Problem 1:
Solution:
(a) No. The inequality is equivalent to

$$
x_{3}-\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\left(x_{3}-y_{3}\right)^{2}} \leq 0 .
$$

However, the left-hand-side is a concave function. It is not hard to find a counter example.
(b) Yes.

$$
\underline{Z}>a \Leftrightarrow \quad v^{\top}(\underline{X}-a I] v \geqslant 0
$$

for all \sim
Thus, $\{\underline{x} \mid \underline{x}>a\}$

$$
=\bigcap\left\{\underline{X} \mid \sim^{\top}(\underline{\bar{x}}-a \underline{I}) v \geqslant 0\right\}
$$

The set $\left\{\bar{X} \mid v^{\top}(\underline{X}-a I) v \geqslant 0\right\}$ is convex since it is a half-space.
(c) No. It looks like this

which is clearly not convex.
(d) Yes.
(d) Yes.

$$
\frac{P_{1}}{P_{2}+N}>2 \Leftrightarrow \quad 2 P_{2}-P_{1}+N<0
$$

It is a convex set since $2 P_{2}-p_{1}+N$ is a convex (actudly linear) function.
(e) Yes.

KL distance is a convex function in both $\vec{p} \& \overrightarrow{9}$. This can be seen by the fact that - $p_{i} \log \frac{q_{i}}{p_{i}}$ is the perfection mapping of $-\log \mathrm{ri}_{i}$, which is convex.

Solution: Let $z_{1} \in A-B$. Then, there must exist $x_{1} \in A, y_{1} \in B$ such that $z_{1}=x_{1}-y_{1}$.
Similarly, Let $z_{2} \in A-B$, such that

$$
z_{2}=x_{2}-y_{2}, \quad x_{2} \in A \& y_{2} \in B .
$$

Consider the convex combination, $\theta \leqslant \theta \leqslant 1$:

$$
\begin{aligned}
z & =z_{1} \cdot \theta+z_{2}(1-\theta) . \\
& =\left(x_{1}-y_{1}\right) \theta+\left(x_{2}-y_{2}\right)(1-\theta) \\
& =\left[x_{1} \theta+x_{2}(1-\theta)\right)-\left[y_{1} \theta+y_{2}(1-\theta)\right]
\end{aligned}
$$

Since A is convex, $x_{1} \theta+x_{2}(1-\theta) \in A$
Since B is convex, $\quad y_{1} \theta+x_{2}(1-\theta) \in B$
Thus, $\%$ must belong t $A-B$.
We can then concluch that $A-B$ is a convex set.
(a) No. The first summation is equal to

$$
\sum_{i: y_{i}=1} \omega^{\top} x_{i}-\underbrace{\log \left(1+e^{\omega^{\top} x_{i}}\right)}_{\text {convex }}
$$

which is concave in ns. Similarly, the
second term en in also concave
(b) No. When y is large,

$$
\log \left(\frac{y^{2}}{x}+1\right) \approx \operatorname{ly} \frac{y^{2}}{x}=2 \lg y-\lg x
$$

which is concave in y. Thus, the function cannot be cannas in book $x \& y$
(c) Yes. The function

$$
\theta x-\log M_{x}(\theta)
$$

is linear in x for every θ. Thus, $I(x)$ is convex in x since it is the pointwise maximum $(\operatorname{over} \theta)$ of linear functions
(d) Yes. $\sqrt{x y}=x \sqrt{\frac{y}{x}}$ is concave since it is the perspective mapping of \sqrt{y}.
Hence, $-\sqrt{x(x+y)}$ is a convex function.
(e) Yes. This follows from the composition rules.

- e^{y} is convex and increasing
- x^{2} is convex

Problem 4:

Solution:
(a) The Lagrangian is

$$
\begin{aligned}
L(\vec{y}, \lambda) & =\sum_{t=1}^{T} f\left(x_{t}+y_{t}\right)+\lambda\left(C-\sum_{t=1}^{T} y_{t}\right) \\
& =\sum_{t=1}^{T}\left[f\left(x_{t}+y_{t}\right)-\lambda y_{t}\right]+\lambda C
\end{aligned}
$$

Thus, the KKT condition for optimality is
(i) $\sum_{t=1}^{T} y_{t} \geq C, y_{t} \geq 0$
(ii) $\quad \lambda \in R$
(iii) y_{+}should mining $f\left(x_{+}+y\right)-\lambda y$ over $y+\geq 0$
(iv) $\lambda\left(\sum_{t=1}^{T} y_{t}-c\right)=0$
(t) Consider ar time-slot + such that $y_{+}>0$.

The operating condition for (iii) states that

$$
f^{\prime}\left(x_{+}+y_{+}\right)-\lambda=0
$$

Since $f^{\prime \prime}(z)>0$ for all z. The value of z such that $f^{\prime}(z)=\lambda$ is unique.
Therefore, the value of $x_{+}+y_{+}$must be the same for all time-slots such that $y_{+}>0$.

Problem 5:
Solution:
(a) The Lagrangian is

$$
\begin{aligned}
& L\left(a_{1}, a_{2}, \lambda_{1}, \lambda_{2}\right)= a_{1} x_{1}+a_{2} x_{2}+\lambda_{1}\left(2 a_{1}+a_{2}-4\right) \\
&+\lambda_{2}\left(a_{1}+2 a_{2}-5\right) \\
&=a_{1}\left(x_{1}+2 \lambda_{1}+\lambda_{2}\right)+a_{2}\left(x_{2}+\lambda_{1}+2 \lambda_{2}\right) \\
&-4 \lambda_{1}-5 \lambda_{2}
\end{aligned}
$$

To minimize L over a_{1}, a_{2}, we get

To minimize L over a_{1}, a_{2}, we get

$$
\min _{a_{1}, a_{2}} L\left(a_{1}, a_{2}, \lambda_{1}, \lambda_{2}\right)= \begin{cases}-4 \lambda_{1}-5 \lambda_{2}, & \text { if } \begin{array}{ll}
x_{1}+2 \lambda_{1}+\lambda_{2}=0 \\
x_{2}+\lambda_{1}+2 \lambda_{2}=0
\end{array} \\
-\infty, & 0 / w .\end{cases}
$$

Therefore, the dual problem is

$$
\begin{array}{ll}
\max _{\lambda_{1} \lambda_{2}} & -4 \lambda_{1}-5 \lambda_{2} \\
\sin \text { to } & x_{1}+2 \lambda_{1}+\lambda_{2}=0 \\
& x_{2}+\lambda_{1}+2 \lambda_{2}=0 \\
& \lambda_{1} \geqslant 0, \lambda_{2} \geqslant 0
\end{array}
$$

(b) By strong dualiz.

$$
\min _{a \in P} a^{\top} x=\max _{\lambda_{1}, \lambda_{2} \in(8)^{-4 \lambda_{1}-5 \lambda_{2}}}
$$

Thus, the constraint that

$$
\min _{a \in p} a^{\top} x \geqslant 1
$$

is equivdent to

$$
\max _{\lambda_{1}, \lambda_{2} \in(8)}-4 \lambda_{1}-5 \lambda_{2} \geqslant 1
$$

and is equivalent to
There exists $\lambda_{1}, \lambda_{2} \in(8)$ such
that $-4 \lambda_{1}-5 \lambda_{2} \geq 1$
Therefore, (1) is equivalent to

$$
\begin{aligned}
\text { min } & f_{0}(x) \\
\text { sub to } & -4 \lambda_{1}-5 \lambda_{2} \geqslant 1 \\
& x_{1}+2 \lambda_{1}+\lambda_{2}=0 \\
& x_{2}+\lambda_{1}+2 \lambda_{2}=0 \\
& \lambda_{1} \geqslant 0, \lambda_{2} \geq 0
\end{aligned}
$$

Problem 6:
Solution:
(a) The only non-convex constraint is (10).
(a) The only non-convex constraint is (10).

However, we con replace it by

$$
\begin{equation*}
r_{l} \leqslant \lg \left(1+\frac{P_{L} P_{L}}{\omega_{0}}\right) \tag{11}
\end{equation*}
$$

became the optional solution will still pick the logest r_{L}, which will make (II) tight with equality.

- Associate the Lagrange multiplier λ_{1}. The Lagrangian is

$$
\begin{aligned}
& L(\vec{x}, \vec{r}, \vec{p}, \vec{\lambda})=-\sum_{s} u_{J}\left(x_{s}\right)+\sum_{l} l l \\
&+\bar{\sum}_{l} \lambda_{l}\left[\sum_{s} H_{s}^{l} x_{S}-r_{l}\right] \\
&=-\bar{z}_{s}\left[u_{S}\left(x_{S}\right)-x_{S} \cdot \bar{\sum}_{l} H_{S}^{l} \lambda_{l}\right] \\
&+\sum_{l}\left[p_{l}-\lambda_{l} r_{l}\right]
\end{aligned}
$$

- Therefore. to minimize L over $\vec{x}, \vec{r}, \vec{p}$ given $\vec{\lambda}$, each flow s can solve

$$
\begin{equation*}
x_{S}(t)=\max u_{s}\left(x_{s}\right)-x_{s} \sum_{l} H_{s}^{\prime} \lambda_{1}(t) \tag{12}
\end{equation*}
$$

Each link cam solve

$$
\begin{align*}
P_{l}(t)= & \min \quad P_{L}-\lambda_{l} r_{l} \tag{15}\\
& S_{L} t t_{0} \quad r_{l} \leqslant \log \left(1+\frac{\delta_{L} P_{L}}{\omega_{0}}\right) \\
\Delta r_{l}(t)= & \log \left(1+\frac{8_{L} P_{l}(t)}{\omega_{0}}\right) .
\end{align*}
$$

- To solve (12), we con set the derivative to jer (assuming that $x_{s} \geq 0$):

$$
\begin{aligned}
u_{s}^{\prime}\left(x_{s}\right) & =\sum_{l} H_{s}^{\prime} \lambda_{l}(t) \\
\Rightarrow x_{s}(t) & =\max \left\{0, u_{j}^{\prime-1}\left(\sum_{l} H_{s}^{\prime} \lambda_{l}(t)\right)\right.
\end{aligned}
$$

To solve (13), we note thad it is equivalent to

To solve (13), we note thad it is equivalent to

$$
\min _{P_{l}} P_{l}-\lambda_{l} \log \left(1+\frac{8_{l} P_{l}}{w_{0}}\right)
$$

Assuming $P_{1}>0$, we can abs set the derivative to zero:

$$
\begin{gathered}
1-\lambda_{l} \frac{\frac{\delta_{l}}{w_{0}}}{1+\frac{\delta_{l} p_{l}}{w_{0}}}=0 \\
\Rightarrow p_{l}(t)=\max \left\{0, \quad \lambda_{c}-\frac{w_{0}}{\delta_{l}}\right\} .
\end{gathered}
$$

- Finally, the dual algorithm can update

$$
\lambda_{L}(t+1)=\left\{\begin{array}{l}
\lambda_{l} \\
\left.\lambda_{L}(t)+\gamma\left[\sum_{s} H_{3}^{\prime} x_{s}(t)-r_{l}(t)\right]\right\}^{t} . \tag{14}
\end{array}\right.
$$

(b) Indeed, the above dual algorithm indeed represents a distributed \& price -driven operation: Given λ_{l}

- each flow car solve x s inclependenty based on (12)
- each link can determine PD indegenderty based on (13).
- each liale can upper λ_{i} taxed on (14), without knowledge of $U_{s}(\cdot)$ \& rate -power function.

Note: For problem (6), some students u'date x, p, λ all in the gradient direction:

$$
x_{s}(t+1)=x_{s}(t)-\alpha \frac{\partial L}{\partial x_{s}}
$$

$$
\begin{aligned}
& P_{l}(t+1)=P_{l}(t)-\alpha \frac{\partial L}{\partial P_{L}} \\
& \lambda_{1}(t+1)=\lambda_{1}(t)+\alpha \frac{\partial L}{\partial \lambda_{L}}
\end{aligned}
$$

However, note that such updates neither maximize nor minimize $L(x, p, \lambda)$. Thus, The convergence and optimality of this type of "primal-dual" algorithm is not obvious.

Instead, this problem asks for the "dual" algorithm, which is stated above. It is optimal since it maximizes the dual ofiectire function.

