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Abstract— In this paper we study the problem of character- words, if this algorithm cannot stabilize the system, nceoth
izing the delay performance of wireless scheduling algorithms.  algorithms can. For example, one such throughput-optimal
In wireless networks operated under these wireless scheduling scheduling algorithm is the algorithm proposed in the semi-
algorithms, there often exists a tight coupling between the . . . . .
service-rate process, the system backlog process, the arriva nal work by Tassplas and Ephremldeslln [1]. This algorithm
process and the channel variations. Although one can use Chooses at each time, among all possible schedules, the one
sample-path large-deviation techniques to form an estimate of that maximizes the sum of the queue-weighted-rate over
the delay-violation probability under a given offered load, the gl links. This algorithm has been shown to be throughput-
formulation leads to a multi-dimensional calculus of variations optimal, and it has been the basis for many other throughput-

problem that is often very difficult to solve. In this paper, we . . . .
present a new technique for addressing this complexity issue. optimal scheduling algorithms for both cellular and muph

Using ideas from the Lyapunov function approach in control ~ Wireless networks.
theory, this technique maps the complex multi-dimensional Once we know about stability, we are then tempted to ask

calculus of variations problem to a one-dimensional calculus of further questions regarding the distribution of queue fieng
variations problem_, and tht_a latter is often much easier to solve. (or delay). For example, at a given offered load, what is the
We believe that this technique can potentially be used to study i . .
the delay-performance of a large class of wireless scheduling probablht.y that the delay experienced by a pac-ket Is greate
algorithms. than a given threshold? Or, conversely, what is the largest
offered load that the system can support at a given delay
|. INTRODUCTION constraint? (In other words, what is trefective capacity
A wireless network may be modeled as a system of queuesgion of the system under delay constraints?) Clearly, these
with time-varying service rates. The variability in sewic question are important for applications that require more
rates is due to a number of factors. First, channel fading amstfingent delay guarantees than just stability.
mobility can lead to variations in the link capacity everhigt These delay characterization problem for wireless net-
transmission power is fixed. Second, the transmission poweorks can be difficult to solve. Here we draw a comparison
can vary over time according to the power control policyto the delay characterization problem in wireline netwotks
Third, due to radio interference, it is usually preferalde twireline networks, even through the exact delay distrituti
schedule only a subset of links to be active at each timean be difficult to obtain, there have been a large body of
and to alternate the subset of activated links over time. Allork, especially those using large-deviation techniques,
of these factors lead to a variable service rate at each linlobtain sharp estimates of the delay violation probability o
When one is to study the performance of any system thatqueue. These wireline network results usually assume that
involves queues, the first question we can ask is wheth#hre service rate of the queue is fixed (i.e., time-invariant)
the system isstable or not. Here,stability means that all and the packet arrival process is known. These results allow
gueue length (or equivalently, the delay experienced hys to compute theffective bandwidtlof the arrival process
the packets) remains finite. Conversely, we can ask thHeom its (known) statistics [2]—[7], which can then be used
guestion that, in order to maintain stability, what is thdo determine the traffic carrying capability of the queue at
largest offered load that the system can carry. In other syorda given delay constraint. In contrast, in wireless networks
what is the capacity region of the system subject to stgbilitthe service rate is time-varying. If the service rate preces
For wireless networks, these questions have led to resuitsagain knowna priori, large-deviation techniques can be
on throughput-optimakcheduling algorithms for scheduling used to compute theffective capacityof the service rate
wireless resources. (Here we use the taghedulingin the process [8], [9], which is a notion similar to theffective
broader sense, i.e., it can include various control meshasi bandwidthof the arrival process. This effective capacity can
at the MAC/PHY layer, e.g., link scheduling, power controlagain be used to determine the traffic carrying capability of
and adaptive coding/modulation.) A scheduling algoritlsm ithe queue at a given delay constraint. Unfortunately, under
throughput-optimalif this algorithm can sustain the largestmany wireless scheduling algorithms of interest, even the
offered load while keeping the system stable. In otheservice rate process is unknovanpriori. For example, for



a system operated under the throughput-optimal TassiulaS{t). Further, we assume that the staf&3),t = 1,2, ... are
Ephremides algorithm of [1], or any queue-length basedi.d., and letp; = P[C(t) = j| denote the probability that
scheduling algorithms, the service rates depend on theequethe state of the system at tinteis j. Let 5 = [py, ..., ps]-
length, which in turn depend on the arrival process and theor ease of exposition, in the rest of the paper we also define
channel state, etc. Hence, the statistics of the serviee rab;(t) = 1;¢)—;} to be the indicator function that the state
process is unknown before hand. In this case, the delay the system at time is j. Let ®(¢) = [®1(¢), ..., Ps(t)].
characterization problem is known to be very difficult. ForClearly, there is a one-to-one mapping betwegft) and
these systems, although it is still possible to use samplé}(t)_

path large-deviation techniques to form an estimate of the Each link corresponds to a queue with time-varying ser-
delay-violation probability [10]-[12], such a formulatio vice rate. The arrivals at each link are at a constant
leads to a multi-dimensional calculus of variations proble rate )\;. The service offered to linki is determined by
Due to the complex coupling between the service rate, thRe scheduling algorithm, and in general correlates with th
queue length, the arrival process, and the channel staggrvice at other links and depends on the system backlog.
this multi-dimensional calculus of variations problem &w | et X;(t) denote the backlog at link at time ¢, and let
difficult to solve. Prior successes have been limiteditople X’(t) = [X1(t),..., X1 (t)]. We assume that the service rate
systems: either the problem has some restrictive structuggfered to link i is a function of the global backlog?(t)
(e.g., symmetry among all links) [11], or the size of theand the system stat@(t). In particular, letD;;(X) denote
system is very small (e.g., two links) [10], [12], [13]. the service offered to link when the state of the system is

In this paper, we present a new approach to address thigind the global backlog i& . The evolution of the backlog
complexity issue. Motivated by the Lyapunov function apst link i is then given by

proach for proving stability of complex systems, we provide .

a technique that maps the complex multi-dimensional calcu¥;(t+1) = [Xi(t)+)\i_z ®;(t) D (X ()T, i=1,...,L

lus of variations problem into a one-dimensional calculfis o jes

variations problem, and the latter is often very easy toesolv o (1)

The solution to the one-dimensional calculus of variation&here[]" denotes the projection @, +oc). _ .
problem will then provide us with an upper bound estimate ASSUme that the system is stationary and ergodic. In this
of the delay violation probability, and consequently, adow Paper, we will focus on studying the probability that the
bound estimate of the effective capacity region of the syste SyStem backlog exceeds a certain threstldn particular,

For many practical applications, the resulting effectispac- let e denote our target on the overflow probability, we would

ity region is useful because the delay constraint is known #€ 0 ensure that

be satisfied. N P(IX(0)|| = B] <« )
We believe that this marriage between sample-path large-
deviations and Lyapunov functions can develop into ahere || - || is an appropriately chosen norm, argl is

powerful theory to characterize the delay performance dhe overflow threshold. Note that the constraint in (2) is
wireless systems under sophisticated scheduling algasith equivalent to a constraint on the delay-violation prokigbil
We can potentially lower the difficulty level of the delay-when the arrival rateg; are constant, because the two types
characterization problem to that of a stability problem. Irof constraints are related by (see [9], [11])

other words, for any scheduling algorithm that is provably .

stable, which usually means that there exists a Lyapunov P[Delay at linki > d;] = P[X;(0) > Aid;].

function, we could then apply this theory to characteriz?_ience’ in the rest of the paper we will often refer to (2) as
the delay performance. We provide an example of how th delay constraint.

approach can be used to solve a more difficult problem than Unfortunately, the problem of calculating the exact prob-

th(_)rshe stud|e<1j: '2 the Iltergture. ed as foll Wi ability P[||X(0)|| > B] is often mathematically intractable.
e rest of the paper Is organized as follows. We presepf g paper, we are interested in using large-deviation

tf:cehnetworkI modv.;:]l I|n Seé:tlo_n II. We re_wlew ac}‘q(rjmul_atlontechniques to compute estimates of this probability. We as-
of the sample-path large-deviation principle, and idgrttie g, 0 yhat the following large-deviation result for the dagk

complexity of the associated calculus of variations proble processX(t) holds. That is, wherB is large, the following
in Section Ill. Then, in Section IV, we provide a LyapunovIimit exists ’ '

function based approach to address the complexity issue. In
Section V, we provide an example to show how such an lim llogP[Hf(O)H > B] = _IO(X), (3)
approach can be used. Then we conclude. B—x B

-

where I(\) can be determined from a sample-path large-

deviation principle that we will describe in Section Il

We consider the following model for a wireless SySte”Equation (3) implies that, whemB is large, the overflow
with L links. In order to model channel fading, we assum%robability can be approximated as

that the system can be in one®&tates. We assume a slotted B .
system, and denote the state of the system at tirtee be P[||X(0)|| > B] = exp(—BI(}N)).

Il. THE SYSTEM MODEL



Thus, the problem of estimating the overflow probability iss?(t) to the backlog process?(t). Further, although we
reduced to that of computing the rafg()\). Alternatively, have assumed®(t) to be piecewise linear to begin with,
using the above approximation, in order to satisfy the corthe definition of the mappin§”® can be naturally extended

straint (2), we only need to ensure that to all absolute continuous functios® (¢).

IO(X) >pL 710g€' (4) B. The Large-Deviation Principle

_ . . . Let B — oco. We now have a sequence of scaled random
We can then define theffective capacity regiomnder the walks §5(t), and they map to a sequence of scaled backlog
constraint (2) as the set of arrival ratesuch that the above processesz” (t) through the sequence of mapping$.

inequality holds. For any¢ > 0 and Y, s¢; = 1, define H(¢lp) =

(z). .
lIIl. THE SAMPLE-PATH LARGE DEVIATION PRINCIPLE ~ 2ujes @108 5+ The sequence of empirical measure pro-

In this paper, we will study the problem of computing thecesses” (t) are known to satisfy a sample-path large devi-
rate Ip(X) and characterizing the effective capacity regiorfo” principle [14, p176] with large-deviation rate-ftion
under the constraint (2). We first describe hdw(X) can 15 (s(")) given as follows:
be determined from a sample-path large-deviation priecipl . 0 -
for the backlog proces¥ (¢). (Note that establishing such a I3(5() = /TH(‘b(t)@dt»
large-deviation principle is not the main focus of the paper, _ . o )

We refer the readers to [10]-[12] for details on the techinicdl 5(t) is absolute continuous and component-wise non-
assumptions under which such a large-deviation principf€creasing of—T:.0}, 5(=T) = 0, and}_; s s;(t) = t + T

holds.) for all t; where (t) = <#(t). (Note thatg(t) is well
' defined almost everywhere ¢n-T', 0] since3(t) is absolute
A. Notations continuous or{—T,0].) Otherwise,

We follow the convention in [10], [11]. For a large enough

Trz()) —
T, define the empirical measure process on the time interval L5 (8()) = oo,

[-T,0] as Such a large-deviation principle means that, for any set
5 1 BT+ I of trajectories on[-T,0] that is acontinuity set [14,
55 (t) = B Z Liew=4y p5] according to theessential supremum norifi4, pl76,
=0 p352], the probability that the sequence of empirical measu

fort = £ — T, k =0,..,BT, and by linear interpolation processes” (t) fall into I' must satisfy
otherwise. Note that, in the above definition, we have scaled
both the time and the magnitude. The quantfj(t) can

be interpreted as the sum of the (scaled) time[-#T, ] o ) )

that the system is at statg Further, it is easy to check 'N€ large-deviation rgte—functloifg)Eharacterlzes how
that Y, s2(f) = t + T for all ¢ € [-T,0]. Let §5(t) = rarely each trajectory is. Note thdy (s(-)) > 0 for al
[s2(1), ...s2(1)]. Further, letg? (1) = %5;3(1?). (Note that trajef:tory:s(_-). The Iarg-e.r the_va]ue @T'Ff(-)) is, Fhe further
the derivative is well defined almost everywhere[er, 0] e "empirical probability distribution ¢(t) deviates from
except whert = k/B — T for some integek.) Let gg(t) _ the “prior probability distributionp. Hence, the less likely

B(t). . &B(1). Note thatS™. B(4) — 1 for almost all the trajectorys(-) will occur. Equation (6) reflects the well-
£¢1 ®), - 95 ()] ZJES o7 () known large-deviation philosophy that “rare events occur

Analogously, define the scaled backlog process as, in the -most-likely way.".I?reciser, wheil3 is large, the

g y gp probability that the empirical measure proceg§t) falls
2B(t) = iXi(B(T +1)), into a sefl” is determined by the trajectory in that is most
B likely to occur, i.e., with the smallest! (5(-)).

for t = £ — 7, k = 0,.., BT, and by linear interpolation  Next, assume that the sequence of mappifigshas a

otherwise. Let??(t) = [zP(¢), ..., 22 (t)]. Note that accord- Iimiti.n.g mapping f that also maps any absolute continuous
ing to (1), the backlog proces? (¢) is related to the process €mpirical measure proces$t) to a backlog processeXt).

1 . s
Jim 2 logP[s7() €T = ﬁ(lr)lérf (5¢). (6)

#B(t) by Assume that the limiting mapping is of the form
d
al(t+1/B) —zP(t) Zai(t) = X = D7 (1) (1)), @)
1/B =
t+1/B - d . . .
— A — ZDij(fB(t))/ f(s)ds, whereqb(.t) = 475(t). (Note that this equation may be we;wed
jes t as the limit of (5) whenB — oo, although the function
fort=2% 7T, k=0,., BT ) d;;(Z(t)) may not be exactly the same &%;(Z(t)) as we

will see in the example in Section V.) Further, assume that
Thus, given a particular initial conditioi® (—7'), Equation the sequence of mappin§$§ areexponentially equivalerto
(5) defines a mappinff® from the empirical measure processf [14, p130], and the mapping is continuous (see [10] for



lIx(0)ll=1

Then, we have

Note that the local rate-functioh(Z, ) characterizes how
rarely that, givenz(¢) = & at some time, Z(¢) will follow
the direction-4#(t) = i immediately aftert. Suppose now
we enforce a delay constraint in the form Bf||X (0)|| >

B] < e. Using (8) to approximate this probability, we then
need to ensure that

0
@) = [ U507 @)z 02 -loge/B (10

for all sample pathg(t) that go from0 at some past time- T’

to ||Z(0)|| = 1. For advanced wireless scheduling algorithms
like the Tassiulas-Ephremides algorithm [1], the compiexi
Time of enumerating all such paths soon becomes prohibitive.
Fig. 1. Top: The overflow probabilitgP[|[£(0)]| > B] is related to Prior successes have been I]m_ltedstmplesystems: either
the most likely path to overflow. Bottom: The technique that wespnt the problem has some restrictive structure (e.g., symmetry
in Section IV maps any multi-dimensional pail(¢) to a one-dimensional among all links) [11], or the size of the system is very small
pathV(#). (e.g., two links) [10], [12], [13].

IV. ANEW APPROACHCOMBINING LARGE-DEVIATIONS

details of how the continuity of may be verified). For any WITH LYAPUNOV STABILITY

sequence of backlog processes that start fi&fi—7) = In this section, we will develop a general approach for
0, we can then invoke the contraction principle [14, p131}olving problems (8) and (10). As we discussed earlier,
and obtain a sample-path large-deviation principle for th&inding the most likely path to overflow is often a very

sequence of backlog processeg(t) with large-deviation difficult problem. In this section, instead of solving the

rate-function given by: calculus of variations problem on the right-hand-side 9f (8
0 . we construct a lower bound for it. That is, we will find a
M) = " ﬁ(i)nff(ﬂ( ) {/ H(¢(t)|ﬁ)dt} quantityf, such thatr? (Z(-)) > 6, for all trajectoryz(-) that
S(-):x(-)=r(s(- —-T

goes fromz(—7') = 0 at some past time-T to ||Z(0)|| = 1.
where $(t) - %g(t), and the infimum is taken over all Hence, we obtain an upper bound on the overflow probability.
empirical measure process€6) that map to the backlog If 6o > 6, we then obtain a sufficient condition for meeting
processi(-) given that#(—T) = 0, under the mapping. the constraint (4) on the overflow probability. Consequentl
Finally, the event of overflow corresponds [t&” (0)|| > 1. Wwe also obtain a lower bound on the effective capacity region

As B — oo, we have, of the system under the constraint (2).
- 1 . How to find such a lower bound,? In this section,
L) = — lim ZlogP[||z7(0)]] = 1] we present a technique that is motivated by the Lyapunov

function approach for proving stability for complex sysgem
[15]. Note that for a complex system like (1), it becomes
goes fromz(—T') = 0 for someT > 0 difficult to even establishstability, i.e., to show that all
to ||Z(0)|| = 1}. (8) queues will remain finite. To see this, take the limdit—
oo again for (5). Theluid limit of the system is governed

= inf{I¥(Z(-))| over all trajectoryz(-) that

The trajectory that attains the infimum in (8) is often calle 16
the most likely path to overfloWsee Figure 1). Clearly, in y [16]

order to estimate the overflow probabiliB]|| X (0)|| > B, ixi(t) — = 3 5Dy (E() £ hu(E(0), for all i (1)
all we need is to find out which trajectory in (8) is the most- dt '

€S
likely path to overflow. . o€
or, in vector form
C. The “Path-Explosion” Challenge d .
Unfortunately, the infimum in (8) (a calculus of variations @x(’f) = h(Z(t))-

problem) is often very difficult to evaluate, because it ieta
over an infinite number of multi-dimensional patfi§). To
see this, let us define tHecal rate-function

This fluid limit dynamics can be viewed as theeanbehavior
of the system. The original system would be stable if the
solution of the ODE (ordinary differential equation) in 11
(Z,7) = inf{H($|]3’)| over all q}' such that}” ¢; =1 can be shown to converge to zero from any initial condition
jes [16]. However, solving the above ordinary differential agu
andy; = \; — > s ¢;di; () for all i}. (9)  tion is often very difficult. Thus, it is usually impossible



to establish the stability of the system by directly solvingor all one-dimensiorpath V' (¢) that goes fromV (—-T') =
the ODE. To circumvent this difficulty, we usually find a0 to V(0) = 1. Again, we have successfully reduced the
Lyapunov functionV/ (£), such tha/ (&) > 0, andV(£) =0  original multi-dimensional calculus of variations protleo
if and only if £ = 0. We then prove stability by showing a a one-dimensional problem. The one-dimensional calculus o

negative driftfor V(-), i.e. variations problem in (14) and (15) is usually much easier
T, to solve (Fig. 1).

V( (t)) = (8V> — < —6V(Z(t)), (12) Remark:Lyapunov functions have been used in the control

dt or ) dt literature to solve other calculus of variations problems.

where § is a small positive constant. Thus, if(¢), or Often, the key to success of such an approach is to find

equivalently,V (Z(t)), is away from zero, the negative drift the right Lyapunov function. The unique feature of the

will pull them back to zero. The negative drift then providesscheduling problem studied in this paper is that the Lyapuno
a sufficient condition forV(z(t)) — 0, which implies function for stability automatically becomes the suitable

that Z(t) — 0, ast — oo. Here, the key to the Lya- Lyapunov function for the calculus of variations problem.
punov function approach is to map the convergence of Mote that for any scheduling algorithm that is provably
multi-dimensionalpath #(¢), to the convergence of ane- Stable, which usually means that there exists a Lyapunov
dimensionalpath V(Z(t)), which is then much easier to function for stability, we can then apply the above teche&ju
show.SinceV (#(t)) — 0 provides a sufficient condition for O characterize the delay performance. In other words, the
all solutions#(t) of the ODE to go to zero, the Lyapunov difficulty level of the delay-characterization problem & r
function approach allows us to identify a lower bound on théuced to that of a stability problem. Since (15) is a suffitien
capacity region of the system (subject to stability). condition to (10), we can obtain an upper bound on the

Can we use a similar Lyapunov function approach t&verflow probability, and correspondingly, if a constramt
characterize the delay performance (and the overflow probte overflow proability is imposed, we obtain a lower bound
bility) of wireless scheduling algorithms? Indeed, Lyapun ©n the effective capacity region. The hope of this approach
functions have been used to solve other calculus of vanistiois that, if the functionV'(-) is appropriately chosen, we
problems in the control literature. We next demonstrate ho?@y recover a large fraction of, or even the entire effective
such an approach can be used for the delay-characterizat@#acity region.
problem. Without loss of generality, assume that the Lya-

punov functionV'(-) are chosen such that’|| = 1 implies ) ) ,
V(@) > 1. Accordmg to (12), for anyw > —8V(Z(t)), In this section, we apply the methodology of Section IV

the trajectory W|th V(Z(t)) = w becomes a “rare” event. to the delay-characterization problem in [11]. The model of
Define [11] is a base-station servinly users (Fig. 2). Packets for

useri arrive at a constant rat®;. Only one user can be
lv(v,w) = inf{l(Z,y)| over all(z, ) such that scheduled for transmission at any time. The fading channel
ov\T between the base-station and each uskeids. At each time-
V(Z) =v and ((%») g=w}  (13)  slot, a users channel is ON with probabilityand OFF with
probability 1 — p. Let F' denote the bandwidth of the system.
Let us abuse notation and Iet(¢) = V(Z(t)). Compared Hence, if a user's channel is ON and it is scheduled for
with (9), Iy (v, w) becomes the local rate-function fof(¢),  transmission, its service rate E. The throughput-optimal
i.e., it characterizes howarely that, givenV () = v at Tassjulas-Ephremides algorithm [1] in this case is the QLB

some timet, V(¢) will follow the direction V() = v (Queue-Length Based) algorithm, i.e., the base-stationlgh
immediately aftert. It is easy to show thaf; (Z(-)) in (10)  schedule the ON user with the longest queue [11]. The more

V. AN EXAMPLE

satisfies challenging question is to determine the effective capacit
i o, 0 , region of the system, subject to the buffer overflow constrai
I (Z() = /Tl(a:(t),x (t))dt = /TZV(V(t)’V (t))dt. P[ max X; > B] < ¢, whereX; is the random variable
- - N
Let that denotes the backlog of ugeiThe authors of [11] assume
that all users have the same offered load, he5 A for all
0y = mf{/ '(t))dt| over all trajectory 1=1,2, o N. Under this as_s_umption, the most likely path_to
overflow in (8) can be explicitly solved. They then establish

) that goes fromV/(—T") = 0 for someT >0 the following effective capacity region:

to V =1} 14 N
=1 (14) NX < min ——log [(1 —pM
We then obtain a lower bounél, for the calculus of vari- 1sM<N

ation_s_ problem (8). It is also easy to see that a suffi_cient +(1 = (1 —p)M)exp(— FMG) (16)

condition for all samples pathg(¢) to meet the constraint

(10) is o where# = —loge/B. However, for non-identical offered
/ Ly (V(#), V/(8))dt > 6 (15) I(;a[cisi,]n appears very difficult to follow the solution apach



A g— ON-OFF (p)-~~ where for any subsetl C {1,2,...N}, S(A) denotes the set
— —] of states;j such that some usére A is ON.
e We can then use (9) and write down the formulation for

M- — (e ca ©

. : . ’

. I(Z,7) = _inf H(J|

@)= ur - HE
S — ) res
subjectto  y; = \; — Z@-dij(f) for all 4.

Fig. 2. The scheduling problem in cellular networks undelirfg channel. jes

Let the Lyapunov function bé/(¥) = max; x;. Although

V(+) is not differentiable at every point, it is sufficient to deal
We now use the methodology of Section IV to solvewith its one-sided derivative. In the rest of this sectiohgw

the delay characterization problem when the offered loadse use the notatioﬁ%, we will meanlimg o M.

A; are non-identical. Following the notations in Sec\We thus have

tions Il and lll, the set of possible channel states are dV (Z(t)) da;(t)

S ={(a1,...,an)l|a1,...,ay = ON or OFF. The probabil- —ar iegl(af)@)) dt

ity that the channel stat€'(¢) at timet is j is given by,

)

(Recall thatZ, (¥) = {i|x; = maxy xz} is the set of users
p; = pn(j>(1 ,p)an(j), with the identically largest queue when the system backlog
is £.) Thus, using (13), we have,
wheren(j) is the number of users with ON channel at state
When the state ig and the system backlog i let Z; (Z, j)
denote the set of those users whose channels are ON and
who have the (identically) largest queugamong ON users. iefrzl?é) Yyi = w.
The evolution of the backlog is then given by (1), where the o o
function can be chosen aB;;(Z(t)) = F/|T,(&(t), )| if Combining the above two optimization problems, we thus
i € T:(#(t),j), and D;;(#(t)) = 0 otherwise. We can define NaVé
fB according to (5). AsB — oo, the limiting mappingf (v, w) = _inf H(¢||p) (18)
is given by (7). It is easy to show that the functidp (-) J%IS ¢j=1
in (7) must satisfyd,; (£(t)) = 0 if i ¢ Z,1(Z(t), j). Further,
if the setZ;(#(t),j) contains only one usei, i.e., there

ly (v,w) = inf UZ,y)
subjectto  maxx; = v

subjectto  maxz; =v
K2

is a unique ON usei that has the largest queue at time e Y
t, then d;;(Z(t)) = F. However, if Z,(Z(t),j) contains B . ,
multiple users, the definition af;; (Z(¢)) becomes somewhat Yi=Xi— Z ¢;di3(Z), for all .
involved [10]-{12]. Roughly speakingi;;(Z(t)) should be jes

defined so that the USQTSIHI(f(t),j) can maintain identical ThIS optimization problem_ is still quite difficult to SO'Ye.
queues as much as possible. Regardiess of the exact formVé¢ will be contented to obtain a lower bound for the optimal
d;;(-), the following relationship can be shown. For a givervalue. First, recall that

trajectory Z(-), let Zl(x(t)) = {z!a:i(t) = maxy 2 (t)} be' To(Z,§) = {i € T(@)|y: = max_yi}.

the set of users with the (identically) largest queue at time keI ()

t. (Note thatZ, () is different fromZ, (7, j) since in the | et ys first compute the infimum of (18) for all # such that
definition of Z; (&) we do not check whether a user is ON OI7,(Z,ij) = M, where M is a given subset of1,..., N}.

OFF.) Further, leZ,(#(t), 7 (t)) = {i € T, (Z(t))| =:(t) = This sub-optimization can be written as

max 4a(t)}. Thatis,Zo(Z(t), #'(t)) is the set of users .
K (E0) . T vy = it HGP) (19)
that, among those users with the largest queue at#jrakso ' > =1

JES

have the largest queue growth rate. In other words, these set . .
gestq 9 subjectto x; = v forie M

of users will have the largest queiramediately after time

t. Then, immediately after time, as long as one user in z; <wvforig¢ M
Io(Z(t), &' (t) is ON, this group of users collectively must y, =w forie M
receive the full service rat€. Therefore, using (7), we must yi < w for i € T, (%) /M
have . .
Yi = N — Z ¢]d7J(I) for all 4.
d jES
> gl ‘
€T (20,7 (1) Note that for alli € M = Z,(Z, 7/), we have

i€y (2(1), 7" (1)) JeS(Z2(2(1),7 (1)) Jjes



Summing over alk € Z»(Z, %), and using (17), we have,

Mw= " N-F > ¢,

ieEM JES(M)

where | M| denotes the cardinality oM. (Recall also that
S(M) is the set of stateg such that some user iM is

ON.) We can then relax the constraints of (19) as:

forall M C {1,2,..., N}. For a fixedM, the condition (23)
is shown in [11] to be equivalent to

S o< —%'log( —p)M

ieM
1= (=) M exp(~ )] 24)
Thqs, we obtain a lower bound on the effective capacity
region as
{X|Inequality (24) holds for allM c {1,2,...,N}}. (25)

Remark:Note that (25) reduces to (16) when al] are

This subproblem is solved in [11], and the solution is giverequal. Thus, we not only reproduce a lower bound on the

lya(v,w)= _inf — H(d|[p) (20)
> b=
JES
subjectto  [Mlw= Y N-F > ¢
ieEM JES(M)
by
1 = ul “ 1—u) log ——
v.m(v,w) = ulog W+( —u)log A= p)™
whereu = M Let
I = inf . 21
ly (v, w) MC{&”_’N}lmm(v,w) (21)
Since (20) is a relaxation of (19), we have,
lv(’U,U}) = ijr\l/lflV,M(U7w) > 1_/1\1/1f ZV,M(Ua UJ) = ZV(va)'

Therefore, in order to ensure that

T (t))dt > 6

for all trajectory Z(-) that goes from#(—T) = 0 at some
past time—T to ||Z(0)|| = 1, it is sufficient to ensure that

V'(t))dt| over all trajectory

0 < mf{/

) that goes fromV(—T") = 0 for someT" > 0

to V( )=1}. 22)

Note thatly (v, w) in (21) does not depend an Therefore,
the trajectoryV/(-) that attains the infimum in (22) is in fact
very easy to solve [17, p520], and the infimum is equal to

inf,,>o Iy (v, w)/w. Therefore, using the definition &f (-, -

andlv (-, -), it is then sufficient to ensure that
1-
< -
0 < igf wlv(v w)
— inf inf iy (v, w)
R
. . M
= inf inf =D ullp
M o<usy, o 3 2iem Ai — uF el
where
D p (ullp) =
U 1—u
Note that the above condition is equivalent to
0 < inf M|

0<u<zL€M T Z’LGM

——Diw(ullp)  (23)

effective capacity region for the case with identical offir
loads (which is the same as the effective capacity region
found in [11]), but also solve the more general problem with
non-identical offer loads.

VI. CONCLUSIONS

In this paper we study the problem of characterizing
the delay performance of complex wireless scheduling al-
gorithms. We present a new technique for addressing the
complexity issue of the calculus of variations problem in-
volved in the sample-path large deviation approach. Our
new technique combines sample-path large deviations with
Lyapunov stability, which may develop into a powerful
approach to study a large class of scheduling algorithms.
We also illustrate the potential of such an approach through
an example.
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