Solution

Wednesday, November 13, 2024 4:16 PM

 $P_{coh}/em 1$ (a) No. This set looks like $\frac{1}{2}$ /20. The matrix $\begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}$ is positive-definite. Hence, the left-hand-side No. The left-hand-side is a 1sq-sum-exp function
of s, rubich is convex in s. A counter example is easy (C) t find Yes. $E(f(x)) = \frac{1}{2} \int_{1}^{1} f_1 \cdot f(i) dx_{i} dx_{i}$ linear
in \overrightarrow{p} . Hence, the set $\alpha \in E(f(x)) \leq \beta$ is the (d) Yes. For each N, the set of X such that (e) $\sqrt{2}\nu$ \leq / is a half-space. The set in guestion is the intersection of these half-spaces, and hence is convex. Problem 2. Take (x1, Z1) & (x1, Z2) ES. By the definition of S) there exists guin giz such that (x_1, y_1) \in S_1 , (x_1, y_1) \in S_2 , k \in \in $y_n + y_1$. Similarly, there exists dy was such that $(x_1, y_1) \in S_1$, $(x_1, y_2) \in S_2$, k $z_1 = y_2 + y_2$.

Now, for any
$$
06(0, 0)
$$
, consider the convex
\ncombination
\n
$$
\theta(x_1, z_1) + (1 - \theta)(x_1, z_1)
$$
\n
$$
= [\theta(x_1, z_1) + (1 - \theta)(x_2, \theta z_1 + (1 - \theta) z_1),
$$
\n
$$
\sin(\alpha x_1, \beta_1) + (\cos(\alpha x_1 - \alpha x_2)) \cos(\alpha x_1 + (\alpha x_1 - \alpha x_2))
$$
\n
$$
= [\theta(x_1 + (\alpha x_2) - \alpha x_1 - \alpha x_2)]
$$
\n
$$
= [\theta(x_1 + (\alpha x_2) - \alpha x_1 - \alpha x_2)]
$$
\n
$$
= [\theta(x_1 + (\alpha x_2) - \alpha x_1 - \alpha x_2)]
$$
\n
$$
= [\theta(x_1 + (\alpha x_2) - \alpha x_1 - \alpha x_2)]
$$
\n
$$
= [\theta(x_1 + (\alpha x_2) - \alpha x_1 - \alpha x_2)]
$$
\n
$$
= \theta(x_1 + (\alpha x_2) - \alpha x_1 - \alpha x_2)]
$$
\n
$$
= \theta(x_1 + (\alpha x_2) - \alpha x_1 - \alpha x_2 + \alpha x_2 + \alpha x_2 + \alpha x_2)
$$
\n
$$
= \theta(x_1 + (\alpha x_2) - \alpha x_1 - \alpha x_2 + \alpha x_2)
$$
\n
$$
= \theta(x_1 + \alpha x_2 - \alpha x_1 - \alpha x_2 + \alpha x_2)
$$
\n
$$
= \theta(x_1 + \alpha x_2 - \alpha x_1 - \alpha x_2 + \alpha x_2)
$$
\n
$$
= \theta(x_1 + \alpha x_2 - \alpha x_1 - \alpha x_2 + \alpha x_2)
$$
\n
$$
= \theta(x_1 + \alpha x_2 - \alpha x_1 - \alpha x_2 - \alpha x_2 - \alpha x_2)
$$
\n
$$
= \theta(x_1 + \alpha x_2 - \alpha x_1 - \alpha x_2 - \alpha x_2 - \alpha x_2)
$$
\n
$$
= \theta(x_1 + \alpha x_2 - \alpha x_1 - \alpha x_2 - \alpha x_2 - \alpha x_2)
$$
\n
$$
= \theta(x_1 + \alpha x_2 - \alpha x_2 - \alpha x_2 - \
$$

 $\bigoplus(\kappa) \leq \bigoplus(X_1, X_2)$ $\leq \theta + (x_1(u_1), x_2(u_1)) + (-\theta) + (x_1(u_1), x_2(u_2))$ $(sine + is convex)$ = $\theta g(u_1) + (-\theta)g(u_2)$ Thus, & is convex in u. (b) Yes. Because $\frac{u^2}{v}$ is convex, and the mapping (c) No. Consider the direction of x $\frac{1}{\int f(x)}$ $\chi(x) = \frac{x}{x+2y} = 1 - \frac{29}{x+2y}$ is a concare function of x . $\lfloor d \rfloor$ yes. $h(n)=\frac{1}{n}$ is convex \approx non-increasing on uzo, & $f(x)$ is concave
Hence, $h(g(x))$ is convex (e) Yes. For each θ , $\theta x - \frac{1}{2}E[exp(\theta X)]$ is linear in X. The pointmise supremum of Problem 4 Las The optimization problem is $\frac{2}{\sqrt{2}}$ ℓ m^2 sub + $\frac{J(s)}{\frac{2}{s}}$ \times_{s} > A_s $+$ or all s , x_{sj} 20 for all $s_{s,j}$, $\sum_{s=1}^{N} \sum_{j=1}^{J(j)} H_3$ $x_{s_j} \in r_1$ for all l セ r_{L} = $\omega l_{3}(1+\frac{l_{L}}{n_{0}})$, $l_{L}\ge0$ Since $I_2(y)$ is concave, and all other objectives be

Since $I_3(r)$ is concave, and all other objectives k constraints are linear, this is a convex problem. Note that the last constraint needs to be S. Since We minimize PL, the optimal solution will automatically m cke it =. (b) Associate a Lagrange multiplier λ_1 to constraint (1).
The Lagrangian is $L(\vec{x}, \vec{r}, \vec{p}, \vec{\lambda}) = \sum_{l=1}^{L} p_l + \sum_{l} \lambda_l \left(\frac{N}{s-1} \sum_{j=l}^{J(s)} l_j x_j - r_l \right)$ = $\frac{N}{\sum_{s=1}^{N}} \frac{J(s)}{S} X_{sj} \left(\frac{L}{s-1} H_{sj}^{l} \lambda_{l} \right) + \sum_{j=1}^{L} (1 - \lambda_{l} I_{l})$ Thus, to minimize L(.) over the remaining constraints,
we can separately solve - For each $+$ Inus, $\frac{1}{\sin \lambda}$ $\frac{J(s)}{2}$ x_{s} $\left(\frac{L}{s}, \frac{L}{s}, \lambda\right)$ $S_{\mu} b$ \uparrow $\frac{J(s)}{2}$ X_{S} \geq A_{S} X_{S} \geq 0 $\frac{2}{2}$ - Foreach link 1: min $\ell - \lambda_{L}r_{L}$ $sh\frac{1}{2}\pi$ $r_1 \leq \frac{1}{2}\left(1+\frac{p_s}{n_s}\right)$ $\left(\zeta\right)$ (c) For (2), since the objective is linear, if there is any
 x_{5j} and a path whose $(\frac{1}{2}, \frac{1}{12}, \frac{1}{12})$ is not-the smallest, we can reduce the objective of (4) by moving of part (c) is therefore true (d) Giren the current $\lambda_1(t)$, each flow s can solve (v) $\frac{1}{2}$ assigning
 $x_{5j}(4) = Ax$ on one of the paths ; with the smallest total price.

Each list can also be (s), which is equivalent to

\n
$$
\begin{array}{l}\n\text{Path } \text{A} \text{ is an } \text{
$$

Associate a Lagrange multiplier λ to the constraint $L(\vec{x}, \lambda) = -\frac{\lambda}{i-1} (U_{i1}X_{i1} + U_{i2}X_{i2}) + \lambda \left[\frac{\lambda}{i-1} (X_{i1} + 2X_{i2}) - W \right]$ $= -\frac{N}{i^2} \left[(U_{i1} - \lambda) \times i \pm (U_{i2} - 2\lambda) \times i \right] - \lambda N.$ Suppose that λ is the optimal dual variable. From the KKT
condition, the optimal primal sulution should minimize L(...).
In that case, x should minimize, for each i, max $(U_{ii} - \lambda)X_{i1} + (U_{ii} - \lambda)X_{i2}$ $Sub t x X_{i1} X_{i2}$, $X_{io} \ge 0$ X_{i} + X_{i1} + X_{i2} = 1 Since the objective is linear, the optimal solution should
increase the Xin value with the lagest weight. Thus, we can derive: $u_{11}-\lambda > u_{12}-2\lambda + u_{11}-\lambda >0$, then $-2+$ (2) $X_{11} = 1$, $X_{12} = X_{10} = 0$ \mathcal{U} is- $\lambda < \mathcal{U}_{12}$ - $\lambda \leq \lambda$ die-2120, then -21 $Xiz = 1$, $Xiz = x_{io} = 0$ (3) -1 $U_{i1} - \lambda = U_{i2} - 2\lambda > 0$, then (4) $X_{i0} = 0$, $X_{i1} + X_{i2} = 1$ -1 $max 1$ Ui $1 - \lambda$, Ui $2 - 2\lambda$ $= 0$, then Xio can be any value 20 (1) -21 $max \{ lli_1 - \lambda, lli_2 - i\lambda \} < 0, \pm l.$ $X_{i0} = 1$, $X_{i1} = X_{i2} = 0$ $\sqrt{6}$ (C) Note that the KKT condition is $\frac{x}{1-x}$ is primal feasible \overrightarrow{x} minimizes $L(\overrightarrow{x},\lambda)$ over \overrightarrow{x} $- \lambda (\frac{N}{1-1}x_{1+}+2x_{2}-w) = 0.$ Suppose that λ is the optimal dual variable, and \vec{x} is
the optimal primal variable. Then \vec{x} λ satisfy the
above k k T condition already.

the optimal primal variable. Then \overline{X} & λ satisfy the
above kKT condition already. To find another optimal solution that is mostly 0 or 1, we
just need to find another set of x' such that it has
at most two non-0-and-1 users, and that also satisfies the structure in part (b), and $\frac{N}{i-1}$ χ'_{i1} + $2\chi'_{i2}$ = $\frac{N}{i-1}$ χ'_{i1} + $2\chi'_{i2}$. $(\star\star)$ $C(early, for (2)(s), (6), be can simply take Xiv=Xiw.$ For those isers that satisfy (4) , let this ret be J, Let $w_1 = \sum_{\tilde{i} \in J_1} x_{i1} + 2x_{i2}$
denote their total bandwidth consumption. We will shift this W_1 among users in J_1 . Specifically, since $|J_1| \leq U_1 \leq 2|J_1|.$ We then set X_{im} for $i \in J$, as follows. All users $i \in J$,
starts with $X_{i1} = 1$ & $X_{i2} = 3$. Then, if the remaining bandwidth $W = \frac{1}{1631}(X_1' + 2X_2') \ge 1$
we pick one wer $\lambda \in J_1$ with $X_{11}'=1$ and claye it
t. $X_{11}'=0$ & $X_{12}'=1$. This will reduce the remaining
bandwidth by 1. Continue doig so, until $0 \leq \underline{\mathcal{S}}^{\underline{\mathfrak{S}}}\ \mu_{\ell} - \overline{\mathcal{E}}_{1} \left(\chi_{i1}^{\ell} + 2\chi_{i2}^{\ell}\right) \leq \underline{1} \ .$ (Note that such users i can always be found. Otherwise, we would have $\frac{1}{167}$, $\frac{1}{167}$, In this way, only one wear $i\in J$, will have non-0-and-1
variables, but we get $(\divideontimes\star)$.

We can perform a similar procedure for (5), resulting
in another user i with non-0-or-1 variables. In total, there are at most 2 uses with non-O-or-1 $varals$. (d) From the solution Xin, we assign zero bandwicth This reduces the whility by at most $2 \cdot \max_{\substack{n \geq 1, \geq N, \\ n \geq 1, \geq N}} U_{n}^{*}$ Let this wishing by f'_s , then f_0 \geq $f^* - 2$ max $u_{i\mu}$. to should only be better than to. Hence $\begin{array}{ccccc} & & +\circ & > & +^{\star} - & \ge & \wedge\hskip-0.7cm\cdots\wedge\hskip-0.7cm \cdots\wedge\hskip-0.7cm & & \wedge\hskip-0.7cm\cdots\wedge\hskip-0.7cm & & \wedge\hskip-0.7cm & & \wedge\hskip-0.$ $\frac{1}{\pi} \frac{1}{\pi} = \frac{1}{\pi}$ $\frac{1}{\pi} \frac{1}{\pi} = \frac{1}{\pi}$ Problem 6 (a) The optimization problem is min r
 Sub t_{0} r_{t} s r $\frac{1}{t+1}$ $\frac{1}{t+2}$ $\frac{1}{t+1}$ $\frac{1}{t+1}$ $\frac{1}{t+1}$ $\frac{1}{t+1}$ $\frac{1}{t+1}$ $\frac{1}{t+1}$ $\frac{1}{t+1}$ $\frac{1}{t+1}$ $\frac{1}{t+1}$ This is a linear program, and hence convex. (b) To show convexity of $P(\vec{a})$, take \vec{a} 't \vec{a} . By
definition of $P(\vec{a})$, there exists \vec{r} such that $p(\vec{a}) = m \rightarrow r_t^1$

 $p(\vec{a}) = m\approx r_t^1$ $\frac{1}{2\epsilon}$ $r_t^2 \geq \frac{1}{2\epsilon} \theta_t^2$ for all $t=1,\dots,T$. Similarly, for \vec{a}^2 , there exists \vec{r}_t^2 such that $p(a^2) = \max_t r_t^2$ X
 $\frac{1}{2} r_t^2$ $\frac{1}{2} a^2$ are two all $t = 1, ..., T$. Now, for any $0 \in (0, 1)$, consider $\vec{a} = 0 \vec{a} + (-0)\vec{a^2}$.

4 we simply take $r_t = \beta r_t^1 + (1-\delta) r_t^2$ we set $\frac{1}{2}r_{\tau} \geq \frac{1}{7-t} \left(\frac{\delta a_{\tau}^{1}}{\delta t} + (1-\delta)a_{\tau}^{2} \right) = \frac{1}{7-t} a_{\tau}$ f^{ω} all $t=1,\cdots,7$. In other words, It satisfies the constraint for $p(\tilde{a})$. Thus, we have $p(z)$ = max r_t = θ max r_t^2 + (1-0) max r_t^2 = $\theta \cdot \phi(\vec{a}) + (1-\theta) \phi(\vec{a}).$ Hence, $p(\tilde{a})$ is convex in \tilde{a} . To show that $p(\vec{a})$ is non-decreasing in each element at,
consider \vec{a}^1 k \vec{a}^2 that differ only by $a_t^1 > a_t^2$. For $p(\vec{a})$, there exists \vec{r} that satisfies (*).
Since $a^2 + a^2$, the same \vec{r} also satisfies (*) for \vec{a} .
Thus $p(\vec{a}^2) \le p(\vec{a}^1)$. (c) For a fixed t, we use the following change of variables: $v = \frac{1}{\sum_{\tau=t}^{T} \rho(\vec{a}(\tau))}$ $(\star\star)$ $M_{\tau} = \frac{a_{\tau}}{\sum\limits_{\tau \in \tau} \phi(\vec{\alpha}(\tau))}$

 $M_{\tilde{l}} = \frac{M_{\tilde{l}}}{\sum_{\tau=t}^{L} \phi(\tilde{\alpha}(\tau))}$ Then, our objective becomes $\sum_{\tau=t}^L u_{\tau}$. v & u_1 must satisfy $a_7 = \frac{u_7}{v}$
 $\Rightarrow \phi(\bar{a}(T)) = \rho(a_1, ..., a_7) = \rho(\frac{u_1}{v_1}, ..., \frac{u_7}{v_r})$ $\Rightarrow \quad \underline{1} = \underline{v} \left(\frac{1}{t+1} \gamma(\vec{\alpha}(t)) \right) = \frac{1}{t+1} \underline{v} \gamma(\frac{u_1}{v_2} \cdots \frac{u_t}{v})$ This, we can formulate the following optimization problem: $\frac{1}{11229.020}$ $\frac{1}{112}$ $u = 1$ $\frac{1}{112}$ $\frac{$ $\int L_5 \approx \frac{7}{\tau} \int \frac{u_1}{\tau} \sqrt{\rho \left(\frac{u_2}{\tau} - \frac{u_3}{\tau}\right)}$ < 1. (Note that it is important to use \leq in the constraint.
Otherwise, an equality conotraint will not be convex.
We will justify below risty \leq has no loss of optimality.) We how show that (+) k (7) are equivalent. First, for
any feasible solution to (7), we can we the mapping (++)
to get $uz \wedge v$ such that it is feasible for (+) (with equality in the constraint). Thus, φ_{p+} of φ_{p+} $\leq \varphi_{p+}$ ζ_{p+} \rightarrow ζ_{p+} . Second, for the optimal solution to (*), the constraint
must be satisfied with equality. (Otherwise, we can
increase U_{τ} to mate the left-hand-side bigger.) We can then use $a_1 = \frac{a_1}{v}$ which is feasible for (7)
and produces the same objective value because $\frac{\frac{1}{z-t}a_{\tau}}{\frac{1}{z-t}p(\vec{a}(t))} = \frac{\frac{1}{z-t}u_{\tau}}{\frac{1}{z-t}} = \frac{\tau}{z-t}u_{\tau}.$ Hence, $0p + 4(7) \ge 0p + 4(4)$. Vation in todation the transmission inflame are

money upon y viv a upony vivo Putting it together, the two optimization problems are
equivalent. Finally, $(\frac{x}{y})$ is convex because $\frac{1}{\sqrt{u}}$ is the perspective mapping of $p(\vec{u})$, which is convex. Alternative solution to Problem 6(c): 1 A common mistake is to convert (7) to the following \mathcal{W} $\frac{1}{\sqrt{2}}$
 $\frac{1}{\sqrt{2}}$
 $\frac{1}{\sqrt{2}}$
 $\frac{1}{\sqrt{2}}$
 $\frac{1}{\sqrt{2}}$
 $\frac{1}{\sqrt{2}}$
 $\frac{1}{\sqrt{2}}$ - However, this is not equivalent to (7) (7) looks
for the maximum over all \vec{a} . The above constraint
may only hold for one \vec{a} . Therefore, I may be
much smaller that the solution to (7) 12 Instead, this is an equivalent problem to (7) $\begin{array}{rcl}\n\text{max} & \text{max} \\
\text{sin} & \text{max} \\
\hline\n\frac{1}{2} & \text{sin} \\
\frac{1}{2} & \text{sin} \\
\$ - However, the constraint is not convex. (3) Sume students nuticed that $p(\lambda \bar{a}) = \lambda p(\bar{a})$.
Therefore there is no loss of extincting forcing $\frac{1}{2}a_7=1$ (7) is then equivalent to (the inverse of):

(7) is then equivalent to (the inverse of): $min \frac{1}{\sqrt{2}t} \sqrt{2(t)}$ $545 + 24 = 24$ - This is a convex problem since $\rho(\cdot)$ is convex. - However, this approach will not work if $p(\lambda \overline{z}) \neq \lambda p(\overline{z})$.
My solution above does not regnine this additional