Lec8-mwf

Monday, January 19, 2009 10:00 PM

Vector function composition

Saturday, January 17, 2009 2:41 PM

If $\{h: R^{n}\ni R, h: R\rightarrow R\}$, Tabe a restriction to a live $f(\lambda) = h(g(x+\lambda v))$ ()
(convex/concerne in x
(c) f(x+)v) convex/concerne in) 2) Exactly the same rule apply! $f(x)=h(g(x))$: $g=[g, -g^{2}]^{T}$ Assume nothant loss of generality that xGR $\begin{array}{lllll} h: &R^k\rightarrow R & h\left(\mathcal{Y}_1,\cdots,\mathcal{Y}_k\right)\\ &f: &R\rightarrow R & i=1,2,\cdots,K \end{array}$ $8 = 5, 8, -1, 8)$ $f(x)=\lambda(y_{i}(x), \delta_{\nu}(x),...,\delta_{\kappa}(x))$ Then $f'(x) = \mathcal{O}_h(\xi(x))^T \cdot \xi'(x)$ $\in R$ $f''(x) = 8(x)^{7} 7^{2}h(8(x)) \cdot 8(x)$ + $\nabla h(\mathcal{f}(x))^T$ $\mathcal{f}'(x)$ $\in \mathbb{R}$ where
 $\nabla h = \begin{bmatrix} \frac{\partial h}{\partial r}, \\ \frac{\partial h}{\partial r}, \end{bmatrix}$ $8' = \begin{pmatrix} 8' \\ 1 \\ 1 \\ 1 \\ 8' \end{pmatrix}$ $8'' = \begin{pmatrix} 8' \\ 1 \\ 1 \\ 1 \\ 8' \end{pmatrix}$

where
\n
$$
z_{k} = \begin{pmatrix} \frac{d}{ds} \\ \frac{d}{ds} \end{pmatrix}
$$
 $8^{\frac{d}{s}} \begin{pmatrix} \frac{d}{s} \\ \frac{d}{s} \end{pmatrix}$ $8^{\frac{d}{s}} \begin{pmatrix} \frac{d}{s} \\ \frac{d}{s} \end{pmatrix}$
\n $8^{\frac{d}{s}} \begin{pmatrix} \frac{d}{s} \\ \frac{d}{s} \end{pmatrix}$ $8^{\frac{d}{s}} \begin{pmatrix} \frac{d}{s} \\ \frac{d}{s} \end{pmatrix}$
\n $8^{\frac{d}{s}} \begin{pmatrix} \frac{d}{s} \\ \frac{d}{s} \end{pmatrix}$ $8^{\frac{d}{s}} \begin{pmatrix} \frac{d}{s} \\ \frac{d}{s} \end{pmatrix}$
\n $8^{\frac{d}{s}} \begin{pmatrix} \frac{d}{s} \\ \frac{d}{s} \end{pmatrix}$ $8^{\frac{d}{s}} \begin{pmatrix} \frac{d}{s} \\ \frac{d}{s} \end{pmatrix}$
\n $8^{\frac{d}{s}} \begin{pmatrix} \frac{d}{s} \\ \frac{d}{s} \end{pmatrix}$ $8^{\frac{d}{s}} \begin{pmatrix} \frac{d}{s} \\ \frac{d}{s} \end{pmatrix}$
\n $8^{\frac{d}{s}} \begin{pmatrix} \frac{d}{s} \\ \frac{d}{s} \end{pmatrix}$ $8^{\frac{d}{s}} \begin{pmatrix} \frac{d}{s} \\ \frac{d}{s} \end{pmatrix}$
\n $8^{\frac{d}{s}} \begin{pmatrix} \frac{d}{s} \\ \frac{d}{s} \end{pmatrix}$ $8^{\frac{d}{s}} \begin{pmatrix} \frac{d}{s} \\ \frac{d}{s} \end{pmatrix}$
\n $8^{\frac{d}{s}} \begin{pmatrix} \frac{d}{s} \\ \frac{d}{s} \end{pmatrix}$ $8^{\frac{d}{s}} \begin{pmatrix} \frac{d}{s} \\ \frac{d}{s} \end{pmatrix}$
\n $8^{\frac{d}{s}} \begin{pmatrix} \frac{d}{s} \\ \frac{d}{s} \end{pmatrix}$ $$

replace h' by entend-value function hi. Branple: h (Z)= Z(1) + ... + Z(r), the sum of the $\overline{\left(skip\right) }$ $(\!\!\omega\!)$ $-h(2)$ is convex $f_1(x)$, $-$, $f_1(x)$ are convex. => h (f, (x), --, fk (x)) is convex because h (2)
is non-decreasing in each argument. (b) $h(z) = \frac{1}{2} \left(\sum_{i=1}^{k} e^{-2i} \right)$ $\begin{pmatrix} 2e \\ 1 \end{pmatrix}$... $\oint_{K}(x)$ are convex $\Rightarrow h(f_1, ..., f_k) = ly\left(\frac{k}{i!}e^{St(x)}\right)$ is convex. \circ $f(x, u,v) = \sqrt{uv - x^{T}x}$
on $u > 0$, $v > 0$, $u v > x^{T}x$ $X\in R^n$, $u, v \in R$ See $logd$ $7 \times 322(6)$, 911 $f(x,u,v)=\sqrt{u(x-\frac{x\overline{1}x}{h})}$ $= \sqrt{\theta \cdot \delta L}$ $\delta_{\iota}(x,u,v) = u, \qquad \delta_{\iota}(x,u,v) = v - \frac{x'x}{u}$ $-\int_{\delta_1 \delta_2} \frac{1}{\delta_1} \frac{1}{\delta_2} \frac{1}{\delta_1} \frac{1}{\delta_2} \frac{1}{\delta_2} \frac{1}{\delta_3} \frac{1}{\delta_4} \frac{1}{\delta_5} \frac{1}{\delta_6} \frac{1}{\delta_7} \frac{1}{\delta_8} \frac{1}{\delta_8} \frac{1}{\delta_9} \frac{1}{\delta_9} \frac{1}{\delta_9} \frac{1}{\delta_8} \frac{1}{\delta_9} \frac{1}{\delta_9} \frac{1}{\delta_9} \frac{1}{\delta_9} \frac{1}{\delta_$ $\mathcal{L}_{\mathcal{A}}$ and $\mathcal{L}_{\mathcal{A}}$ are the set of the set of the set of the set of \mathcal{A}

 $- \frac{1}{82}(x, u, v) - i$ is concave in (x, u, v) $-\int_{l}^{l} (u) = U$ is concave - $J\delta I - extended to R^L is nm-decreasing
in $\delta I \propto \delta I$.$ (45)

Summary

Monday, January 19, 2009 10:00 PM

- Convex functions $f(0xt (1-\theta)y) \le 0f(x) + (1-\theta)f(y)$ - First order condition $f(x) = f(x) + f'(x) (y-x)$ Second order condition $-\int^{\prime\prime}(x)\gg0$ $-$ Operations - Non-negative weighted sum
- Affine change of variable
- Printwise maximum
- Printwise minimum (more demandig)
- Composition - Perspective

Jensen's inequality - skip

Monday, January 12, 2009 4:46 PM

If a function f is convex, then $f(0x+(1-\theta)y) \leq \theta f(x) + (1-\theta)f(y)$ $for any 0 s0 s1.$ Easily extended to finite convex combinations $f(\theta_1x_1 + \cdots + \theta_kx_k)$ $\leq \theta$, $f(x_1) + \cdots + \theta_k f(x_k)$ $f(x)$ all $\theta_1 + \cdots + \theta_k = 1$, $0 \le \theta_1$, \cdots , $\theta_k \le 1$ Can also be extended to infinite convex combinations Let O1, ..., Ok, ...20 satisfies $\frac{78}{16}$ $\theta_K = 1$ Let $x_1, \ldots x_k$, \cdots \in don't, which is convex
and the limit $\sum_{k=1}^{+\infty} \theta_k x_k$ exists Then \bigcirc $\frac{1}{k} \bigcirc R_k x_k \in dom f$ (2) $f(\sum_{k=1}^{+\infty}\theta_kx_k) \leq \sum_{k=1}^{+\infty}\theta_kf(x_k)$

The proof of part 10 mill need the Separation The proof of part (2) uses the first-order condition
(assuming f is differentiable) or use subgradients
(to be discussed (ater). We can also extend to integrals - Suppose $p(.)$ is a density on $S \subseteq \mathbb{d}$ omf $p(x) \ge 0$ and $\int_{S} p(x) dx = 1$ $-$ If f is convex, then $f(\int_{S} p(x) \cdot x dx) \leq \int_{S} f(x) f(x) dx$ Same for expectations $f(E\overline{X}) \leq \overline{t} f(\overline{X}).$ $\begin{pmatrix} 3 \end{pmatrix}$

Convex optimization problems

Saturday, January 17, 2009 3:22 PM

- A connex optimization problem minimizes $\frac{m!}{s^2+1}$ $\frac{1}{s^2+1}$ $\frac{1}{s^2+1}$ $\frac{1}{s^2+1}$ $\frac{1}{s^2+1}$ $\frac{1}{s^2+1}$ $\frac{1}{s^2+1}$ $\frac{1}{s^2+1}$ $\frac{1}{s^2+1}$ - However, for the most part we will use the Standard form: min $f_{0}(x)$

sw to $f_{1}(x) = 0$, $i=1, ..., m$

hi(x) = 0, $i=1, ..., p$ where f_o , f_i are convex functions - A key feature is that any local optimum
must be a global optimum

- What about concorre function? - soin a concerc func mont rooth & - max a concare func fo is the same - $f_1(x) \ge 0$ for a concave func is
the same as - $f_1(x) \le 0$ for the convex
func. - $f_1(x)$. - Why h: (x) must be linear? - Some properties of convex opt. problems
hild for the general form, but some
reguires the stricter form. - Domain of the problem: $D = \bigcap_{n=0}^{m} dom f_i$ $\bigcap_{n=1}^{n} dom h_i$ - A point x is feasible if xED and x satisfies the constraints $f(x) \leq 0$ and $h(x)=0$. - Optimal value γ^{*} = inf { $f_{o}(x)$ $f_{i}(x)$ \in 0, i = 1, ..., m,
 $h_{i}(x) = 0$, i = 1, ..., p} we allow
- $p^* = +\infty$ (if no point x is feasible) $-\gamma^{\star}$ = $-\infty$ (if there exists a sequence of

 f easible x_k , such that $f(x_k) \rightarrow -\infty$). - Optimal point: If the optimal value p^{*} is attained at
feasible point x^{*} \Rightarrow x^{α} is an optimal point. We have taken the inequality constraints as " \leq ".
Although some results also apply for " $<$ ". The " \leq " part often implies that the feasible
set is closed. Hence, the optimal value is
always attainable if $f(x)$ is continuous. $\begin{pmatrix} 1 & b \\ c & d \end{pmatrix}$

Continuity of convex functions

Saturday, January 17, 2009 3:15 PM

Skip. Related to directional The simple property that derivative $f(\theta x+(1-\theta)y)$ 2 $\theta f(x) + (1-\theta) f(y)$ is in fact very strong and have
important implications Foth geometrically &
algebraically. For example: Continuitz. Let f be a convex function, then fis
continuous on the interior of its domain Discontinuity cannot of the domain. Discontinuity can occur at the boundary

 $\overline{\mathcal{D}}$ $\overline{}$ \Rightarrow $\ddot{}$ کی کہ More on this when we discuss
Separation Theorems.