
ECE-647: Midterm Examination
March 31st, 2015

Due: 12:30PM, April 1st, 2015

• This is a take-home exam. You must solve the problems independently. Do

not discuss the problems with other students.

• You can consult any textbooks/papers. However, if you use materials from textbooks

other than the ones we use in class, you need to cite them. You also need to cite all

papers that you use.

• You will need to turn in the exam paper by 12:30PM, Wednesday, April 1st, 2015 in

my office (MSEE 340). If you would like to turn it in earlier, you can slip your exam

paper under my office door.

• Write your name and PUID at the space provided below.

• There are seven problems in the exam. The total points are 100.

• Email the instructor at linx@ecn.purdue.edu if there are any questions.

—————————————————————-

Your Name

—————————————————————-

10-digit PUID
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(1) (15 points) (Yes or No) Is each of the following sets a convex set? No justification

is necessary.

(a) (3 points) The set

{(x, y) ∈ R2 | x2 + 4xy − y2 ≥ 5},

(b) (3 points) Suppose that X is random variable in Rn. The set

{(s, u) | s ∈ Rn, u ∈ R, logE[es
TX ] ≤ u},

where sT denotes the transpose of s.

(c) (3 points) Let X be a real-valued random variable with P{X = ai) = pi, i =

1, ..., n, where a1 < a2 < ... < an are given real numbers. Of course, ~p =

[p1, ..., pn] ∈ Rn lies in the standard probability simplex {~p|∑n
i=1

pi = 1, pi ≥
0 for all i}. The set of the probability distribution ~p such that E|X3| ≤ 2E|X|.

(d) (3 points) Suppose that S1 and S2 are convex sets in Rm×n. The partial difference

S defined as

S = {(x, y1 − y2) | x ∈ Rm, y1, y2 ∈ Rn, (x, y1) ∈ S1, and (x, y2) ∈ S2}.

(e) (3 points) The set

{(x1, x2, x3) ≥ 0|x1x2x3 < 1}.
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(2) (10 points) In a cellular network, a mobile user may receive signals from multiple base-

stations. Suppose that there are K base-stations, and base-station k is at location

xk ∈ R2. Further, suppose that all base-stations transmit signals at the common

power-level P0. If the mobile is at location y, then the signal strength received from

base-station k is

cP0||y − xk||−n
2

,

where ||y − xk||2 denote the Euclidean distance, c > 0 is a constant, and n is the

path-loss exponent (a constant) that is typically between 2 to 4.

Suppose that the mobile wishes to communicate with the base-station with the strongest

signal. Let V denote the set of locations y such that the mobile receives a stronger

signal from base-station 1 than from all other base-stations. Show that V is a convex

set in R2. Show all intermediate steps to get full credits.
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(3) (15 points) (Yes or No) Is each of the following functions a convex function?

No justification is necessary.

(a) (3 points) f(x, y, t) = −
√
xy − t2, where domf = {x, y, t ∈ R|xy ≥ t2}.

(b) (3 points) f(x, y) = x2 + 4xy − 4y2, where x, y ∈ R.

(c) (3 points) f(x, y) = x2/(x+ y), where x, y ∈ R and x+ y > 0.

(d) (3 points) Suppose that C is an arbitrary set in Rn. The function

g(y) = inf{yTx | x ∈ C}

where y ∈ Rn.

(e) (3 points) Let X be a real-valued random variable with P{X = ai) = pi, i =

1, ..., n, where a1 < a2 < ... < an are given real numbers. Of course, ~p =

[p1, ..., pn] ∈ Rn lies in the standard probability simplex {~p|∑n
i=1

pi = 1, pi ≥
0 for all i}. The variance Var(X) as a function of the probability distribution ~p.
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(4) (15 points) Suppose that a non-empty convex set C in Rn contains (as subsets) both

the origin and a ball centered at the origin with some positive radius. For any x ∈ Rn,

define

MC(x) = inf{t ≥ 0 | t−1x ∈ C}.

Show that Mc(x) is a convex function in x. Show all intermediate steps to get full

credits.
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(5) (10 points) Derive the dual problem of the following optimization problem:

min
n
∑

i=1

wipi log pi

subject to
n
∑

i=1

pi ≤ 1,

where wi, i = 1, ..., n are positive constants. You can assume that “log” represents the

natural logarithm. Thus, due to the definition of the logarithmic function, the domain

of the problem is pi > 0 for all i. Show all intermediate steps to get full credits.
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(6) (15 points) (Data-Locality-Aware Load-Balancing.)

Background: Today’s data centers (e.g., those run by Google) consist of a large num-

ber (thousands or more) of cheap computers. Each computer has its own computation

power and some storage capability. Not only that computation is carried out distribu-

tively across these computers, data (or information) are also distributively stored across

these computers. When a new job (e.g., a Google-search request) arrives, it will be first

decomposed into a large number of smaller tasks (e.g., one sub-task may correspond

to searching all the cached webpages with URL ending with .purdue.com). Then, each

task is sent to one of the computers, which then needs to access the data/information

(in this case the corresponding cached webpages), and carries out the computation.

Of course, if the data/information is already locally stored at the computer, the task

will be completed more quickly. If the data/information needs to be retrieved from

other computers in the data center, more resources will be consumed to retrieve the

data remotely and thus the completion will be slower. The following model aims to

study how to dispatch the tasks and balance the load so that the total cost of compu-

tation/communication is minimized.

Model: In particular, consider the following model. There are J computers. Assume

that tasks are of I types. For each task of Type i = 1, ..., I, the data/information

needed are already stored in every computer in the subset Ai ⊂ {1, ..., J}. (This data-
replication assumption is reasonable in today’s data-centers. For example, for Google,

each piece of data is usually replicated on 3 computers, so that the data are not lost

with the failure of any one computer.) Thus, if a task of Type i is sent to a computer

j ∈ Ai, the amount of resource consumed at computer j is µ1. (Here, the notion of

“resource” is abstract, and may capture both CPU, hard drive, or networks, etc.) On

the other hand, if a task of Type i is sent to a computer j /∈ Ai, the amount of resource

consumed at computer j is µ0 > µ1. Suppose that tasks of Type i arrive at the rate of

λi per unit time.

Let rj denote the amount of resource available at computer j per unit time. In cost-

aware data-centers, this value rj can also be adjusted for each computer j, which in

term determines the cost of running the computer. (For example, the computer may

be slowed down by lowering its CPU clock, which then consumes less electric power

to run.) Let Cj(rj) denote the cost of running computer j in order to provide rj
amount of resource. Intuitively, if tasks of Type i are only sent to computers in Ai,

they will consume less resources. However, since the sets Ai’s for all types i = 1, ..., I

may overlap, the same computer may already be too busy serving the tasks from other

types. In that case, it may make sense to send some tasks of Type i to computers

j /∈ Ai in order to lower the overall cost. You are asked the following questions to

figure out how to dispatch the tasks so that the total cost of running the data-center
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is minimized.

(a) (5 points) Suppose that the arrival rates λi’s are given. Let ρij denote the fraction

of tasks of Type-i that are dispatched to computer j. Write down an optimization

problem for minimizing the total cost of running the computers, subject to the

constraint that the total amount of resources per unit time consumed by the tasks

at each computer j is no greater than the resource available at computer j. The

variables to be optimized are rj ’s and ρij ’s. State the conditions under which your

optimization problem will be convex.

(b) (5 points) Assume that the optimization problem is convex. Using the KKT

condition, show that the optimal solution is of the following form: There exists a

dual variable νj for each computer j such that (i) a task of Type-i will be sent to

a computer j ∈ Ai (i.e., ρij > 0) only if

µ1max
k∈Aj

νk ≤ µ0max
k/∈Aj

νk;

and (ii) a task of Type-i will be sent to a computer j /∈ Ai (i.e., ρij > 0) only if

µ1max
k∈Aj

νk ≥ µ0max
k/∈Aj

νk;

(c) (5 points) Using the above knowledge, write down a distributed and iterative

algorithm that can be used to find the optimal primal and dual solutions to

the optimization problem. (You do NOT need to prove the convergence of your

algorithm.)
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(7) (20 points) (LASSO: Least square with L1-regularization.)

Background: Suppose that an observed quantity y ∈ R is linearly dependent on other

observed quantities x1, ..., xp ∈ R. In other words, there exist coefficients ā1, ..., āp such

that y =
p
∑

i=1

āixi. However, we do not know ā1, ..., āp. Rather, we can obtain n samples

of these observations [yj, xj
1, ..., x

j
p], where j = 1, ..., n. Thus, for each j,

yj =
p

∑

i=1

āix
j
i .

We may then estimate the coefficients ā1, ..., āp by solving a least-square problem, i.e.

by minimizing

1

2

n
∑

j=1

[

yj −
p

∑

i=1

aix
j
i

]

2

, (1)

over all a1, ..., ap. Typically, if n ≥ p and some linear independence conditions are

met, the only solution that minimizes (1) is when ai = āi for all i, in which case the

objective function (1) will be trivially zero.

However, in the so-called high-dimensional problems, the dimension p may be very

large, while the number of observations n may be much smaller than p. In that case,

the above least-square problem will produce multiple solutions for [a1, ..., ap] that all

make the value of (1) zero. Then, it is unclear which solution represents the true

coefficient vector [ā1, .., āp].

Fortunately, in a lot of these high-dimensional problems, the true coefficient vector

[ā1, ..., āp] is known to be sparse. Specifically, for a k-sparse problem, we know in

advance that only k of the coefficients ā1, ..., āp are non-zero. We assume that k < n <

p. Thus, the number of samples is greater than the sparsity level, but is smaller than

the total number of dimensions. Then, it makes sense to minimize (1) only over those

coefficient vectors [a1, .., ap] that meet the k-sparsity constraint. However, searching

over such a space of sparse coefficient vectors is a non-convex problem. Instead, the

LASSO method attempts to solve the following problem

min
a1,...,ap

1

2

n
∑

j=1

[

yj −
p

∑

i=1

aix
j
i

]2

+ λ
p

∑

i=1

|ai|, (2)

where λ > 0 is an appropriately chosen constant. The hope is that adding the L1-norm
∑p

i=1
|ai| to the minimization will force most ai’s to zero. Thus, the optimal solution

[a1, ..., ap] to (2) may correctly estimate the location of the non-zero entries in the true

coefficient vector [ā1, ..., āp], i.e., we may have ai 6= 0 if and only if āi 6= 0. (Note that

the non-zero entries ai solving (2) may still differ from the true values of āi. However,
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once we know where the non-zero entries are, it is easy to find the correct values of āi
by minimizing (1) only over those non-zero entries.)

Model: In the following, you will study a very simple case where k = 1. Specifically, we

will assume that only ā1 in the true coefficient vector is non-zero, and all other entries

ā2, ..., āp are zero. Without loss of generality, we will assume that ā1 > 0. We will

then derive conditions for the LASSO method (2) to correctly estimate the non-zero

entry of the coefficient vector. Of course, when we perform LASSO, we do not know

yet which entries are non-zero. Thus, some conditions will be needed, which you are

asked to derive below.

Due to this simplified model, we have yj = ā1x
j
1 for all j = 1, ..., n. Thus, the LASSO

method (2) reduces to

min
a1,...,ap

1

2

n
∑

j=1

[

ā1x
j
1 −

p
∑

i=1

aix
j
i

]2

+ λ
p

∑

i=1

|ai|, (3)

Let a∗
1
, ..., a∗p denote the solution to (3).

(a) (10 points) Suppose that the solution to (3) correctly estimates the non-zero

entries of the true coefficient vector. In other words, suppose that the solution

to (3) satisfies a∗
1
> 0 and a∗

2
= ... = a∗p = 0. Apply the first-order condition for

optimality to the variable a1, and show that a necessary condition for the correct

estimation of non-zero entries is

λ < ā1
n
∑

j=1

(xj
1)

2, (4)

and a∗
1
and ā1 are related by

a∗
1
= ā1 −

λ
n
∑

j=1

(xj
1)

2

.

(b) (10 points) Suppose that the solution to (3) correctly estimates the non-zero

entries of the true coefficient vector. Apply the first-order condition for optimality

to variables al, l = 2, ..., p, and show that a necessary condition for the correct

estimation of non-zero entries is
∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

j=1

xj
1x

j
l

n
∑

j=1

(xj
1)

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ 1, for all l = 2, ..., p. (5)

In other words, the observations corresponding to zero coefficients cannot be

strongly correlated to the observation x1 with non-zero coefficient.
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