(1) The state: $\left(h_{1}(t), h_{2}(t)\right)$, which are the current AOI of the thus season

The action $u=1$, if sensor 1 is scheduled fur transmission, of $u=2$, if sensor 2 is scheduled for transmission.
The transition probability:

- If $u=1$,

$$
\left(h_{1}(t+1), h_{2}(t+1)\right)=\left\{\begin{array}{l}
\left(1, h_{2}(t)+1\right) \text { with pot. } P_{1} \\
\left(h_{1}(t)+1, h_{2}(t)+1\right) \text { pot. } 1-p_{1}
\end{array}\right.
$$

- If $u=2$,

$$
\left(h_{1}(t+1), h_{2}(t+1)\right)=\left\{\begin{array}{l}
\left(h_{1}(t)+1,1\right) \text { with prot. p } 2 \\
\left(h_{1}(t)+1, h_{2}(t)+1\right) \text { w. prot. }\left(1-p_{2}\right)
\end{array}\right.
$$

Cost: $h_{1}(t)+h_{2}(t)$
(2) The Bellman Equation:

$$
\begin{aligned}
& J\left(h_{1}, h_{2}\right) \\
& =\min \left\{\begin{array}{l}
h_{1}+h_{2}+\gamma\left[p_{1} J\left(1, h_{2}+1\right)+\left(1-p_{1}\right) J\left(h_{1}+1, h_{2}+1\right)\right] \\
\left.h_{1}+h_{2}+\gamma\left[p_{2} J\left(h_{1}+1,1\right)+\left(1-p_{2}\right) J\left(h_{1}+1, h_{2}+1\right)\right]\right\}
\end{array} .\right.
\end{aligned}
$$

(3) The pseado-code

Max_State $=100$
J (1: Max_State, 1: Max_State, 1: Num_Iteration) $=0$

- For $i=1$ to Num- Iteration - 1
for $h_{1}=1$ to Max-State
fo $h_{2}=1$ to Max_State
next_ $h_{1}=\min \left(h_{1}+1, \operatorname{Max}_{\text {_ }}\right.$ State $)$
next- $h_{2}=\min \left(h_{2}+1, M_{\text {ax_-State }}\right)$
$\operatorname{Cos} t_{-x_{-j}} 1=h_{1}+h_{2}+\gamma\left[p_{1}\right]\left(1, \operatorname{sext}-h_{2}\right)$
$+\left(1-p_{1}\right) J\left(\right.$ next $-h_{1}$, next- $\left.\left.h_{2}\right)\right]$

$$
\operatorname{Cost}-t_{0}-\operatorname{col}^{2}=h_{1}+h_{2}+\gamma\left(p_{2} J\left(\text { nex }-h_{1}, 1\right)\right.
$$

$$
\left.+\left(1-p_{2}\right) J\left(\text { next }-h_{1}, \text { rext. } h_{2}\right)\right]
$$

$$
J\left(h_{1}, h_{2}, i+1\right)=\min (\cos -t-\alpha) \text {, }
$$

$$
\operatorname{Cos}+\text {-to-gu2) }
$$

end
end
end
(4) The following figure shows the threatolel for h_{1}
as a functin of h_{2}.

(1) First, we show then $I\left(h_{1}, h_{2}\right)$ is aon-decreasing in either $h_{1} t h_{2}$. To see this. Let as compian $J\left(h_{1}, h_{2}\right)$ and $J\left(h_{1}+1, h_{2}\right)$. B. definition

$$
\begin{aligned}
& J\left(h_{1}, h_{2}\right)=\min _{\mu} Z\left[\sum_{t=1}^{+\infty} \gamma^{t-1}\left(h_{1}(t)+h_{2}(t)\right) \left\lvert\, \begin{array}{l}
h_{1}(1)=h_{1} \\
h_{2}(1)=h_{2}
\end{array}\right.\right] \\
& J\left(h_{1}+1, h_{2}\right)=\min _{\mu} Z\left[\sum_{t=1}^{+\infty} \gamma^{t-1}\left(h_{1}(t)+h_{2}(t)\right) \left\lvert\, \begin{array}{l}
h_{1}(1)=h_{1}+1 \\
h_{2}(1)=h_{2}
\end{array}\right.\right]
\end{aligned}
$$

For the same sequence of schedut decisions \& the same realigeai of tramonissian successes, it is easy to verity that

$$
\begin{aligned}
& \left.h_{1}(t)\right|_{h_{1}(1)=h_{1}+1} \geqslant\left. h_{1}(t)\right|_{h_{1}(t)=h_{1}} \\
& \left.h_{2}(t)\right|_{h_{1}(1)=h_{1}+1}=\left.h_{2}(t)\right|_{h_{1}(t)=h_{1}}
\end{aligned}
$$

Therefore, he must hare $J\left(h_{1}+1, h_{2}\right) \geqslant J\left(h_{1}, h_{2}\right)$ Similarly, we can show that $J\left(h_{1}, h_{2}+1\right) \geqslant J\left(h_{1}, h_{2}\right)$
Next, suppers that for a given pair h_{1}, h_{2}, the optional decision is to schedule sensor 1 . This implies that Coot-to-go $1 \leqslant \operatorname{Cot}-t_{0}-80^{2}$
ie.

$$
\begin{align*}
& \left.h_{1}+h_{2}+\gamma\left[p_{1}\right]\left(1, h_{2}+1\right)+\left(1-p_{1}\right) J\left(h_{1}+1, h_{2}+1\right)\right] \\
\leqslant & \left.\left.h_{1}+h_{2}+\gamma\left[p_{2}\right]\left(h_{1}+1,1\right)+\left(1-p_{2}\right)\right]\left(h_{1}+1, h_{2}+1\right)\right] \tag{x}
\end{align*}
$$

Now, suppose that the current state is charred to $h_{1}+1, h_{2}$ We wish to compar

Now, suppose that the current state is charged to $h_{1}+1, h_{2}$. We wish to compare

$$
\begin{aligned}
& \operatorname{Cos} t-t-802-\operatorname{Cos} t-t-y 0^{2} \\
& =\left(h_{1}+1\right)+h_{2}+\gamma\left[\rho_{1} J\left(1, h_{2}+1\right)+\left(1-p_{1}\right) J\left(h_{1}+2, h_{2}+1\right)\right] \\
& \left\{\left(h_{1}+1\right)+h_{2}+\gamma\left[\rho_{2} J\left(h_{1}+2,1\right)+\left(1-p_{2}\right) J\left(h_{1}+2, h_{2}+1\right)\right]\right. \\
& \leqslant \gamma\left(1-p_{1}\right)\left[J\left(h_{1}+2, h_{2}+1\right)-J\left(h_{1}+1, h_{2}+1\right)\right] \\
& -\gamma p_{2}\left[J\left(h_{1}+2,1\right)-J\left(h_{1}+1,1\right)\right] \\
& -\gamma\left(1-p_{2}\right)\left[J\left(h_{1}+2, h_{2}+1\right)-J\left(h_{1}+1, h_{2}+1\right)\right] \\
& \text { (using }(*) \text {) } \\
& =\gamma\left(\underset{\substack{10}}{\left(P_{2}-p_{1}\right)}\left[J\left(h_{1}+2, h_{2}+1\right)-J\left(h_{1}+1, h_{2}+1\right)\right]\right. \\
& -\gamma \cos _{\substack{v^{\prime} \\
0}}\left[J\left(h_{1}+2,1\right)_{\substack{v_{1} \\
0}}-J\left(h_{1}+1,1\right)\right] \\
& \leq 0
\end{aligned}
$$

Therefore, the optimal decision for $\left(h_{1}+1, h_{2}\right)$ is still scheduling sensor 1 .
This shows that there must be a threshold H, Such that sensor 1 is scheduled for ar $h_{1} \geqslant H_{1}$ and it is not scheduled fro az $h_{1}<H$.. The threshold depends on h_{2}.
(6) The orly charge to the Bellman equation on the pseudo code is $t=$ change
(6) The orly charge to the Bellman equation on the pseudo code is to chang

$$
\begin{array}{ll}
& h_{1}+h_{2} \\
\text { to } \quad & h_{1}^{2}+h_{2} .
\end{array}
$$

Since these terms are cancelled in $(*)$, the threshold structure should still work.

This figure shows the threhold for h_{1}, as a function of h_{L}.

We can see that the threshold for scheduling
sensor 1 is a lot lower, because we cosign a higher cost for sensor 1's A.2.

