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Abstract— In this paper we study the problem of character-
izing the delay performance of wireless scheduling algorithms.
In wireless networks operated under these wireless scheduling
algorithms, there often exists a tight coupling between the
service-rate process, the system backlog process, the arrival
process and the channel variations. Although one can use
sample-path large-deviation techniques to form an estimate of
the delay-violation probability under a given offered load, the
formulation leads to a multi-dimensional calculus of variations
problem that is often very difficult to solve. In this paper, we
present a new technique for addressing this complexity issue.
Using ideas from the Lyapunov function approach in control
theory, this technique maps the complex multi-dimensional
calculus of variations problem to a one-dimensional calculus of
variations problem, and the latter is often much easier to solve.
We believe that this technique can potentially be used to study
the delay-performance of a large class of wireless scheduling
algorithms.

I. I NTRODUCTION

A wireless network may be modeled as a system of queues
with time-varying service rates. The variability in service
rates is due to a number of factors. First, channel fading and
mobility can lead to variations in the link capacity even if the
transmission power is fixed. Second, the transmission power
can vary over time according to the power control policy.
Third, due to radio interference, it is usually preferable to
schedule only a subset of links to be active at each time,
and to alternate the subset of activated links over time. All
of these factors lead to a variable service rate at each link.

When one is to study the performance of any system that
involves queues, the first question we can ask is whether
the system isstable or not. Here,stability means that all
queue length (or equivalently, the delay experienced by
the packets) remains finite. Conversely, we can ask the
question that, in order to maintain stability, what is the
largest offered load that the system can carry. In other words,
what is the capacity region of the system subject to stability.
For wireless networks, these questions have led to results
on throughput-optimalscheduling algorithms for scheduling
wireless resources. (Here we use the termschedulingin the
broader sense, i.e., it can include various control mechanisms
at the MAC/PHY layer, e.g., link scheduling, power control,
and adaptive coding/modulation.) A scheduling algorithm is
throughput-optimalif this algorithm can sustain the largest
offered load while keeping the system stable. In other

words, if this algorithm cannot stabilize the system, no other
algorithms can. For example, one such throughput-optimal
scheduling algorithm is the algorithm proposed in the semi-
nal work by Tassiulas and Ephremides in [1]. This algorithm
chooses at each time, among all possible schedules, the one
that maximizes the sum of the queue-weighted-rate over
all links. This algorithm has been shown to be throughput-
optimal, and it has been the basis for many other throughput-
optimal scheduling algorithms for both cellular and multihop
wireless networks.

Once we know about stability, we are then tempted to ask
further questions regarding the distribution of queue length
(or delay). For example, at a given offered load, what is the
probability that the delay experienced by a packet is greater
than a given threshold? Or, conversely, what is the largest
offered load that the system can support at a given delay
constraint? (In other words, what is theeffective capacity
region of the system under delay constraints?) Clearly, these
question are important for applications that require more
stringent delay guarantees than just stability.

These delay characterization problem for wireless net-
works can be difficult to solve. Here we draw a comparison
to the delay characterization problem in wireline networks. In
wireline networks, even through the exact delay distribution
can be difficult to obtain, there have been a large body of
work, especially those using large-deviation techniques,to
obtain sharp estimates of the delay violation probability of
a queue. These wireline network results usually assume that
the service rate of the queue is fixed (i.e., time-invariant),
and the packet arrival process is known. These results allow
us to compute theeffective bandwidthof the arrival process
from its (known) statistics [2]–[7], which can then be used
to determine the traffic carrying capability of the queue at
a given delay constraint. In contrast, in wireless networks,
the service rate is time-varying. If the service rate process
is again knowna priori, large-deviation techniques can be
used to compute theeffective capacityof the service rate
process [8], [9], which is a notion similar to theeffective
bandwidthof the arrival process. This effective capacity can
again be used to determine the traffic carrying capability of
the queue at a given delay constraint. Unfortunately, under
many wireless scheduling algorithms of interest, even the
service rate process is unknowna priori. For example, for



a system operated under the throughput-optimal Tassiulas-
Ephremides algorithm of [1], or any queue-length based
scheduling algorithms, the service rates depend on the queue
length, which in turn depend on the arrival process and the
channel state, etc. Hence, the statistics of the service rate
process is unknown before hand. In this case, the delay
characterization problem is known to be very difficult. For
these systems, although it is still possible to use sample-
path large-deviation techniques to form an estimate of the
delay-violation probability [10]–[12], such a formulation
leads to a multi-dimensional calculus of variations problem.
Due to the complex coupling between the service rate, the
queue length, the arrival process, and the channel state,
this multi-dimensional calculus of variations problem is very
difficult to solve. Prior successes have been limited tosimple
systems: either the problem has some restrictive structure
(e.g., symmetry among all links) [11], or the size of the
system is very small (e.g., two links) [10], [12], [13].

In this paper, we present a new approach to address this
complexity issue. Motivated by the Lyapunov function ap-
proach for proving stability of complex systems, we provide
a technique that maps the complex multi-dimensional calcu-
lus of variations problem into a one-dimensional calculus of
variations problem, and the latter is often very easy to solve.
The solution to the one-dimensional calculus of variations
problem will then provide us with an upper bound estimate
of the delay violation probability, and consequently, a lower
bound estimate of the effective capacity region of the system.
For many practical applications, the resulting effective capac-
ity region is useful because the delay constraint is known to
be satisfied.

We believe that this marriage between sample-path large-
deviations and Lyapunov functions can develop into a
powerful theory to characterize the delay performance of
wireless systems under sophisticated scheduling algorithms.
We can potentially lower the difficulty level of the delay-
characterization problem to that of a stability problem. In
other words, for any scheduling algorithm that is provably
stable, which usually means that there exists a Lyapunov
function, we could then apply this theory to characterize
the delay performance. We provide an example of how this
approach can be used to solve a more difficult problem than
those studied in the literature.

The rest of the paper is organized as follows. We present
the network model in Section II. We review a formulation
of the sample-path large-deviation principle, and identify the
complexity of the associated calculus of variations problem
in Section III. Then, in Section IV, we provide a Lyapunov
function based approach to address the complexity issue. In
Section V, we provide an example to show how such an
approach can be used. Then we conclude.

II. T HE SYSTEM MODEL

We consider the following model for a wireless system
with L links. In order to model channel fading, we assume
that the system can be in one ofS states. We assume a slotted
system, and denote the state of the system at timet to be

C(t). Further, we assume that the statesC(t), t = 1, 2, ... are
i.i.d., and letpj = P[C(t) = j] denote the probability that
the state of the system at timet is j. Let ~p = [p1, ..., pS ].
For ease of exposition, in the rest of the paper we also define
Φj(t) = 1{C(t)=j} to be the indicator function that the state
of the system at timet is j. Let ~Φ(t) = [Φ1(t), ...,ΦS(t)].
Clearly, there is a one-to-one mapping betweenC(t) and
~Φ(t).

Each link corresponds to a queue with time-varying ser-
vice rate. The arrivals at each linki are at a constant
rate λi. The service offered to linki is determined by
the scheduling algorithm, and in general correlates with the
service at other links and depends on the system backlog.
Let Xi(t) denote the backlog at linki at time t, and let
~X(t) = [X1(t), ...,XL(t)]. We assume that the service rate
offered to link i is a function of the global backlog~X(t)
and the system stateC(t). In particular, letDij( ~X) denote
the service offered to linki when the state of the system is
j and the global backlog is~X. The evolution of the backlog
at link i is then given by

Xi(t+1) = [Xi(t)+λi−
∑

j∈S

Φj(t)Dij( ~X(t))]+, i = 1, ..., L

(1)
where[·]+ denotes the projection to[0,+∞).

Assume that the system is stationary and ergodic. In this
paper, we will focus on studying the probability that the
system backlog exceeds a certain thresholdB. In particular,
let ǫ denote our target on the overflow probability, we would
like to ensure that

P[|| ~X(0)|| ≥ B] ≤ ǫ, (2)

where || · || is an appropriately chosen norm, andB is
the overflow threshold. Note that the constraint in (2) is
equivalent to a constraint on the delay-violation probability
when the arrival ratesλi are constant, because the two types
of constraints are related by (see [9], [11])

P[Delay at link i ≥ di] = P[Xi(0) ≥ λidi].

Hence, in the rest of the paper we will often refer to (2) as
a delay constraint.

Unfortunately, the problem of calculating the exact prob-
ability P[|| ~X(0)|| ≥ B] is often mathematically intractable.
In this paper, we are interested in using large-deviation
techniques to compute estimates of this probability. We as-
sume that the following large-deviation result for the backlog
process~X(t) holds. That is, whenB is large, the following
limit exists

lim
B→∞

1

B
log P[|| ~X(0)|| ≥ B] = −I0(~λ), (3)

where I0(~λ) can be determined from a sample-path large-
deviation principle that we will describe in Section III.
Equation (3) implies that, whenB is large, the overflow
probability can be approximated as

P[|| ~X(0)|| ≥ B] ≈ exp(−BI0(~λ)).



Thus, the problem of estimating the overflow probability is
reduced to that of computing the rateI0(~λ). Alternatively,
using the above approximation, in order to satisfy the con-
straint (2), we only need to ensure that

I0(~λ) ≥ θ , −
log ǫ

B
. (4)

We can then define theeffective capacity regionunder the
constraint (2) as the set of arrival rates~λ such that the above
inequality holds.

III. T HE SAMPLE-PATH LARGE DEVIATION PRINCIPLE

In this paper, we will study the problem of computing the
rate I0(~λ) and characterizing the effective capacity region
under the constraint (2). We first describe howI0(~λ) can
be determined from a sample-path large-deviation principle
for the backlog process~X(t). (Note that establishing such a
large-deviation principle is not the main focus of the paper.
We refer the readers to [10]–[12] for details on the technical
assumptions under which such a large-deviation principle
holds.)

A. Notations

We follow the convention in [10], [11]. For a large enough
T , define the empirical measure process on the time interval
[−T, 0] as

sB
j (t) =

1

B

B(T+t)
∑

l=0

1{C(l)=j},

for t = k
B − T , k = 0, ..., BT , and by linear interpolation

otherwise. Note that, in the above definition, we have scaled
both the time and the magnitude. The quantitysB

j (t) can
be interpreted as the sum of the (scaled) time in[−T, t]
that the system is at statej. Further, it is easy to check
that

∑

j∈S sB
j (t) = t + T for all t ∈ [−T, 0]. Let ~sB(t) =

[sB
1 (t), ...sB

S (t)]. Further, letφB
j (t) = d

dts
B
j (t). (Note that

the derivative is well defined almost everywhere on[−T, 0]
except whent = k/B−T for some integerk.) Let ~φB(t) =
[φB

1 (t), ..., φB
S (t)]. Note that

∑

j∈S φB
j (t) = 1 for almost all

t.
Analogously, define the scaled backlog process as,

xB
i (t) =

1

B
Xi(B(T + t)),

for t = k
B − T , k = 0, ..., BT , and by linear interpolation

otherwise. Let~xB(t) = [xB
1 (t), ..., xB

L (t)]. Note that accord-
ing to (1), the backlog process~xB(t) is related to the process
~φB(t) by

xB
i (t + 1/B) − xB

i (t)

1/B

= λi −
∑

j∈S

Dij(~x
B(t))

∫ t+1/B

t

φB
j (s)ds,

for t = k
B − T , k = 0, ..., BT . (5)

Thus, given a particular initial condition~xB(−T ), Equation
(5) defines a mappingfB from the empirical measure process

~sB(t) to the backlog process~xB(t). Further, although we
have assumed~sB(t) to be piecewise linear to begin with,
the definition of the mappingfB can be naturally extended
to all absolute continuous functions~sB(t).

B. The Large-Deviation Principle

Let B → ∞. We now have a sequence of scaled random
walks~sB(t), and they map to a sequence of scaled backlog
processes~xB(t) through the sequence of mappingsfB .
For any ~φ ≥ 0 and

∑

j∈S φj = 1, define H(~φ|~p) =
∑

j∈S φj log
φj

pj
. The sequence of empirical measure pro-

cesses~sB(t) are known to satisfy a sample-path large devi-
ation principle [14, p176] with large-deviation rate-function
IT
s (~s(·)) given as follows:

IT
s (~s(·)) =

∫ 0

−T

H(~φ(t)|~p)dt,

if ~s(t) is absolute continuous and component-wise non-
decreasing on[−T, 0], ~s(−T ) = 0, and

∑

j∈S sj(t) = t+T

for all t; where ~φ(t) = d
dt~x(t). (Note that ~φ(t) is well

defined almost everywhere on[−T, 0] since~s(t) is absolute
continuous on[−T, 0].) Otherwise,

IT
s (~s(·)) = +∞.

Such a large-deviation principle means that, for any set
Γ of trajectories on[−T, 0] that is a continuity set [14,
p5] according to theessential supremum norm[14, p176,
p352], the probability that the sequence of empirical measure
processes~sB(t) fall into Γ must satisfy

lim
B→∞

1

B
log P[~sB(·) ∈ Γ] = − inf

~s(·)∈Γ
IT
s (~s(·)). (6)

The large-deviation rate-functionIT
s (·) characterizes how

rarely each trajectory is. Note thatIT
s (~s(·)) ≥ 0 for all

trajectory~s(·). The larger the value ofIT
s (~s(·)) is, the further

the “empirical probability distribution”~φ(t) deviates from
the “prior probability distribution”~p. Hence, the less likely
the trajectory~s(·) will occur. Equation (6) reflects the well-
known large-deviation philosophy that “rare events occur
in the most-likely way.” Precisely, whenB is large, the
probability that the empirical measure process~sB(t) falls
into a setΓ is determined by the trajectory inΓ that is most
likely to occur, i.e., with the smallestIT

s (~s(·)).
Next, assume that the sequence of mappingsf

B has a
limiting mappingf that also maps any absolute continuous
empirical measure process~s(t) to a backlog processes~x(t).
Assume that the limiting mappingf is of the form

d

dt
xi(t) = λi −

∑

j∈S

φj(t)dij(~x(t)), (7)

where~φ(t) = d
dt~s(t). (Note that this equation may be viewed

as the limit of (5) whenB → ∞, although the function
dij(~x(t)) may not be exactly the same asDij(~x(t)) as we
will see in the example in Section V.) Further, assume that
the sequence of mappingsfB areexponentially equivalentto
f [14, p130], and the mappingf is continuous (see [10] for



Fig. 1. Top: The overflow probabilityP[|| ~X(0)|| ≥ B] is related to
the most likely path to overflow. Bottom: The technique that we present
in Section IV maps any multi-dimensional path~x(t) to a one-dimensional
pathV (t).

details of how the continuity off may be verified). For any
sequence of backlog processes that start from~xB(−T ) =
0, we can then invoke the contraction principle [14, p131]
and obtain a sample-path large-deviation principle for the
sequence of backlog processes~xB(t) with large-deviation
rate-function given by:

IT
x (~x(·)) = inf

~s(·):~x(·)=f(~s(·))

{
∫ 0

−T

H(~φ(t)|~p)dt

}

where ~φ(t) = d
dt~s(t), and the infimum is taken over all

empirical measure processes~s(·) that map to the backlog
process~x(·) given that~x(−T ) = 0, under the mappingf .
Finally, the event of overflow corresponds to||~xB(0)|| ≥ 1.
As B → ∞, we have,

I0(~λ) , − lim
B→∞

1

B
log P[||~xB(0)|| ≥ 1]

= inf{IT
x (~x(·))| over all trajectory~x(·) that

goes from~x(−T ) = 0 for someT > 0

to ||~x(0)|| = 1}. (8)

The trajectory that attains the infimum in (8) is often called
the most likely path to overflow(see Figure 1). Clearly, in
order to estimate the overflow probabilityP[|| ~X(0)|| ≥ B],
all we need is to find out which trajectory in (8) is the most-
likely path to overflow.

C. The “Path-Explosion” Challenge

Unfortunately, the infimum in (8) (a calculus of variations
problem) is often very difficult to evaluate, because it is taken
over an infinite number of multi-dimensional paths~x(t). To
see this, let us define thelocal rate-function

l(~x, ~y) = inf{H(~φ|~p)| over all ~φ such that
∑

j∈S

φj = 1

andyi = λi −
∑

j∈S φjdij(~x) for all i}. (9)

Then, we have

IT
x (~x(·)) =

∫ 0

−T

l(~x(t), ~x′(t))dt.

Note that the local rate-functionl(~x, ~y) characterizes how
rarely that, given~x(t) = ~x at some timet, ~x(t) will follow
the direction d

dt~x(t) = ~y immediately aftert. Suppose now
we enforce a delay constraint in the form ofP[|| ~X(0)|| ≥
B] ≤ ǫ. Using (8) to approximate this probability, we then
need to ensure that

IT
x (~x(·)) =

∫ 0

−T

l(~x(t), ~x′(t))dt ≥ θ , − log ǫ/B (10)

for all sample paths~x(t) that go from0 at some past time−T
to ||~x(0)|| = 1. For advanced wireless scheduling algorithms
like the Tassiulas-Ephremides algorithm [1], the complexity
of enumerating all such paths soon becomes prohibitive.
Prior successes have been limited tosimplesystems: either
the problem has some restrictive structure (e.g., symmetry
among all links) [11], or the size of the system is very small
(e.g., two links) [10], [12], [13].

IV. A N EW APPROACHCOMBINING LARGE-DEVIATIONS

WITH LYAPUNOV STABILITY

In this section, we will develop a general approach for
solving problems (8) and (10). As we discussed earlier,
finding the most likely path to overflow is often a very
difficult problem. In this section, instead of solving the
calculus of variations problem on the right-hand-side of (8),
we construct a lower bound for it. That is, we will find a
quantityθ0 such thatIT

x (~x(·)) ≥ θ0 for all trajectory~x(·) that
goes from~x(−T ) = 0 at some past time−T to ||~x(0)|| = 1.
Hence, we obtain an upper bound on the overflow probability.
If θ0 ≥ θ, we then obtain a sufficient condition for meeting
the constraint (4) on the overflow probability. Consequently,
we also obtain a lower bound on the effective capacity region
of the system under the constraint (2).

How to find such a lower boundθ0? In this section,
we present a technique that is motivated by the Lyapunov
function approach for proving stability for complex systems
[15]. Note that for a complex system like (1), it becomes
difficult to even establishstability, i.e., to show that all
queues will remain finite. To see this, take the limitB →
+∞ again for (5). Thefluid limit of the system is governed
by [16]

d

dt
xi(t) = λi −

∑

j∈S

pjDij(~x(t)) , hi(~x(t)), for all i (11)

or, in vector form

d

dt
~x(t) = ~h(~x(t)).

This fluid limit dynamics can be viewed as themeanbehavior
of the system. The original system would be stable if the
solution of the ODE (ordinary differential equation) in (11)
can be shown to converge to zero from any initial condition
[16]. However, solving the above ordinary differential equa-
tion is often very difficult. Thus, it is usually impossible



to establish the stability of the system by directly solving
the ODE. To circumvent this difficulty, we usually find a
Lyapunov functionV (~x), such thatV (~x) ≥ 0, andV (~x) = 0
if and only if ~x = 0. We then prove stability by showing a
negative driftfor V (·), i.e.

d

dt
V (~x(t)) =

(

∂V

∂~x

)T
d~x

dt
≤ −δV (~x(t)), (12)

where δ is a small positive constant. Thus, if~x(t), or
equivalently,V (~x(t)), is away from zero, the negative drift
will pull them back to zero. The negative drift then provides
a sufficient condition forV (~x(t)) → 0, which implies
that ~x(t) → 0, as t → ∞. Here, the key to the Lya-
punov function approach is to map the convergence of a
multi-dimensionalpath ~x(t), to the convergence of aone-
dimensionalpath V (~x(t)), which is then much easier to
show.SinceV (~x(t)) → 0 provides a sufficient condition for
all solutions~x(t) of the ODE to go to zero, the Lyapunov
function approach allows us to identify a lower bound on the
capacity region of the system (subject to stability).

Can we use a similar Lyapunov function approach to
characterize the delay performance (and the overflow proba-
bility) of wireless scheduling algorithms? Indeed, Lyapunov
functions have been used to solve other calculus of variations
problems in the control literature. We next demonstrate how
such an approach can be used for the delay-characterization
problem. Without loss of generality, assume that the Lya-
punov functionV (·) are chosen such that||~x|| = 1 implies
V (~x) ≥ 1. According to (12), for anyw > −δV (~x(t)),
the trajectory with d

dtV (~x(t)) = w becomes a “rare” event.
Define

lV (v, w) = inf{l(~x, ~y)| over all (~x, ~y) such that

V (~x) = v and

(

∂V

∂~x

)T

~y = w}. (13)

Let us abuse notation and letV (t) = V (~x(t)). Compared
with (9), lV (v, w) becomes the local rate-function forV (t),
i.e., it characterizes howrarely that, given V (t) = v at
some timet, V (t) will follow the direction d

dtV (t) = w
immediately aftert. It is easy to show thatIT

x (~x(·)) in (10)
satisfies

IT
x (~x(·)) =

∫ 0

−T

l(~x(t), ~x′(t))dt ≥

∫ 0

−T

lV (V (t), V ′(t))dt.

Let

θ0 = inf{

∫ 0

−T

lV (V (t), V ′(t))dt| over all trajectory

V (·) that goes fromV (−T ) = 0 for someT > 0

to V (0) = 1}. (14)

We then obtain a lower boundθ0 for the calculus of vari-
ations problem (8). It is also easy to see that a sufficient
condition for all samples paths~x(t) to meet the constraint
(10) is

∫ 0

−T

lV (V (t), V ′(t))dt ≥ θ (15)

for all one-dimensionpath V (t) that goes fromV (−T ) =
0 to V (0) = 1. Again, we have successfully reduced the
original multi-dimensional calculus of variations problem to
a one-dimensional problem. The one-dimensional calculus of
variations problem in (14) and (15) is usually much easier
to solve (Fig. 1).

Remark:Lyapunov functions have been used in the control
literature to solve other calculus of variations problems.
Often, the key to success of such an approach is to find
the right Lyapunov function. The unique feature of the
scheduling problem studied in this paper is that the Lyapunov
function for stability automatically becomes the suitable
Lyapunov function for the calculus of variations problem.
Note that for any scheduling algorithm that is provably
stable, which usually means that there exists a Lyapunov
function for stability, we can then apply the above techniques
to characterize the delay performance. In other words, the
difficulty level of the delay-characterization problem is re-
duced to that of a stability problem. Since (15) is a sufficient
condition to (10), we can obtain an upper bound on the
overflow probability, and correspondingly, if a constrainton
the overflow proability is imposed, we obtain a lower bound
on the effective capacity region. The hope of this approach
is that, if the functionV (·) is appropriately chosen, we
may recover a large fraction of, or even the entire effective
capacity region.

V. A N EXAMPLE

In this section, we apply the methodology of Section IV
to the delay-characterization problem in [11]. The model of
[11] is a base-station servingN users (Fig. 2). Packets for
user i arrive at a constant rateλi. Only one user can be
scheduled for transmission at any time. The fading channel
between the base-station and each user isi.i.d.. At each time-
slot, a user’s channel is ON with probabilityp, and OFF with
probability1−p. Let F denote the bandwidth of the system.
Hence, if a user’s channel is ON and it is scheduled for
transmission, its service rate isF . The throughput-optimal
Tassiulas-Ephremides algorithm [1] in this case is the QLB
(Queue-Length Based) algorithm, i.e., the base-station should
schedule the ON user with the longest queue [11]. The more
challenging question is to determine the effective capacity
region of the system, subject to the buffer overflow constraint
P[ max

i=1,...,N
Xi ≥ B] ≤ ǫ, whereXi is the random variable

that denotes the backlog of useri. The authors of [11] assume
that all users have the same offered load, i.e.,λi = λ for all
i = 1, 2, ..., N . Under this assumption, the most likely path to
overflow in (8) can be explicitly solved. They then establish
the following effective capacity region:

Nλ ≤ min
1≤M≤N

−
N

θ
log

[

(1 − p)M

+(1 − (1 − p)M ) exp(−
Fθ

M
)
]

(16)

where θ = − log ǫ/B. However, for non-identical offered
loads, it appears very difficult to follow the solution approach
of [11].



Fig. 2. The scheduling problem in cellular networks under fading channel.

We now use the methodology of Section IV to solve
the delay characterization problem when the offered loads
λi are non-identical. Following the notations in Sec-
tions II and III, the set of possible channel states are
S = {(a1, ..., aN )|a1, ..., aN = ON or OFF}. The probabil-
ity that the channel stateC(t) at time t is j is given by,

pj = pn(j)(1 − p)N−n(j),

wheren(j) is the number of users with ON channel at statej.
When the state isj and the system backlog is~x, let I1(~x, j)
denote the set of those users whose channels are ON and
who have the (identically) largest queuexi among ON users.
The evolution of the backlog is then given by (1), where the
function can be chosen asDij(~x(t)) = F/|I1(~x(t), j)| if
i ∈ I1(~x(t), j), andDij(~x(t)) = 0 otherwise. We can define
f
B according to (5). AsB → ∞, the limiting mappingf

is given by (7). It is easy to show that the functiondij(·)
in (7) must satisfydij(~x(t)) = 0 if i /∈ I1(~x(t), j). Further,
if the set I1(~x(t), j) contains only one useri, i.e., there
is a unique ON useri that has the largest queue at time
t, then dij(~x(t)) = F . However, if I1(~x(t), j) contains
multiple users, the definition ofdij(~x(t)) becomes somewhat
involved [10]–[12]. Roughly speaking,dij(~x(t)) should be
defined so that the users inI1(~x(t), j) can maintain identical
queues as much as possible. Regardless of the exact form of
dij(·), the following relationship can be shown. For a given
trajectory~x(·), let I1(~x(t)) = {i|xi(t) = maxk xk(t)} be
the set of users with the (identically) largest queue at time
t. (Note thatI1(~x) is different from I1(~x, j) since in the
definition ofI1(~x) we do not check whether a user is ON or
OFF.) Further, letI2(~x(t), ~x′(t)) = {i ∈ I1(~x(t))| d

dtxi(t) =
max

k∈I1(~x(t))

d
dtxk(t)}. That is,I2(~x(t), ~x′(t)) is the set of users

that, among those users with the largest queue at timet, also
have the largest queue growth rate. In other words, these set
of users will have the largest queueimmediately after time
t. Then, immediately after timet, as long as one user in
I2(~x(t), ~x′(t) is ON, this group of users collectively must
receive the full service rateF . Therefore, using (7), we must
have

∑

i∈I2(~x(t),~x′(t))

d

dt
xi(t)

=
∑

i∈I2(~x(t),~x′(t))

λi − F
∑

j∈S(I2(~x(t),~x′(t)))

φj , (17)

where for any subsetA ⊂ {1, 2, ...N}, S(A) denotes the set
of statesj such that some useri ∈ A is ON.

We can then use (9) and write down the formulation for
l(~x, ~y) as

l(~x, ~y) = inf
P

j∈S

φj=1
H(~φ||~p)

subject to yi = λi −
∑

j∈S

φjdij(~x) for all i.

Let the Lyapunov function beV (~x) = maxi xi. Although
V (·) is not differentiable at every point, it is sufficient to deal
with its one-sided derivative. In the rest of this section, when
we use the notationdg(t)

dt , we will meanlims↓0
g(t+s)−g(t)

s .
We thus have

dV (~x(t))

dt
= max

i∈I1(~x(t))

dxi(t)

dt
,

(Recall thatI1(~x) = {i|xi = maxk xk} is the set of users
with the identically largest queue when the system backlog
is ~x.) Thus, using (13), we have,

lV (v, w) = inf l(~x, ~y)

subject to max
i

xi = v

max
i∈I1(~x)

yi = w.

Combining the above two optimization problems, we thus
have

lV (v, w) = inf
P

j∈S

φj=1
H(~φ||~p) (18)

subject to max
i

xi = v

max
i∈I1(~x)

yi = w

yi = λi −
∑

j∈S

φjdij(~x), for all i.

This optimization problem is still quite difficult to solve.
We will be contented to obtain a lower bound for the optimal
value. First, recall that

I2(~x, ~y) = {i ∈ I1(~x)|yi = max
k∈I1(~x)

yk}.

Let us first compute the infimum of (18) for all~x, ~y such that
I2(~x, ~y) = M, whereM is a given subset of{1, ..., N}.
This sub-optimization can be written as

lV,M(v, w) = inf
P

j∈S

φj=1
H(~φ||~p) (19)

subject to xi = v for i ∈ M

xi ≤ v for i /∈ M

yi = w for i ∈ M

yi < w for i ∈ I1(~x)/M

yi = λi −
∑

j∈S

φjdij(~x) for all i.

Note that for alli ∈ M = I2(~x, ~y), we have

w = λi −
∑

j∈S

φjdij(~x).



Summing over alli ∈ I2(~x, ~y), and using (17), we have,

|M|w =
∑

i∈M

λi − F
∑

j∈S(M)

φj ,

where |M| denotes the cardinality ofM. (Recall also that
S(M) is the set of statesj such that some user inM is
ON.) We can then relax the constraints of (19) as:

l̃V,M(v, w) = inf
P

j∈S

φj=1
H(~φ||~p) (20)

subject to |M|w =
∑

i∈M

λi − F
∑

j∈S(M)

φj .

This subproblem is solved in [11], and the solution is given
by

l̃V,M(v, w) = u log
u

1 − (1 − p)|M|
+(1−u) log

1 − u

(1 − p)|M|
.

whereu =
P

i∈M
λi−|M|w

F . Let

l̃V (v, w) = inf
M⊂{1,2,...,N}

l̃V,M(v, w). (21)

Since (20) is a relaxation of (19), we have,

lV (v, w) = inf
M

lV,M(v, w) ≥ inf
M

l̃V,M(v, w) = l̃V (v, w).

Therefore, in order to ensure that
∫ 0

−T

l(~x(t), ~x′(t))dt ≥ θ

for all trajectory~x(·) that goes from~x(−T ) = 0 at some
past time−T to ||~x(0)|| = 1, it is sufficient to ensure that

θ ≤ inf{

∫ 0

−T

l̃V (V (t), V ′(t))dt| over all trajectory

V (·) that goes fromV (−T ) = 0 for someT > 0

to V (0) = 1}. (22)

Note thatl̃V (v, w) in (21) does not depend onv. Therefore,
the trajectoryV (·) that attains the infimum in (22) is in fact
very easy to solve [17, p520], and the infimum is equal to
infw≥0 l̃V (v, w)/w. Therefore, using the definition ofl̃V (·, ·)
and l̃V,M(·, ·), it is then sufficient to ensure that

θ ≤ inf
w≥0

1

w
l̃V (v, w)

= inf
M

inf
w≥0

1

w
l̃V,M(v, w)

= inf
M

inf
0≤u≤

P

i∈M

λi
F

|M|
∑

i∈M λi − uF
D|M|(u||p)

where

D|M|(u||p) =

u log
u

1 − (1 − p)|M|
+ (1 − u) log

1 − u

(1 − p)|M|
.

Note that the above condition is equivalent to

θ ≤ inf
0≤u≤

P

i∈M

λi
F

|M|
∑

i∈M λi − uF
D|M|(u||p) (23)

for all M ⊂ {1, 2, ..., N}. For a fixedM, the condition (23)
is shown in [11] to be equivalent to

∑

i∈M

λi ≤ −
|M|

θ
log

[

(1 − p)|M|

+(1 − (1 − p)|M|) exp(−
Fθ

|M|
)
]

. (24)

Thus, we obtain a lower bound on the effective capacity
region as

{~λ|Inequality (24) holds for allM ⊂ {1, 2, ..., N}}. (25)

Remark:Note that (25) reduces to (16) when allλi are
equal. Thus, we not only reproduce a lower bound on the
effective capacity region for the case with identical offered
loads (which is the same as the effective capacity region
found in [11]), but also solve the more general problem with
non-identical offer loads.

VI. CONCLUSIONS

In this paper we study the problem of characterizing
the delay performance of complex wireless scheduling al-
gorithms. We present a new technique for addressing the
complexity issue of the calculus of variations problem in-
volved in the sample-path large deviation approach. Our
new technique combines sample-path large deviations with
Lyapunov stability, which may develop into a powerful
approach to study a large class of scheduling algorithms.
We also illustrate the potential of such an approach through
an example.
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