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Abstract

It is well known that congestion control can be viewed as a distributed iterative algorithm

solving a global optimization problem that maximizes the total system utility. In this paper,

we study the stability region of a network employing congestion control algorithms derived

from such an optimization framework. Previous work in the literature typically adopts a

time-scale separation assumption, which assumes that, whenever the number of users in

the system changes, the data rates of the users are adjusted instantaneously to the optimal

rate allocation computed by the global optimization problem. Under this assumption, it

has been shown that such rate allocation policies can achieve the largest possible stability

region. However, this time-scale separation assumption, although technically convenient,

rarely holds in practice. In this paper, we remove this time-scale separation assumption

and show that the largest possible stability region can still be achieved by a large class of

congestion control algorithms derived from the optimization framework. Our result provides

new insights on the performance implication of congestion control and on the choices of the

parameters of the congestion controller.
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1 Introduction

Congestion control (or rate control) is a key functionality in modern communication networks.

The objectives of congestion control are two-fold: to utilize as much the available capacity of

the network as possible without causing severe congestion within the network, and to ensure

some form of fairness among the users. Since the seminal work by Kelly [1], it is clear that both

of these objectives can be mapped to a global optimization problem that maximizes the total

system utility, where different fairness objectives can be achieved by appropriately choosing the

utility functions. Congestion control can then be viewed as a distributed iterative solution to

the global optimization problem [1, 2, 3, 4].

Significant advances in the understanding of congestion control have been made under this

optimization framework for congestion control (see [5] for a good survey). The results can be

roughly categorized into two groups. In the first body of work, it is assumed that the number of

users in the network is fixed and each user has infinite data to transfer. This research focuses on

developing distributed iterative algorithms that converge to the fair rate allocation, which cor-

responds to the solution of the global optimization problem. Various issues have been addressed

in this body of work, including global convergence of the congestion control algorithm, local

stability (in the sense of Lyapunov) of the equilibrium rate allocation, the impact of feedback

delay and random noise, and the asymptotic behavior of the system when the number of users

is large.

The second body of work studies a network with random dynamic arrivals and departures of

the users. This research studies the stability region of the system employing congestion control.

Here, by stability, we mean that the number of users in the system and the queue lengths at each

link in the network remain finite. The stability region of the system under a given congestion

control algorithm is the set of offered loads under which the system is stable. This body of

work typically assumes that, whenever the number of users in the system changes, the data rates

of the users are adjusted instantaneously to the optimal (and fair) rate allocation computed
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by the global optimization problem. This model essentially assumes a time-scale separation,

i.e., the time scale of the arrivals and departures of the users is much slower than that of the

dynamics determined by the congestion control algorithms derived in the first body of work. It

has been shown that, for a large class of utility functions and fairness objectives, the largest

possible stability region can be achieved by allocating data rates fairly according to this time-

scale separation assumption [6, 7, 8, 9]. This result is important as it tells us that “fairness” is

not merely an aesthetic property, but it actually has a strong global performance implication,

i.e., in achieving the largest possible stability region.

However, for a large network like today’s Internet, with the continual arrivals and departures

of the users, the number of users in the system changes constantly. There will rarely be an

extended period of time when the number of users in the system is fixed. Hence, the iterative

congestion control algorithm in the first body of work may never have the chance to converge to

an optimal (and fair) rate allocation. Therefore, the time-scale separation assumption used in

the second body of work, albeit technically convenient, rarely holds in practice.

In this paper, we study the stability region of congestion control without requiring such a time-

scale separation assumption. We will show that, even when we remove the time-scale separation

assumption, the largest possible stability region can still be achieved by a large class of congestion

control algorithms that are derived from the optimization framework. Hence, our result reinforces

the performance benefit of congestion control in a stronger sense than previous works.

The rest of the paper is structured as follows. In Section 2, we present the system model and

review some relevant results in the literature. Our main result is presented in Section 3, and the

proof is given in Section 4. Then we conclude.

2 The System Model and Related Results

In this section, we describe our system model and review certain related works. We consider a

network with L links and S classes of users. The capacity of each link l is Rl. Users of each
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class s have one path through the network. Let H l
s = 1, if the path of users of class s uses link l,

and H l
s = 0, otherwise. Let xs denote the rate at which each user of class s sends data into the

network, and let Us(xs) be the utility received by the user of class s when it sends data at rate

xs. The utility function Us(·) characterizes the “satisfaction level” of a user of class s when it

sends data at a certain rate, and as we will soon discuss, it also corresponds to a certain fairness

objective. As is typically assumed in the literature, we assume that each user of class s has a

maximum data-rate limit of Ms, and the utility function Us(·) is increasing, strictly concave, and

twice continuously differentiable on (0,Ms] [2].

Let ns, s = 1, ..., S denote the number of users of class s that are in the system. Let ~n =

[n1, ..., nS] and ~x = [x1, ..., xS ]. Congestion control can then be formulated as the following

global optimization problem [1]:

max
~x:0≤xs≤Ms,s=1,...,S

S
∑

s=1

nsUs(xs) (1)

subject to
S
∑

s=1

H l
snsxs ≤ Rl for all l = 1, ..., L.

2.1 Fairness

It has been well known that fairness objectives can be achieved by appropriately choosing the

utility functions [7]. For example, utility functions of the form

Us(xs) = ws log xs (2)

correspond to weighted proportional fairness, where ws, s = 1, ..., S are the weights. A more

general form of the utility function is

Us(xs) = ws
x1−β

s

1 − β
, for some β > 0 and β 6= 1. (3)

Maximizing the total system utility will correspond to maximizing weighted throughput as β → 0,

weighted proportional fairness as β → 1, and max-min fainess as β → ∞.
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2.2 Convergence

We first assume that ~n, the number of users in the system, is fixed and each user has an infinite

backlog to transfer. We associate an implicit cost ql with each link l and let ~q = [q1, ..., qL].

The following iterative algorithm, commonly referred to as the “dual solution” in the congestion

control literature, can solve problem (1) with an appropriate choice of the step-size.

Algorithm A:

At each time instant t,

• The data rate of each user of class s is determined by:

xs(t) = argmax
0≤xs≤Ms

Us(xs) − xs

L
∑

l=1

H l
sq

l(t). (4)

• The implicit cost at each link l is updated by:

ql(t + 1) =

[

ql(t) + αl

(

S
∑

s=1

H l
snsxs(t) − Rl

)]+

, (5)

where [·]+ denotes the projection to [0,∞) and αl is a positive step-size for each link l.

The following proposition was shown in [2] with slightly different notation.

Proposition 1 Assume that the number of users in the system is fixed. Further, assume that

the curvatures of Us(·) are bounded away from zero on (0,Ms], i.e., there exists a positive number

γs for each class s such that

−U ′′
s (xs) ≥ γs > 0 for all xs ∈ (0,Ms]. (6)

Let ~x ∗ denote the optimal solution to problem (1). Let S = maxl

S
∑

s=1

H l
sns denote the maximum

number of users using any link, and let L = maxs

L
∑

l=1

H l
s denote the maximum number of links

used by any user. If

max
l

αl ≤
2

SL
min

s
γs, (7)

then Algorithm A converges, i.e., ~x(t) → ~x ∗ as t → ∞.
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2.3 Stability Region

We now turn to the case when the number of users in the system changes dynamically. In this

case, we will study the stability region of system. Here, by stability, we mean that the number

of users in the system and the queue lengths at each link in the network remain finite. To be

precise, we assume that users of class s arrive to the network according to a Poisson process

with rate λs and that each user brings with it a file for transfer whose size is exponentially

distributed with mean 1/µs. The load brought by users of class s is then ρs = λs/µs. Let

~ρ = [ρ1, ..., ρS]. Let ns(t) denote the number of users of class s that are in the system at time t

and let ~n(t) = [n1(t), ..., nS(t)]. We assume that the rate allocation for users of the same class is

identical. Let xs(t) denote the rate of users of class s at time t and let ~x(t) = [x1(t), ..., xS(t)].

In the rate assignment models that follow, the evolution of ~n(t) will be governed by a Markov

process. Its transition rates are given by:

ns(t) → ns(t) + 1, with rate λs,

ns(t) → ns(t) − 1, with rate µsxs(t)ns(t) if ns(t) > 0.

We say that the above system is stable [10] if

lim sup
t→∞

1

t

∫ t

0

1
{

S
P

s=1

ns(t)+
L
P

l=1

ql(t)>M}
dt → 0, as M → ∞.

The stability region Θ of the system under a given congestion control algorithm is the set of

offered loads ~ρ such that the system is stable for any ~ρ ∈ Θ.

Past works on the stability region of congestion control typically adopt the following time-scale

separation assumption:

The Time-Scale Separation Assumption:

• The data rates ~x(t) of the users at each time instant t are adjusted instantaneously to the

optimal rate allocation computed by the global optimization problem (1) with ~n = ~n(t).
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We refer to a congestion controller that allocates data rates according to the above time-scale

separation assumption as the perfect congestion controller.

We say that the stability region achieved by a congestion controller is the largest possible when

the following holds: for any offered load, if this congestion controller cannot stabilize the system,

no other congestion controller can. Note that the capacity constraint determines an upper bound

on the stability region achieved by any congestion controller, i.e.

Θ ⊂ Θ0 ,

{

~ρ |
S
∑

s=1

H l
sρs ≤ Rl for all l

}

. (8)

The next proposition from [7] shows that the stability region achieved by the perfect congestion

controller is indeed the largest possible found on the right hand side of (8).

Proposition 2 Under the time-scale separation assumption, if the utility functions are of the

form in (2) or (3) for some β > 0, then for any offered load ~ρ that resides strictly inside Θ0, the

Markov process ~n(t) is positive recurrent and hence,

lim sup
t→∞

1

t

∫ t

0

1
{

S
P

s=1

ns(t)>M}
dt → 0, as M → ∞.

3 Stability Region of Congestion Control Without the

Time-Scale Separation Assumption

As discussed earlier in the Introduction, the time-scale separation assumption rarely holds in

reality. In typical networks, users arrive and depart constantly. Hence, the data rates of the users

employing a congestion control algorithm such as algorithm A may never be able to converge.

Further, note that the step-size condition (7) in Proposition 1 becomes more stringent as the

number of users in the system increases. As the offered load ~ρ approaches the boundary of the

stability region Θ0, the number of users in the system will approach infinity. Hence, given a

chosen set of step-sizes, algorithm A will fail to converge when the offered load is close to the

boundary of Θ0. The time-scale separation assumption will not hold in this case either.
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In this section, we will present a new result on the stability region of congestion control without

this time-scale separation assumption. We first describe some more details of the dynamics of

the system. We assume that time is divided into slots of length T , and that the implicit costs at

the links are updated only at the end of each time slot. However, users may arrive and depart

in the middle of a time slot. Let ~q(kT ) denote the implicit costs at time slot k. Unlike the case

in Proposition 2, we now let the rate allocation ~x(t) be determined by the current implicit costs.

We assume that the utility function is of the form (2) or (3). Then, by solving (4), the data rate

of users of class s is given by

xs(t) = xs(kT ) = min

































ws

L
∑

l=1

H l
sq

l(kT )











1/β

,Ms























, for kT ≤ t < (k + 1)T (9)

(use β = 1 when the utility functions are of the form (2)). At the end of each time slot, the

implicit costs are updated by

ql((k + 1)T ) =

[

ql(kT ) + αl

(

S
∑

s=1

H l
s

∫ (k+1)T

kT

ns(t)xs(kT )dt − TRl

)]+

. (10)

The following proposition shows that, even when the time-scale separation assumption is re-

moved, the above congestion control algorithm can still achieve the largest possible stability

region. The proof is given in Section 4.

Proposition 3 Assume that the utility functions are of the form in (2) or (3) for some β > 1,

and that the data rates of the users are controlled by (9). Let S̄ = maxl

S
∑

s=1

H l
s denote the

maximum number of classes using any link, and let L̄ = maxs

L
∑

l=1

H l
s denote the maximum

number of links used by any class, If

max
l

αl ≤
1

T S̄L̄

2β − 1

16
min

s

ws

ρsM
β
s

(11)

(use β = 1 if the utility functions are of the form in (2)), then for any offered load ~ρ that resides

strictly inside Θ0, the system described by the Markov process [~n(kT ), ~q(kT )] is stable.
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Several remarks are in order: Firstly, no time-scale separation assumption is required in Propo-

sition 3. Hence, we do not require that the data rates of the users converge. Secondly, a step-size

rule that is independent of the instantaneous number of users in the system is provided in (11)

(note the difference between S and S̄). Given our discussion at the beginning of this section, it

is quite remarkable that we do not need to reduce the step-sizes even when the offered load is

close to the boundary of the stability region. In fact, since the set Θ0 is bounded, the step-sizes

can be chosen independently of the offered load. The step-size rule (11) is dependent on Ms, the

maximum data rate of users belonging to class s. This dependence is not surprising. Since the

utility functions are of the forms in (2) or (3), we have,

U ′′
s (xs) = −β

ws

xβ+1
s

.

Hence, the minimum curvature of Us(·) is

γs =
βws

Mβ+1
s

.

Let ñs = ρs/Ms, which can be interpreted as the average number of users of class s in a (fictitious)

M/M/∞/∞ system where each user of class s is served at its maximum data rate Ms. The step-

size condition (11) then becomes

max
l

αl ≤
1

T S̄L̄

2β − 1

16β
min

s

γs

ñs

,

which is comparable to (7). However, note that ñs is quite different from E[ns(t)], the average

number of users of class s in the real system. Again, as ñs is always bounded, the step-sizes can

be chosen independently of the offered load.

4 Proof of Proposition 3

Define

V(~n, ~q) = Vn(~n) + Vq(~q),
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where

Vn(~n) =
1

(1 + ε)β

S
∑

s=1

wsn
β+1
s

(1 + β)µsρ
β
s

, Vq(~q) =
L
∑

l=1

(ql)2

2αl

,

and ε is a positive constant in (0, 1] to be chosen later. We shall show that V(·, ·) is a Lyapunov

function of the system. We begin with a few lemmas. The first lemma bounds the change in

Vn(·).

Lemma 4

E[Vn(~n((k + 1)T ) − Vn(~n(kT ))|~n(kT ), ~q(kT )]

≤ −ε

S
∑

s=1

E0(s)

∫ (k+1)T

kT

E[nβ
s (t)|~n(kT ), ~q(kT )]dt

+
S
∑

s=1

[

L
∑

l=1

H l
sq

l(kT )

][

(1 + ε)ρsT −

∫ (k+1)T

t=kT

E[ns(t)xs(t)|~n(kT ), ~q(kT )]dt

]

−

S
∑

s=1

2β − 1

8(1 + ε)

ws

ρsM
β
s

∫ (k+1)T

kT

E[n2
s(t)x

2
s(t)|~n(kT ), ~q(kT )]dt

+E1, (12)

where E0(s) and E1 are finite positive constants.

Proof: Over a small time interval δt, we have

E
[

nβ+1
s (t + δt) − nβ+1

s (t)|~n(t), ~q(t)
]

= [(ns(t) + 1)β+1 − nβ+1
s (t)]λsδt + [(ns(t) − 1)β+1 − nβ+1

s (t)]µsns(t)xs(t)δt + o(δt).

By the Mean-Value Theorem,

(n + ∆n)β+1 − nβ+1 = (β + 1)nβ∆n +
β(β + 1)

2
(n + ν∆n)β−1(∆n)2

for some ν ∈ (0, 1). Hence, letting ∆n = ±1, we have

E
[

nβ+1
s (t + δt) − nβ+1

s (t)|~n(t), ~q(t)
]

≤ (β + 1)nβ
s (t)[λsδt − µsns(t)xs(t)δt]

+2β−2β(β + 1)nβ−1
s (t) [λsδt + µsns(t)xs(t)δt] + N1(s)δt + o(δt)
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for some positive constant N1(s). We then have,

E[Vn(~n(t + δt)) − Vn(~n(t))|~n(t), ~q(t)]

δt

≤
1

(1 + ε)β

S
∑

s=1

{

wsn
β
s (t)

µsρ
β
s

[λs − µsns(t)xs(t)]

+
β2β−2wsn

β−1
s (t)

µsρ
β
s

[λs + µsns(t)xs(t)] + N1(s)

}

+ o(1)

=
1

(1 + ε)β

S
∑

s=1

{

wsn
β
s (t)

ρβ
s

[ρs − ns(t)xs(t)]

+
β2β−2wsn

β−1
s (t)

ρβ
s

[ρs + ns(t)xs(t)] + N1(s)

}

+ o(1)

= −
ε

(1 + ε)β

S
∑

s=1

wsn
β
s (t)

ρβ−1
s

+
1

(1 + ε)β

S
∑

s=1

{

wsn
β
s (t)

ρβ
s

[(1 + ε)ρs − ns(t)xs(t)]

+
β2β−2wsn

β−1
s (t)

ρβ
s

[ρs + ns(t)xs(t)] + N1(s)

}

+ o(1) (13)

≤ −ε

S
∑

s=1

N0(s)n
β
s (t) +

S
∑

s=1

{[

L
∑

l=1

H l
sq

l(t)

]

[(1 + ε)ρs − ns(t)xs(t)]

+

[

ws

xβ
s (t)

−

L
∑

l=1

H l
sq

l(t)

]

[(1 + ε)ρs − ns(t)xs(t)] (14)

+ws

[

nβ
s (t)

((1 + ε)ρs)β
−

1

xβ
s (t)

]

[(1 + ε)ρs − ns(t)xs(t)] (15)

+
β2β−2

(1 + ε)β

wsn
β−1
s (t)

ρβ
s

[ρs + ns(t)xs(t)] (16)

+
N1(s)

(1 + ε)β

}

+ o(1),

where

N0(s) =
1

(1 + ε)β

ws

ρβ−1
s

.

We shall bound the three terms (14-16). By (9),

ws

xβ
s (t)

= max

{

L
∑

l=1

H l
sq

l(t),
ws

Mβ
s

}

.

Hence, the term (14) can be bounded by
[

ws

xβ
s (t)

−
L
∑

l=1

H l
sq

l(t)

]

[(1 + ε)ρs − ns(t)xs(t)]
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≤

[

ws

xβ
s (t)

−
L
∑

l=1

H l
sq

l(t)

]

(1 + ε)ρs

≤

[

ws

Mβ
s

−

L
∑

l=1

H l
sq

l(t)

]+

(1 + ε)ρs

≤ N2(s) ,
(1 + ε)wsρs

Mβ
s

. (17)

Let (A) and (B) denote the terms (15) and (16), respectively. Note that

(A) = ws

[

nβ
s (t)

((1 + ε)ρs)β
−

1

xβ
s (t)

]

[(1 + ε)ρs − ns(t)xs(t)]

= −ws

[(1 + ε)ρs − ns(t)xs(t)]
[

((1 + ε)ρs)
β − nβ

s (t)xβ
s (t)

]

((1 + ε)ρs)βxβ
s (t)

≤ 0. (18)

If ns(t)xs(t) ≥ 2(1 + ε)ρs, then

[(1 + ε)ρs − ns(t)xs(t)]
[

((1 + ε)ρs)
β − nβ

s (t)xβ
s (t)

]

≥

[

ns(t)xs(t)

2

] [

2β − 1

2β
nβ

s (t)xβ
s (t)

]

. (19)

Hence,

(A) ≤ −
2β − 1

2β+1

wsn
β+1
s xs(t)

((1 + ε)ρs)β
,

and

(B) ≤
β2β−1

(1 + ε)β

wsn
β
s (t)xs(t)

ρβ
s

.

Since

β2β−1nβ
s (t) ≤

2β − 1

2β+2
nβ+1

s (t) + N3(s)

for some positive constant N3(s), we have,

(B) ≤ −
(A)

2
+

wsN3(s)xs(t)

((1 + ε)ρs)β

≤ −
(A)

2
+ N4(s),

where

N4(s) =
wsN3(s)Ms

((1 + ε)ρs)β
.
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On the other hand, if ns(t)xs(t) < 2(1 + ε)ρs ≤ 4ρs, then

(B) ≤
5β2β−2

(1 + ε)β

wsn
β−1
s (t)

ρβ−1
s

= N5(s)n
β−1
s (t),

where

N5(s) =
5β2β−2

(1 + ε)β

ws

ρβ−1
s

.

In both cases,

(B) ≤ −
(A)

2
+ N5(s)n

β−1
s (t) + N4(s). (20)

Substituting (17) and (20) back to (14-16), we have,

E[Vn(~n(t + δt)) − Vn(~n(t))|~n(t), ~q(t)]

δt

≤ −
S
∑

s=1

[

εN0(s)n
β
s (t) − N5(s)n

β−1
s (t)

]

+
S
∑

s=1

[

L
∑

l=1

H l
sq

l(t)

]

[(1 + ε)ρs − ns(t)xs(t)]

+
S
∑

s=1

(A)

2
+

S
∑

s=1

[N1(s) + N2(s) + N4(s)] + o(1). (21)

We shall use (18) and (19) again to bound (A)/2. Since xs(t) ≤ Ms, if ns(t)xs(t) ≥ 2(1 + ε)ρs,

we have,

(A)

2
≤ −ws

2β − 1

2β+2

nβ+1
s (t)xβ+1

s (t)

((1 + ε)ρs)βMβ
s

≤ −ws
2β − 1

2β+2

2β−1

(1 + ε)ρs

n2
s(t)x

2
s(t)

Mβ
s

(22)

≤ −ws
2β − 1

8(1 + ε)

n2
s(t)x

2
s(t)

ρsM
β
s

.

On the other hand, if ns(t)xs(t) < 2(1 + ε)ρs, we still have (A)/2 ≤ 0. Hence, in both cases,

(A)

2
≤ −ws

2β − 1

8(1 + ε)

n2
s(t)x

2
s(t)

ρsM
β
s

+ N6(s), (23)
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where

N6(s) = ws
2β − 1

8(1 + ε)

(2(1 + ε)ρs)
2

ρsM
β
s

.

Further, note that

N5(s)n
β−1
s (t) ≤

εN0(s)

2
nβ

s (t) + N7(s) (24)

for some positive constant N7(s). Substituting (23) and (24) into (21), and integrating over

[kT, (k + 1)T ], the result (12) then follows with E0(s) = N0(s)/2 and

E1 = T

S
∑

s=1

[N1(s) + N2(s) + N4(s) + N6(s) + N7(s)] .

Q.E.D.

The next lemma bounds the change in Vq(·). For simplicity, we use the following matrix

notation. Let A denote the L × L diagonal matrix whose l-th diagonal element is αl. Let H

denote the L × S matrix whose (l, s)-element is H l
s. Let ~R = [R1, ..., Rl] tr, where [·] tr denotes

the transpose. Further let Xs(t) = ns(t)xs(t) and let ~X(t) = [X1(t), ..., XS(t)] tr. Then

Vq(~q) =
~q trA−1~q

2
,

and the update on the implicit costs (10) can be written as

~q((k + 1)T ) =

[

~q(kT ) + A

(

H

∫ (k+1)T

kT

~X(t)dt − ~RT

)]+

. (25)

Lemma 5

E[Vq(~q((k + 1)T ) − Vq(~q(kT ))|~n(kT ), ~q(kT )]

≤ ~q tr(kT )

[

H

∫ (k+1)T

kT

E[ ~X(t)|~n(kT ), ~q(kT )]dt − ~RT

]

+TαmaxS̄L̄
S
∑

s=1

[

∫ (k+1)T

kT

E[n2
s(t)x

2
s(t)|~n(kT ), ~q(kT )]dt

]

+ E2, (26)

where αmax = maxl α
l, L̄ and S̄ are defined as in Proposition 3, and E2 is a finite positive

constant.
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Proof: By (25),

Vq(~q((k + 1)T ) − Vq(~q(kT ))

≤ ~q tr(kT )

[

H

∫ (k+1)T

kT

~X(t)dt − ~RT

]

+
1

2

[

H

∫ (k+1)T

kT

~X(t)dt − ~RT

] tr

A

[

H

∫ (k+1)T

kT

~X(t)dt − ~RT

]

≤ ~q tr(kT )

[

H

∫ (k+1)T

kT

~X(t)dt − ~RT

]

+

[

H

∫ (k+1)T

kT

~X(t)dt

] tr

A

[

H

∫ (k+1)T

kT

~X(t)dt

]

+ T 2 ~R trA~R.

For the second term, we have,
[

H

∫ (k+1)T

kT

~X(t)dt

] tr

A

[

H

∫ (k+1)T

kT

~X(t)dt

]

=
L
∑

l=1

αl

[

S
∑

s=1

H l
s

∫ (k+1)T

kT

ns(t)xs(t)dt

]2

≤
L
∑

l=1

αl

[

S
∑

s=1

H l
s

]





S
∑

s=1

H l
s

(

∫ (k+1)T

kT

ns(t)xs(t)dt

)2




≤ S̄
L
∑

l=1

αl





S
∑

s=1

H l
s

(

∫ (k+1)T

kT

ns(t)xs(t)dt

)2




≤ T S̄
L
∑

l=1

αl

S
∑

s=1

H l
s

∫ (k+1)T

kT

n2
s(t)x

2
s(t)dt

= T S̄
S
∑

s=1

[

∫ (k+1)T

kT

n2
s(t)x

2
s(t)dt

][

L
∑

l=1

αlH
l
s

]

≤ TαmaxS̄L̄
S
∑

s=1

[

∫ (k+1)T

kT

n2
s(t)x

2
s(t)dt

]

. (27)

Letting E2 = T 2 ~R trA~R, the result (26) then follows. Q.E.D.

Proof of Proposition 3 : Adding (12) to (26), and noting that

S
∑

s=1

{[

L
∑

l=1

H l
sq

l(kT )

]

∫ (k+1)T

kT

E[ns(t)xs(t)|~n(kT ), ~q(kT )]dt

}
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=
L
∑

l=1

ql(kT )
S
∑

s=1

H l
s

∫ (k+1)T

kT

E[ns(t)xs(t)|~n(kT ), ~q(kT )]dt

= ~q tr(kT )

[

H

∫ (k+1)T

kT

E[ ~X(t)|~n(kT ), ~q(kT )]dt

]

,

we have,

E[V(~n((k + 1)T ), ~q((k + 1)T )) − V(~n(kT ), ~q(kT ))|~n(kT ), ~q(kT )]

≤ −ε
S
∑

s=1

E0(s)

∫ (k+1)T

kT

E[nβ
s (t)|~n(kT ), ~q(kT )]dt

+
S
∑

s=1

[

L
∑

l=1

H l
sq

l(kT )

]

(1 + ε)ρsT − ~q tr(kT )~RT

−

S
∑

s=1

[

2β − 1

8(1 + ε)

ws

ρsM
β
s

− TαmaxS̄L̄

]

×

∫ (k+1)T

kT

E[n2
s(t)x

2
s(t)|~n(kT ), ~q(kT )]dt (28)

+E3,

where E3 = E1 + E2. If (11) is satisfied, then the product term in (28) is negative. Hence, by

some rearrangement of the order of the summations, we have,

E[V(~n((k + 1)T ), ~q((k + 1)T )) − V(~n(kT ), ~q(kT ))|~n(kT ), ~q(kT )]

≤ −ε
S
∑

s=1

E0(s)

∫ (k+1)T

kT

E[nβ
s (t)|~n(kT ), ~q(kT )]dt + T~q tr(kT )

[

(1 + ε)H~ρ − ~R
]

+ E3.

By assumption, ~ρ lies strictly inside Θ0. Hence, there exists some ε ∈ (0, 1] such that (1+2ε)H~ρ ≤

~R. Use this value of ε in the definition of V(·, ·). we then have,

E[V(~n((k + 1)T ), ~q((k + 1)T )) − V(~n(kT ), ~q(kT ))|~n(kT ), ~q(kT )]

≤ −ε

S
∑

s=1

E0(s)

∫ (k+1)T

kT

E[nβ
s (t)|~n(kT ), ~q(kT )]dt − εT~q tr(kT )H~ρ + E3

≤ −ε′

[

S
∑

s=1

nβ
s (kT ) +

L
∑

l=1

ql(kT )

]

+ E3

for some ε′ > 0. By Theorem 2 of [10], the result then follows. Q.E.D.
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Remark: This proof will not work for β < 1, in which case the relationship (22) will fail to

hold. (We need (22) to cancel the second term in (26) of the change in Vq(·).) We have not been

able to either prove or disprove our result for β < 1. We could have resorted to the fluid limit

technique of [11]. However, the difficulty in applying the technique of [11] is that the fluid limit of

our system is not well defined whenever
L
∑

l=1

H l
sq

l(t) = 0 for some class s, which also corresponds

to the case when the second term in (26) is large. We will leave the case β < 1 for future work.

5 Conclusion

In this paper, we have studied the stability region of a network employing congestion control

algorithms derived from an optimization framework. We have removed the time-scale separation

assumption typical in other related works, and established that the largest possible stability re-

gion can be achieved by a large class of congestion control algorithms (i.e., the so-called “dual

solutions”) derived from the optimization framework. Our result provides new insights on the

performance implication of congestion control, and on the choices of the parameters of the con-

gestion controller.

Several directions for future work are possible. Firstly, it would be interesting to see whether

our main result holds for the so-called “primal solutions” in the literature [1]. Secondly, we

have assumed a Markovian model in this paper. We plan to extend our result to more general

user arrival and departure processes. Our result can also be extended to other forms of utility

functions [9]. Thirdly, we plan to study the impact of feedback delay. We expect that our main

result (Proposition 3) would hold even in the presence of feedback delay, provided that the step-

sizes are appropriately chosen. Finally, the extension to the case with multipath routing would

also be interesting.
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