
1

Optimal Anycast Technique for Delay-Sensitive Energy-Constrained Asynchronous Sensor
Networks

Joohwan Kim∗, Xiaojun Lin†, and Ness B. Shroff‡
∗†School of Electrical and Computer Engineering, Purdue University

‡Departments of ECE and CSE, The Ohio State University
Email:{∗jhkim, †linx}@purdue.edu, ‡shroff@ece.osu.edu

Abstract

In wireless sensor networks, asynchronous sleep-wake scheduling protocols can be used to significantly reduce energy con-
sumption without incurring the communication overhead for clock synchronization needed for synchronous sleep-wake scheduling
protocols. However, these savings could come at a significant cost in delay performance. Recently, researchers have attempted to
exploit the inherent broadcast nature of the wireless medium to reduce this delay with virtually no additional energy cost. These
schemes are called “anycasting,” where each sensor node forwards the packet to the first node that wakes up among a set of
candidate next-hop nodes. In this paper, we develop a delay-optimal anycasting scheme under periodic sleep-wake patterns. Our
solution is computationally simple and fully distributed. Further, we show that periodic sleep-wake patterns result in the smallest
delay among all wake-up patterns under given energy constraints. Simulation results illustrate the benefit of our proposed schemes
over the state-of-the art.

Index Terms

Anycast, Sleep-wake scheduling, Sensor network, Energy-efficiency, Delay, Periodic wake-up process

I. INTRODUCTION

The most efficient method to save energy in wireless sensor networks (WSNs) is to put nodes to sleep when there is no need
to relay or transmit packets. Such mechanisms are called sleep-wake scheduling and have been used to dramatically reduce
energy consumption in energy-constrained WSNs. However, it is well known that sleep-wake scheduling can significantly
increase the packet-delivery delay because, at each hop, an event-reporting packet has to wait for its next-hop node to wake
up. Such additional delays can be detrimental to delay-sensitive applications, such as Tsunami/fire detection, environmental
monitoring, security surveillance, etc. In this paper, we study how to improve this tradeoff between energy-savings and delay,
by using a technique called “anycasting” (to be described later) that exploits the broadcast nature of the wireless medium.

In the literature, many synchronous sleep-wake scheduling protocols have been proposed [1]–[5]. In these protocols, sensor
nodes periodically exchange synchronization messages with neighboring nodes. However, this message exchange inevitably
incurs additional communication overhead, and consumes a considerable amount of energy. In this paper, we focus on
asynchronous sleep-wake scheduling, where nodes do not synchronize their clocks with other nodes and thus wake up
independently [6]–[8]. Asynchronous sleep-wake scheduling is simpler to implement, and it does not consume energy required
for synchronizing sleep-wake schedules across the network. However, because nodes do not know the wake-up schedules
of other nodes, they have to estimate the wake-up schedule, which can result in additional delays that could detrimental to
delay-sensitive applications.

Recently, anycast packet-forwarding schemes have been shown to substantially reduce the one-hop delay under asynchronous
sleep-wake scheduling [9]–[18]. Note that in traditional packet-forwarding schemes, nodes forward packets to their designated
next-hop nodes. In contrast, in anycast-based forwarding schemes, nodes maintain multiple candidates of next-hop nodes and
forward packets to the first candidate node that wakes up. Hence, an anycast forwarding scheme can substantially reduce the
one-hop delay over traditional schemes, especially when nodes are densely deployed, as is the case for many WSN applications.
(See the example in Section I and Fig. 1 of [18] that illustrates the advantage of anycasting over traditional schemes.) However,
the reduction in the one-hop delay may not necessarily lead to a reduction in the expected end-to-end delay experienced by
a packet because the first candidate node that wakes up may not have a small expected end-to-end delay to the sink. Hence,
the anycast forwarding policy (with which nodes decide whether or not to forward a packet to an awake node) needs to be
carefully designed.

Exiting solutions that exploit path diversity attempt to address this issue by dealing with some local metrics. The anycast
protocols in [9]–[11] let each node use the geographical distance from each neighboring node to the sink node to prioritize the
forwarding decision to its neighboring nodes. The work in [12], [13] proposes anycast packet-forwarding protocols that work
on top of a separate routing protocol in the network layer. The anycast protocols in [14]–[17] use the hop-count information
(i.e., the number of hops for each node to reach the sink) such that at each hop the forwarding decision is chosen to reduce
the hop count to the sink as soon as possible. However, these aforementioned approaches are heuristic in nature and do not
directly minimize the expected end-to-end delay.

This work was supported in part by ARO Awards W911NF-07-10376 (SA08-03) and W911NF-08-1-0238, and NSF Awards 0626703-CNS, 0635202-CCF,
0721236-CNS, and 0721477-CNS.

2

In our prior work [18], we developed a distributed anycast forwarding policy that simultaneously minimizes the expected
end-to-end delays from all nodes to the sink, when the wake-up rates of the nodes are given. (The wake-up rate represents the
frequency with which a node wakes up.) However, the delay-optimal anycast policy in [18] was derived based on the assumption
that nodes wake up according to a Poisson process (i.e., the wake-up intervals of a node are i.i.d. exponential random variables).
Hence, the following questions remain unanswered: (1) If we can control the wake-up patterns (subject to given wake-up rates)
in addition to the anycast forwarding policy, is there a wake-up pattern that results in optimal delay performance? and (2) If
such a pattern exists, which forwarding policy is delay-optimal for the wake-up pattern? These questions make the problem
more complex than the one considered [18] because we can no longer exploit the memoryless property of a Poisson Process.

In this paper, we extend the results in [18] to address these questions. For given wake-up rates of nodes (in other words,
given energy budget at each node), we obtain the anycast forwarding policy and the wake-up pattern that can minimize the
expected end-to-end delays from all nodes to the sink. Specifically, we show that using asynchronous periodic wake-up patterns
along with an optimal forwarding policy can minimize the expected end-to-end delay over all asynchronous wake-up patterns.
Further, we provide an efficient distributed algorithm that can implement the delay-optimal anycast forwarding policy for the
periodic wake-up pattern.

The rest of this paper is organized as follows. In Section II, we describe our system model and formulate the delay-
minimization problem that we intend to solve. In Section III, we study the delay-optimal anycast forwarding policy when
nodes wake up periodically. In Section IV, we show that given an average wake-up rate, the periodic wake-up pattern is the
best in terms of delay performance. In Section VI, we provide simulation results that illustrate the superior performance of
our proposed solution.

II. SYSTEM MODEL

We consider an event-driven WSN with N sensor nodes. Let N be the set of all nodes. We assume that event information
is reported to a single sink node s, although the analysis can also be readily extended to the scenario with multiple sink nodes.
Each node i has a set Ni of neighboring nodes to which node i is able to directly transmit packets. We assume that the network
is connected, i.e., there is a finite-length path from every node to the sink.

The lifetime of an event-driven WSN under asynchronous sleep-wake scheduling consists of two phases: the configuration
phase and the operation phase. When sensor nodes are deployed, the configuration phase begins, during which the nodes
determine their packet-forwarding and sleep-wake scheduling policies. It is also during this phase that the optimization on
these policies (which we will study in this paper) is carried out. Once the optimal policies are determined, the operation phase
begins, during which the nodes apply the policies determined in the configuration phase to perform their main functions:
detecting events and reporting the event information. Specifically, during this phase, sensor nodes wake up occasionally and
sleep most of the time when there is no need to relay or transmit a packet. The sleep-wake scheduling policy that is developed
in the configuration phase determines when nodes sleep and wake up. We assume asynchronous sleep-wake scheduling, with
which nodes sleep and wake up independently of other nodes according to their own sleep-wake scheduling policies. If an
event occurs during the operation phase, the source node generates the event-reporting packet and immediately turns on its
transceiver from the sleeping mode to find a relaying node as soon as possible. If a neighboring node wakes up from the
sleeping mode and hears a packet-relaying request (in the form of a beacon signal) from the source node, the neighboring node
first checks whether it is an eligible forwarder of the source node based on the packet-forwarding policy that is determined
during the configuration phase. If it is, it receives the packet and then finds a new relaying node without turning back to the
sleeping mode in order to reduce the delay. Following the same procedure, subsequent nodes relay the packet to the sink. If
the nodes successfully forward these packets, they return to sleep and follow their sleep-wake scheduling policy to determine
the next-time when they wake up. Note that since the forwarding policy is determined before an event occurs, and nodes are
not synchronized, we assume that nodes cannot dynamically adjust their forwarding policy based on what happened in the
network before the packet is received.

A. Basic Forwarding and Sleep-Wake Scheduling Protocols

We first introduce the basic packet-forwarding and sleep-wake scheduling protocols that are used in the operation phase.
Packet-Forwarding Protocol: When a node i has a packet to deliver to the sink, it must wait for its neighboring nodes to wake

up. Under asynchronous sleep-wake scheduling, we simply assume that the clocks at different nodes are not synchronized.
Hence, the sending node i does not know exactly when its neighboring nodes will wake up (although it may have some
statistical information of their wake-up patterns and wake-up rates). Fig. 1 describes the protocol with which sending node i
transmits its packet to one of its neighboring nodes. As soon as node i is ready to transmit the packet, it sends a beacon signal
(Beacon 1 in Fig. 1) of duration tB , and ID signal of duration tC , and then listens for acknowledgements (CTS: Clear-To-Send)
for duration tA. The sending node repeats this sequence until it hears an acknowledgement. The ID signal contains the identity
of the sending node and the sequence number of the last beacon signal. When a node wakes up and senses the h-th beacon
signal, it will stay awake to decode the following ID signal, in which case we say that the node receives the h-th ID signal. (If
a node wakes up in the middle of the ID signal, it must stay awake to decode the next ID signal.) Then, such a node has two

3

Sender i

Node j wakes up and

hears an ongoing signal

Receiver j

Beacon
2

CTS

ID
Beacon

1 ID

tB tC

Beacon
h

ID CTS

tA

receiving
the packetID

Node j stays awake

to receive the ID signal

Beacon
1 ID

t I

t

forwarding
the packet

tA

Fig. 1. System model

choices. Choice 1: If the node chooses to receive the packet, it responds with a CTS message containing its identity during
the acknowledgement period tA that immediately follows the ID signal. Once the sending node hears the CTS, it forwards
the packet to the awake node during the data transmission period tD. Choice 2: If the awake node decides not to receive the
packet, it goes back to sleep. For simplicity of notation, let tI = tB + tC + tA, which denotes the duration of each beacon-ID
signaling iteration (See Fig. 1).

Remark: In the above basic protocol, we have ignored the possibility of collisions, which can be due to either multiple
awake nodes or multiple sending nodes. In Section V, we describe an extended packet-forwarding protocol that addresses
these collision scenarios using random or deterministic back-offs. However, in a low duty-cycle WSN where nodes seldom
wake up (i.e., the duration tI is much smaller than a wake-up interval), chances are small that multiple neighboring nodes
wake up at the same beacon signal. Due to this reason, we use the basic protocol for our analysis and study the effect of
collisions using simulation in Section VI.

Sleep-Wake Scheduling Protocol: In order to save energy, each node wakes up infrequently and goes back to sleep if there
is no need to receive or transmit a packet. Note that if the duration for which the node stays awake is shorter than tA, the
node may stay awake only within an acknowledgement period tA and miss on-going beacon-ID signals. In order to avoid such
a case, we assume that nodes must stay awake for at least tA. Further, since a longer awake duration results in higher energy
consumption, we set the awake duration to be exactly equal to tA. The next time to wake up is determined by the sleep-wake
scheduling policy of the node.

B. Sleep-Wake Scheduling and Anycast Forwarding Policies

In this subsection, we define the sleep-wake scheduling and anycast forwarding policies that are computed during the
configuration phase and applied during the operation phase. These policies affect the end-to-end delay experienced by a
packet, and the energy consumption of the network.

Sleep-Wake Scheduling Policy: The sleep-wake scheduling policy that is chosen by each node determines when the node
wakes up.1 We define the counting process κi(t) as the number of times node i wakes up in the time interval [0, t]. We call
this process the wake-up process of node i. This sleep-wake scheduling is fully characterized by the following two factors: (1)
how frequently the node has to wake up and (2) the distribution of the wake-up interval. The former and the latter are called
the wake-up rate and the wake-up pattern, respectively. In this paper, we assume that nodes independently control these two
variables to determine the sleep-wake scheduling policy.

Wake-up Rate: We assume that every node chooses its wake-up process among counting processes for which the following
time-average limit exists:

lim
t→∞

κi(t)

t
= ri almost surely. (1)

We then define the wake-up rate ri of node i as the time average of the times that node i wakes up. Since a higher wake-up
rate results in faster energy consumption, the wake-up rate directly impacts the lifetime of a node. Let r⃗ = (r1, r2, · · · , rN)
be the global wake-up rate (or simply the wake rate).

Wake-up Pattern: Consider the time-scaled wake-up process κi(t/ri) that has a wake-up rate of 1. We then define the wake-
up pattern wi of node i as the control variable that fully characterizes this scaled wake-up process of node i. For example, if
the scaled process κi(t/ri) is given by ⌊t⌋, node i will wake up every 1/ri time unit. We call this wake-up pattern as a periodic
wake-up pattern and express it as wi = wper. If the scaled process is given by a Poisson process with mean 1, the wake-up
intervals will be i.i.d exponential random variables with mean 1/ri. We call this wake-up pattern a Poisson wake-up pattern
and express it as wi = wPoisson. Node i can also choose a wake-up pattern such that the wake-up intervals are correlated, e.g.,

1Recall that sleep-wake scheduling runs only if there is no need to transmit or receive a packet. Otherwise, nodes need to stay awake to transmit the packets
to the sink as soon as possible.

4

node i can alternate with the wake-up intervals of length 1
2ri

and 3
2ri

. Let w⃗ = (w1, w2, · · · , wN) denote the global wake-up
pattern (or simply the wake-up pattern).

Remark: While the wake-up rate determines the expected wake-up interval in the operational phase, the wake-up pattern
determines the distribution of the interval. Hence, the wake-up rate and the wake-up pattern of a node are the independent
control variables.

Recall that we focus on asynchronous sleep-wake scheduling where nodes do not synchronize their clocks with their
neighboring nodes. In practice, due to variations of the clock frequency, the clocks at different nodes will drift from each
other. Note that after an event occurs, a sending node i needs to predict when a neighboring node j will wake up. Due the
aforementioned clock-drift, even for periodic wake-up patterns, there will be a random time-offset in the wake-up process
of the node j as it is observed by the sending node i. When events occur rarely and no clock synchronization is performed
between events, it can be difficult for node i to predict this offset immediately after an event occurs. Hence, in this paper,
we assume that due to a random time-offset, the wake-up process of a node is of stationary increments, as observed by other
nodes. In other words, even though a node might have an opportunity to synchronize with its neighbor when the previous
event occurred, by the time the next event occurs the wake-up process is assumed to have “completely forgotten the past.”

We define the residual time Rj(t) as the interval from time t to the next-wake-up time of node j, i.e., Rj(t) , inf{s− t|s >
t, κj(s)− κj(t) = 1}. Since the wake-up process has stationary increments, we can assume that the residual time {Rj(t)}t≥0

is a stationary and ergodic process. Hence, we can drop the variable t and use the random variable Rj to denote the residual
time. Let FRj (y) be the cumulative distribution function (CDF) of Rj , i.e., FRj (y) = Pr(Rj ≤ y). For a neighboring node j
to wake up and hear the h-th beacon signal that node i has sent, the residual time Rj must be within ((h− 1)tI , h · tI]. Define
the awake probability pj,h as the conditional probability that node j wakes up at the h-th beacon signal, conditioned on not
having woken up at earlier beacon signals, i.e., pj,h = Pr{Rj ∈ ((h− 1)tI , htI] | Rj /∈ [0, (h− 1)tI)}. Using the cdf FRj (y),
we can express the awake probability as

pj,h =
FRj (htI)− FRj ((h− 1)tI)

1− FRj ((h− 1)tI)
. (2)

For example, if node j wakes up periodically, the residual time Rj is disturbed on [0, 1/rj]. Let F ∗
Rj

(y) and p∗j,h denote the
CDF of the residual time and the awake probability, respectively, under the periodic wake-up pattern. Then, the CDF F ∗

Rj
(y)

is given by F ∗
Rj

(y) , rjy1{0≤y≤ 1
rj

} + 1{y> 1
rj

}. From (2), the awake probability for the periodic wake-up pattern is given by

p∗j,h =

tI

1/rj − (h− 1)tI
if h < ⌊ 1/rjtI

⌋, (3)

1 otherwise. (4)

Anycast Forwarding Policy: For given wake-up rates and given wake-up patterns of neighboring nodes, a node determines
its anycast forwarding policy in the configuration phase. To define the anycast forwarding policy, suppose that a sending node
i has sent the h-th beacon-ID signal, and a set X ⊂ Ni of the neighboring nodes wakes up and receives the ID signal. We
let fi,h(X) denote the corresponding decision of the sending node i, which is to be specified next. We let fi,h(X) = j if the
sending node i decides to transmit the packet to node j ∈ X , and we let fi,h(X) = i if the sending node i decides to send
out the (h+ 1)-st beacon-ID signal, i.e., the packet remains at node i. This forwarding decision may seem inconsistent with
the packet-forwarding protocol described in Subsection II-A, in which the sending node is restricted to transmit the packet
whenever it receives a CTS. However, we only use this more general setting to find the optimal forwarding decisions and then
show that such optimal decisions can be implemented by our packet-forwarding protocol that lets the sending node always
transmit the packet whenever it receives a CTS. Let fi = {fi,1, fi,2, · · · } denote the anycast forwarding policy of node i (or
simply the anycast policy of node i), where fi,h is the forwarding decision of node i at beacon signal h. We further denote
by f = {f1, f2, · · · , fN} the global anycast forwarding policy (or simply the anycast policy), where the indices 1, 2, · · · , N
denote nodes.

C. Performance Metrics and Optimization

In this section, we define the notion of the end-to-end delay. We then formulate the problem of minimizing the end-to-end
delay by jointly controlling the anycast forwarding policy and the sleep-wake scheduling policy.2

Expected end-to-end delay: During the operation phase, we define the end-to-end delay as the delay from the time when
a source node detects an event and generates the event-reporting packet (or packets) to the time the first packet is received
at the sink. For applications that use a single packet to carry the event information, the above definition captures the actual
delay for reporting the event information. For applications that use multiple packets, if the nodes that relayed the first packet
stay awake for a while, the delay to relay subsequent packets will be much smaller than that experienced by the first packet.
(For instance, these subsequent packets may be sent a few nodes behind the first packet, and hence they can reach the sink

2As mentioned earlier, our goal during the configuration phase is to design the system to minimize the delay of interest during the operation phase.

5

soon after the first packet reaches the sink.) Hence, the actual event-reporting delay can still be approximated by the delay
experienced by the first packet.

The sleep-wake scheduling policy (r⃗, w⃗) and anycast forwarding policy f fully determine the stochastic process with which
the first packet traverses the network from the source node to the sink. Hence, we use Di(r⃗, w⃗, f) to denote the expected
end-to-end delay from node i to the sink under the joint policy (r⃗, w⃗, f). For simplicity, from now on, we simply call the
expected end-to-end delay from node i to the sink as “the delay from node i.”

Delay-Minimization Problem: The objective of this paper is to find the optimal joint policy (w⃗, f) that solves the following
delay-minimization problem for given wake-up rate r⃗:

min
w⃗,f

Di(r⃗, w⃗, f). (5)

Note that r⃗ controls the duty cycle of the sensor network, which in turn controls the energy expenditure. Hence, the problem
can also be viewed as minimizing the delays for a given energy budget. In Sections III and IV, we develop an algorithm that
solves this problem for all nodes i, i.e., our solution can simultaneously minimize the delays from all nodes.

III. DELAY-OPTIMAL ANYCAST POLICY FOR A GIVEN SLEEP-WAKE SCHEDULING POLICY

As a preliminary step to solving the delay-minimization problem, in this section we first fix a sleep-wake scheduling policy
(r⃗, w⃗) and study delay-optimal anycast policies for the fixed sleep-wake scheduling policy. This problem can be formulated
as a stochastic shortest path (SSP) problem, where the state corresponds to the node that is holding the packet, and the cost
corresponds to the delay for each packet to reach the sink.3 In Section III-A, we will derive a solution to this problem, by
using the value-iteration algorithm. A key part of the value-iteration algorithm is, assuming that node i knows the end-to-end
delay from its neighboring nodes to the destination, how node i should update its own forwarding policy. This corresponds to
a sub-problem, in which the sending node needs to decide whether to forward the packet to an awake node, or to send the next
beacon signal and wait for another node to wake up. This problem can again be formulated as an infinite-horizon dynamic
programming problem where the state corresponds the set of awake nodes after each beacon signal. We derive the solution
to this sub-problem in Section III-B. However, the optimal policy in Sections III-A and III-B can be difficult to compute in
practice due to the infinite horizon. In Section III-C, we proposed a more practical truncated version of the forwarding policy,
and show that the optimal truncated policy will converge to the original optimal policy as a parameter approaches infinity.
Finally, in Section III-D, we study the important properties of periodic wakeup patterns and show that the truncated policy
becomes exactly optimal under the periodic wake-up pattern.

A. Value-Iteration Algorithm

In this subsection, we develop the value-iteration algorithm. Given a sleep-wake scheduling policy (r⃗, w⃗), the delay-
minimization problem can be formulated as a stochastic shortest path (SSP) problem [19, Chapter 2], where the sensor node
that has a packet corresponds to the “state”, and the delay corresponds to the “cost” that we intend to minimize. The sink s
corresponds to the terminal state, where no further cost (delay) will be incurred. Let i0, i1, i2, · · · , iL = s be the sequence
of nodes that relay the packet from the source node i0 to the sink s in L steps. Note that under anycasting, this sequence
is random because each node has a set of candidate next-hop nodes and does not know which of them will wake up first to
receive the packet. Let Dhop,i(r⃗i, w⃗i, fi) be the expected one-hop delay at node i under the forwarding policy fi, where the
wake-up rates and patterns of neighboring nodes are given by r⃗i , (rj , j ∈ Ni) and w⃗i , (wj , j ∈ Ni). We note that the
wake-up rates and patterns of the other nodes not in Ni do not affect the one-hop delay of node i. Then, the end-to-end delay
Di(r⃗, w⃗, f) from each node i0 to the sink can be expressed as

Di(r⃗, w⃗, f) = E
{ L∑

l=0

Dhop,il(r⃗il , w⃗il , fil)
}
, (6)

where the expectation is taken with respect to the random sequence i1, i2, · · · , iL. (Note that the source node i0 is deterministic.)
Given the sleep-wake scheduling policy (r⃗, w⃗), let D∗

i (r⃗, w⃗) , minf Di(r⃗, w⃗, f) be the minimum expected delay from node
i. Then, according to the Bellman equation [19, Section 2.2], for all nodes i, the minimum delay D∗

i (r⃗, w⃗) of node i must
satisfy

D∗
i (r⃗, w⃗) =

min
fi

(
Dhop,i(r⃗i, w⃗i, fi) +

∑
j∈Ni

qi,j(r⃗i, w⃗i, fi)D
∗
j (r⃗, w⃗)

)
, (7)

3In dynamic programming, a policy is proper if there is a positive probability that any initial state can transit to the terminal state within some finite decision
stages. In our SSP model, as long as the network is connected, any policy (including our delay-optimal policy) that can transport a packet in every node to
the sink within some finite number of hops is a proper policy.

6

TABLE I
TABLE OF NOTATIONS

Notation Definition
Dj Expected delay from neighboring node j to the sink
Xh Set of awake neighboring nodes right after beacon signal h
xh Node j that has the smallest delay value Dj among the nodes in Xh

P
(h)
x,x′ Conditional probability that xh = x′ conditioned on that xh−1 = x and node i sends beacon signal h

pj,h Conditional probability that node j wakes up at stage h conditioned on not having woken up at earlier stages
d(h)(xh) Expected delay after node i sends beacon signal h conditioned on that the current state is xh, and the optimal forwarding

policy will be used afterward
d
(h)
wait(xh) Expected delay after node i sends beacon signal h conditioned on that the current state is xh, and node i sends beacon signal

h+ 1 and uses the optimal forwarding policy afterward

where qi,j(r⃗i, w⃗i, fi) is the probability that node j is chosen as the next-hop node of node i under the forwarding policy fi and
the sleep-wake scheduling policy (r⃗i, w⃗i). The minimization is taken with respect to all feasible forwarding policies of node i.
Further, using the following value-iteration algorithm [19, Section 1.3], we can find the delay-optimal forwarding policy that
achieves D∗

i (r⃗, w⃗) for all nodes i:
Value Iteration Algorithm: At the initial iteration k = 0, all nodes i set their initial delay values D

(0)
i to ∞, and the sink

s sets its delay value D
(0)
s to zero. At each iteration k = 1, 2, · · · , every node i collects the delay values D

(k−1)
j from its

neighboring nodes j and then updates its delay value D
(k)
i by solving

D
(k)
i = min

fi

(
Dhop,i(r⃗i, w⃗i, fi) +

∑
j∈Ni

qi,j(r⃗i, w⃗i, fi)D
(k−1)
j

)
. (8)

Let f (k)
i be the forwarding policy of node i that minimizes (8). Then, according to [19, Proposition 2.2.2], the delay value D

(k)
i

of each node i converges to the minimum delay D∗
i (r⃗, w⃗), i.e., limk→∞ D

(k)
i = D∗

i (r⃗, w⃗), and the corresponding forwarding
policy f (k) = {f (k)

1 , f
(k)
2 , · · · } also converges to the delay-optimal forwarding policy, i.e., limk→∞ f (k) ∈ argminf Di(r⃗, w⃗, f)

for all nodes i.
The key step in this value iteration algorithm is how every node i solves the sub-problem in (8) at each iteration k. Note

that the probability qi,j(r⃗i, w⃗i, fi) may be difficult to derive in closed form. Instead, we reformulate (8) as another dynamic
programming problem: we find forwarding decisions fi,1, fi,2, · · · of node i for each beacon signal 1, 2, · · · that minimize the
expected delay from node i to the sink when the delays from neighboring nodes j to the sink are given by D

(k−1)
j , and the

sleep-wake scheduling policies of all nodes are given by (r⃗, w⃗). The solution to this second dynamic program is presented next
as the LOCAL-OPT algorithm, which does not need to compute the probability qi,j(r⃗i, w⃗i, fi). Recall that the value iteration
algorithm minimizes the expected end-to-end delay when each state corresponds to the node that has the packet and the state
transition occurs when the packet is transmitted from one node to another. In contrast, the LOCAL-OPT algorithm aims to
minimize the expected end-to-end delay from a given node to the sink when the delays from its neighboring nodes to the sink
are fixed. State transitions occur after each beacon signal, and the state corresponds to the available (awake) neighboring node
that are ready to receive after each beacon signal.

B. LOCAL-OPT Algorithm

In the next two subsections, we provide a thorough analysis of the LOCAL-OPT algorithm. For readers who may be more
interested in the implementation, we also provide pseudo-code algorithms that compute our solution in a fully distributed
manner

To solve the above sub-problem, we focus on a node i that has a packet. For ease of exposition, let the expected delays
from neighboring nodes j be denoted by Dj = D

(k−1)
j (j ∈ Ni), which is equal to D

(k−1)
j for iteration k in the value-iteration

algorithm. Without loss of generality, we assume that the node i has neighboring nodes 1, 2, · · · , Ni (Ni = |Ni|), and their
expected delays are sorted in increasing order, i.e., D1 ≤ D2 ≤ · · · ≤ DNi . To avoid confusion, we further assume that the
index i of the sending node is larger than Ni + 1. In Table I, we summarize the definition of the notations that will be used
in this section.

After the sending node i sends out the h-th beacon signal, it has to choose either to transmit the packet to one of the awake
nodes, or to wait for the other node to wake up by sending the next beacon signal. We call this moment the decision stage h
(or simply stage h) and denote the set of the awake nodes at this moment by Xh. By definition, fi,h(Xh) = j (j ∈ Xh) implies
that node i decides to transmit to node j, and fi,h(Xh) = i implies that node i decides to wait and send the (h+1)-st beacon
signal. (Recall that for non-Poisson wake-up patterns that do not have the memoryless property, the forwarding decision must
be controlled differently at each beacon signal in order to minimize the delay.) Since stage 0 is the moment when node i is
about to send the first beacon signal, we set X0 = ∅ and fi,0(X0) = i. This state transition terminates whenever the sending

7

node transmits the packet to an awake node j. When this happens, the packet will be relayed by the node j and eventually
arrive at the sink after Dj time (the delay from node j). We denote this terminal state by state 0.

Since the number of possible states at each stage increases exponentially with the number Ni of neighboring nodes (2Ni

states at each stage), it is more convenient to deal with a simpler transition model as follows. Note that if node i decides
to transmit the packet to one of the awake nodes in Xh, clearly it should choose the node j with the smallest delay Dj

among all the awake nodes in order to minimize the delay from the next-hop node to the sink. Hence, at each stage h, node
i only needs to remember the awake node with the smallest delay. In other words, if a delay-optimal policy is applied, only
the awake node with the smallest delay affects the state transition dynamics. We denote this node by xh = argminj∈Xh

Dj .
(Ties are broken arbitrarily.) If no nodes are awake (Xh = ∅), we denote the corresponding state xh by xh = Ni + 1. (For
example, since X0 = ∅, the initial state is always given by x0 = Ni + 1.) From now on, we can use a simpler state transition
model x0, x1, x2, · · · to solve the sub-problem (8) without any loss of optimality. Due to the same principle, we abuse notation
slightly, and use fi,h(xh) to denote the decision of node i at state xh as follows: fi,h(xh) = xh if the sending node i decides
to transmit the packet to node xh, and fi,h(xh) = i if the node i decides to wait. We further use the following assumption to
simplify the dynamics for the state transitions x0, x1, · · · . (However, this is not a required assumption, as we will soon see.)
Assumption 1: If an awake node is not chosen as the next-hop node, we assume that the node stays awake to remain eligible
to be chosen as the next-hop node at following stages. Under this assumption, the state transition must satisfy x0 ≥ x1 ≥ · · · .
Remark: Assumption 1 not only simplifies the analysis, but it also clearly leads to smaller delay, compared to the case where an
awake node can return to sleep when it is not immediately chosen as the next-hop node. However, one could argue that keeping
nodes awake consumes more energy. In Section III-D, we will show that the optimal anycast forwarding policy achieves the
minimum delay without Assumption 1, and thus the awake nodes in fact do not need to stay awake. But for now, we use the
assumption to simplify the analysis.

We next consider the state transition probability. Let P (h)
x,x′ be the state transition probability from state xh−1 = x to state

xh = x′, given that node i decides to wait at stage h− 1, i.e., P (h)
x,x′ , Pr

(
xh = x′|xh−1 = x and fi,h−1(x) = i

)
. Using the

awake probability pj,h, we can express the state transition probability as

P
(h)
x,x′ =

px′,h

∏x′−1
j=1 (1− pj,h) if x′ < x,∏x′−1

j=1 (1− pj,h) if x′ = x,

0 otherwise.

(9)

The state transition probability conditioned on fi,h−1(x) = x is trivial because, if the sending node decides to transmit the
packet to node x, the next state must be 0. Note that if the wake-up pattern of node 1 is such that node 1 must wake up
before beacon signal h, the probability P

(h)
x,x′ is not well defined for x > 1 because the conditional event xh−1 = x cannot

happen. Hence, we say that state xh = x is admissible if Pr(xh = x|fi,h′(xh′) = i,∀h′ < h) > 0, and we define the state
transition probability only for admissible states. We also define xh,max as the upperbound of the admissible state at stage h,
i.e., xh ≤ xh,max.

In our dynamic programming problem, the cost to be minimized is delay. Let g(xh, fi,h(xh)) be the one-step delay between
stages h and h+1 when decision fi,h is used at state xh. If the sending node i sends out the next beacon signal (fi,h(xh) = i),
the delay incurred by this decision is the beacon-ID duration tI . If node i transmits the packet, the packet will be transmitted
to the next-hop node xh for the packet transmission period tD and will arrive at the sink Dxh

time later. Hence, the delay
incurred by this decision is tD +Dxh

. Once the packet reaches the sink, no more delay will be incurred. Hence, the one-step
delay can be expressed as

g(xh, fi,h(xh)) =

{
tI if fi,h(xh) = i, (10)
tD +Dxh

if fi,h(xh) = xh. (11)

for xh ̸= 0 and g(xh, fi,h(xh)) = 0 for xh = 0. Using the above state transition probability and the one-step delay, we can
represent the sub-problem (8) as the following infinite-horizon dynamic program (DP) problem [19, Chapter 1]: given the
delays Dj from the neighboring nodes j, we want to find the anycast forwarding policy fi of node i that minimizes the overall
cost (delay) function

dfi = lim
h̄→∞

E

h̄−1∑
h′=0

g(xh′ , fi,h′(xh′))

 (12)

where x0, x1, x2, · · · are the states visited, and the expectation is taken with respect to these states. Then, minfi dfi and
argminfi dfi corresponds to D

(k)
i and f

(k)
i of the value-iteration algorithm in (8), respectively.

To solve this DP problem, we define d(h)(xh) as the expected delay from state xh ≥ 1 at stage h, given that the optimal
forwarding policy is applied afterward, i.e.,

d(h)(xh) , min
fi,h,fi,h+1,···

 lim
h̄→∞

E

h̄−1∑
h′=h

g(xh′ , fi,h′(xh′))

8

where xh+1, xh+2, · · · are the states to be visited after stage h, and the expectation is taken with respect to these states.
By definition, it immediately follows that d(0)(Ni + 1) = minfi dfi . The delay function d(h)(xh) can be interpreted as the
minimum expected delay from state xh. Suppose that the sending node i at state xh decides to transmit the packet to node
xh (fi,h(xh) = xh). By (11), the minimum expected delay conditioned on this decision is tD +Dxh

. If node i decides to wait
(fi,h(xh) = i), the minimum expected delay d

(h)
wait(xh) conditioned on this decision is given by

d
(h)
wait(xh) = tI +

xh∑
xh+1=1

P (h+1)
xh,xh+1

d(h+1)(xh+1), (13)

assuming that the optimal decisions f∗
i,h+1, f

∗
i,h+2, · · · are applied afterward. Clearly, if just transmitting the packet to the

awake node xh incurs a smaller delay (i.e., tD +Dxh
) than the delay d

(h)
wait(xh) that is incurred by the waiting decision, the

node should forward the packet to node xh in order to reduce the delay, and vice versa. Hence, the optimal forwarding decision
at stage h can be expressed as

f∗
i,h(xh) =

{
xh if tD +Dxh

< d
(h)
wait(xh),

i otherwise.
(14)

(Readers can refer to [19, Equation (1.3) on Page 5] for further information.) Further, the minimum expected delay d(h)(xh)
under the optimal decision at stage h is given by

d(h)(xh) = min(d
(h)
wait(xh), tD +Dxh

). (15)

Although (14) and (15) are not well defined for xh = Ni + 1, by setting DNi+1 = ∞, we can still use (14) and (15) even
when xh = Ni + 1. In this case, d(h)(Ni + 1) is always equal to d

(h)
wait(Ni + 1). (In other words, if no nodes are awake, the

only choice left is to send the next beacon-ID signal.)
Clearly, whenever node 1 has woken up, the optimal decision is to forward the packet to node 1. Hence, the optimal

forwarding decision must satisfy
f∗
i,h(1) = 1 and d(h)(1) = tD +D1 for all h. (16)

Furthermore, since the packet will be forwarded to a neighboring node j eventually, taking tD +Dj expected time, it must
hold that

d(h)(xh) ≥ tD +D1 for xh > 0. (17)

Both equations (16) and (17) provide an important property about d(h)(xh), which is independent on h. We will use this
property to prove Propositions 1 and 9.

We have shown that for an arbitrary sleep-wake process the optimal forwarding decision f∗
i,h and the delay value d(h) must

satisfy the necessary conditions in (14) and (15), respectively. If there is a reference stage h̄ such that the minimum delay
d(h̄)(xh̄) is known for all admissible states xh̄, we can then use (13) and (15) as a backward iteration from stage h̄ to stage 0,
and can find the optimal forwarding decisions. However, such a reference stage may not exist in general. In practice, we can
artificially impose a reference stage h̄ and use a truncated policy after h̄. In the next section, we will study the performance
of such a truncated packet-forwarding policy as h̄→∞.

C. A Truncated Forwarding Policy

We use f̂i,h to denote a packet-forwarding policy that uses truncated decisions after a given stage h̄. In the rest of the paper,
we refer to it as the truncated policy. Specifically, if the sending node has not chosen its next-hop node until stage h̄, it then
waits only for node 1 (the node with the smallest delay) to wake up and then forwards the packet to node 1. Let H be the
number of beacon signals that the sending node has to send until node 1 wakes up. Then, if node 1 has not woken up for the
first h̄ beacon signals, i.e, xh̄ > 1, the sending node has to send H − h̄ more beacon signals until node 1 wakes up. Similar
to d(h)(xh), we define d̂(h)(xh) as the expected delay from state xh at stage h under the truncated policy. Then, the expected
delay d̂(h̄)(xh̄) at stage h̄ is given by

d̂(h̄)(xh̄) =

{
tD +D1 if xh̄ = 1,
E[H − h̄|H > h̄] · tI + tD +D1 if xh̄ > 1.

(18)

(Recall that D1 is the delay value of node i from the previous iteration of the value-iteration algorithm.) Since we now know
the value of d̂(h̄)(xh̄) for all admissible states xh̄ at stage h̄, we can compute the optimal forwarding decision at stages h < h̄

for the truncated policy. Similarly to (13) and (15), we compute d̂
(h)
wait(xh) (the minimum expected delay conditioned on the

WAIT decision) and d̂(h)(xh) for h = h̄− 1, h̄− 2, · · · , 1, 0, using

d̂
(h)
wait(xh) = tI +

xh∑
xh+1=1

P (h+1)
xh,xh+1

d̂(h+1)(xh+1), (19)

9

and
d̂(h)(xh) = min(d̂

(h)
wait(xh), tD +Dxh

). (20)

Once we obtain these values, the optimal truncated policy can be expressed as follows:

f̂i,h(xh) =

1 if xh = 1,
xh if xh > 1, h < h̄, and

Dxh
< d̂

(h)
wait(xh)− tD,

i otherwise.

(21)

Since the delay under the truncated policy cannot be smaller than that under the optimal policy, we have

d(h)(xh) ≤ d̂(h)(xh), (22)

for all h and admissible states xh. Note that d̂(0)(Ni + 1) corresponds to the expected delay of the sending node under the
truncated policy, and d(0)(Ni + 1) corresponds to that under the optimal forwarding policy. In the following proposition, we
show that the delay gap between the optimal and the truncated forwarding policies will approach to zero as h̄→∞.

Proposition 1: The truncated forwarding policy f̂i has the following properties:
(a) d̂(0)(Ni + 1)− d(0)(Ni + 1) ≤ Pr(H > h̄)E[H − h̄|H > h̄] · tI ,
(b) d̂(0)(Ni + 1)− d(0)(Ni + 1)→ 0 as h̄→∞.
The proof is provided in Appendix A. Proposition 1 implies that (a) the truncated forwarding policy is asymptotically optimal,
and (b) the rate of convergence depends on the decay rate of the tail probability Pr(H > h̄). If nodes, for instance, wake up
according to the Poisson wake up pattern, E[H − h̄|H > h̄] will be given by a constant because of the memoryless property,
and the probability Pr(H > h̄) will decay exponentially. Hence, the delay gap between the truncated policy and the optimal
policy will decrease exponentially.

Although we can compute the optimal truncated policy f̂i, it is still difficult to implement such a policy because of the
following reasons. First, the policy requires the sender to know the list (Xh or xh) of awake nodes at each stage h. It can
be difficult for the sender to acquire this information during a short period tA between two beacon-ID signals because of
collisions. Second, the optimal policy is based on Assumption 1, which requires that an awake node stay awake even if it
is not immediately chosen as the next-hop node. However, if the node is not chosen as the next-hop node in the end, the
additional energy that it has spent to remain awake is then wasted. The following proposition contains an important result to
address the above implementation issues.

Proposition 2: For h = 0, 1, · · · , h̄− 1 and all admissible states xh = x′, x′′ such that 1 < x′ ≤ x′′, we have

d̂
(h)
wait(x

′′)− d̂
(h)
wait(x

′) ≤ Dx′′ −Dx′ . (23)

Proof: We prove this result by induction. For h = h̄− 1, by applying (18) to (19), we can verify that d̂(h)wait(x
′′) is equal

to d̂
(h)
wait(x

′) for all states x′′ ≥ x′ > 1. Hence, (23) holds for h = h̄− 1.
We now assume that (23) holds for stage h+ 1 ≤ h̄− 1. From (20), we also have

d̂(h+1)(x′′)− d̂(h+1)(x′) ≤ Dx′′ −Dx′ . (24)

for 0 < x′ ≤ x′′. Using (9) and (13), we have

d̂
(h)
wait(x

′′)− d̂
(h)
wait(x

′)

=
x′′∑

xh+1=x′

P
(h+1)
x′′,xh+1

d(h+1)(xh+1)− P
(h+1)
x′,x′ d(h+1)(x′).

Note that
∑x′′

xh+1=x′ P
(h+1)
x′′,xh+1

= P
(h+1)
x′,x′ from (9). Hence, the R.H.S. of the above can be expresses as

x′′∑
xh+1=x′

P
(h+1)
x′′,xh+1

(d(h+1)(xh+1)− d(h+1)(x′))

≤
x′′∑

xh+1=x′

P
(h+1)
x′′,xh+1

(Dxh+1
−Dx′) ≤ Dx′′ −Dx′ ,

where in the last step we have used (24). Hence, (23) also holds for stage h. By induction, the result follows.
Using Proposition 2, the sending node i can implement the optimal truncated policy as follows during the operation phase:

Implementation of the optimal truncated policy: In the configuration phase, every neighboring node i computes the set h(i)
j

of beacon signals for j ∈ Ni such that

h
(i)
j , {h < h̄ | j ≤ xh,max, Dj < d

(h)
wait(j)− tD} (25)

10

1

2

s 3

D
4
(0)=

D
1
(0)= D

2
(0)=

D
3
(0)=

D
4
(1)=3 D

1
(1)=3 D

2
(1)= D

3
(1)= Iteration 1:

D
4
(2)=3 D

1
(2)=3 D

2
(2)=7 D

3
(2)=30.5Iteration 2:

D
4
(3)=3 D

1
(3)=3 D

2
(3)=7 D

3
(3)=24.12Iteration 3:

4

D
s
(0)=0

Fig. 2. Example of the value-iteration algorithm: the dotted line shows that the change in the delay value at one node affects the delay value of its neighboring
nodes at the next iteration.

and then informs h
(i)
j to each neighboring node j. In the operation phase, if node j wakes up and hears beacon signal h from

node i, it sends a CTS if and only if h ∈ h
(i)
j . If h /∈ h

(i)
j , node j returns to sleep and wakes up at the next beacon signal

in h
(i)
j . Among the neighboring nodes that have sent a CTS, the sending node i forwards the packet to the node j with the

smallest delay value Dj .
We now show that the above method implements the optimal truncated policy. If node j wakes up and hears beacon signal

h, according to Assumption 1 the current state xh must be at least state j, i.e., xh ≤ j. We now consider three cases. Case
(A): If j > xh,max, there must exist another awake node that has a smaller delay value than Dj . Hence, node j has no chance
to be a next-hop node, and thus it does not need to respond. Case (B-1): If j ≤ xh,max and Dj < d̂

(h)
wait(j)− tD, it immediately

follows from Proposition 2 that Dxh
< d̂

(h)
wait(xh) − tD. Hence, from (21), the decision must be f̂i,h(xh) = xh, and node xh

will receive the packet. (If xh = 1, in which case Proposition 2 does not apply, we still have f̂i,h(xh) = xh from (21).) In
the above implementation, since both xh and j will respond, the correct decision is reached. Case (B-2): If j ≤ xh,max and
Dj ≥ d

(h)
wait(j) − tD, node j cannot be the next-hop node according to the truncated policy in (21). Hence, node j does not

need to respond, and it can wait until the next beacon signal h′ such that Dh′ < d
(h′)
wait (j)− tD. From all the cases (A), (B-1),

and (B-2), we can conclude that the above method exactly implements the optimal truncated policy, and does not require for
the sending node to know the current state xh. However, we still need Assumption 1 because node j in case (B-2) has to
wake up at a later beacon signal. In the next subsection, we will show that when all neighboring nodes wake up periodically,
Assumption 1 is not even necessary for the implementation.

Simple Example: Using a simple network in Fig. 2, we show how nodes compute the optimal forwarding policy in a
distributed manner during the configuration phase. Let tI = 1 and tD = 2 for all nodes. We assume that all nodes 1, 2, 3,
and 4 wake up periodically, and their wake-up intervals are given by 1/r1 = 1/r2 = 1/r3 = 50tI and 1/r4 = 3tI . Initially,
all nodes set their delay values to infinity, except the sink node sets it to zero. At the first iteration of the value-iteration
algorithm, only nodes 1 and 4 updates their delay values because they have a sink as a neighboring node that has a finite delay
value. Since the sink always stay awake, the expected delays from nodes 1 and 4 are tI + tD = 3. At the second iteration,
based on the updated delay values of node 1 and 4 at the previous iteration, nodes 2 and 3 now have a chance to update their
delay values using the LOCAL-OPT algorithm. Running the LOCAL-OPT algorithm in this case is straightforward because
both nodes have only one neighboring node with a finite delay value. For example, since the wake-up interval of nodes 1 is
50 beacon-signals long, the expected number of beacon signals that are sent until node 1 wakes up is 25.5. Hence, the delay
value of node 3 is 25.5 + tD +D1 = 30.5. Following the same procedure, the delay value of node 2 is given by 7. Note that
nodes 1 and 4 do not need to change their delay values at the second iteration because none of their neighboring nodes have
changed their delay values at the first iteration.

We next see how node 3 runs the LOCAL-OPT algorithm at the third iteration. By definition, the awake probabilities of
nodes 1 and 2 in (3) are given by pi,h = 1

51−h for i = 1, 2 and h = 1, 2, · · · , 50. Further, the state transition probabilities in

11

TABLE II
EXAMPLE OF THE LOCAL-OPT ALGORITHM

h 50 49 48 47 46 45 44 43 42 · · ·
d(h)(1) 5 5 5 5 5 5 5 5 5 · · ·
d
(h)
wait(2) 6 6.5 7 7.5 8 8.5 9 9.5 · · ·

tD +D2 9 9 9 9 9 9 9 9 · · ·
d(h)(2) 6 6.5 7 7.5 8 8.5 9 9 · · ·
d
(h)
wait(3) 6 6.5 7 7.5 8 8.5 9 9.5 · · ·

d(h)(3) 6 6.5 7 7.5 8 8.5 9 9.5 · · ·

(9) are given by P
(h)
2,1 = P

(h)
3,1 = 1

51−h , P (h)
2,2 = 50−h

51−h , P (h)
3,2 = 50−h

(51−h)2 , and P
(h)
3,3 = (50−h)2

(51−h)2 for h = 1, 2, · · · , 50. By (16),
d(h)(1) is given by tD +D1 = 5 for all beacon signals h (as reported in Table II). Since node 1 (that has the smallest delay)
must wake up within 50 beacon signals, we start computing d

(h)
wait(xh) and d(h)(xh) from h = 49. For h = 49, we first compute

d
(49)
wait (2) = tI + d(50)(1) = 6 using (13). Hence, by (15), we have d(49)(2) = 6. We can also compute d

(49)
wait (3) = 6 simply by

using (13). Recall that since state 3 implies that there is no awake node in the neighborhood, node 3 at this state has to wait,
i.e., d(h)wait(3) = d(h)(3) for h = 1, 2, · · · , 50. For h = 48, we have

d
(48)
wait (2) = tI +

1

2
d(49)(1) +

1

2
d(49)(2) = 6.5,

from (13) and thus d(48)(2) = 6.5. We have repeated the same computation for h = 48, 47, · · · , 1 and have provided the
result in Table II. We have also computed d(0)(3) = 24.12, which is the updated delay value of node 3 at iteration 3 of the
value-iteration algorithm in Fig 2. Note that from beacon signal 42, d(h)wait(2) becomes larger than tD +D2 = 9. Hence, if node
2 wakes up before beacon signal 42, the sending node 3 can forward the packet to node 2. Otherwise, if node 2 wakes up
after beacon signal 42, node 3 will wait for node 1 to wake up. By (14), the set h(3)

2 of the beacon signals from node 3 that
node 2 can respond to is {1, 2, · · · , 42}, while h

(3)
1 = {1, 2, · · · , 50}.

We summarize the LOCAL-OPT algorithm in pseudo code that every node i runs during the configuration phase. We also

LOCAL-OPT Algorithm
1: Receive (D

(k−1)
j , j ∈ Ni)

2: Sort (D(k−1)
j , j ∈ Ni) in an increasing order

3: Let D1, D2, · · · , DNi be the sorted delay and m(1),m(2), · · · ,m(Ni) be the corresponding node indices.
4: Set h̄
5: for j = 1 to Ni + 1 do
6: Set d̂(h̄)(j) using (18)
7: h

(i)
j ← ∅

8: end for
9: for h = h̄− 1 to 0 do

10: for j = 1 to xh,max do
11: Compute d̂

(h)
wait(j) using (19)

12: if Dj < d
(h)
wait(j)− tD then

13: h
(i)
m(j) ← h

(i)
m(j) ∪ {h}

14: end if
15: d̂(h)(j)← min(d̂

(h)
wait(j), tD +Dxh

)
16: end for
17: end for
18: h

(i)
m(1) ← h

(i)
m(1) ∪ {h̄, h̄+ 1, · · · }

19: return d̂(0)(Ni + 1), (h(i)
j , j ∈ Ni)

summarize the value-iteration algorithm in pseudo code as follows:

12

Value-Iteration Algorithm
1: D

(0)
i ←∞

2: for k = 1 to kmax do
3: Collect D(k−1)

j from neighboring nodes j

4: (D
(k)
i , (h

(i)
j , j ∈ Ni))← LOCAL-OPT((D(k−1)

j , j ∈ Ni))
5: end for
6: return D

(k)
i ,(h(i)

j , j ∈ Ni)

During the operation phase that follows the configuration phase, each node j uses the implementation for the optimal
truncated policy.

Sleep-wake Scheduling Protocol
1: loop
2: Set up the next time twake that node j has to wake up according the sleep-wake scheduling policy (rj , wj).
3: Wake up at time twake.
4: if Hear beacon signal h from a neighboring node i then
5: if h ∈ h

(i)
j then

6: Respond a CTS signal to the sending node i
7: Break the loop and follow the packet relay protocol
8: else if There exists h′ > h such that h′ ∈ h

(i)
j , then

9: twake ← twake + tI · (h′ − h)
10: Go to Line 3
11: end if
12: end if
13: end loop

The value-iteration algorithm is a synchronous algorithm that requires all nodes to execute the value-iteration (8) in locked
steps. Depending on the application setting, the following asynchronous version of the value-iteration algorithm may be more
useful: each node chooses either to solve (8) or to skip it (i.e., D(k)

i = D
(k−1)
i) independently, of other nodes. Then, the

following proposition states the convergence of the asynchronous value-iteration algorithm.
Proposition 3: If each node i updates its delay value D

(k)
i using (8) infinitely often, then the delay values and the forwarding

policies of all nodes converge to the optimal, i.e., limk→∞ D
(k)
i = D∗

i (r⃗, w⃗per), and limk→∞ f (k) ∈ argminf Di(r⃗, w⃗per, f)
for all nodes i

Proof: The proof follows from the standard result of Proposition 1.3.5 in [19].

D. Optimal Anycast Policy for Periodic Wake-Up Processes

So far, we have developed the value-iteration algorithm and a truncated version of the local-opt algorithm, which are
asymptotically optimal for a general sleep-wake scheduling policy. In this subsection, we show that for periodic wake-up
patterns these algorithms are exactly optimal for appropriately chosen parameters h̄ and kmax. In the next section, we will then
study why the periodic wake-up pattern is delay-optimal over all the other wake-up patterns.

Assume that all nodes wake up periodically (w⃗ = w⃗per). Then, each neighboring node j must wake up every 1/rj time.
Since an awaken node keeps awake according to Assumption 1, node j must be awake after stage ⌊ 1/rjtI

⌋. If we set h̄ to the
beacon signal ⌊ 1/r1tI

⌋, state xh̄ = 1 is the only admissible state at stage h̄. Then, under the periodic wake-up pattern, the result
of Proposition 1 becomes stronger as follows:

Proposition 4: If all neighboring nodes wake up periodically, and h̄ is set to ⌊ 1/r1tI
⌋, the truncated forwarding policy f̂i is

optimal, i.e.,
d̂(0)(Ni + 1) = d(0)(Ni + 1).

Proof: Since xh̄ = 1 is the only admissible state, it holds that d̂(h̄)(xh̄) = d(h̄)(xh̄) for admissible states xh̄. Then, from
(13) and (19), we also have d̂

(h̄−1)
wait (xh̄−1) = d

(h̄−1)
wait (xh̄−1) for all admissible states xh̄−1. (P (h)

x′,x′′ = 0 for inadmissible state
xh = x′′.) From (15) and (20), it follows that d̂(h̄−1)(xh̄−1) = d(h̄−1)(xh̄ − 1) for all admissible states xh̄−1. By induction,
we can conclude that d̂(0)(Ni + 1) = d(0)(Ni + 1).
Proposition 4 implies that the truncated forwarding policy becomes exactly optimal under the periodic wake-up pattern. Hence,
when the wake-up pattern of neighboring nodes are periodic, i.e., w⃗i = w⃗per, we can completely solve the subproblem in (8).

13

The periodic wake-up pattern not only makes the truncated policy optimal, but also simplifies the implementation by the
following proposition.

Proposition 5: If all neighboring nodes wake up periodically, and h̄ is set to ⌊ 1/r1tI
⌋, the conditional delay d̂

(h)
wait(xh) is

non-increasing, i.e.,
d̂
(h−1)
wait (xh−1) ≥ d̂

(h)
wait(xh), (26)

for h = 1, 2, · · · , h̄− 1, and all admissible states xh.
The detailed proof is provided in Appendix B. The result of Proposition 5 can be interpreted as follows: as more stages
pass by, the neighboring nodes are more likely to wake up, and the conditional delay d

(h)
wait then decreases. This property can

further simplify the implementation of our solution. Recall that in the original truncated policy, if node j wakes up at beacon
signal h and satisfies the condition Dj + tD ≥ d̂

(h)
wait(j), it has to sleep and wake up again at the next beacon signal when

the condition is satisfied. However, under the periodic wake-up pattern, such a node j will never satisfy the condition in the
following beacon signals because d̂

(h)
wait(j) is non-increasing. Hence, instead of maintaining the set of h(i)

j of all beacon signals
that it has to respond with a CTS, each neighboring node j only needs to maintain the last beacon signal that it has to
respond. Furthermore, this property provides an opportunity to reduce the complexity of the LOCAL-OPT algorithm. In [20],
we provide the simplified LOCAL-OPT algorithm for the periodic wake-up pattern, whose complexity is reduced O(ĥN2

i) to
O(ĥNi).

We now study the convergence properties of the value-iteration algorithm under the periodic wake-up pattern. Define h̄
(k)
i =

minj∈Ni{⌊
1/rj
tI
⌋|j ∈ argminD

(k−1)
j } as the maximum number of beacon signals until the neighboring node j with the

smallest delay value D
(k−1)
j wakes up. Then, the next proposition states the convergence of the value-iteration algorithm:

Proposition 6: If all nodes i wake up periodically and set h̄ = h̄
(k)
i at each iteration k of the value-iteration algorithm, the

algorithm converges to the optimal solution within N iterations, i.e., D(N)
i = Di(r⃗, w⃗per, f

(N)) = D∗
i (r⃗, w⃗per).

The proof is provided in Appendix D. From Proposition 6, every node needs to run the LOCAL-OPT algorithm for only N
iterations, and the last forwarding policy f (N) is delay-optimal when all nodes wake up periodically. Hence, under the periodic
wake-up pattern, the overall complexity experienced by each node i is alleviated from O(kmaxh̄N

2
i) to O(Nh̄Ni). We remind

the reader again that this computation overhead only occurs at the configuration phase.

IV. OPTIMAL WAKE-UP PATTERN

In the previous section, we have developed an asymptotically optimal anycast forwarding policy for a general sleep-wake
policy (r⃗, w⃗). In this section, we fix the wake-up pattern to the periodic (w⃗ = w⃗per), i.e., all nodes wake up periodically,
and study the special properties of the periodic wake-up pattern. We will show that, among all wake-up patterns, the periodic
wake-up pattern and the corresponding optimal forwarding policy attain the smallest delay. Hence, they are the solution to the
delay-minimization problem (5) that we originally intend to solve.

A. Fundamental Properties of Wake-up Patterns

We begin by studying the fundamental properties of the wake-up patterns. As mentioned in Subsection II-B, we have
assumed that the residual time {Rj(t)}t≥0 is a stationary and ergodic process. Hence, the CDF of the residual time must
satisfy

lim
T→∞

1

T

∫ T

0

1{Rj(t)≤y}dt = FRj (y) almost surely, (27)

where 1{·} is an indicator function. Recall that F ∗
Rj

(y) denotes the CDF of the residual time under the periodic wake-up
pattern. The following proposition then shows the essential properties of the cdf of the residual time.

Proposition 7: For any stationary and ergodic wake-up process with rate rj , the cdf FRj (y) of the residual time Rj satisfies
the following properties:
(a) FRj

(y) ≤ F ∗
Rj

(y),

(b)
dFRj

(y)

dy ≤
dF∗

Rj
(y)

dy for 0 ≤ y ≤ 1
rj

.
Proof: We first show Property (a). We first estimate∫ T

0

1{Rj(t)<y}dt. (28)

Let t1, t2, · · · be the sequence of times the node wakes up (as shown in Fig. 3.) To satisfy Rj(t) < y, time t ∈ [0, T] must be
in the shaded area, i.e.,

t ∈ ∪∞k=1[tk − y, tk]. (29)

14

Hence, we can express (28) as follows: ∫ T

0

1{Rj(t)<y}dt ≤
∞∑
k=1

∫ T

0

1{t∈[tk−y,tk]}dt (30)

≤
∞∑
k=1

y1{tk∈[0,T+y]} = y · κj(T + y), (31)

where equalities in (30) and (31) are attained when the point “*” of each shaded area in Fig. 3 does not lie within other shaded
areas. From (27), we have FRj (y) ≤ y limT→∞

κj(T+y)
T . Using (1), we have FRj (y) ≤ yrj almost surely. This establishes

Property (a).

������
������
������

������
������
������

���
���
���

���
���
���

������
������
������
������

������
������
������

������
������
������

����
����
����

����
����
����

y y
y

y y

0 T T+yt t1 2 t3 4 5t t* * *
Wake up

Fig. 3. Example of the sequence of times a node wakes up

We next show Property (b). To show this, we need to compute FRj (y2) − FRj (y1) for 0 ≤ y1 < y2 ≤ 1
rj

. As we did to

show Property (a), we first estimate
∫ T

0
1{Rj(t)∈[y1,y2]}dt. We follow the same logic used for showing Property (a). We replace

Rj(t) < y and [tk − y, tk] with Rj(t) ∈ [y1, y2] and [tk − y2, tk − y1], respectively, in (28)-(30). Then, the right-hand side of
(31) is replaced with (y2 − y1) · κj(T + y2). From (27), we have FRj (y2) − FRj (y1) ≤ (y2 − y1) limT→∞

κj(T+y2)
T . Using

(1) again, we have FRj
(y2)− FRj

(y1) ≤ rj(y2 − y1), which corresponds to Property (b).

Proposition 7 shows that for all 0 ≤ y ≤ 1/rj , the cdf FRj (y) and the derivative
dFRj

(y)

dy are maximized when the wake-up
pattern is periodic.4

Recall that in Section II-B the awake probability pj,h is defined as the conditional awake probability that the given node j
wakes up and receives the h-th beacon-ID signal, conditioned on that it has not woken up at earlier beacon-ID signals. Then,
from Proposition 7, we obtain the following two important properties about the awake probability.

Proposition 8: For h = 1, · · · , ⌊ 1/rjtI
⌋, we have

(a) p∗j,h−1 < p∗j,h, and (b) p∗j,h ≥ pj,h.
Proof: (a) For h = ⌊ 1/rjtI

⌋, Property (a) trivially holds by (4). For h < ⌊ 1/rjtI
⌋, the numerator in (2) for F ∗

Rj
(y) is a

constant of ri · tI , and the denominator decreases with h. Hence, Property (a) still holds.
(b) By Proposition 7(a), the denominator is minimized under the periodic wake-up pattern. Further, by Proposition 7(b), the

numerator is maximized under the periodic wake-up pattern. Hence, we directly obtain Property (b).
Property (a) implies that under the periodic wake-up pattern, the awake probability p∗j,h increases with respect to the number

h of the beacon-ID signals sent. Property (b) implies that the conditional awake probability is maximized when the neighboring
node wakes up periodically.

B. Optimality of Periodic Wake-up Patterns

Using the properties of the periodic wake-up patterns, we show that the periodic wake-up patterns result in the smallest delay
from all nodes. To show this, we first revisit the subproblem (8) that we have solved in Section III-B and in Section III-D.

Consider two scenarios:
(Scenario 1) Each neighboring node j wakes up periodically every 1/rj time. The optimal forwarding policy f∗

i that we
obtained in Section III-D is applied. For this scenario, we use the same notations that are used for the optimal forwarding
policy, e.g, d(h)wait(xh), d(h)(xh), P

(h)
xh−1,xh , hj,max, and xh,max. Recall that the packet at the sending node is forwarded no later

than stage h̄ = h1,max.
(Scenario 2) The wake-up process of each neighboring node j is arbitrary, but the wake-up rate is still given by rj . We denote
by f̃i the optimal forwarding policy for the given wake-up processes of the neighboring nodes. To differentiate from Scenario

4Proposition 7 is closely related to the standard results for renewal processes that periodic renewal processes have the smallest mean residual time [21,
Chapter 5.2]. These standard results require the wake-up intervals to be independent, while Proposition 7 does not require such an assumption. Since we were
unable to find a result in the literature that covered the non-independent case, we have provided the full proof here.

15

1, we put a tilde (∼) on all notations in this scenario, e.g., d̃(h)wait(xh), d̃(h)(xh), P̃
(h)
xh−1,xh , etc. Similarly, node j must have

woken up no later than stage h̃j,max, and let x̃h,max be the node with the smallest delay among the nodes that must be awake
at stage h. By simply setting h̃j,max = ∞ and x̃h,max = Ni + 1, we can still use these notations for the wake-up processes
under which there is no such a finite limit point. For instance, if all neighboring nodes j follow the Poisson wake-up pattern,
then the residual times until they wake up are independent exponential random variables, and we thus have h̃j,max = ∞ for
j ∈ Ni and x̃h,max = Ni + 1 for all h ≥ 0. Since the awake probability is maximized when nodes wake up periodically, it
follows that hj,max ≤ h̃j,max and xh,max ≤ x̃h,max. Further, the optimal policy f̄i must satisfy the necessary conditions (15)
and (14).

We now compare the delays from both scenarios.
Proposition 9: d(h)(xh) ≤ d̃(h)(xh) for h = 0, 1, · · · , h̄ and xh ≤ xh,max,

Proof: We prove this by induction. By (16), we must have d(h̄)(1) = d̃(h̄)(1) = tI + tD +D1. At stage h̄, node 1 must
be awake under the periodic wake-up process (i.e., xh̄,max = 1). Hence, Proposition 9 holds for h = h̄.

Assume that d(h)(xh) ≤ d̃(h)(xh) holds for h = h′ + 1, h′ + 2, · · · , h̄ and xh ≤ xh,max. We then show that this also holds
for h = h′. From (13), we have the following inequality:

d̃
(h′)
wait (xh′)− tI =

∑xh′
xh′+1=1 P̃

(h′+1)
xh′ ,xh′+1

d̃(h
′+1)(xh′+1)

≥
∑xh′

xh′+1=1 P̃
(h′+1)
xh′ ,xh′+1

d(h
′+1)(xh′+1) (32)

≥
∑xh′

xh′+1=1 P
(h′+1)
xh′ ,xh′+1

d(h
′+1)(xh′+1) (33)

To obtain (32), we have used the induction hypothesis. The inequality in (33) can be understood as follows: according to
Proposition 8(b), neighboring nodes are more likely to wake up under the periodic wake-up patterns, and thus the delay is
also minimized under the periodic wake-up pattern. To obtain (33), we have used Lemma 1 in Appendix C, where L = xh′ ,
α
(1)
j = p′j,h′+1 (equivalently, β(1)

j = P̃
(h′+1)
xh′ ,j), α(2)

j = pj,h′+1 (equivalently, β(2)
j = P

(h′+1)
xh′ ,j), and θj = d(h

′+1)(j). Since

θ1 ≤ · · · ≤ θh̄ by Proposition 23, and α
(1)
j ≤ α

(2)
j by Proposition 8, the conditions for the lemma hold.

Since (33) is equal to d
(h′)
wait (xh′)− tI , we have d

(h′)
wait (xh′) ≤ d̃

(h′)
wait (xh′). Then, from (15), we have

d̃(h
′)(xh′) = min(d̃

(h′)
wait (xh′), tD +Dxh′)

≥ min(d
(h′)
wait (xh′), tD +Dxh′) = d(h

′)(xh′).

Hence, Proposition 9 holds for h = h′. By induction, this also holds for h = 0, 1, · · · , h̄.
From Proposition 9, we can infer that d(0)(Ni + 1) ≤ d̃(0)(Ni + 1), which implies D

(k)
i ≤ D̃

(k)
i in the value iteration

algorithm. Hence, when the delays from the neighboring nodes are given, the delay from the sending node i is minimized
when the neighboring nodes wake up periodically and the corresponding optimal forwarding policy is applied.

We next apply this result to the Stochastic Shortest Path (SSP) problem in (6). Assume that each node i can control the
wake-up patterns w⃗i of its neighboring nodes j, as well as its forwarding policy fi. Then, to minimize (6) with respect to (w⃗, f),
every node i should carry out the following value-iteration algorithm, which is a generalized version of (8): for k = 1, 2, · · · ,

D
(k)
i = min

w⃗i,fi
(Dhop,i(r⃗, w⃗i, fi) +

∑
j∈Ni

qi,j(r⃗, w⃗i, fi)D
(k−1)
j).

In this equation, the expected one-hop delay Dhop,i(r⃗, w⃗i, fi) and the probability qi,j(r⃗, w⃗i, fi) that node i forwards the packet
to node j depend only on w⃗i (instead of w⃗). This is because the wake-up patterns of nodes other than the neighboring nodes
do not affect the one-hop delay and the transition probability from node i. From Proposition 9, D(k)

i is maximized when w⃗i

is given by w⃗per and the corresponding optimal forwarding policy is chosen. Hence, the following proposition holds:
Proposition 10: minf Di(r⃗, w⃗per, f) = minw⃗,f Di(r⃗, w⃗, f) for all nodes i.

Let f∗(r⃗) be the optimal forwarding policy for a given sleep-wake scheduling policy (r⃗, w⃗per). From Proposition 6, f∗(r⃗) is
equal to f (N) in the value-iteration algorithm. Then, Proposition 10 implies that (w⃗per, f

∗(r⃗)) is the solution to the delay-
minimization problem (5).

V. COLLISION RESOLUTION PROTOCOLS

In this section, we extend our basic-packet forwarding and sleep-wake scheduling protocols to account for the cases when
collisions occur. (These protocols originate from our previous paper [18].) We classify collisions into collision by multiple
receivers and collision by multiple senders. We provide here the main insight of how to resolve these collisions. The detailed
protocol is provided in Appendix E.

Collision by multiple receivers: When multiple eligible next-hop nodes wake up and hear the same beacon-ID signal, these
nodes will send CTS simultaneously, which collide at the sender’s end. In this case, the sender only know the existence of

16

multiple awake nodes from the colliding CTSs, but does not know which node can deliver a packet to the sink most quickly.
To address this problem, the nodes use the following deterministic back-off. For each sending node i, its eligible next-hop
nodes j are assigned their priority bi,j such that the node j with the k-th smallest delay is assigned bi,j = k. Then, once the
collision occur, the sending node i does not acknowledge the CTS. If each awake eligible node j does not receive an ACK cts
(acknowledgement of the CTS) from the sender, it waits for bijtA time and resend the CTS. Then, among the awake nodes,
the node with the smallest delay will send the CTS first and receive the packet from the sender. During the time, the other
nodes will hear the CTS from the first priority node or packet transmission from the sender. Then, the other nodes go back to
sleep.

Collision by multiple senders: If two or more events occur concurrently in different locations, their first event-reporting
packets will be delivered to the sink. If some of these packets converge in a place, their packet transmission or beacon-ID
signaling will interfere with the others’ transmission power. In this case, the nodes involved in this collision use a random
back-off technique: when a packet transmission or the beacon-ID signaling fails due to the collision, the involved senders
suspend transmission for a random amount of time, and then resume their transmission if the medium is clear. In the case
when the colliding senders are hidden terminals, i.e., they are not in the transmission ranges of each other, the senders cannot
recognize the collision, but a newly waken node in the common transmission range will hear the colliding beacon-ID signals
or packet transmission. In this case, the awake node broadcasts a strong noise signal for a sufficiently long time to inform the
hidden terminals the collision. Then, this noise signal will be detected in the acknowledgement period following the packet
transmission or the beacon-ID signal and then the sending node can run the random back-off mechanism described above.

VI. SIMULATION RESULTS

In this section, we provide simulation results to evaluate the delay performance of the proposed solution. In this paper, our
analytical results have captured the delay gain from both delay-optimal anycast policy and delay-optimal wake-up pattern,
which is the periodic wake-up pattern. Since extensive simulations in [18] have already shown substantial gains of the optimal
anycast policy for the Poisson wake-up pattern over other anycast policies, here we only focus on evaluating the gain from
the periodic wake-up pattern over the Poisson wake-up pattern. To simulate more realistic scenarios, we randomly deploy 690
nodes over a 1 km-by-1km area with obstructions as shown in Fig 4(c). We set the transmission range to 70 m and the duration
tI and tD to 6 ms and 30 ms, respectively. We simulated our proposed solutions using Matlab. For the case when multiple
packets converge to the same area, we have used our extended packet forwarding protocol in our technical report [20]. We
have intentionally generated 50 events at each node and took the average on the measured delay. We have also intentionally
placed the events in neighboring nodes to observe how the collision will affect the overall delay performance.

We will compare the delay performance of the following algorithms:
Optimal-Periodic-NoCollision: This corresponds to the optimal anycast forwarding policy with periodic wake-up patterns,
and the effect of collision is ignored. We obtain the expected delay simply from the output of the value iteration algorithm in
(8).
Optimal-Periodic-WithCollision: This corresponds to the optimal anycast policy with periodic wake-up patterns. We simulate
the policy with the collision resolution component in Appendix E.
Optimal-Poisson: This corresponds to the optimal anycast forwarding policy in [18] with Poisson wake-up patterns. We also
simulate the policy with the same collision resolution component in Optimal-Periodic-WithCollision. (Refer to [18] to see the
performance advantage of Optimal-Poisson over existing solutions (including CMAC) over different simulation environments.)
CMAC (Convergent MAC): This corresponds to the heuristic algorithm with Poisson wake-up pattern that was proposed in
[11]. CMAC uses geographical information to choose the packet forwarding policy. Let D and R be the random variables
that denote the one-hop delay and process in reducing the Euclidean distance to the sink when a packet is forwarded to the
next-hop node. Then, under CMAC, each node i selects the set of eligible next-hop nodes that can minimize the expected
normalized-latency E[D/R]. Since the performance advantage of CMAC over other existing anycast-based heuristics has been
extensively studied in [11] and [18], we only compare the performance of our optimal algorithm to that of CMAC.

In Fig. 4(a) and Fig. 4(b), we compare the maximum and the average expected end-to-end delays, respectively, over all
nodes as we vary wake-up rates r. We observe that ‘Optimal-Periodic-NoCollision’ and ‘Optimal-Periodic-WithCollision’
significantly reduce the end-to-end delay compared with the other algorithms. This is consistent with our result that the periodic
wake-up pattern is delay-optimal. We also observe the significant performance gap between ‘CMAC’ and ‘Optimal-Periodic-
WithCollision.’ To explain this performance gap, we show in Fig. 4(c) the possible routing paths under both algorithms. Under
CMAC, packets tend to be forwarded to the nodes with higher progress. However, overall the packets may take longer paths
to go around the obstructions. In contrast, under ‘Optimal-Periodic-Withcollision,’ the next-hop nodes are chosen by delay.
Hence, it is possible for a packet to be first forwarded to nodes with negative progress, if doing so reduces the delay beyond
the next-hop node. For example, in Fig. 4(c), ‘Optimal-Periodic-WithCollision’ results in paths that are shorter than those
under ‘CMAC.’ From Fig. 4(c), we can infer that if there is no strong correlation between distance and delay (e.g. where there
are obstructions), the heuristic anycast solutions such as CMAC can perform poorly. (In [18], we have also showed that the

17

0 500 1000 1500
0

5

10

15

20

25

30

Average wake−up interval 1/r (ms)

M
ax

im
um

 D
el

ay
 (

se
c)

Optimal−Periodic−NoCollision
Optimal−Periodic−WithCollision
Optimal−Poisson
C−MAC

(a) Delay Comparison

0 500 1000 1500
0

5

10

15

Average wake−up interval 1/r (ms)

A
ve

ra
ge

 D
el

ay
 (

se
c)

Optimal−Periodic−NoCollision
Optimal−Periodic−WithCollision
Optimal−Poisson
C−MAC

(b) Average Delay

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

Mountain

Lake

Lake

(c) Node Deployment and Possible Paths

Fig. 4. (a) Maximum and (b) Average delays under different wake-up rate r and (b) Node deployment and the possible routing paths for 300 ms average
wake-up interval under Optimal-Periodic-NoCollision (blue solid lines) and CMAC (red dotted lines). The paths under Optimal-Periodic-NoCollision pass
through the network diagonally while the paths under CMAC circumvent the lake.

performance gap between the CMAC and the optimal anycast policy becomes significant when the wake-up rates of nodes are
heterogenous.) Finally, we can observe from Fig. 4(a) that the performance gap between ‘Optimal-Periodic-NoCollision’ and
‘Optimal-Periodic-WithCollision’ is negligible over average wake-up intervals (from 30 ms to 1800 ms). The reason behind this
result is that the beacon-ID duration 6 ms is much smaller than the wake-up interval, so that there is little chance that multiple
nodes wake up and respond simultaneously. Hence, as long as collisions are resolved properly, they will not significantly

18

impact the performance of our proposed solution at reasonable wake-up rates.

VII. CONCLUSION

In this paper, we have studied the optimal anycast forwarding and sleep-wake scheduling policies that minimize the end-to-
end delay. We have shown that among all wake-up patterns with the same wake-up rate, the periodic wake-up pattern maximizes
the probability that a neighboring node wakes up at each beacon signal. Using this result, we have developed the optimal anycast
forwarding algorithms for periodic wake-up patterns and have shown that the algorithms guarantee the minimum end-to-end
delay of all nodes for given wake-up rates (which correspond to given energy budgets). Through simulation results, we have
illustrated the benefits of using asynchronous periodic sleep-wake scheduling.

APPENDIX A
PROOF OF PROPOSITION 1

Proof: We first show by induction that

d̂(h)(xh)− d(h)(xh) ≤ Pr(H > h̄|xh)E[H − h̄|H > h̄] · tI . (34)

holds for h ≤ h̄ and all admissible states xh > 0. At stage h̄, if xh̄ = 1, we have d̂(h̄)(1)− d(h̄)(1) = 0 from (16) and (18),
and thus (34) holds. If xh̄ > 1, from (17), it holds that d(h̄)(xh̄) ≥ tI +D1. Hence, using (18) and (22), we have

d̂(h̄)(xh̄)− d(h̄)(xh̄) ≤ E[H − h̄|H > h̄] · tI .

Since xh̄ > 1, i.e., node 1 has not woken up until stage h̄, we have Pr(H > h̄|xh̄) = 1. Hence, (34) holds for h = h̄.
We now assume that (34) holds for stage h+ 1. Since d̂

(h+1)
wait (1) = d

(h+1)
wait (1), using (13) and (19), we have

d̂
(h)
wait(xh)− d

(h)
wait(xh)

≤
xh∑

xh+1=2

P (h+1)
xh,xh+1

Pr(H > h̄|xh+1)E[H − h̄|H > h̄] · tI

= Pr(H > h̄|xh)E[H − h̄|H > h̄] · tI . (35)

From (15) and (20), we have d̂(h)(xh)−d(h)(xh) ≤ d̂
(h)
wait(xh)−d

(h)
wait(xh). Hence, from (35), Inequality (34) holds for h. Then,

by induction, (34) holds for all h = 0, 1, · · · , h̄.
Since x0 = Ni + 1 with probability 1, it holds that Pr(H > h̄|x0 = Ni + 1) = Pr(H > h̄). Hence, for h = 0, we have

d̂(0)(Ni + 1)− d(0)(Ni + 1)

≤ Pr(H > h̄)E[H − h̄|H > h̄] · tI (36)
= E[(H − h̄)1{H>h̄}] · tI , (37)

where 1{·} is an indicator function. From (36), Property (a) follows. Since E[H] <∞, (37) must converge to 0 as h̄ increases.
Hence, Property (b) follows.

APPENDIX B
PROOF OF PROPOSITION 5

Proof: We prove by induction that d̂(h−1)
wait (x) ≥ d̂

(h)
wait(x) holds for h = h̄− 1, · · · , 1, 0 and admissible states xh = x. At

stage h̄− 1, from (19), we have d̂
(h̄−1)
wait (x) = tI + d̂(h̄)(1) because state 1 is the only admissible state at stage h̄. By (20), we

have d̂
(h̄−1)
wait (x) = tI + tD +D1. At stage h̄ − 2, we must have d̂

(h̄−2)
wait (x) ≥ tI + tD +D1 since d̂(h̄−1)(xh̄−1) ≥ tD +D1.

Thus, it holds that d̂(h̄−2)
wait (x) ≤ d̂

(h̄−1)
wait (x) for admissible states xh̄−1 = x.

Assume that d(h−1)
wait (x) ≥ d

(h)
wait(x) holds for h = h′ +1, h′ +2, · · · , h̄ and admissible states xh = x. We then show that this

also holds for h = h′. To this end, we need the following lemma:
Lemma 1: Suppose α

(1)
j , α(2)

j , β(1)
j , β(2)

j , and θj for j = 1, · · · , L such that 0 ≤ α
(1)
j ≤ α

(2)
j ≤ 1, α(m)

L = 1, β(m)
j =∏j−1

k=1(1− α
(m)
k)α

(m)
j for m = 1, 2, and θ1 ≤ θ2 ≤ · · · ≤ θL. Then, the following inequality holds:

L∑
j=1

β
(1)
j θj ≥

L∑
j=1

β
(2)
j θj . (38)

The detailed proof is provided in Appendix C. Lemma 1 has the following interpretation. Assume that there are two users
m = 1, 2 and each user m picks up at least one θj’s from {θ1, θ2, · · · , θL} independently of the other user. α

(m)
j is the

19

probability that user m will pick θj , independently of whether it picks other θk’s (k ̸= j). Since α
(m)
L = 1, at least θL must

be picked up by each user. If θ1 ≤ θ2 ≤ · · · ≤ θL, then for the user with a larger value of α
(m)
j , the expected value of the

smallest θj picked will be lower.
Using Lemma 1, we can show the following inequality: for all x ≤ xh′,max

d
(h′−1)
wait (x) =tI +

x∑
x′=1

P
(h′)
x,x′ d

(h′)(x′)

≥tI +
x∑

x′=1

P
(h′+1)
x,x′ d(h

′)(x′). (39)

Let L in Lemma 1 be x. For m = 1, 2, let α(m)
j = pj,h′−1+m if 1 ≤ j < L, and let α(m)

L = 1. Since β
(m)
j =

∏j−1
h′=1(1 −

α
(m)
h′)α

(m)
j , β(m)

j is given by P
(h′−1+m)
x,j from (9). Note that under the periodic wake-up process, the awake probability pj,h

in (3) increases with h, which means 0 ≤ α
(1)
j ≤ α

(2)
j ≤ 1. Let θj = d(h

′)(j). By Proposition 23, we have d(h
′)(1) ≤

d(h
′)(2) ≤ · · · ≤ d(h

′)(xh′,max), which satisfies the condition θ1 ≤ θ2 ≤ · · · ≤ θL. Since all conditions for α(m)
j , β(m)

j , and θj
(j = 1, 2, · · · , L and m = 1, 2) are satisfied, we obtain the inequality in (39) from Lemma 1.

Combining the induction hypothesis and (15), we can obtain d(h
′)(x′) ≥ d(h

′+1)(x′) for 1 ≤ x′ ≤ xh′+1,max. Since
P

(h′+1)
x,x′ = 0 for x′ > xh′+1,max, we can obtain the following inequality from (39): for x ≤ xh′,max,

tI +
x∑

x′=1

P
(h′+1)
x,x′ d(h

′)(x′)

≥ tI +
x∑

x′=1

P
(h′+1)
x,x′ d(h

′+1)(x′) (40)

= d
(h′)
wait (x).

Combining (39) and (40), we have d
(h′−1)
wait (x) ≥ d

(h′)
wait (x) for 1 ≤ x ≤ xh′,max. By induction, Proposition 5 follows.

APPENDIX C
PROOF OF LEMMA 1

Proof: We prove this lemma by induction. First, the lemma holds for L = 1 because α
(1)
1 = α

(2)
1 = 1 and

β
(1)
1 θ1 = α

(1)
1 θ1 = α

(2)
1 θ1 = β

(2)
1 θ1.

We now assume that (38) holds for L = 1, 2, · · · ,K − 1 and suppose L = K. Let α̃(m)
j , α

(m)
j+1, θ̃j , θj+1, and

β̃
(m)
j ,

β
(m)
j+1

1− α
(m)
1

=

j−1∏
k=1

(1− α̃
(m)
k)α̃

(m)
j

for m = 1, 2 and j = 1, 2, · · · ,K − 1. Then, by induction hypothesis, we have
K−1∑
j=1

β̃
(1)
j θ̃j ≥

K−1∑
j=1

β̃
(2)
j θ̃j . (41)

Using the above, we can obtain the following inequality:
K∑
j=1

β
(1)
j θj = α

(1)
1 θ1 +

K∑
j=2

β
(1)
j θj

= α
(1)
1 θ1 + (1− α

(1)
1)

K−1∑
j=1

β̃
(1)
j θ̃j

≥ α
(1)
1 θ1 + (1− α

(1)
1)

K−1∑
j=1

β̃
(2)
j θ̃j (42)

= α
(1)
1

θ1 −
K−1∑
j=1

β̃
(2)
j θ̃j

+

K−1∑
j=1

β̃
(2)
j θ̃j . (43)

20

To obtain (42), we have used (41). Since
∑K−1

j=1 β̃
(2)
j θ̃j is a weighted average of θ2, θ3, · · · , θK , and all these values are no

smaller than θ1, the term (θ1 −
∑K−1

j=1 β̃
(2)
j θ̃j) is non-positive. Since α

(1)
1 ≤ α

(2)
1 , we can rewrite (43) as

K∑
j=1

β
(1)
j θj ≥ α

(2)
1

θ1 −
K−1∑
j=1

β̃
(2)
j θ̃j

+

K−1∑
j=1

β̃
(2)
j θ̃j

= α
(2)
1 θ1 + (1− α

(2)
1)

K−1∑
j=1

β̃
(2)
j θ̃j .

=
K∑
j=1

β
(2)
j θj . (44)

Hence, (38) holds for L = K. By induction, the result of the lemma follows.

APPENDIX D
PROOF OF PROPOSITION 6

Proof: To show the convergence within N iterations, we first show that there exists an acyclic optimal solution, which
minimizes the delays from all nodes simultaneously for given sleep-wake scheduling policy (r⃗, w⃗per), and does not incur any
cyclic routing paths. Let f denote an optimal solution. Then, this optimal policy must satisfy the Bellman equation in (7).
Hence, for each node i, fi must minimize the R.H.S. of the sub-problem (8), when the delays of other nodes are given by
D

(k−1)
j = D∗

j (r⃗, w⃗per). D∗
i (r⃗, w⃗per) must be the corresponding delay value D

(k)
i in (8). In the sub-problem, to be an eligible

next-hop node under the optimal policy f , the neighboring nodes j must satisfy D∗
j (r⃗, w⃗) + tD ≤ d̂

(h)
wait(j) for some h. By

repeatedly applying Proposition 5, we have d̂
(0)
wait(Ni+1) ≥ d̂

(h)
wait(j). Hence, all eligible next-hop nodes j of node i must satisfy

d̂
(0)
wait(Ni + 1) ≥ D∗

j (r⃗, w⃗) + tD. Since d̂
(0)
wait(Ni + 1) corresponds to D∗

i (r⃗, w⃗), we have D∗
j (r⃗, w⃗) < D∗

i (r⃗, w⃗). This implies
that under policy f , a packet at a node i will only be forwarded to a node j, whose delay value D∗

j (r⃗, w⃗) is smaller than
D∗

i (r⃗, w⃗). Hence, the solution does not incur any cyclic path.
We have shown the existence of an acyclic solution. Then, based on the proof in [19, Page 107], D(h)

i converges to D∗
i (r⃗, w⃗)

for each i within N iterations, and f (N) becomes the corresponding optimal forwarding policy.

APPENDIX E
COLLISION-RESOLVING PROTOCOL

In this section, we explain each step of the collision resolution protocols at the receiver’s end (Fig. 5) and at the sender’s
end (Fig. 6). Each step in the sender’s protocol is labeled as “S#” in Fig. 6, while that in the receiver’s protocol is labeled as
“R#” Fig. 5. We first identify the steps that correspond to the basic protocol in Section II. When a node i has a packet to relay,
it repeatedly does the following: sends the beacon-ID signal and listens to the medium (S1→S2↔S3). If an eligible next-hop
node j wakes up and hears the beacon-ID signal (R1→R2→R3→R4→R5), then it responds with a CTS (R6). If this CTS is
received by the sender without a collision, the sending node i will acknowledge the CTS (S4→S5→S6 and R6→R7→R8),
and transmit the packet to node j (S7→S8 and R9→R10→R11) until the packet is successfully forwarded. Then, the sender
will stay awake for a while to relay the subsequent packets (S9), and the receiving node then becomes a transmitting node and
follows a similar procedure to find its next-hop node (R12→S1). The steps from S1 to S9 and from R1 to R12 correspond to
the basic packet-forwarding and sleep-wake scheduling protocols that we have introduced in Section II.

Along with these basic steps, both sender and receiver need additional mechanism to accommodate the possibility of
collisions. If the awake node hears a signal, but the signal is not an ID signal (R4→R13), there are two possibilities. Case 1:
An event-reporting packet is being forwarded in the neighborhood or Case 2: multiple signals are colliding. If Case 1 occurs,
the awake node should not interfere with the packet transmission. If Case 2 occurs, the node should inform multiple sending
nodes of the collision and let them run random back-off. The receiving node can distinguish these cases by hearing the medium
for a period of time tD + 2tA, which is longer than the duration of packet transmission. In Case 1, the awake node can hear
an ACK packet (if the receiving node is in the neighborhood) or nothing (if the receiving node is outside of the transmission
range) right after the packet transmission. In this case, the awake node can return to sleep (R16) because there is no need for
relaying a packet. In Case 2, the awake node broadcasts a noise signal for a period of time 3tI (the duration of three beacon
signaling iterations) to inform the senders of the collision (R15). Note that if the ACK packet collides with other signals (e.g.
beacon signals), the awake node will recognize the current situation as Case 2, and thus will send the noise signal. However,
since the awake node have waited for an ACK for tD + 2tA, the noise signal does not overlap the ACK packet and thus will
not disturb the packet transmission.

At the sender’s end, if the sender hears a signal right after a beacon-ID signal, but is unable to decode, there are two

21

possibilities. Case 1: multiple neighboring nodes have sent CTSs simultaneously, or Case 2: other signals are colliding. The
sender can distinguish these cases using the duration of the signal (S11). If it is the duplicated CTSs, the duration will be tA,
and then silence will follow. If it is a mixture of other types of signals, the duration will be longer than tA. In Case 1, the
sender i will not send an ACK to the awake nodes. Thus, each awake node runs a deterministic back-off and then retransmit
the CTS (R18→R17). If any awake node j hears an CTS or a packet transmission during back-off, this means that a node with
a smaller back-off time has sent the CTS. Hence, the node j returns to sleep (R18→R15). During this time, the sender waits
for the first CTS (S12) and forwards the packet to the node with the smallest back-off (and also smallest delay). In Case 2
where there is another sending node in the neighborhood, the sender suspends sending beacon-ID signals for a random amount
of time (S10).

The actual packet transmission can be corrupted by the signals from other nodes. In this case, a pair of the sending node
and the receiving node retries the packet transmission Kmax times (S14 and R20). If all trials are unsuccessful, this implies
that there are other nodes that keep sending signals and interrupting the transmission. In this case, the sender gives up the
packet transmission and waits for a random amount of time (R14→R10). During the same time, the receiver broadcasts the
noise signal to inform the other sending nodes of the collision (R15) and to let them run a random back-off.

REFERENCES

[1] Y.-C. Tseng, C.-S. Hsu, and T.-Y. Hsieh, “Power-Saving Protocols for IEEE 802.11-Based Multi-Hop Ad Hoc Networks,” Computer Networks, vol. 43,
pp. 317–337, Oct. 2003.

[2] W. Ye, H. Heidemann, and D. Estrin, “Medium Access Control with Coordinated Adaptive Sleeping for Wireless Sensor Networks,” IEEE/ACM
Transactions on Networking, vol. 12, pp. 493–506, June 2004.

[3] T. van Dam and K. Langendoen, “An Adaptive Energy-Efficient MAC Protocol for Wireless Sensor Networks,” in Proc. SenSys, pp. 171–180, November
2003.

[4] G. Lu, B. Krishnamachari, and C. S. Raghavendra, “An Adaptive Energy-Efficient and Low-Latency MAC for Data Gathering in Wireless Sensor
Networks,” in Proc. IPDPS, pp. 224–231, April 2004.

[5] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time synchronization using reference broadcasts,” SIGOPS Oper. Syst. Rev., vol. 36, no. SI,
pp. 147–163, 2002.

[6] C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M. Srivastava, “Optimizing sensor networks in the energy-latency-density design space,” IEEE Transactions
on Mobile Computing, vol. 1, pp. 70–80, January-March 2002.

[7] J. Polastre, J. Hill, and D. Culler, “Versatile Low Power Media Access for Wireless Sensor Networks,” in Proc. SenSys, pp. 95–107, November 2004.
[8] J. Polastre, J. Hill, P. Levis, J. Zhao, D. Culler, and S. Shenker, “A Unifying Link Abstraction for Wireless Sensor Networks,” in Proc. SenSys, pp. 76–89,

November 2005.
[9] M. Zorzi and R. R. Rao, “Geographic Random Forwarding (GeRaF) for Ad Hoc and Sensor Networks: Energy and Latency Performance,” IEEE

transactions on Mobile Computing, vol. 2, pp. 349–365, October 2003.
[10] M. Zorzi and R. R. Rao, “Geographic Random Forwarding (GeRaF) for Ad hoc and Sensor Networks: Multihop Performance,” IEEE Transactions on

Mobile Computing, vol. 2, pp. 337–348, October 2003.
[11] S. Liu, K.-W. Fan, and P. Sinha, “CMAC: An Energy Efficient MAC Layer Protocol Using Convergent Packet Forwarding for Wireless Sensor Networks,”

in Proc. SECON, (San Diego, CA), June 2007.
[12] R. R. Choudhury and N. H. Vaidya, “MAC-Layer Anycasting in Ad Hoc Networks,” SIGCOMM Computer Communication Review, vol. 34, pp. 75–80,

January 2004.
[13] S. Jain and S. R. Das, “Exploiting Path Diversity in the Link Layer in Wireless Ad Hoc Networks,” in Proc. WoWMoM, pp. 22–30, June 2007.
[14] P. Larsson and N. Johansson, “Multiuser diversity forwarding in multihop routing for wireless networks,” in Proceedings of IEEE WCNC, 2005.
[15] S. Biswas and R. Morris, “ExOR: opportunistic multi-hop routing for wireless networks,” Proceedings of ACM SIGCOMM, vol. 35, pp. 133–144, October

2005.
[16] M. Rossi and M. Zorzi, “Integrated Cost-Based MAC and Routing Techniques for Hop Count Forwarding in Wireless Sensor Networks,” IEEE

Transactions on Mobile Computing, vol. 6, pp. 434–448, April 2007.
[17] M. Rossi, M. Zorzi, and R. R. Rao, “Statistically Assisted Routing Algorithm (SARA) for Hop Count Based Forwarding in Wireless Sensor Networks,”

Wireless Networks, vol. 14, pp. 55–70, February 2008.
[18] J. Kim, X. Lin, N. B. Shroff, and P. Sinha, “Minimizing delay and maximizing lifetime for wireless sensor networks with anycast,” Networking,

IEEE/ACM Transactions on, vol. 18, pp. 515 –528, april 2010.
[19] D. P. Bertsekas, Dynamic Programming and Optimal Control vol. 2. Athena Scientific, 3 ed., 2007.
[20] J. Kim, X. Lin, and N. B. Shroff, “Optimal Anycast Technique for Delay-Sensitive Energy-Constrained Asynchronous Sensor Networks,” Technical

Report, http://cobweb.ecn.purdue.edu/˜linx/paper/Kim08tech3.pdf, 2008.
[21] L. Kleinrock, Queueing Systems vol. 1: Theory. Wiley-Interscience, 1 ed., 1975.

22

Request a random backoff

 to multiple senders

to resolve a collision

Deterministic backoff

 to resolve a collision

by multiple receivers

Packet Retransmission

Mechanism

Wake up

Listen to the

medium for tA

Is there any
signal?

Is the signal
a beacon-ID

signal?

Respond with an

CTS and listen to

the medium

Does
an ACK_cts

follow?

Receive the

packet

Is the
transmission
successful?

Return to

sleep

Listen to the

medium for tD+tA

Is there an
 CTS from another
receiver or packet
transmission from

the sender?

Listen to the

medium for bij tA

k 1

k k+1

k=K_max

Transmission

mode

Packet
 transmission in the

neighborhood?

Transmit a noise

signal for 3 tI, and

then listen to the

medium until a signal

is detected

Yes

Yes

No

Yes
No

Yes

Yes

No

Yes

Yes

No

No

Respond with an

ACK_packet

No

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R15

R14

R13

R12

R11

R16

R20

R19

R18

R17

Eligible
next-hop node?
i.e., h<hj

(i) ?

Yes

No

Fig. 5. Collision resolving protocol (Receiver)

23

Packet Retransmission

Mechanism

Collision Avoidance

Mechanism

Transmission

mode Start

Send the Beacon-ID

signal and listen to

the medium for tA

Hear any
signal?

Is the signal a
decodable CTS?

Respond with an

ACK_cts

Transmit the

packet and listen

to the medium

Does
 an ACK_data

follow?

Stay awake for a

while to transmit the

subsequent packets

Random Backoff

k 1

k k+1

k=K_max

Yes

Signal length>tA

Listen to the

medium until any

signal is detected

Yes

No

No

No

Yes

Yes

No

No

Yes

S1

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S2

S3

S4

Is there an on-

going signal?
No Yes

Fig. 6. Collision resolving protocol (Sender)

