ECE-647: Midterm Examination

March 31st, 2015
Due: 12:30PM, April 1st, 2015

- This is a take-home exam. You must solve the problems independently. Do not discuss the problems with other students.
- You can consult any textbooks/papers. However, if you use materials from textbooks other than the ones we use in class, you need to cite them. You also need to cite all papers that you use.
- You will need to turn in the exam paper by 12:30PM, Wednesday, April 1st, 2015 in my office (MSEE 340). If you would like to turn it in earlier, you can slip your exam paper under my office door.
- Write your name and PUID at the space provided below.
- There are seven problems in the exam. The total points are 100.
- Email the instructor at linx@ecn.purdue.edu if there are any questions.

Your Name

10-digit PUID
(1) (15 points) (Yes or No) Is each of the following sets a convex set? No justification is necessary.
(a) (3 points) The set

$$
\left\{(x, y) \in \mathbf{R}^{2} \mid x^{2}+4 x y-y^{2} \geq 5\right\}
$$

(b) (3 points) Suppose that X is random variable in \mathbf{R}^{n}. The set

$$
\left\{(s, u) \mid s \in \mathbf{R}^{n}, u \in \mathbf{R}, \log \mathbf{E}\left[e^{s^{T} X}\right] \leq u\right\}
$$

where s^{T} denotes the transpose of s.
(c) (3 points) Let X be a real-valued random variable with $\mathbf{P}\left\{X=a_{i}\right)=p_{i}, i=$ $1, \ldots, n$, where $a_{1}<a_{2}<\ldots<a_{n}$ are given real numbers. Of course, $\vec{p}=$ $\left[p_{1}, \ldots, p_{n}\right] \in \mathbf{R}^{n}$ lies in the standard probability simplex $\left\{\vec{p} \mid \sum_{i=1}^{n} p_{i}=1, p_{i} \geq\right.$ 0 for all $i\}$. The set of the probability distribution \vec{p} such that $\mathbf{E}\left|X^{3}\right| \leq 2 \mathbf{E}|X|$.
(d) (3 points) Suppose that S_{1} and S_{2} are convex sets in $\mathbf{R}^{m \times n}$. The partial difference S defined as

$$
S=\left\{\left(x, y_{1}-y_{2}\right) \mid x \in \mathbf{R}^{m}, y_{1}, y_{2} \in \mathbf{R}^{n},\left(x, y_{1}\right) \in S_{1}, \text { and }\left(x, y_{2}\right) \in S_{2}\right\}
$$

(e) (3 points) The set

$$
\left\{\left(x_{1}, x_{2}, x_{3}\right) \geq 0 \mid x_{1} x_{2} x_{3}<1\right\} .
$$

(2) (10 points) In a cellular network, a mobile user may receive signals from multiple basestations. Suppose that there are K base-stations, and base-station k is at location $x_{k} \in \mathbf{R}^{2}$. Further, suppose that all base-stations transmit signals at the common power-level P_{0}. If the mobile is at location y, then the signal strength received from base-station k is

$$
c P_{0}\left\|y-x_{k}\right\|_{2}^{-n}
$$

where $\left\|y-x_{k}\right\|_{2}$ denote the Euclidean distance, $c>0$ is a constant, and n is the path-loss exponent (a constant) that is typically between 2 to 4 .

Suppose that the mobile wishes to communicate with the base-station with the strongest signal. Let V denote the set of locations y such that the mobile receives a stronger signal from base-station 1 than from all other base-stations. Show that V is a convex set in \mathbf{R}^{2}. Show all intermediate steps to get full credits.
(3) ($\mathbf{1 5}$ points) (Yes or No) Is each of the following functions a convex function? No justification is necessary.
(a) (3 points) $f(x, y, t)=-\sqrt{x y-t^{2}}$, where $\operatorname{dom} f=\left\{x, y, t \in \mathbf{R} \mid x y \geq t^{2}\right\}$.
(b) (3 points) $f(x, y)=x^{2}+4 x y-4 y^{2}$, where $x, y \in \mathbf{R}$.
(c) (3 points) $f(x, y)=x^{2} /(x+y)$, where $x, y \in \mathbf{R}$ and $x+y>0$.
(d) (3 points) Suppose that C is an arbitrary set in \mathbf{R}^{n}. The function

$$
g(y)=\inf \left\{y^{T} x \mid x \in C\right\}
$$

where $y \in \mathbf{R}^{n}$.
(e) (3 points) Let X be a real-valued random variable with $\mathbf{P}\left\{X=a_{i}\right)=p_{i}, i=$ $1, \ldots, n$, where $a_{1}<a_{2}<\ldots<a_{n}$ are given real numbers. Of course, $\vec{p}=$ $\left[p_{1}, \ldots, p_{n}\right] \in \mathbf{R}^{n}$ lies in the standard probability simplex $\left\{\vec{p} \mid \sum_{i=1}^{n} p_{i}=1, p_{i} \geq\right.$ 0 for all $i\}$. The variance $\operatorname{Var}(X)$ as a function of the probability distribution \vec{p}.
(4) (15 points) Suppose that a non-empty convex set C in \mathbf{R}^{n} contains (as subsets) both the origin and a ball centered at the origin with some positive radius. For any $x \in \mathbf{R}^{n}$, define

$$
M_{C}(x)=\inf \left\{t \geq 0 \mid t^{-1} x \in C\right\}
$$

Show that $M_{c}(x)$ is a convex function in x. Show all intermediate steps to get full credits.
(5) (10 points) Derive the dual problem of the following optimization problem:

$$
\begin{aligned}
\min & \sum_{i=1}^{n} w_{i} p_{i} \log p_{i} \\
\text { subject to } & \sum_{i=1}^{n} p_{i} \leq 1,
\end{aligned}
$$

where $w_{i}, i=1, \ldots, n$ are positive constants. You can assume that "log" represents the natural logarithm. Thus, due to the definition of the logarithmic function, the domain of the problem is $p_{i}>0$ for all i. Show all intermediate steps to get full credits.

(6) (15 points) (Data-Locality-Aware Load-Balancing.)

Background: Today's data centers (e.g., those run by Google) consist of a large number (thousands or more) of cheap computers. Each computer has its own computation power and some storage capability. Not only that computation is carried out distributively across these computers, data (or information) are also distributively stored across these computers. When a new job (e.g., a Google-search request) arrives, it will be first decomposed into a large number of smaller tasks (e.g., one sub-task may correspond to searching all the cached webpages with URL ending with .purdue.com). Then, each task is sent to one of the computers, which then needs to access the data/information (in this case the corresponding cached webpages), and carries out the computation. Of course, if the data/information is already locally stored at the computer, the task will be completed more quickly. If the data/information needs to be retrieved from other computers in the data center, more resources will be consumed to retrieve the data remotely and thus the completion will be slower. The following model aims to study how to dispatch the tasks and balance the load so that the total cost of computation/communication is minimized.

Model: In particular, consider the following model. There are J computers. Assume that tasks are of I types. For each task of Type $i=1, \ldots, I$, the data/information needed are already stored in every computer in the subset $A_{i} \subset\{1, \ldots, J\}$. (This datareplication assumption is reasonable in today's data-centers. For example, for Google, each piece of data is usually replicated on 3 computers, so that the data are not lost with the failure of any one computer.) Thus, if a task of Type i is sent to a computer $j \in A_{i}$, the amount of resource consumed at computer j is μ_{1}. (Here, the notion of "resource" is abstract, and may capture both CPU, hard drive, or networks, etc.) On the other hand, if a task of Type i is sent to a computer $j \notin A_{i}$, the amount of resource consumed at computer j is $\mu_{0}>\mu_{1}$. Suppose that tasks of Type i arrive at the rate of λ_{i} per unit time.

Let r_{j} denote the amount of resource available at computer j per unit time. In costaware data-centers, this value r_{j} can also be adjusted for each computer j, which in term determines the cost of running the computer. (For example, the computer may be slowed down by lowering its CPU clock, which then consumes less electric power to run.) Let $C_{j}\left(r_{j}\right)$ denote the cost of running computer j in order to provide r_{j} amount of resource. Intuitively, if tasks of Type i are only sent to computers in A_{i}, they will consume less resources. However, since the sets A_{i} 's for all types $i=1, \ldots, I$ may overlap, the same computer may already be too busy serving the tasks from other types. In that case, it may make sense to send some tasks of Type i to computers $j \notin A_{i}$ in order to lower the overall cost. You are asked the following questions to figure out how to dispatch the tasks so that the total cost of running the data-center
is minimized.
(a) (5 points) Suppose that the arrival rates λ_{i} 's are given. Let $\rho_{i j}$ denote the fraction of tasks of Type- i that are dispatched to computer j. Write down an optimization problem for minimizing the total cost of running the computers, subject to the constraint that the total amount of resources per unit time consumed by the tasks at each computer j is no greater than the resource available at computer j. The variables to be optimized are r_{j} 's and $\rho_{i j}$'s. State the conditions under which your optimization problem will be convex.
(b) (5 points) Assume that the optimization problem is convex. Using the KKT condition, show that the optimal solution is of the following form: There exists a dual variable ν_{j} for each computer j such that (i) a task of Type- i will be sent to a computer $j \in A_{i}$ (i.e., $\rho_{i j}>0$) only if

$$
\mu_{1} \max _{k \in A_{j}} \nu_{k} \leq \mu_{0} \max _{k \notin A_{j}} \nu_{k}
$$

and (ii) a task of Type- i will be sent to a computer $j \notin A_{i}$ (i.e., $\rho_{i j}>0$) only if

$$
\mu_{1} \max _{k \in A_{j}} \nu_{k} \geq \mu_{0} \max _{k \notin A_{j}} \nu_{k} ;
$$

(c) (5 points) Using the above knowledge, write down a distributed and iterative algorithm that can be used to find the optimal primal and dual solutions to the optimization problem. (You do NOT need to prove the convergence of your algorithm.)
(7) (20 points) (LASSO: Least square with L_{1}-regularization.)

Background: Suppose that an observed quantity $y \in \mathbf{R}$ is linearly dependent on other observed quantities $x_{1}, \ldots, x_{p} \in \mathbf{R}$. In other words, there exist coefficients $\bar{a}_{1}, \ldots, \bar{a}_{p}$ such that $y=\sum_{i=1}^{p} \bar{a}_{i} x_{i}$. However, we do not know $\bar{a}_{1}, \ldots, \bar{a}_{p}$. Rather, we can obtain n samples of these observations $\left[y^{j}, x_{1}^{j}, \ldots, x_{p}^{j}\right]$, where $j=1, \ldots, n$. Thus, for each j,

$$
y_{j}=\sum_{i=1}^{p} \bar{a}_{i} x_{i}^{j} .
$$

We may then estimate the coefficients $\bar{a}_{1}, \ldots, \bar{a}_{p}$ by solving a least-square problem, i.e. by minimizing

$$
\begin{equation*}
\frac{1}{2} \sum_{j=1}^{n}\left[y^{j}-\sum_{i=1}^{p} a_{i} x_{i}^{j}\right]^{2} \tag{1}
\end{equation*}
$$

over all a_{1}, \ldots, a_{p}. Typically, if $n \geq p$ and some linear independence conditions are met, the only solution that minimizes (1) is when $a_{i}=\bar{a}_{i}$ for all i, in which case the objective function (1) will be trivially zero.

However, in the so-called high-dimensional problems, the dimension p may be very large, while the number of observations n may be much smaller than p. In that case, the above least-square problem will produce multiple solutions for $\left[a_{1}, \ldots, a_{p}\right]$ that all make the value of (1) zero. Then, it is unclear which solution represents the true coefficient vector $\left[\bar{a}_{1}, . ., \bar{a}_{p}\right]$.

Fortunately, in a lot of these high-dimensional problems, the true coefficient vector $\left[\bar{a}_{1}, \ldots, \bar{a}_{p}\right]$ is known to be sparse. Specifically, for a k-sparse problem, we know in advance that only k of the coefficients $\bar{a}_{1}, \ldots, \bar{a}_{p}$ are non-zero. We assume that $k<n<$ p. Thus, the number of samples is greater than the sparsity level, but is smaller than the total number of dimensions. Then, it makes sense to minimize (1) only over those coefficient vectors $\left[a_{1}, . ., a_{p}\right]$ that meet the k-sparsity constraint. However, searching over such a space of sparse coefficient vectors is a non-convex problem. Instead, the LASSO method attempts to solve the following problem

$$
\begin{equation*}
\min _{a_{1}, \ldots, a_{p}} \quad \frac{1}{2} \sum_{j=1}^{n}\left[y^{j}-\sum_{i=1}^{p} a_{i} x_{i}^{j}\right]^{2}+\lambda \sum_{i=1}^{p}\left|a_{i}\right|, \tag{2}
\end{equation*}
$$

where $\lambda>0$ is an appropriately chosen constant. The hope is that adding the L_{1}-norm $\sum_{i=1}^{p}\left|a_{i}\right|$ to the minimization will force most a_{i} 's to zero. Thus, the optimal solution $\left[a_{1}, \ldots, a_{p}\right]$ to (2) may correctly estimate the location of the non-zero entries in the true coefficient vector $\left[\bar{a}_{1}, \ldots, \bar{a}_{p}\right]$, i.e., we may have $a_{i} \neq 0$ if and only if $\bar{a}_{i} \neq 0$. (Note that the non-zero entries a_{i} solving (2) may still differ from the true values of \bar{a}_{i}. However,
once we know where the non-zero entries are, it is easy to find the correct values of \bar{a}_{i} by minimizing (1) only over those non-zero entries.)

Model: In the following, you will study a very simple case where $k=1$. Specifically, we will assume that only \bar{a}_{1} in the true coefficient vector is non-zero, and all other entries $\bar{a}_{2}, \ldots, \bar{a}_{p}$ are zero. Without loss of generality, we will assume that $\bar{a}_{1}>0$. We will then derive conditions for the LASSO method (2) to correctly estimate the non-zero entry of the coefficient vector. Of course, when we perform LASSO, we do not know yet which entries are non-zero. Thus, some conditions will be needed, which you are asked to derive below.

Due to this simplified model, we have $y^{j}=\bar{a}_{1} x_{1}^{j}$ for all $j=1, \ldots, n$. Thus, the LASSO method (2) reduces to

$$
\begin{equation*}
\min _{a_{1}, \ldots, a_{p}} \quad \frac{1}{2} \sum_{j=1}^{n}\left[\bar{a}_{1} x_{1}^{j}-\sum_{i=1}^{p} a_{i} x_{i}^{j}\right]^{2}+\lambda \sum_{i=1}^{p}\left|a_{i}\right|, \tag{3}
\end{equation*}
$$

Let $a_{1}^{*}, \ldots, a_{p}^{*}$ denote the solution to (3).
(a) (10 points) Suppose that the solution to (3) correctly estimates the non-zero entries of the true coefficient vector. In other words, suppose that the solution to (3) satisfies $a_{1}^{*}>0$ and $a_{2}^{*}=\ldots=a_{p}^{*}=0$. Apply the first-order condition for optimality to the variable a_{1}, and show that a necessary condition for the correct estimation of non-zero entries is

$$
\begin{equation*}
\lambda<\bar{a}_{1} \sum_{j=1}^{n}\left(x_{1}^{j}\right)^{2}, \tag{4}
\end{equation*}
$$

and a_{1}^{*} and \bar{a}_{1} are related by

$$
a_{1}^{*}=\bar{a}_{1}-\frac{\lambda}{\sum_{j=1}^{n}\left(x_{1}^{j}\right)^{2}} .
$$

(b) (10 points) Suppose that the solution to (3) correctly estimates the non-zero entries of the true coefficient vector. Apply the first-order condition for optimality to variables $a_{l}, l=2, \ldots, p$, and show that a necessary condition for the correct estimation of non-zero entries is

$$
\begin{equation*}
\left|\frac{\sum_{j=1}^{n} x_{1}^{j} x_{l}^{j}}{\sum_{j=1}^{n}\left(x_{1}^{j}\right)^{2}}\right| \leq 1, \text { for all } l=2, \ldots, p \tag{5}
\end{equation*}
$$

In other words, the observations corresponding to zero coefficients cannot be strongly correlated to the observation x_{1} with non-zero coefficient.

