

Friday, January 27, 2023 6:56 PM

Basic properties of convex problems

Monday, January 19, 2009 3:33 PM

O Every local optimum is also global optimum. - x is locally sptimal if sc is feasible and $f_{0}(z) = inf f_{0}(z) 3 f$ easible, $||3-x||_{2} \le r$ for some r>0 $\overbrace{\text{S}}$ could also occur
at the soundary
of the feasible optinal prittin a Proof: $2f(f(y)) < f(x)$ for another feasible point
y, then the line segment xy must
lie in the feasible set, which is convex (36)

 $\begin{matrix} \mathcal{L} \ \mathcal{L} \ \mathcal{L} \end{matrix}$ $\frac{1}{\sqrt{2}}$ By convexity of f, for any point $3 = \theta x + (-0) y$ OC $0 < 1$ we must have $f(x) \in \theta f(x) + (1-\theta)f(y) < f(x)$ Hence, there must exist a point in the
neighborhood of x that has a smaller function
value than $f(x)$. \Rightarrow A contradiction, Note that the same conclusion holds for the
looser definition of convex produme as well. 12 Necessany conditions for optimality are also More details soon.

Maximize a convex function

Monday, January 19, 2009 5:23 PM

Skip (Q) What if we maximize a convex function on 4) The maximum will be attained at the boundary B orh c and d Le (val optimums / (Not clways) - Let f be a convex function C PR. Let D be a closed bounded set contained in C. Then for any $x \in \text{int } D$, there exists a y d bd D^C such that $f(y) \ge f(x)$ $f(x) \leq max \{f(y), f(y)\}$ $\sqrt[3]{2}$ =) Maximum on a closed set D must be cottained at the boundary.

Similary, if you min a convex function on
a non convex set, then a local minimum
may not be plosed priminum at the $\frac{1}{\sqrt{2}}$ \times

Conditions for optimality

Monday, January 19, 2009 4:09 PM

When is a point \overline{x} optimal? - From calculus, a common condition is $\nabla f(\overline{x}) = 0$ - However, this may only work when there are no - Our goal is to set up the following necessary and - Assume that f is convex and differentiable.
and C is a convex set.
- A spoint \bar{x} is the minimum of f in C if $\nabla f(\overline{x})^T (x-\overline{x}) \ge 0$
 $x \in C$ (\star) $for x \in c$. - Note that if \overline{x} is in the interior of C , then
(*) is possible only ruhen $\sigma f(\overline{x}) = 0$ - We will look at (x) for the case when
I is at the boundary of C later. - However, sometimes we want to work with - We will give a more general version below,

- We will give a more general version below,
which vill lead to (+). Necessary condition: - Let no look at the necessary condition first $-$ If \overline{x} a local optimal of f in c , then...
- f may not even be convex. - Roughly speaking. f must be non-decreasing
in any direction pointing to words the E de la Contrare - Define the directional derivative of a function $f'(x; d) = lim_{t \nmid v} f(x + td) - f(x)$
un this limit exists. When this limit exists.

- Note that if I is differentiable with gradient
Jf (x), then $f'(\bar{x}, d) = \frac{d}{dt} f(\bar{x}+td) = (\bar{u}f(\bar{x}))^T \cdot d$. - The nice part of $f'(x, d)$, however, is that it
may exist even if f is not differentiable. - In fact, it always exist for convex (even Existence of directional derivatives for Suppose that the set CCE is convex, and
that the function $f: C \rightarrow R$ is convex. Then
for any points \overline{x} and \overline{x} in C , the
directional derivative $f'(\overline{x}; x-\overline{x})$ always
exists in $(-\infty, +\infty)$ - could be minus-infinite $+(7 + d)$ $f(x+td) - f(x)$ \times is decreasing as the. $\widetilde{\,\,\mathsf{x}\,}$ \overrightarrow{f}

 $\int (\overline{x}) x - \overline{x} = -\infty$ $hbn-CohV$ ex non-convex
May NOT exist for arbitrary, functions $f(x) = x 5 - \frac{1}{x}$ A necessary condition (based on directional derivative): Suppose that C is a convex set in E and
that the point \overline{x} is a local minimuser of $f: C \ni R$.
Then for any point x in C , the direction
derivative, if it exists, satisfies $+(272)$ Proof: If $f'(x; x-\overline{x}) < 0$ for some $xc \subset C$,
then the function value will be decreasing in
the direction of $\overline{x} \Rightarrow x$ for a small interval. \Rightarrow Contradition. N_{b+e} : - This noroncan condition holds for any forstions

- This necessary condition holds for any functions - For convex problem, the directional derivative \Rightarrow $f'(x; x-\overline{x}) \ge 0$ for all $x \in C$
must always hold. Necessary anditions for differentiable functions 27 in addition of is differentiable, $+(x, x-\overline{x}) = (\nabla f(\overline{x}))^{T}(x-\overline{x}) \ge 0$ for all $x \in C$ $-Th$ is exactly (x)

Sufficient conditions

Monday, January 19, 2009 4:47 PM

First-order Swificient condition: - Suppose that the set $C \subseteq E$ is convex and
that the function f: C > R is convex, Let $\overline{x} \in C$, If the condition $f'(\overline{x}; x-\overline{x}) \ge 0$
holds for all $x \in C$, then \overline{x} is a global - It in addition f is differentiable,
then the sufficient conditions becomes $\left[\nabla f(\overline{x})\right]^T$ (x- \overline{x}) ? o for all XEC - Same as the necessary condition! - Note that in general, this statement dues not
hold for non- convex problems. $Provef: A_{\text{gain}}$, we can show that $f(\bar{x}+t(x-\bar{x})) - f(\bar{x})$ $\overline{\chi}$ is decreasing as + V 0. The limit as $+60$ is $f'(x;x-50)$. $\widetilde{\mathcal{X}}$

Honce, $f(x+t(x-\overline{x})) = f(x)$
 $\Rightarrow t \cdot f'(x) \cdot x - \overline{x} \to 0$ Let $t=1$. We have $f(x) \le f(x)$. The result then follows. $\sqrt{20}$

Optimality at the boundary

Monday, January 19, 2009 4:09 PM

- Recall that if the set $C \subseteq E$ is convex and
the function $f: C \ni R$ is convex and diffentiable, Then a necessary & sufficient condition for $\left[\nabla f(\overline{x})\right]^T (x-\overline{x})$ 20 for all $x \in C$. We have the following (a) if \bar{x} belongs to the interior of \subset , then $\mathcal{O}(\sqrt{c})=0$ (b) if \overline{x} is at the boundary. $\frac{1}{\sqrt{1-\frac{1}{2}}\left(\frac{1}{2}\right)^2}$ \overline{R} $\nabla f(\overline{x}) = 0$ \Rightarrow - of (50) must point outwards - Define the normal cone Nc (=) to a $N_c(\bar{x}) = \begin{cases} d < d, x-\bar{x} > s \text{ or all } x \in c \end{cases}$

 $N_c(x) = \left\{ d \mid c d, x-x > \leq c \text{ for all } x \in C \right\}$ - This is the set of "outward" directions. \oint i (x) = 0 $\left(\mathrm{I}\right)$ Smooth $\frac{1}{\sqrt{2}}$ $\frac{8}{4}$ $2+$ the constraint is defined by $f_i(x) \le 0$, - At a point I at the boundary,
we have $f_1(z) = 0$ \Rightarrow For all $x \in C$ $(\nabla f: (\overline{x}))^T (x-\overline{x}) \leq f(x)-f(\overline{x}) \leq 0$ $+$ all $x \in C$ \Rightarrow $\int f(x)$ is the normal vector! $\begin{array}{ccccc}\n\sqrt{f_1(x)} & & & \sqrt{f_1(x)} & & \sqrt{f_1(x)} & \$ \bigcirc At a Corner $\sqrt{\frac{1}{2}}$ $(x) = 0$ - The boundary of the come is the two normal
vectors $0 + i (x)$ and $0 + i(x)$ for the

vectors θ of, (\bar{x}) and θ (x) for the - Nc (z) then contains all vectus of the $\lambda, \overline{D}_{f}(\overline{x}) + \lambda_{2} \overline{D}_{f}(\overline{x})$ "conic
Vi combinations" Then, our necessary & sufficient condition $f'(\overline{x}; \overline{x}-\overline{x}) = (\overline{0} + (\overline{x}))^T (x-\overline{x}) > 0$
 $f^{m} dX \times \overline{c}C$ \circledast $(-\nabla f(\overline{x}), x-\overline{x})$ so for all xcC $\qquad \qquad \text{and}\qquad \qquad -\nabla \text{+}\left(\bar{x}\right) \text{ }\in\text{ Nc }\left(\bar{x}\right) \text{,}$ Negative gradient must belong to - If there is only 1 normal vector $d = 0f_i(\overline{x}),$ $-\nabla f(x) = \lambda \cdot d$ for some $\lambda > 0$ - If NC(x) contains the conic combinations
of multiple vectors, e.g. $\sigma f_i(\overline{x}) \triangleleft \sigma f_k(\overline{x})$ $-\mathbb{U}f(\overline{x})=\lim_{\begin{subarray}{c}\omega\\ \omega\end{subarray}}\mathbb{U}f_{\iota}(\overline{x})+\lim_{\begin{subarray}{c}\omega\\ \omega\end{subarray}}\mathbb{U}f_{\lambda}(\overline{x})$ - Note that constraints that are not binding

lec9-new Page 16

Note: If we define $N_c(\overline{x}) = \begin{cases} 0 \end{cases}$ when \overline{x} lies
in the interior of C , then ω becomes a $\left(\begin{matrix}1\\1\end{matrix}\right)$