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Abstract

In this paper, we are interested in wireless scheduling algorithms
for the downlink of a single cell that can minimize the queue-overflow
probability. Assuming that a sample-path large-deviation principle
holds for the backlog process, we first study structural properties of the
minimum-cost-path-to-overflow for a class of scheduling algorithms
collectively referred to as the “α-algorithms.” For a given α ≥ 1,
the α-algorithm picks the user for service at each time that has the
largest product of the transmission rate multiplied by the backlog
raised to the power α. We show that when the overflow metric is
appropriately modified, the minimum-cost-to-overflow under the α-
algorithm can be achieved by a simple linear path, and it can be
written as the solution of a vector-optimization problem. Using this
structural property, we then show that when α approaches infinity, the
α-algorithm asymptotically achieve the largest value of the minimum-
cost-to-overflow under all scheduling algorithms.

1 Introduction

Link scheduling is an important functionality in wireless networks due to
both the shared nature of the wireless medium and the variations of the
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wireless channel over time. In the past, it has been demonstrated that, by
carefully choosing the scheduling decision based on the channel state and/or
the demand of the users, the system performance can be substantially im-
proved (see the references in [1]). Most studies of scheduling algorithms
have focused on optimizing the long-term average throughput of the users.
Similarly, in the class of stability problems, the goal is to find scheduling
algorithms that can stabilize the network at given offered loads, which also
ensures that the long-term average service rate is no less than the arrival
rate of each user. An important result along this direction is the develop-
ment of the so-called “throughput-optimal” algorithms [2]. An algorithm is
called throughput-optimal if, at any offered load that any other algorithm can
stabilize the system, this algorithm can stabilize the system as well. There-
fore, a throughput-optimal scheduling algorithm is optimal if we only impose
stability constraints, i.e., it can stabilize the system over the largest set of
offered loads.

While stability (and ensuring that the long-term service rate is no smaller
than the arrival rate) is an important first-order metric of success, for many
delay-sensitive applications it is far from sufficient. Note that a stability ob-
jective ensures that the packet delay does not increase to infinity. For real-
time applications such as voice and video, we often need to ensure a stronger
condition that the packet delay can be upper bounded with high probability.
One approach to quantify the requirements of these delay-sensitive appli-
cations is to enforce constraints on the probability of queue overflow. In
other words, we need to guarantee that the probability of each user’s queue
exceeding a given threshold is no greater than a target value.

In this paper, we are interested in scheduling algorithms that are optimal
subject to the above type of delay constraints. We focus on the downlink
of a single cell in a cellular network. The base-station serves multiple users.
Due to interference, the base-station can only serve one user at a time. We
assume that perfect channel information is available at the base-station. The
ultimate question that we attempt to answer is the following: Is there a delay-
optimal algorithm in the sense that, at any given offered load, the algorithm
can achieve the smallest probability of queue-overflow. Note that if we impose
a quality-of-service (QoS) constraint on each user in the form of an upper
bound on the queue-overflow probability, then the above optimality condition
will also imply that the algorithm can support the largest set of offered loads
subject to the QoS constraint.

The above question has well-known to be a difficult one. The closest an-
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swer in the literature is provided in [3], where the author studied the problem
in a large-deviation setting, and showed that the so-called “exponential-rule”
is delay-optimal in the case with two-users. In a related result, it was shown
that for the case when the service rate is fixed, the Largest-weighted-delay-
first (LWDF) algorithm is delay-optimal in a large-deviation setting [4, 5].
To the best of our knowledge, the general case for wireless networks with an
arbitrary number of users is still open. Note that to study the queue-overflow
probability, it is natural to use the large-deviation theory because the over-
flow probability of interest is often very small [6, 7]. The queue-overflow
probability can then be mapped to the decay-rate of the tail-distribution of
the queue, and the delay-optimal scheduling algorithm will correspond to the
one that maximizes this delay-rate. Large-deviation theory has been success-
fully applied to wireline networks (see, e.g., [8–13]) and to wireless schedul-
ing algorithms that only use the channel state to make the scheduling deci-
sions [14–16]. However, when applied to wireless scheduling algorithms that
use also the queue-length to make scheduling decisions, this approach encoun-
ters a significant amount of technical difficulty. Note than many scheduling
algorithms of interest are of this latter flavor, i.e., they choose the user to
serve based on both the channel state and the queue backlog. For example,
the max-weight algorithm that is known to be throughput-optimal [17] serves
at each time the user with the largest product of the queue length and the ser-
vice rate. Intuitively, this class of queue-length-based scheduling algorithms
will have a lower queue-overflow probability compared to the queue-unaware
algorithms because they make an effort to suppress longer queues. Indeed,
the work in [18] has analytically shown the superiority of queue-length-based
scheduling algorithms over queue-unaware algorithms for a symmetric case
with ON-OFF channels. However, the technical difficulty associated with the
queue-length-based scheduling algorithms is that the statistics of the service-
rate process for each user is unknown (because now the service-rate process
is tightly coupled with the backlog process, the channel variations, and the
arrival process). In order to apply the large-deviation theory to queue-length-
based scheduling algorithms, one has to use sample-path large-deviation, and
formulate the problem as a multi-dimensional calculus-of-variations (CoV)
problem for finding the “minimum-cost path to overflow.” The decay-rate
of the queue-overflow probability then corresponds to the cost of this path,
which is referred to as the “minimum cost to overflow.” Unfortunately, for
many scheduling algorithms of interest, this multi-dimensional calculus-of-
variations problem is very difficult to solve. In the literature, only some
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restricted cases have been solved: Either restricted problem structures are
assumed (e.g., symmetric users and ON-OFF channels [18]), or the size of
the system is very small (only two users) [19]. Due to the above difficulty, the
question of finding the optimal wireless scheduling algorithms under delay
constraints becomes very challenging.

In this paper, we provide a number of results along this direction. Assum-
ing that a sample-path large-deviation principle holds, we study the struc-
tural property of the minimum-cost-path-to-overflow for a class of queue-
length-based scheduling algorithms. In particular, we show that when the
form of the overflow threshold is appropriately modified, at least one of the
minimum-cost-path-to-overflow is linear. This result allows us to convert the
calculus-of-variations problem (of sample-path large-deviation) to a vector-
optimization problem. Using this structure property, we then show the main
result of the paper that, as one of the parameters approaches infinity, these
class of queue-length-based scheduling algorithms will asymptotically achieve
the largest minimum-cost-to-overflow among all scheduling algorithms. As
an immediate corollary of this result, we can show that with the ON-OFF
channel model, the max-weight scheduling algorithm is optimal.

The rest of paper is organized as follows. We first present the system
model and the class of queue-length-based scheduling algorithms (referred
to as α-algorithms) in Section 2. In Section 3, we provide an upper bound
on the minimum-cost-to-overflow for any scheduling algorithm. We then
study the structural properties of the minimum-cost-path-to-overflow for α-
algorithms in Section 4. Then in Section 5, we prove the main result that,
as the parameter α approaches infinity, this class of scheduling algorithms
asymptotically achieve the largest possible value of the minimum-cost-to-
overflow. Then we conclude.

2 The System Model and Assumptions

We consider the downlink of a single cell in which a base-station serves N
users. We assume a slotted system, and we assume that the state of the
channel at each time slot is i.i.d from one of M possible states. Let C(t)
denote the state of the channel at time t = 1, 2, . . . , and let pj = P[C(t) =
j], j = 1, 2, . . . ,M. Let ~p = [p1, ..., pM ]. We assume that the base-station
can serve one user at a time. Let F i

m denote the service rate for user i when
it is picked for service at state m.
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We assume that data for user i arrives as fluid at a constant rate λi. Let
~λ = [λ1, . . . , λN ]. Let Xi(t) denote the backlog of user i at time t, and let
~X(t) = [X1(t), . . . , XN(t)]. In general, the decision of picking which user to

serve is a function of the global backlog ~X(t) and the channel state C(t). Let
U(t) denote the index of the user picked for service at time t. The evolution
of the backlog for each user i is then given by

Xi(t + 1) = [Xi(t) + λi −

M
∑

m=1

1{C(t)=m,U(t)=i}F
i
m]+ (1)

where [·]+ denotes the projection to [0, +∞). Note that
M
∑

m=1

N
∑

i=1

1{C(t)=m,U(t)=i} =

1 since only one user can be served at a time.
One particular class of scheduling algorithms that we will study are col-

lectively referred to as the “α-algorithms”, where α is a parameter that takes
values from the set of natural numbers. Given α, the behaviour of the algo-
rithm is as follows. When the backlog of the users is ~X(t) and the state of
the channel is C(t) = m, the algorithm chooses to serve the user i for which
the product Xα

i (t)F i
m is the largest. If there are several users that achieve the

largest Xα
i (t)F i

m together, one of them is chosen arbitrarily. It is well-known
that this class of algorithms are throughput-optimal, i.e. they can stabilize
the system at the largest set of offer-loads ~λ [17].

Consider the system when it is operated at a given offered load and is
stable under a given scheduling algorithm. In this paper, we are interested in
the probability that the largest backlog exceeds a certain threshold B. i.e.,

P[max
i

Xi(0) ≥ B]. (2)

Note that the probability in (2) is equivalent to a delay-violation probability
when the arrival rates λi are constant, because the two types of events are
related by (see [18,20])

P[Delay at link i ≥ di] = P[Xi(0) ≥ λidi].

In this paper, we will be interested in scheduling algorithms that minimize
(2), at a given offered ~λ.

The problem of calculating the exact probability P[maxi Xi(0) ≥ B] is
often mathematically intractable. In this paper, we are interested in using
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large-deviation techniques to compute estimates of this probability. Specifi-
cally, we are interested in those cases when the following limit exists.

lim
B→∞

1

B
log P[max

i
Xi(0) ≥ B] = −I0(~λ). (3)

(We will discuss how to compute I0(~λ) using sample-path large-deviation
and the corresponding assumptions in Section 2.1). Note that if Equation
(3) holds, it implies that, when B is large, the overflow probability can be
approximated as

P[max
i

Xi(0) ≥ B] ≈ exp(−BI0(~λ)).

Thus, the scheduling algorithm that minimizes the overflow probability cor-
responds to the one that maximizes the decay-rate I0(~λ).

2.1 Sample-Path Large Deviation

We next describe the sample-path large-deviation setting used to compute
I0(~λ). We follow the convention in [18, 21]. Use B > 0 also as a scaling
factor. For a large enough T , define the scaled empirical measure process on
the time interval [−T, 0] as

sB
j (t) =

1

B

B(T+t)
∑

l=0

1{C(l)=j},

for t = k
B
−T , k = 0, ..., BT , and by linear interpolation otherwise. Note that,

in the above definition, we have scaled both the time and the magnitude. The
quantity sB

j (t) can be interpreted as the sum of the (scaled) time in [−T, t]

that the system is at state j. Further, it is easy to check that
∑M

j=1 sB
j (t) =

t+T for all t ∈ [−T, 0]. Let ~sB(t) = [sB
1 (t), ...sB

M(t)]. Analogously, define the
scaled backlog process as,

xB
i (t) =

1

B
Xi(B(T + t))

for t = k
B
− T , k = 0, ..., BT , and by linear interpolation otherwise. Let

~xB(t) = [xB
1 (t), ..., xB

N (t)]. Note that the backlog process ~xB(t) is related to
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the empirical measure process sB
j (t) by

xB
i (t +

1

B
)

=

[

xB
i (t) +

λi

B
(4)

−

M
∑

m=1

(sB
j (t) − sB

j (t −
1

B
))1{U(B(T+t))=i}F

i
m

]+

.

Thus, given a particular initial condition ~xB(−T ), equation (4) defines a
mapping fB from the empirical measure process ~sB(t) to the backlog process
~xB(t). Further, although we have assumed ~sB(t) to be piecewise linear to
begin with, the definition of the mapping fB can be naturally extended to
all absolute continuous functions ~sB(t).

For any ~φ ≥ 0 and
∑M

j=1 φj = 1, define H(~φ|~p) =
∑M

j=1 φj log
φj

pj
. The

sequence of empirical measure processes ~sB(t) is known to satisfy a sample-
path large deviation principle [7, p176] with large-deviation rate-function
IT
s (~s(·)) given as follows:

IT
s (~s(·)) =

∫ 0

−T

H(~φ(t)|~p)dt,

if ~s(t) is absolute continuous and component-wise non-decreasing on [−T, 0],

~s(−T ) = 0, and
∑M

j=1 sj(t) = t + T for all t; where ~φ(t) = d
dt

~s(t) (Note

that ~φ(t) is well defined almost everywhere on [−T, 0] since ~s(t) is absolute
continuous on [−T, 0]). Otherwise,

IT
s (~s(·)) = +∞.

Such a large-deviation principle means that, for any set Γ of trajectories on
[−T, 0] that is a continuity set [7, p5] according to the essential supremum
norm [7, p176, p352], the probability that the sequence of empirical measure
processes ~sB(t) falls into Γ must satisfy

lim
B→∞

1

B
log P[~sB(·) ∈ Γ] = − inf

~s(·)∈Γ
IT
s (~s(·)). (5)

In this paper, we assume that a sample-path large-deviation principle also
holds for the sequence of backlog processes ~xB(t). Specifically, we adopt the
following assumptions:
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A) As B → ∞, the sequence of mappings fB has a limiting mapping f
that also maps any absolute continuous empirical measure process ~s(t)
to a backlog processes ~x(t).

B) The mapping f is unique and is continuous with respect to appropriately-
chosen topologies of the space of empirical measure processes and the
space of the backlog processes.

C) The sequence of mappings fB are exponentially equivalent to f [7, p130].

If these assumptions hold, then for any sequence of backlog processes that
start from ~xB(−T ) = 0, we can invoke the contraction principle [7, p131] and
obtain a sample-path large-deviation principle for the sequence of backlog
processes ~xB(t) with large-deviation rate-function given by:

IT
x (~x(·)) = inf

{~s(·):~x(·)=f(~s(·))}

{
∫ 0

−T

H(~φ(t)|~p)dt

}

where ~φ(t) = d
dt

~s(t), and the infimum is taken over all empirical measure
processes ~s(·) that map (under the mapping f) to the same backlog process
~x(·) given that ~x(−T ) = 0. (We refer the readers to [21] for cases when these
assumptions hold.)

Define an overflow metric as a function h(~x) such that h(~0) = 0, h(B~x) =
Bh(~x), and h(~x) is component-wise increasing. An overflow metric of the
form h(~x) = maxi xi, will be consistent with the queue-overflow threshold
defined earlier. However, later we will also use other overflow metrics. The
event of queue overflow is then represented by h(~xB(0)) ≥ 1. As B → ∞, we
have,

− lim
B→∞

1

B
log P[h(~xB(0)) ≥ 1]

= inf{IT
x (~x(·))| over all trajectories ~x(·) that

go from ~x(−T ) = 0 for some T > 0

to h(~x(0)) = 1}. (6)

The trajectory that attains the infimum in (6) is often called the most likely
path to overflow. The value of the infimum itself is often called the minimum
cost to overflow. Note that I0(~λ) in (3) corresponds to (6) when h(~x) =
maxi xi.
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In the rest of the paper, our goal is to find scheduling algorithms that
can achieve the largest value of I0(~λ) (i.e., the largest value of the minimum-

cost-to-overflow) at a given offered load ~λ.

3 An upper bound on I0(~λ)

We first provide an upper bound on I0(~λ) over all scheduling algorithms.
Then, in Section 5, we will show that the α-algorithm asymptotically achieves
this upper bound as α → ∞, and hence is asymptotically optimal.

3.1 Definitions

Given a scheduling algorithm A (e.g., an “α-algorithm”), and an overflow
metric h(·), let ΨA be the set of all possible trajectories under scheduling

algorithm A. Precisely, each element of ΨA is a triplet (~φ(·), ~x(·), T ) such

that T > 0, ~φ(t) = d
dt

~s(t) where ~s(·) is an instance of the empirical measure
process, ~x(−T ) = 0, and x(t), t ∈ [−T, 0], is the corresponding backlog
process governed by the scheduling algorithm A . For ease of exposition, we
use F(ΨA, h) to denote the calculus-of-variations problem in (6), i.e.,

F(ΨA, h) , inf
~φ(t),T

∫ 0

−T

H(~φ(t)|~p)dt

subject to (~φ(·), ~x(·), T ) ∈ ΨA (7)

h(~x(0)) = 1 (8)

~x(−T ) = 0. (9)

In particular, we use F(ΨA, max) to denote the case when h(~x) = maxi xi.
Let Ψ∗

A ⊆ ΨA be defined as follows

Ψ∗
A =

{

(~φ(·), ~x(·), T ) ∈ ΨA such that
d

dt
~φ(t) = ~0

}

i.e. it contains all trajectories that correspond to a linear empirical measure
process ~s(t). We can similarly define F(Ψ∗

A, h) where the constraints set ΨA

in (7) is replaced by Ψ∗
A.
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We define

ẃ(~φ) , min
~φ,~x

max
i

(xi)

subject to xi =

[

λi −
M
∑

m=1

µi
mF i

m

]+

for all i

µi
m ≥ 0,

N
∑

i=1

µi
m = φm for all m, (10)

and let

Iopt , inf
~φ

H(~φ|~p)

ẃ(~φ)
.

The following theorem states that Iopt
∗ is an upper bound on I0(~λ) for any

scheduling algorithm.

Theorem 1 For any scheduling algorithm A, F(ΨA, max) ≤ Iopt.

Proof: First, note that by definition, Ψ∗
A ⊆ ΨA. This fact leads to the

conclusion that F(ΨA, max) ≤ F(Ψ∗
A, max) since the constraint set in the

optimization problem on the right hand side is smaller. Thus, it suffices to
show the following

F(Ψ∗
A, max) ≤ Iopt = inf

~φ

H(~φ|~p)

ẃ(~φ)
.

Consider any trajectory (~φ(t), ~x(t), T ) in the feasible region of F(Ψ∗
A, max).

Recall that ~φ(t) is a constant by definition of Ψ∗
A. Denote ~φ(t) = ~φ. By (9),

~x(−T ) = 0. Further, by the queue-evolution equation (4) we have the fol-

lowing inequality, xi(0) ≥ T [λi −
M
∑

m=1

µi
mF i

m]+, where by µi
m we denote the

average fraction of time in [−T, 0] that the user i is served and the channel
state is m. Finally, by (8) we know that maxi xi(0) = 1. We thus have

1 = maxi xi(0) ≥ T maxi([λi −
M
∑

m=1

µi
mF i

m]+) ≥ Tẃ(~φ)

⇒ TH(~φ|~p) ≤ H(~φ|~p)

ẃ(~φ)
.

∗This upper bound is equivalent to the one in [3].
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Note that TH(~φ|~p) is precisely the cost of the trajectory. Since this
inequality holds for all trajectories in Ψ∗

A, we have

F(Ψ∗
A, max) ≤ Iopt.

Q.E.D.

4 Structure Properties of the Minimum-Cost-

Path-to-Overflow for α -algorithms

We next turn our attention to the α-algorithms. Our ultimate goal is to
show in Section 5 that the α-algorithms asymptotically achieve the minimum-
cost-to-overflow equal to Iopt. In this section, we first derive some structure
properties of the minimum-cost-path-to-overflow under α-algorithms. Note
that the calculus-of-variations problem in (6) and (9) with the overflow metric
h(~x) = maxi xi is often very difficult to solve. In general, the minimum-cost-
path-to-overflow may not be of a simple linear form. The trick that we use
here is to modify the overflow metric to one that is tailored to the scheduling
algorithm. In particular, for the α-algorithm, we use the overflow metric

h(~x) = Vα(~x) ,
(

N
∑

i=1

xα+1
i

)

1

α+1

.

Note that Vα(~x) is well-known to be the Lyapunov function for proving that
the α-algorithm is throughput-optimal. Thus we will refer to Vα(~x) as the
Lyapunov overflow metric, and refer to h(~x) = maxi xi as the max-queue
overflow metric. The connection between Vα(·) and maxi xi will be clear in
Section 5.

With the overflow metric Vα(~x), the calculus-of-variations problem for
finding the minimum-cost-to-overflow is represented by F(Ψ

α-algo, Vα).

4.1 A Lower bound on the minimum-cost-to-overflow

We first provide a lower bound on F(Ψ
α-algo, Vα). We start with a property

of the limiting mapping f that maps the empirical measure process ~s(t) to
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the backlog process ~x(t). Note that according to the definition of ~x(t) and
~s(t), they are both Lipschitz-continuous, and hence are differentiable almost
everywhere. For any time t such that both ~x(t) and ~s(t) are differentiable,
the following properties can be shown: There must exist µi

m(t) ≥ 0 such that
N
∑

i=1

µi
m(t) = φm(t) and ẋi(t) = [λi −

N
∑

i=1

µi
m(t)F i

m]+xi(t)
, where we have used the

notation

[u]+v =

{

u if v > 0 or u ≥ 0
0 otherwise .

Recall that φm(t) = d
dt

sm(t) can be viewed as the fraction of time the
system is in state m in an interval [Bt,B(t + δt)] immediately after t. µi

m(t)
can then be viewed as the fraction of time that user i is served and the system
is in state m within such an interval. In addition, the following lemma can
be shown.

Lemma 2

µi
m(t) = 0 if xα

i (t)F i
m < max

k
xα

k (t)F k
m.

Proof: This can be shown by noting that if xα
i (t)F i

m < maxk xα
k (t)F k

m, then for
all sufficiently large B, (xB

i (s))αF i
m < maxk(x

B
k (s))αF k

m holds for an interval
s ∈ [Bt,B(t + δt)] immediately after t. Hence, user i will not be picked for
transmission over this entire interval. We can thus show that µi

m(t) = 0.
Q.E.D.

We now use the Lyapunov function approach in [22] to derive a lower
bound on F(Ψ

α-algo, Vα). First, define a local rate function of ~x(t) as:

l(~x, ~y) = inf
~φ

H(~φ|~p)

subject to yi = [λi −
M
∑

m=1

µi
mF i

m]+xi
for all i

µi
m ≥ 0 and

N
∑

i=1

µi
m = φm for all m

µi
m = 0 if xα

i F i
m < max

k
xα

kF k
m.
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Note that l(~x, ~y) denotes how likely the trajectory ~x(·) can move in the
direction d

dt
~x(t) = ~y immediately after t, given ~x(t) = ~x. Using Lemma 2 we

thus have

F(Ψ
α-algo, Vα) ≥ inf

T

∫ 0

−T

l(~x(t), ~̇x(t))dt

subject to (~φ(t), ~x(t), T ) ∈ ΨA

Vα(~x(0)) = 1

~x(−T ) = 0.

Further, letting V (t) = Vα(~x(t)), we can define the local rate-function of V (t)
as

lV (v, w) = inf
~x,~y

l(~x, ~y)

subject to Vα(~x) = v
[

∂

∂~x
Vα(~x)

]T

.~y = w.

Then,

F(Ψ
α-algo, Vα) ≥ inf

T

∫ 0

−T

lv(V (t), V̇ (t))dt

subject to V (−T ) = 0 & V (0) = 1. (11)

Note that the right-hand-side is a one-dimension calculus-of-variations prob-
lem that is much easier to solve. For α-algorithms, if yi and µi

m satisfy the
constraints of l(~x, ~y), then

[

∂

∂~x
Vα(~x)

]T

.~y

=

(

N
∑

i=1

xα+1
i

)− α
α+1
[

N
∑

i=1

xα
i (λi −

M
∑

m=1

µi
mF i

m)

]

=

(

N
∑

i=1

xα+1
i

)− α
α+1
[

N
∑

i=1

xα
i λi

−
M
∑

m=1

φm max
i

xα
i F i

m

]

. (12)
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Hence, the local rate-function of V (t) can be rewritten as

lV (v, w) = inf
~φ,~x

H(~φ|~p)

subject to

(

N
∑

i=1

xα+1
i

)− α
α+1
[

N
∑

i=1

xα
i λi

−

M
∑

m=1

φm max
i

xα
i F i

m

]

= w

(

N
∑

i=1

xα+1
i

)

1

α+1

= v.

It is easy to show that lV (v, w) is independent of the value of v, i.e.,
l(v, w) = l(1, w) for all v 6= 0. Let l(w) , lV (1, w). Then the calculus-of-
variations problem on the right-hand-side of (11) is given by [6, p520]

J1 , min
w≥0

1

w
l(w)

= min
~φ,~x,w≥0

1

w
H(~φ||~p)

subject to

[

N
∑

i=1

xα
i λi −

M
∑

m=1

φm max
i

xα
i F i

m

]

= w

(

N
∑

i=1

xα+1
i

)

1

α+1

= 1. (13)

We thus obtain the following result.

Lemma 3 The minimum cost to overflow F(Ψ
α-algo, Vα) must be no smaller

than J1.

4.2 Attainability of the Lower-bound J1

In this subsection, we show that the lower bound J1 is attainable with a
simple linear trajectory ~s(t) = (t + T )~φ, t ≥ −T . Note that the solution

14



of (13) will produce a ~φ∗ (it is easy to verify that such a ~φ∗ always exists).

If this ~φ∗ can in fact map to a trajectory that starts from ~x(−T ) = 0 and
overflows at t = 0, then the minimum-cost-to-overflow F(Ψ

α-algo, Vα) must

be no larger than the cost of this trajectory J2 = TH(~φ∗|~p). Further, if
J2 = J1, then we can conclude that F(Ψ

α-algo, Vα) = J1. We next show that

this is indeed the case.
Towards this end, we first show that for each linear empirical measure

process ~s(t) = (t + T )~φ, t ≥ −T , there exists a unique trajectory ~x(t)
starting from ~x(−T ) = 0. We will need the following lemma.

Lemma 4 (a) Given ~φ, the optimal values of the following two problems
are the same.

a(~φ) = max
~x≥0

[

N
∑

i=1

xα
i λi −

M
∑

m=1

φm max
i

xα
i F i

m

]

subject to
N
∑

i=1

xα+1
i ≤ 1,

and

b(~φ) = min
~y≥0

(

N
∑

i=1

yα+1
i

)

1

α+1

subject to yi = [λi −
M
∑

m=1

F i
mµi

m]+ for all i

µi
m ≥ 0 and

N
∑

i=1

µi
m = φm for all m.

(b) The optimizer ~x∗ for a(~φ) and the optimizer ~y∗ for b(~φ) are both unique
and they satisfy ~x∗ = γ~y∗ for some γ > 0. Further, if the optimizer
~x∗ 6= 0, then ~x∗ and ~y∗ are the only vectors that satisfy the following

conditions: there exist µi
m ≥ 0 such that

N
∑

i=1

µi
m = φm, y∗

i = [λi −

M
∑

m=1

F i
mµi

m]+, x∗
i = γy∗

i for some γ > 0,
N
∑

i=1

(x∗
i )

α+1 = 1, and µi
m =

0 if (x∗
i )

αF i
m < maxk(x

∗
k)

αF k
m.
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Lemma 4 can be proved by showing that b(~φ) is the dual problem of the

optimization problem a(~φ) with an appropriate change of variables. The

variables µi
m of b(~φ) are the Lagrange multipliers. The proof of this lemma

is in the Appendix A.
We now show that, if the empirical measure process ~s(t) is linear, then the

queue trajectory ~x(t) must also be linear, and it must solve b(~φ) in Lemma 4.
For ease of exposition, we start the time from t = 0 (instead of t = −T ).

Lemma 5 Let ~x(0) = 0 and ~s(t) = t~φ for t ≥ 0. Then the corresponding
queue trajectory ~x(t) under the α-algorithm must satisfy the following:

(a) The queue trajectory is linear, i.e., for each i, xi(t) = x̃it for some
x̃i ≥ 0.

(b) There must exist µi
m ≥ 0 such that

N
∑

i=1

µi
m = φm, and

µi
m = 0 if xα

i (t)F i
m < max

k
xα

k (t)F k
m for all t.

In other words, the queue trajectory ~x(t) is consistent with the schedul-
ing rule.

(c) ~̃x is the unique minimizer of b(~φ).

Proof: Let Ω(~φ) =

{

~λ | λi =
M
∑

m=1

µi
mF i

m,
N
∑

i=1

µi
m = φm, µi

m ≥ 0

}

. Note

that Ω(~φ) would have been the capacity region (for stability) if the channel

state distribution was ~φ.
Recall that (from (12))

dV (t)

dt
=

[

∂Vα(~x(t))

∂~x

]T

.
d

dt
~x(t)

=

(

N
∑

i=1

xα+1
i (t)

)− α
α+1
[

N
∑

i=1

xα
i (t)λi

−
M
∑

m=1

φm max
i

xα
i (t)F i

m

]
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where, in the last equality, we have used Lemma 2. If ~λ ∈ Ω(~φ), we will have
dV (t)

dt
< 0 whenever V (t) = Vα(~x(t)) > 0. Hence, starting from ~x(0) = 0, we

must have V (t) = 0 and ~x(t) = 0 for all t ≥ 0. Therefore, part (a) holds with
x̃i = 0 for all i. Part (b) then trivially holds. Part (c) follows from Lemma 4

since the minimizer of b(~φ) for this case is ~y∗ = 0.

On the other hand, if ~λ /∈ Ω(~φ), then for all ~x(t) 6= 0, by setting x̃i(t) =
xi(t)

[
N
P

i=1

xα+1

i
(t)]

1
α+1

, we have

dV (t)

dt
=

N
∑

i=1

x̃α
i (t)λi −

M
∑

m=1

φm max
i

x̃α
i (t)F i

m

and

[

N
∑

i=1

x̃α+1
i (t)

]

1

α+1

= 1.

We thus have dV (t)
dt

≤ a(~φ) and V (t) ≤ ta(~φ). This shows that ta(~φ) upper
bounds the maximum growth of V (t). On the other hand, let µi

m be the
average fraction of time in [0, t] that user i is picked and the channel state is

m. Then
N
∑

i=1

µi
m = φm for all m, and xi(t) ≥ t[λ −

M
∑

m=1

µi
mF i

m]+. Hence,

V (t) = Vα(~x(t)) ≥ tb(~φ).

However, by Lemma 4, a(~φ) = b(~φ). We thus have

V (t) = Vα(~x(t)) = ta(~φ) = tb(~φ),

i.e. there is only one possible trajectory V (t) given that ~s(t) = t~φ. Further,

we have Vα(~x(t)
t

) = b(~φ). i.e., ~x(t)
t

optimizes b(~φ). Since the optimizer of b(~φ),

denoted by ~̃x, is unique, we thus have ~x(t) = t~̃x. This shows parts (a) and
(c). Part (b) follows from part (b) of Lemma 4. Q.E.D.

Proposition 6 The minimum cost to overflow F(Ψ
α-algo, Vα) is equal to

J1.

Proof: Let ~φ∗, w∗, and ~x∗ denote the solution to J1. If we use ~s(t) =

(t+T )~φ∗, t ≥ −T as the underlying empirical measure process, and let the

17



queue process start from ~x(−T ) = 0 where T = 1/w∗, then there is a linear
trajectory according to Lemma 5, i.e.,

~x(t) = (t + T )~̃x′,

where ~̃x′ is the minimizer of b(~φ∗). Further, by the structure of J1, w∗ ≥ 0,
and thus

w∗ = max
~x≥0

[

N
∑

i=1

xα
i λi −

M
∑

m=1

φm max
i

xα
i F i

m

]

subject to
N
∑

i=1

xα+1
i = 1.

The right hand side is equal to a(~φ∗), which is also equal to b(~φ∗). Hence,

V (0) = Vα(T~̃x′) = Tb(~φ∗) =
1

w∗
w∗ = 1.

In other words, the linear empirical measure process ~s(t) = (t + T )~φ∗, t ≥
−T , indeed drives the queue from ~x(− 1

w∗
) = 0 to overflow at t = 0. Hence,

F(Ψ
α-algo, Vα) ≤ TH(~φ∗|~p) = 1

w∗
H(~φ∗|~p) = J1. Then, using Lemma 3,

F(Ψ
α-algo, Vα) ≥ J1, the result then follows. Q.E.D.

Hence, we conclude that the minimum-cost-to-overflow F(Ψ
α-algo, Vα)

is attainable by a simple linear trajectory whose cost is given by J1 =

inf ~φ
H(~φ|~p)

b(~φ)
.

5 Asymptotical Optimality of α-algorithms

In this section, we return to the original overflow metric h(~x) = maxi xi and
we will establish that in the limit as α → ∞, the α-algorithm asymptotically
achieves the largest minimum-cost-to-overflow equal to Iopt given in Section 3.
We will use some of the results and notations from Section 4. In particular,
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to emphasize the dependence of b(~φ) on α, we rewrite bα(~φ) = b(~φ) here:

bα(~φ) , min
~φ,~x

Vα(~x)

subject to xi = [λi −

M
∑

m=1

µi
mF i

m]+ for all i

µi
m ≥ 0,

N
∑

i=1

µi
m = φm for all m. (14)

In Section 4, we have shown that F(Ψ
α-algo, Vα) = inf ~φ

H(~φ|~p)

bα(~φ)
. Earlier,

in Section 3, we showed that Iopt is an upper bound on the minimum-cost-
to-overflow for all scheduling algorithms. We now show the following.

Theorem 7

lim
α→∞

F(Ψ
α-algo, max) ≥ Iopt.

Proof: First, it is easy to show that F(Ψ
α-algo, max) ≥ F(Ψ

α-algo, Vα). This

is true because if a trajectory overflows according to the max-queue overflow
metric, i.e., maxi xi(t) = 1, then it must have already overflowed according
to the Lyapunov overflow metric since maxi xi(t) = 1 ⇒ Vα(~x(t)) ≥ 1.

Using Proposition 6, we then have

F(Ψ
α-algo, max) ≥ inf

~φ

H(~φ|~p)

bα(~φ)
.

We will now show that limα→∞ inf ~φ
H(~φ|~p)

bα(~φ)
= Iopt , inf ~φ

H(~φ|~p)

ẃ(~φ)
, which then

completes the proof.
Observe that bα(~φ) in (14) and ẃ(~φ) in (10) both have the same constraint

set. The following inequality is easily established.

N
1

α+1 max
i

(xi) ≥ Vα(~x) ≥ max
i

(xi) for all ~x ≥ 0.

Hence,

N
1

α+1 ẃ(~φ) ≥ bα(~φ) ≥ ẃ(~φ).
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Note that this implies that bα(~φ) > 0 ⇔ ẃ(~φ) > 0. Let Q = {~φ such that ẃ(~φ) >
0}. It is sufficient to show

lim
α→∞

inf
~φ∈Q

H(~φ|~p)

bα(~φ)
= inf

~φ∈Q

H(~φ|~p)

ẃ(~φ)
.

Now, for all ~φ in Q, the following holds

H(~φ|~p)

ẃ(~φ)
≥

H(~φ|~p)

bα(~φ)
≥

1

N
1

α+1

H(~φ|~p)

ẃ(~φ)
.

Taking infimum across the inequalities over the set Q, we get

inf
~φ∈Q

H(~φ|~p)

ẃ(~φ)
≥ inf

~φ∈Q

H(~φ|~p)

bα(~φ)
≥

1

N
1

α+1

inf
~φ∈Q

H(~φ|~p)

ẃ(~φ)
.

Letting α → ∞, N
1

α+1 → 1. The result of the Lemma then follows. Q.E.D.

Combining Theorem 1 and Theorem 7, we conclude that the α-algorithm
asymptotically achieves the largest possible value of the minimum-cost-to-
overflow.

5.1 Systems with ON-OFF Channels

Consider the scenario where F i
m can take either the value 0 or a positive

constant C. This scenario corresponds to a wireless system with ON-OFF
channels and the ON-rates for all users are the same. In this case, for any
α > 0,

xα
i F i

m S max
k

xα
kF k

m ⇔ xiF
i
m S max

k
xkF

k
m.

Hence, the α-algorithms (for any α ≥ 1) are equivalent to the max-weight
algorithm (i.e. α = 1). Using the result in this paper, we immediately reach
the following corollary.

Corollary 8 For the above ON-OFF channel model, the max-weight schedul-
ing algorithm achieves the largest minimum-cost-to-overflow Iopt.
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6 Conclusion

In this paper, we study wireless scheduling algorithms that can minimize
the queue-overflow probability. Assuming that a sample-path large-deviation
principle holds for the backlog process, we first establish a structural property
of the minimum-cost-path-to-overflow for the class of α-algorithms. Specifi-
cally, when the overflow metric is appropriately modified, we show that the
minimum-cost-to-overflow under the α-algorithm can be achieved by a sim-
ple linear path, and it can be written as the solution of a vector-optimization
problem. Using this structural property, we then show that when α ap-
proaches infinity, the α-algorithm asymptotically achieves the largest value
of the minimum-cost-to-overflow under all scheduling algorithms.

For future work, we plan to study conditions under which the sample-
path large-deviation principle holds. We also plan to extend the results to
more general network and channel models.

A Proof of Lemma 4

Proof: We show that a(~φ) and b(~φ) are dual problem of each other. Letting

ξi = xα
i , the problem a(~φ) can be rewritten as

a(~φ) = max
~ξ≥0

[

N
∑

i=1

ξiλi −

M
∑

m=1

φm max
i

ξiF
i
m

]

subject to
N
∑

i=1

ξ
α+1

α

i ≤ 1.

Introducing the variable ηm ≥ maxi ξiF
i
m, the problem a(~φ) can be further

rewritten as

a(~φ) = max
~ξ≥0,~η

[

N
∑

i=1

ξiλi −

M
∑

m=1

φmηm

]

subject to
N
∑

i=1

ξ
α+1

α

i ≤ 1

ηm ≥ ξiF
i
m for all i,m.
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This is a convex optimization problem. Introducing the Lagrange multiplier
µi

m ≥ 0 for each of the constraints ηm ≥ ξiF
i
m, we obtain the Lagrangian

L(~ξ, ~µ, ~η)

= [
N
∑

i=1

ξiλi −
M
∑

m=1

φmηm] +
M
∑

m=1

N
∑

i=1

µi
m[ηm − ξiF

i
m]

=
N
∑

i=1

ξi(λi −

M
∑

m=1

µi
mF i

m) −
M
∑

m=1

ηm(φm −

N
∑

i=1

µi
m).

The dual objective function is given by

D(~µ) = max
~ξ≥0,~η

L(~ξ, ~µ, ~η)

subject to
N
∑

i=1

ξ
α+1

α

i ≤ 1.

Note that if
N
∑

i=1

µi
m 6= φm, then D(~µ) = +∞ since we can set |ηm| arbitrarily

large. Otherwise, if
N
∑

i=1

µi
m = φm for all m, then

D(~µ) = max
~ξ≥0

N
∑

i=1

ξi(λi −

M
∑

m=1

µi
mF i

m)

subject to
N
∑

i=1

ξ
α+1

α

i ≤ 1. (15)

Clearly, for those i such that λi < µi
mF i

m, the optimal solution for D(~µ) is
attained when ξi = 0. Let I denote the set of i such that λi − µi

mF i
m ≥ 0.

If I is an empty set, then D(~µ) = 0. If I is not empty, we can use Holder’s
inequality that says, for any positive p and q such that 1/p + 1/q = 1, the
following holds,

N
∑

i=1

aibi ≤ [
N
∑

i=1

ap
i ]

1/p[
N
∑

i=1

bq
i ]

1/q,

where equality holds if and only if there is a constant γ such that ap
i = γbq

i
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for all i. Hence, for all ~ξ such that the constraint (15) is satisfied, we have

∑

i∈I

ξi(λi −
M
∑

m=1

µi
mF i

m)

=
N
∑

i=1

ξi[λi −
M
∑

m=1

µi
mF i

m]+

≤

[

N
∑

i=1

ξ
α+1

α

i

]

α
α+1
[

N
∑

i=1

([λi −
M
∑

m=1

µi
mF i

m]+)α+1

]

1

α+1

≤

[

N
∑

i=1

([λi −
M
∑

m=1

µi
mF i

m]+)α+1

]

1

α+1

,

where equality holds if and only if

N
∑

i=1

ξ
α+1

α

i = 1, (16)

and for some constant γ > 0,

ξ
α+1

α

i = γα+1

(

[λi −
M
∑

m=1

µi
mF i

m]+

)α+1

, for i = 1, . . . , N,

or, equivalently,

ξ
1

α

i = γ[λi −
M
∑

m=1

µi
mF i

m]+, for i = 1, . . . , N. (17)

Such a vector ~ξ clearly exists. Hence, if
M
∑

m=1

N
∑

i=1

µi
m = φm for all s, then

D(~µ) =

[

∑

i∈I

(λi −

M
∑

m=1

µi
mF i

m)α+1

]

1

α+1

.

We therefore conclude that

D(~µ) =

[

N
∑

i=1

([λi −
M
∑

m=1

µi
mF i

m]+)α+1

]

1

α+1

.
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We can therefore conclude that the dual problem is

min
~µ≥0

D(~µ) = min
~y≥0,~µ≥0

(

N
∑

i=1

yα+1
i

)

1

α+1

subject to yi = [λi −

M
∑

m=1

µi
mF i

m]+

N
∑

i=1

µi
m = φm for all m

This is exactly problem b(~φ). The optimizer ~y of b(~φ) must be unique since

the objective function in b(~φ) is strictly convex in ~y.

Using the complementary slackness condition, for any optimizer ~ξ and ~µ,
we must have

µi
m ≥ 0,

N
∑

i=1

µi
m = φm,

ξ
1

α

i = γ[λi −
M
∑

m=1

µi
mF i

m]+,

µi
m = 0 if ξiF

i
m < maxk ξkF

k
m,

N
∑

i=1

ξ
α+1

α

i = 1 whenever ~ξ 6= 0 (by(16)).

Since ξi = xα
i and yi = [λi−

M
∑

m=1

µi
mF i

m]+, we must have ~x = γ~y. Further since

~y is unique and
N
∑

i=1

xα+1
i = 1 , ~x is also unique. The above set of equations

are then exactly the condition in part (b) of the lemma. Conversely, any ~ξ
and ~µ (or, equivalently, ~x and ~µ) that satisfies the condition must correspond

to the maximizer of a(~φ) and b(~φ), respectively. Since the optimizers of a(~φ)

and b(~φ) are both unique, there is at most one ~x that satisfies the set of
conditions in part (b) of the lemma. Q.E.D.
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