
IERG 6120: Midterm Examination
November 9th, 2023

Due: 12:00PM (noon), November 10th, 2023 (at my office SHB 708).

� This is a take-home exam. You must solve the problems independently. Do

not discuss the problems with other students.

� You can consult any textbooks/papers. However, if you use materials from textbooks

other than the ones we use in class, you need to cite them. You also need to cite all

papers that you use.

� You will need to turn in the exam paper by 12:00pm (noon), Friday, November 10th,

2023 in my office (SHB 708). If you would like to turn it in earlier, you can slip your

exam paper under my office door.

� Write your name and email at the space provided below.

� There are six problems in the exam. The total points are 100.

� Email the instructor at xjlin@ie.cuhk.edu.hk if there are any questions.

—————————————————————-

Your Name

—————————————————————-

Email Address
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(1) (15 points) (Yes or No) Is each of the following sets a convex set? No justification

is necessary.

(a) (3 points) Let y = [y1, y2, y3] be a given point in R3. The set of points x =

[x1, x2, x3] ∈ R3 such that

d([x1, x2, x3], [y1, y2, y3]) ≥ x3,

where d(x, y) is the Euclidean distance between x and y.

(b) (3 points) For any symmetric matrix X ∈ Rn×n and positive number a, we say

that X ≻ a if the matrix X − aI (where I is the identity matrix) is positive

semi-definite. (Recall that a matrix X is positive semi-definite if vTXv ≥ 0 for

all vector v ∈ Rn). The set of symmetric matrices X such that X ≻ 1.

(c) (3 points) The set of points x = [x1, x2] ∈ R2 such that x1x
2
2 ≤ 1, x1 ≥ 0 and

x2 ≥ 0.

(d) (3 points) Consider two wireless links. Let P1, P2 ≥ 0 be the transmission power

of the first and second link, respectively. The SINR (signal-to-interference-and-

noise ratio) of the first link is then given by P1/(P2 + N), where N denote the

background noise power. The set of (P1, P2) such that the SINR of the first link

is higher than 2.

(e) (3 points) Let p⃗ = [pi, i = 1, ..., n] denote a discrete probability distribution on

{1, ..., n}, i.e., pi ≥ 0 for all i and
∑n

i=1 pi = 1. Let q⃗ = [qi, i = 1, ..., n] denote

another discrete probability distribution. The KL distance between these two

distributions is defined as

DKL(p⃗||q⃗) =
n∑

i=1

pi log
pi
qi
.

The set of (p⃗, q⃗) such that DKL(p⃗||q⃗) ≤ 0.5.
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(2) (10 points) Let A and B be two sets in Rn. Define A − B as the set of all points

x− y such that x ∈ A and y ∈ B.

Prove the following statement: If A and B are convex, then A−B must also be convex.

Show all intermediate steps to get full credits.
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(3) (15 points) (Yes or No) Is each of the following functions a convex function?

No justification is necessary.

(a) (3 points) Let (xi, yi), i = 1, ..., N be a given sequence of training samples, where

each xi ∈ R2 and each yi is either 1 or −1. Let w ∈ R2 be a weight to be

determined. The (loss) function L(w) of the weight w, given by:

L(w) =
∑
i:yi=1

log

(
ew

T xi

1 + ewT xi

)
+
∑

i:yi=−1

log

(
1

1 + ewT xi

)

(b) (3 points) Let x, y ∈ R. The function

f(x, y) = log(y2/x+ 1)

on the domain {(x, y)|x > 0, y ∈ R}.

(c) (3 points) Let X be a given random variable in R. Then, for any θ ∈ R, MX(θ) =

E[eθX ] is known as the moment generating function of X. (Note that MX(θ) is a

function of θ.) Let x ∈ R be a real number. The function

I(x) = sup
θ
[θx− logMX(θ)].

(d) (3 points) Let x, y ∈ R. The function

f(x, y) = −
√
x(x+ y)

on the domain {(x, y)|x > 0, y > 0}.

(e) (3 points) Let x ∈ R. The function f(x) = ex
2
.
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(4) (15 points) (Minimizing electricity cost with flexible load)

Next generation electrical power systems will need to support both flexible load and

inflexible load. Inflexible load is the electrical demand that must be met right away

(e.g., when we turn on a lamp, the electricity generation must be immediately increased

to power the lamp). On the other hand, flexible load is the demand that can be shifted

in time. For example, suppose that we need to charge an electric vehicle (EV) before

we leave for work at 8am tomorrow. We have the flexibility in delaying the charging

time, as long as the total amount of energy charged is equal to the capacity of the EV

battery. In this problem, we will study how to minimize the electricity generation cost

by utilizing such flexibility.

In particular, consider the following simple model. Time is slotted with t = 1, 2, ..., T

(e.g., T = 24 hours). At each time-slot t, let xt be the inflexible load that must be met

right away. Further, there is a flexible load with total capacity C (e.g., the EV battery

needs C = 40KWh of electricity). Let yt be electricity consumed at time t that is used

to fulfill the flexible load. Thus, we need
∑T

t=1 yt ≥ C. At each time-slot t, the cost

of electricity is given by g(xt + yt), where we assume that g(·) is a strictly convex and

increasing function. Thus, we wish to solve the following optimization problem:

min
[yt]

T∑
t=1

g(xt + yt) (1)

subject to yt ≥ 0, for all t,
T∑
t=1

yt ≥ C. (2)

(a) (8 points) Associate a multiplier λ for the constraint (2). Write down the KKT

condition for the optimal primal and dual solutions for problem (1).

(b) (7 points) Recall that the function g(·) is strictly convex, i.e., g′′(z) > 0 for all z.

Using the KKT condition from part (a), show that the optimal (primal) solution

to (1) has the following “equal consumption” property: For any two time-slots t

and s such that the flexible load is served with positive electricity consumption,

i.e., yt > 0 and ys > 0, we must have

xt + yt = ys + ys.

In other words, the optimal fulfillment schedule [yt] is such that the total electrical

consumption amount (of both flexible load and inflexible load) at each time-slot

is as common as possible across all times.

Show all intermediate steps to get full credits.
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(5) (20 points) (An optimization problem with robust constraints)

Start with the following optimization problem with respect to x = [x1, x2] ∈ R2:

min
x

f0(x)

subject to aTx ≥ b,

where a = [a1, a2] ∈ R2 and b ∈ R are given. Assume that f0(x) is a convex function

of x. Then clearly, this is a standard convex optimization problem.

In this question, however, we will consider a “robust” version of the above problem.

That is, we will consider the setting where the vector a ∈ R2 is not fixed, but instead

can be any vector inside a given set P . Since we do not know the exact value of a,

we wish to make sure that, with whatever choice of x that we select, the constraint

aTx ≥ b holds for all a ∈ P . Assume that b is still fixed. Then, the optimization

problem that we are interested in becomes:

min
x

f0(x) (3)

subject to min
a∈P

aTx ≥ b. (4)

As we can see, the problem (3) is “bi-level,” because the constraint itself is described by

another optimization problem! In general, this type of bi-level optimization problems

can be difficult to solve. Fortunately, for this problem, we can use duality to convert

it to a single-level optimization problem, which is also convex. You will be asked to

perform this transformation below.

To be more specific, below you can assume that the constraint set P on a = [a1, a2] is

given by

2a1 + a2 ≤ 4,

a1 + 2a2 ≤ 5,

and b is given by b = 1.

(a) (10 points) For a given x that is already chosen, focus on the optimization problem

in the constraint (4), i.e.:

min
a

aTx = a1x1 + a2x2 (5)

subject to 2a1 + a2 ≤ 4, (6)

a1 + 2a2 ≤ 5. (7)

Associate multipliers λ1 and λ2 for the two constraints (6) and (7), respectively.

Derive the dual problem for this optimization problem (5). (Hint: Note that since

x is assumed to be already chosen in (5), x1 and x2 can be treated as constants.)
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(b) (10 points) Show that the bi-level optimization problem (3), with the value of

b = 1 and P given above, is equivalent to:

min
x1,x2,λ1,λ2

f0(x) (8)

subject to −4λ1 − 5λ2 ≥ 1

x1 + 2λ1 + λ2 = 0

x2 + λ1 + 2λ2 = 0

λ1 ≥ 0, λ2 ≥ 0,

which is a single-level convex optimization problem. (Hint: Apply strong duality

to the result of part (a). Then, use the fact that the following two constraints are

equivalent: (i) maxz g(x, z) ≥ b; and (ii) there exists z such that g(x, z) ≥ b.)

Show all intermediate steps for full credit. (Note: you do NOT need to develop the

optimization algorithm for solving (8).)
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(6) (25 points) (Joint congestion control and power control)

In this question, we will study a network model that jointly optimizes the decisions for

end-user’s packet injection rate (i.e., a congestion control problem) and the transmis-

sion power of the links (i.e., a power control problem).

Consider a network with L links, which is used to serve N flows. For each flow s =

1, ..., N , let xs be its packet injection rate, and let Us(xs) be its (concave and increasing)

utility function. Each flow s will traverse a single path, given by a (fixed) subset of

links. Specifically, let H l
s = 1 if the packets of flow s traverses link l, and H l

s = 0,

otherwise. Thus, the total packet injection rate on link l is given by
∑N

s=1H
l
sxs.

Unlike the congestion control model that we studied in the class, however, here the

capacity rl of link l depends on its transmission power pl. Specifically, the relationship

between rl and pl is given by:

rl = log

(
1 +

glpl
w0

)
, (9)

where w0 is the (fixed) background noise, and gl is the (fixed) channel propagation loss

on link l. Note that we assume there is no interference among the links. Hence, the

capacity rl of a link l only depends on its own transmission power pl, and is independent

of the transmission power of other links.

Our goal is to maximize the total system utility, minus the total power consumption

in the system. This problem can be formulated as follows:

max
[xs],[pl]

N∑
s=1

Us(xs)−
L∑
l=1

pl (10)

subject to
N∑
s=1

H l
sxs ≤ rl for all l, (11)

rl = log

(
1 +

glpl
w0

)
for all l, (12)

pl ≥ 0 for all l.

(a) (20 points) Problem (10) is not a convex problem yet. Convert (10) to an equiv-

alent convex optimization problem. Then, associate a Lagrange multiplier λl to

each constraint in (11). As in class, λl can be interpreted as the unit-price of

using link l. Derive a dual gradient algorithm to solve problem (10).

(b) (5 points) Explain how the algorithm that you derived in part (a) is “distributed”

and “price-driven,” i.e., based on the prices, each flow s can determine its rate xs,

and each link l can determine its transmission power pl, both as functions of the
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prices, independently of others. Further, each link can update its price in a way

without knowledge of the utility function Us(·) of each flow, or the rate-power

function (9) of each link.

Show all intermediate steps for full credit. (Note: you do NOT need to prove the

convergence of your algorithm.)
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