Solution 2015

hursday, March 26, 2015
11:32 AM

ECE-647: Midterm Examination
March 31st, 2015
Due: 12:30PM, April 1st, 2015

This iz & take-home exam. You must solve the problems independently. Do
not discuss the problems with other students.

You can consult any textbooks /papers. However, if vou use materials from textbooks

other than the ones we use in class, wou need to cte them. You also need to cite all
papers that you use,

You will need to turn in the exam paper by 12:30PM, Wednesday, April 1st, 2015 in
my office (MSEE 340). If vou would like to turn it in earlier, vou can slip your exam
paper under my office door.

Write your name and PUID at the space provided below.
There are seven problems in the exam. The total points are 100

Email the instructor at lnoc@ecn. purdue edu I there are any questions.

j@ /MH‘W\

Your Name

10-digit PUID

11:32am

Mid Page 1



No

Var

(1) (15 points) [Yes or No) Is each of the following sets a comvex 227 No justification

is necessary.

(2] (3 points) The zet

(b

£
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{{z,v) € R? | 2% + 4oy — ¢* > 5},
(3 points) Suppose that X is random variable in B®. The set
{(s,u) | seR"ueR, ng[E_-Tx: < ul,

where =° denotes the transpose of s.

(3 pointzs) Let X be a real-valued random varisble with P{X = a;) = p:.1
1,....n, where q; < a, < .. < a_ are given real mumbers. Of course, 7
[pr,....pn] & R™ lies in the standard probability simplex {305 p = 1
0 for all i}. The set of the probability distribution §F such that E|X3| < 2E/X|.

v

(3 points) Suppose that 5; and 5» are convesx gets in R™*7. The partial difference

5 defined as
S={lz,ys—v) |z e Ry, R, [z, 1) € 51, and (z, ) € 52}

(3 points] The set
Iy, 2o, m2) = 0)zpzers < 1},
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(2] (10 points) In a cellular network, a mobile user may receive signals from multiple base-

stations. Suppose that there are K base-stations, and base-station & i3 at location
z; € R*® Further, supposs that all base-stations transmit signals at the common
power-level Fy. If the mobile iz at location gy, then the signsl strength recehved from
base-station k is

eFy |y — 2/,

where ||y — z3/|; denote the Euclidean distance, ¢ > 0 i3 a constant, and n is the
path-loss exponent (a constant) that is typically between 2 to 4.

Supposze that the mobile wishes to communicate with the base-station with the strongest
signzl. Let V' denote the set of locations y such that the mobile receives s stronger
signal from basze-station 1 than from all other basze-stations. Show that V7 is & conves

set in R Show all intermediate steps to get full credita.
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(3] (15 points) (Yes or No) Is ezch of the following functions & convex function?
No justification is necessary.

\ : —— 5
% (2] (3 points] fiz,y.t) = —+/zy — °, where domf = {z y.t £ Rlzy = t°}.
Vo (b) (3 points) fle,y) = 2° oy — 4%, where 2,y = R
>/M (e) (3 points) flzy) =2z/(z+y). where z y S Rand = + 3 > 0.

/\} 0 (d] (3 points] Suppose that O is an arbitrary set in B®. The function
gly) =inf{y"z |z € C}

where y £ R™.

ND (el (3 points] Let X be a real-valued randem wvarisble with P{X = &) = pi.t =
1,....n, where a1 < ag < .. < a4, are given real numbers. Of course, § =
[p1,....pn] € R™ lies in the standard probability simplex {7205 . p = 1,y =

0 for all i}. The variance Var{X) as a funetion of the probability distribution §.
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(4] (15 points) Suppose that a non-smpty convex set C in R contains (as subsets) both
the origin and a ball centered at the origin with some positive radius. For any z € R™,
define

Mg(z)=inf{t >0t 'z € ChL

Show that A (z) is a cotvex funetion in z. Show all intermediate steps to get full
credits.
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(3] (10 points) Derive the dusl problem of the following optimization problem:
min Y wiplogp:
i=1
subject to Y p <1,
=1

where w;, ¢ = 1, ..., n are positive constants. You can assume that “log” represents the
natural logarithm. Thus, due to the definition of the logarithmic funetion, the domain
of the problem iz p; = 0 for all . Show all intermediate steps to get full credits,
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(6] (15 points) (Data-Locality-Aware Load-Balancing.)

Background: Today's data centers [e.g., those run by Google) consist of a large num-
ber (thousands or more) of cheap computers. Each computer has its own computation
power and some storage capability, Not only that computation is carried out distribu-
tively across these computers, data (or information) are also distributively stored across
these computers. When a new job (e.g.. a Google-search request] arrives, it will be Orst
decomposed into a large number of smaller tasks (e.z., one sub-task may correspond
to searching all the cached webpages with URL ending with purdue com). Then, each
task iz zent to one of the computers, which then needs to access the data/information
(in this case the corresponding cached webpages), and carries out the computation.
Of course, if the dats/information is already locally stored at the computer, the task
will be completed more quickly. If the data/information needs to be retrieved from
othet computers in the data center. more resources will be consumed to retrieve the
data remotely and thus the completion will be slower. The following model alms to
study how to dispatch the tasks and balance the load so that the total cost of compu-
tation/communication is minitmized.

Model: In particular, consider the following model. There are J computers. Assume
that tasks are of I types. For each task of Type ¢ = 1, . T, the data/information
needed are already stored in every computer in the subset 4, < {1, .., J}. (This dats-
replication assumption s reasonsble in today's data-centers. For example. for Google,
each plece of dats is usually replicated on 3 computers, so that the data are not lost
with the failure of any one computer.) Thus if a task of Type ¢ i3 sent to & computer
J € A;, the smount of resource consumed at computer 7 is py. (Here, the notion of
“resource” iz abstract, and mey capture both CPU, hard drive, or networks, ete)) On
the othet hand, if a task of Type { is sent to a cotnputer § € 4. the amount of resource
consumed st computer § 18 pp > pip. Suppose that tasks of Type  arrive at the rate of
A; per unit time.

Let r; denote the amount of resource available at computer § per unit time. In cost-
aware data-centers, this value r, can also be adjusted for each computer j, which in

ng

be slowed down by lowering its CPU clock, which then consumes less electric power

E 1T

term determines the cost of running the computer. (For example, the computer may

to run.] Let Cjir,) denote the cost of running computer j in order to provide ry
amount of resource. Intuitively, if tasks of Type ¢ are only sent to computers in 4,
they will consume less resources. However, since the sets 4z for all tvpes ¢ =1,..., [
may overlap, the same computer may already be too busy serving the tasks from other
types. In that case, it may make sense to send some tasks of Type { to computers
7 € A in order to lower the overall cost. You are asked the following gquestions to
fiure out how to dispatch the tasks so that the total cost of running the data-center

10
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is minimized.

{al (5 points) Suppose that the arrival rates \'s are given. Let p,. denote the fraction
of tasks of Type-t that are dispatched to computer 7. Write down an optimization
problem for minimizing the total cost of running the computers, subject to the
constraint that the total amount of resources per unit time consumed by the tasks
at each computer ;7 iz no greater than the resource available at computer j. The
variables to be optimized are v’z and p,.’s. State the conditions under which your
optimization problem will be comvex.

(B] (5 points) Assume that the optimization problem is comvex. Using the KKT
condition, éhmr that the optimal selution i= of the following form: There exists a
dusal variable v; for each computer § such that (1) a task of Type-i will be sent to
a computer § £ A; (e p; = 0) only if

YM‘V‘ Yﬂ;"‘\
.”1‘%?% b < Irrgi!-g;_grf;::
and (i) a task of Type-i will be sent to a computer 7 € A, (1e, py > 0) only if

™min y;.,‘,\
[y SR Ly [y EEERC Ly
kedy E2d

(e} (5 points) Using the above knowledge, write down a distributed and iterative
algorithm that can be used to find the optimal primal and dual solutions to
the optimization problem. (You do NOT need to prove the convergence of your

algorithm.)
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(71 (20 points) (LASS0: Least square with Ly-regularization.)

Background: Suppose that an observed quantitv y £ R 1= linearly dependent on other

observed quantities x, . r_ € R. Inother words, there exist coefficients a,, ..., g, such
r

that y = X &;x;. However, we do not know a;, . i,. Hather we can obtain n samples
i=1

of these observations [y, 27, ..., 2], where j = 1, ... n. Thus, for each j,

y_1=

Nt

._.
1
-

We may then estimate the coefficienis @i, ..., @, by solving a least-square problem, e
by minimizing

n r =
T [y: —zuf} . )

1 i=1

[

over all a;, ...,q, Typleally, if n = p and some linear independence conditions are
met, the only solution that minimizes (1) is when a; = &; for all ¢, in which case the
objective function (1) will be trivially zero.

However, in the so-called high-dimenstonol problems, the dimension p may be very
large while the number of observations n may be much smaller than po In that case,
the shove least-square problem will produce multiple solutions for [a;, . a ] that all

make the value of (1) zero. Then. it is unclear which solution represents the true

coefficient vector @, .. &)

Fortunately, in a lot of these high-dimensional problems, the true coefficient vector
81, ..., 8 is knewn to be sparse. Specifically, for a k-sparse problem. we know in
advance that only k of the coefficients &, .. 2, are non-zero. We assume that & < n
p. Thus, the number of samples 1s grester than the sparsity level, but is smaller than
the total number of dimensions. Then, it makes sense to minimize (1) only over those
cocllicient vectors [y, .., ap] that meet the k-sparsity constraint. However, searching
over siuch a space of sparse coefficient vectors is a non-convex problem. Instead the
LASS0O method attempts to zolve the following problem

HII]iI‘l %E |::,|"—' — ZE11'J:| -+ )\Z a; |, .2|
Fhaenfm j=1 =1 =1

where A = 0 iz an appropriately chosen constant. The hope is that adding the Li-norm
TF 4 la; to the minimization will foree most a;'s to zero. Thus, the optimal solution

L=

4y, ., a;] to (2) may correctly estimate the location of the non-zero entries in the true

coefficient vector [z, ..., &), Le., we may have a; # 0 if and only if @; £ 0. (Note that
the non-zero entries a; solving (2} may still differ from the true values of & Heowever,

14
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once we know where the non-zero entries are, it is easy to find the correct values of a;
by minimizing (1) only over those non-zero entries )

Model: In the following, you will study a very simple case where & = 1. Specifically, we
will assume that only a; in the true coefficient vector is non-zero, and all other entries
g, ..., &, are zero, Without loss of generality, we will assume that @; > 0. We will
then derive conditions for the LASSO method (2) to correctly estimste the non-zero
entry of the coellicient vector. Of course, when we perform LASSO, we do not know
vet which entries are non-zero. Thus, some conditions will be needed, which wou are
asked to derive below.

Due to this simplified model, we have 7 = &2 for all § =1, n. Thus, the TAS20
method (2) reduces to

12 o & ] L
o ET ayzi — }ar| + AE |ex;

i=110L =1 =1

Let 0, ., a} denote the solution to (3).

{a) (10 points) Suppose that the solution to (3) correctly estimates the non-zero
entries of the true coefficient vector. In other words, suppose that the solution
to (3) satisfies o] > 0 and o) = ... = ay = (. Apply the first-order condition for
optimality to the variable o;, and show that a necessary condition for the correct
estimation of non-zero entries is

™
N < ey () &
=1
and a] and a; are related hy
. A
@y =01 — & -
T ()
i=1
(B (10 points) Suppose that the solution to (3) correctly estimates the non-zero

entries of the true coefficient vector. Apply the first-order condition for optimality
to variables g, [ = 2, ... p, and show that a necessary condition for the correct
estimation of non-zero entriss iz

it
i,
)

<1, foralll=2, . p (5)

e

ek

ta
¥

In other words, the observations corresponding to zero coefficients cannot be
strongly correlated to the observation z; with non-zero coeflicient.

15
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