined cost for

such a sub-interval satisfies

t[H(~φ||~p) + L(~a)] ≥ tθ0w(~φ,~a) ≥ tθ0[w(~φ,~a + ~ǫ) − δ]

≥ θ0[µ
B(t0 + t) − µB(t0) − 2tδ].

Note that this is true for all sub-intervals k. Summing over all subintervals
between k0 and k1, we have

J̄B(T ) ≥ J[k0Bη/B,(k1+1)Bη/B](U
B[~sB, ~gB])

≥ θ0[µ
B((k1 + 1)Bη/B) − µB(k0B

η/B)]

−2θ0Tδ

≥ θ0(1 − 7δ) − 2θ0Tδ.

Hence,
J̄(T ) ≥ J̄B(T ) − δ ≥ θ0(1 − 7δ) − 2θ0Tδ − δ.

Hence, we have shown (8). The result of the Proposition then follows.
Q.E.D.



5 Large Deviations Optimality of Scheduling

Algorithms that Minimize the Drift of a

Lyapunov Function

If Ṽ (·) = V (·) and f̃(·) = f(·), the upper bound Iopt and the lower bound θ0

differ only in their dependence on w̃(~φ,~a) versus w(~φ,~a).

Define Λ(~φ) as the rate-region of the system (i.e., the set of all feasible

offered-load vectors ~λ) when the channel distribution is twisted to ~φ. Take

dist(~a, Λ(~φ)) , inf~y∈Λ(~φ) ||~a − ~y||.

First, we note that there exists a δ̂ > 0 such that the infimum in the
definition of Iopt and θ0 can be taken over the set of ~φ and ~a such that

dist(~a, Λ(~φ)) > δ̂. This is because when ~a is very close to the set Λ(~φ), the

values w(~φ,~a) and w̃(~φ,~a) are close to 0 and hence it can be shown that they
will not influence the infimum.

We then have the following main result.

Proposition 9 Take Ṽ (·) = V (·) and f̃(·) = f(·). Under Assumptions 1 and 2,

if w̃(~φ,~a) ≥ w(~φ,~a) for all ~φ and ~a such that dist(~a, Λ(~φ)) > δ̂, then
Iopt = θ0, and the scheduling algorithm that minimizes the drift of the Lya-

punov function V ( ~X) must maximize the asymptotic decay-rate of the proba-
bility that the Lyapunov function value exceeds f(B). More precisely, under
such a scheduling algorithm π, there must exist T0 > 0 such that for all
T ≥ T0,

lim inf
B→∞

1

B
logP0[V ( ~X(BT )) ≥ f(B)]

= lim sup
B→∞

1

B
log P0[V ( ~X(BT )) ≥ f(B)] = −Iopt.

Proof: For any ǫ > 0, there exists ~φ0 and ~a0 such that

H(~φ0||~p) + L(~a0)

w̃(~φ0,~a0)
≤ Iopt + ǫ.

Let T0 > 1

w̃(~φ0,~a0)
. Using similar techniques as the proof of Proposition 1, we

can show that for all T ≥ T0,

lim inf
B→∞

1

B
log P0[V ( ~X(BT )) ≥ f(B)] ≥ −(Iopt + ǫ).



By Proposition 5, we must then have

Iopt + ǫ ≥ − lim inf
B→∞

1

B
log P0[V ( ~X(BT )) ≥ f(B)]

≥ − lim sup
B→∞

1

B
log P0[V ( ~X(BT )) ≥ f(B)]

≥ θ0.

If w̃(~φ,~a) ≥ w(~φ,~a) for all ~φ and ~a such that dist(~a, Λ(~φ)) > δ̂, then by the
definition of Iopt and θ0, we must have Iopt ≤ θ0. Since ǫ can be chosen to be
arbitrarily small, We can then conclude that Iopt = θ0, and we can find T0

such that for all T ≥ T0,

lim
B→∞

1

B
log P0[V ( ~X(BT )) ≥ f(B)] = −Iopt.

Q.E.D.

Remark: For each B, as T → ∞, the probability P0[V ( ~X(BT )) ≥ f(B)]

approaches Pπ[V ( ~X(0)) ≥ f(B)]. Hence, we could infer from Proposition 9
that the scheduling algorithm π should also maximize the asymptotic decay-
rate of Pπ[V ( ~X(0)) ≥ f(B)]. This argument could be made rigorous using
the Freidlin-Wentzell construction [3, 6].

It could be non-trivial to check w̃(~φ,~a) ≥ w(~φ,~a) for all ~φ and ~a. Next,
we provide a sufficient condition that is easier to check. For each B > 0 and
~y = [yi, i = 1, . . . , N ] ≥ 0, define

l̄B(~y) = max

N
∑

i=1

∂V

∂Xi
yi

subject to V ( ~X) = f(B).

Note that l̄B(~y) can be viewed as the fastest possible way that, given V ( ~X(t0)) =

f(B), V ( ~X(t)) can grow locally in a particular direction ~y. Similarly, we can

interpret V (B~y) as the value of V ( ~X(t)) when the growth direction of ~X(t)
is consistently equal to ~y.

Proposition 10 Suppose that for any η > 0, ǫ > 0 and M > 0, there exists
a B0 such that for all B ≥ B0 and all η < ||~y|| ≤ M , the following holds

1

f ′(B)
l̄B(~y) ≤

1

B
f−1(V (B~y)) + ǫ.



Then under Assumptions 1 and 2, the scheduling algorithm that minimizes
the drift of the Lyapunov function V ( ~X) must maximize the asymptotic
decay-rate of the probability that the Lyapunov function value exceeds f(B).

Proof: Take any ~φ and ~a such that dist(~a, Λ(~φ)) > δ̂. Fix a small ǫ > 0.
Let B0 be chosen according to the assumption in the proposition with M =

N max
i=1,...,N

ai, and η = δ̂. For any [ui
j] ≥ 0 such that

N
∑

i=1

ui
j = φj for all j, we

have

N
∑

i=1

∂V

∂Xi
ai −

S
∑

j=1

φj max
i=1,...,N

∂V

∂Xi
F i

j

≤
N

∑

i=1

∂V

∂Xi
ai −

S
∑

j=1

N
∑

i=1

ui
j

∂V

∂Xi
F i

j

=
N

∑

i=1

∂V

∂Xi

(ai −
S

∑

j=1

ui
jF

i
j ) ≤

N
∑

i=1

∂V

∂Xi

[ai −
S

∑

j=1

ui
jF

i
j ]

+.

Now, let yi = [ai −
S
∑

j=1

ui
jF

i
j ]

+ for all i. yi can be interpreted as the distance

between ~a and a vector in the set Λ(~φ). Since dist(~a, Λ(~φ)) > δ̂, we must
have ||~y|| ≥ δ̂ = η. Then, by the assumption of the proposition, we have, for
all B ≥ B0,

lB(~φ,~a)

f ′(B)
≤

l̄B(~y)

f ′(B)
≤

f−1(V (B~y))

B
+ ǫ.

Since this is true for all [ui
j], we must have

lB(~φ,~a)

f ′(B)
≤

f−1(l̃B(~φ,~a))

B
+ ǫ.

Taking limit as B → ∞, we obtain w(~φ,~a) ≤ w̃(~φ,~a) + ǫ. Since this is true

for all ǫ > 0, we must have w(~φ,~a) ≤ w̃(~φ,~a). The result then follows from
Proposition 9. Q.E.D.



5.1 The Optimality of the Log-rule

Next, we will use the above result to show that the log-rule is optimal in max-
imizing the asymptotic decay-rate of the probability that the sum-queue ex-

ceeds a threshold B. Take the Lyapunov function V ( ~X) =
N
∑

i=1

(Xi+1) log(Xi+

1) − Xi, and that f(B) = (B + 1) log(B + 1) − B. The policy that mini-
mizes the drift of the Lyapunov function is the log-rule: at each time, the
base-station should choose the user i with the largest value of

∂V

∂Xi
F i

j = log(Xi + 1)F i
j .

We first obtain the following proposition.

Proposition 11 The log-rule maximizes the asymptotic decay-rate of the
probability that V ( ~X) ≥ f(B).

Proof: We can verify that the Lyapunov function V ( ~X) satisfies Assump-
tions 1 and 2. For example, to verify part (b) and part (c) of Assumption 2,

note that for all B and v0 > 0 such that MBη < v0B, and for all || ~X|| ≥ v0B,
and ||∆X|| ≤ MBη, we have,

||∇V ( ~X + ∆X) −∇V ( ~X)|| ≤ ||∇V (|∆X|)||

≤
N

∑

i=1

log(|∆Xi| + 1) ≤ N log(MBη + 1),

and

||∇V ( ~X)|| ≥
1

N

N
∑

i=1

log(Xi + 1) ≥
1

N
log(

v0B

N
+ 1).

Hence, for any ǫ > 0, by choosing η < ǫ
2N2 , we must have

||∇V ( ~X + ∆X) −∇V ( ~X)|| ≤ ||∇V (|∆X|)|| ≤ ǫ||∇V ( ~X)||,

for all sufficiently large B.



It remains to check the condition in Proposition 10. We will first show
that

lim sup
B→∞

l̄B(~y)

f ′(B)
≤

N
∑

i=1

yi (10)

lim inf
B→∞

f−1(V (B~y))

B
≥

N
∑

i=1

yi. (11)

To show (10), consider the following optimization problem

max
N

∑

i=1

log(Xi + 1)yi

subject to

N
∑

i=1

(Xi + 1) log(Xi + 1) − Xi = f(B).

Let zi = log(Xi + 1). It is easy to see that the optimal value of the above
problem is the same as the optimal value of the following problem:

max

N
∑

i=1

ziyi

subject to
N

∑

i=1

ezi(zi − 1) + 1 ≤ f(B).

Clearly, if yi = 0, then the corresponding zi should be equal to 0. Let
I = {i|yi > 0}. Introduce a Lagrange multiplier λ for the constraint, we can
show that the optimal value zi must satisfy

yi − λezizi = 0 for all i ∈ I.
∑

i∈I

ezi(zi − 1) + 1 = f(B).

This implies that for any two i, i′ ∈ I, we must have

ezizi

ezi′zi′
=

yi

yi′
.

Hence, as B → ∞, the optimal values zi must increase to infinity for all
i ∈ I. Take any small ǫ > 0. We can then find a B0 such that for B ≥ B0,



the optimal values zi must satisfy zi ≥ 1 and zi ≤ (1+ ǫ)(zi−1) for all i ∈ I.
We then have,

1

λ

∑

i∈I

yi =
∑

i∈I

ezizi ≤ (1 + ǫ)
∑

i∈I

ezi(zi − 1)

= (1 + ǫ)(f(B) − 1).

Hence,

λ ≥

∑

i∈Iyi

(1 + ǫ)(f(B) − 1)
.

Further, from yi = λezizi and zi ≥ 1, we have yi ≥ λezi for i ∈ I. Hence,

zi ≤ log
yi

λ
≤ log

(1 + ǫ)yi(f(B) − 1)
∑

i∈Iyi
,

and
∑

i∈I

ziyi ≤
∑

i∈I

yi log
(1 + ǫ)yi
∑

i∈Iyi
+

∑

i∈I

yi log(f(B) − 1).

As B → ∞, we then have

lim sup
B→∞

1

f ′(B)

N
∑

i=1

ziyi

≤ lim sup
B→∞

∑

i∈Iyi log[(B + 1) log(B + 1) − B − 1]

log(B + 1)

=
∑

i∈I

yi =
N

∑

i=1

yi.

This then proves (10).
To show (11), note that for any ~y = [yi] ≥ 0 and ~y 6= 0,

V (B~y) =

N
∑

i=1

[(Byi + 1) log(Byi + 1) − Byi]

≥
N

∑

i=1

yi(B log B − B) + B
∑

i∈I

yi log yi,



and

f(B
N

∑

i=1

yi)

= (B

N
∑

i=1

yi + 1) log(B

N
∑

i=1

yi + 1) − B

N
∑

i=1

yi

=

N
∑

i=1

yi(B log B − B) + B

N
∑

i=1

yi log

B
N
∑

i=1

yi + 1

B

+ log(B

N
∑

i=1

yi + 1),

where I again denotes the set of the indices i such that yi > 0. For any
ǫ > 0, there exists B1 such that for all B ≥ B1,

B|
∑

i∈I

yi log yi| ≤ ǫ
N

∑

i=1

yi(B log B − B),

and

B

N
∑

i=1

yi log

B
N
∑

i=1

yi + 1

B
+ log(B

N
∑

i=1

yi + 1)

≤ ǫ
N

∑

i=1

yi(B log B − B).

Hence,

V (B~y) ≥ (1 − ǫ)

N
∑

i=1

yi(B log B − B)

≥
1 − ǫ

1 + ǫ
f(B

N
∑

i=1

yi) ≥ f(
1 − ǫ

1 + ǫ
B

N
∑

i=1

yi).

We then have

lim inf
B→∞

1

B
f−1(V (B~y)) ≥

1 − ǫ

1 + ǫ

N
∑

i=1

yi.



Since this is true for all ǫ > 0, we then obtain (11). Further, using similar
techniques as in the proof of Lemma 6 and Lemma 7, we can show that given
any 0 < η < M , the convergence in (10) and (11) is uniform over all ~y such
that η ≤ ||~y|| ≤ M . The condition of Proposition 10 thus must hold.

By Proposition 10, we can then conclude that the log-rule maximizes the
asymptotical decay-rate of the probability that V ( ~X) ≥ f(B). Q.E.D.

We now show the following result.

Proposition 12 The log-rule maximizes the asymptotic decay-rate of the
probability that

∑N
i=1 Xi ≥ B.

Proof: Using similar techniques as in the proof of the limit (11), we can show
that limB→∞

1
B

f−1(V (B~y)) =
∑N

i=1 yi and that, given any 0 < η < M , the
convergence is uniform over all ~y such that η ≤ ||~y|| ≤ M . Hence, we can
show that the corresponding asymptotic decay-rate of the probability that
V ( ~X) ≥ f(B) is given by

Iopt = inf
w̃(~φ,~a)>0

H(~φ||~p) + L(~a)

w̃(~φ,~a)
, (12)

where

w̃(~φ,~a) = min

N
∑

i=1

yi

subject to yi = [ai −
S

∑

j=1

F i
ju

i
j]

+

N
∑

i=1

ui
j = φj for all channel states j.

To show that the log-rule also maximizes the asymptotic decay-rate of the

probability that
N
∑

i=1

Xi ≥ B, we consider the following minimization problem

min
N

∑

i=1

(Xi + 1) log(Xi + 1) − Xi

subject to

N
∑

i=1

Xi ≥ B.



It is easy to check that its solution is given by Xi = B/N where N is the
total number of users, and the minimum value is given by

(B + N) log(B + N) − (B + N) log N − B.

Note that when B → ∞, the ratio between this quantity and f(B) converges
to 1. Hence, for any ǫ > 0, there exists a B1 such that for all B ≥ B1,
N
∑

i=1

Xi ≥ (1 + ǫ)B implies V ( ~X) ≥ f(B). We then have

lim sup
B→∞

1

B
logP0[

N
∑

i=1

Xi(BT ) ≥ (1 + ǫ)B]

≤ lim sup
B→∞

1

B
logP0[V ( ~X(BT )) ≥ f(B)] = −Iopt.

By a change of variable, we can infer that lim sup 1
B

log P0[
N
∑

i=1

Xi(BT ) ≥

B] ≤ − Iopt

1+ǫ
. Since this is true for all ǫ, we have lim sup 1

B
log P0[

N
∑

i=1

Xi(BT ) ≥

B] ≤ −Iopt.

Finally, using Ṽ ( ~X) =
∑

Xi and f̃(B) = B, we can derive a lower bound

on the overflow probability for
N
∑

i=1

Xi ≥ B over all scheduling policies, i.e.,

there exists T0 > 0 such that for all T ≥ T0,

lim inf
B→∞

1

B
logP0[

N
∑

i=1

Xi(BT ) ≥ B] ≥ −Iopt,

where Iopt is also given by (12). The result then follows. Q.E.D.
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