Lec32

Saturday, April 18, 2015 10:05 AM

- Deterministic SSP: Principle of Optimality: $J_{k}(i) = \sum_{j=1,2,...,N} \{ \alpha_{j} + J_{k+1}(j) \}$ - Finite horizon stochastic SP $J_{k}\left(x_{k}\right)=\begin{bmatrix}m^{\prime}\\ \mu_{k}\in\overline{U_{k}}\left(x_{k}\right)^{C}w_{k}\end{bmatrix}\left\{ \begin{bmatrix}f_{k}(x_{k},u_{k},w_{k})+J_{k+1}\left(f_{k}(x_{k},u_{k},w_{k})\right)\\ 0\end{bmatrix}\right\}$ - Infinite-horizon SSP $\delta(i,\omega)+\overline{2}P_{ij}(\omega J^{\star}(j))$ $J^*(i)$ = min - Discounted problems - Unsig the ssp mapping $J^{\star}(i) = \min_{u} \left\{ \left\langle (i, u) + \frac{z}{2} \propto p_{ij}(u) J^{\star}(j) \right\rangle \right\}$ transition $P_{ih,SSR}^{m/s-l;1;+}$ $\begin{array}{rcl}\n\textcircled{=} & \mathcal{J}^{\pi}(i) = & \mathcal{I}^{min} \left\{ \begin{array}{ccc} \mathcal{J}(i, n) & + & \mathcal{J} & \mathcal{I}^{1}(i) \\ \mathcal{J}^{min}(i, n) & + & \mathcal{J} & \mathcal{I}^{1}(i) \end{array} \right\} \\
\textcircled{=} & \mathcal{J}^{\pi}(i) = & \mathcal{I}^{min} \left\{ \begin{array}{ccc} \mathcal{J}(i, n) & + & \mathcal{J} & \mathcal{I$

 \propto - Another way to look at the Bellman Equation for discounted problem $J(i) = min Z \Biggl[S(i, u_i) + \alpha S(j, u_i) + \alpha^2 S(j, u_i) ... \Biggr]$ = $min_{u_1} f(i, u_1) + \alpha \cdot min \mathcal{F}[f(j, u_1) + \alpha f(j, u_2) + \cdots]$ $\overline{J(j)}$

Value iteration versus policy iteration

Sunday, March 29, 2015 9:46 AM

- Computationally, how + final the optimal 1) Directly solve the Bellman's Z quasium - Usually hard for large problems 1 Value Iteration - Take any inited values Jo(i) - Run the OP iteration $J_{k+1}(i) = m_{i} - \int_{0}^{i} f(i, u) + \sum_{j=1}^{k} f(j, u) J_{k}(i)$ - Generaly requires an infinite number of
iterations
- Same as saying that finite-horizon
pagett approaches the infinite-horizon - At the speed of \int_{0}^{k} 3) Policy Iteration - Start with any stationary policy M⁶.

- Giren M^k, compute its payoff by
solving $J(i) = f(i, \mu^k(i)) + \sum_{j=1}^n p_j(\mu^k(i))J(i)$ - called "polig evaluation" - A linear program of n variables - Perform policy -improvement! $\mu^{k+1}(i) = \alpha \mu^{min} \left[\beta(i,\omega) + \frac{\frac{1}{2}}{1-i} p_{ij}(\omega) J_{\mu}k(i) \right]$ - Stop if $\mu^{k+1} = \mu^k$ - Can show that $J_{\mu^{\kappa}}(i) = J_{\mu^{\kappa}}(i)$ for all i g k = Policy values always improve - For finite-state systems, the tital
number of possible policies is finite => must terminate after a finite - M^{k-1} = M^k satisfies Bellman's Zynction

= grand

Contraction mapping

Tuesday, April 11, 2023 10:06 AM

- For discounted-cost problems (or positive termination prob.
in every step), value iteration converges permetrically
fast because we can show that the Bellman operator is la contraction mapping $\mathcal{J}(i)$, i $=$ i , \sim \wedge $\mapsto \min_{\mathbf{u}} \left\{ \left. \begin{array}{c} \mathcal{E}(n,\mathbf{u}) + \mathcal{E} \sum_i \mathbf{P}_{ij}(n, \mathcal{I}(i)) \right\} \end{array} \right.$ - Denote this mapping by B - Let $\vec{N} = [3(i)]_{i=1,...,n}$ $\overrightarrow{\nu}$ \mapsto $\overrightarrow{\beta}$ $\overrightarrow{\nu}$ - To see ruly B is a contraction, compare
B(v), & B(v₂) - We can show that $\left\|\left(\mathcal{B}(\vec{v}_1) - \mathcal{B}(\vec{v}_2)\right)\right\|_{\infty} \leq \sqrt{\left|\left|\vec{v}_1 - \vec{v}_2\right|\right|_{\infty}}$ - Sypon $||\vec{v}_1 - \vec{v}_2||_{\infty} = \Delta$ $\Rightarrow |J_{1}(i)-J_{2}(i)| \leq \triangle f$ - Thus, for every u $\left[\left(\mathcal{F}(\cdot,\mu)+\mathbb{K} \sum_j \rho_j(\mu) J_j(j) \right) \right]$

 $\left[\left(\frac{\partial}{\partial x} \left(\vec{r}, \vec{n} \right) + \vec{r} \sum_{j} P_{ij} \left(\vec{n} \right) \vec{J}, \vec{r} \right) \right]$ $=\left[\begin{array}{c|c} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} &$ $= \alpha \left| \frac{1}{2} \int_{\mathcal{J}} (\omega) \left[J_{1} (j) - J_{2} (j) \right] \right|$ \leq α δ $\Rightarrow ||B(\vec{v_1}) - B(\vec{v_2})||_{\infty} \le \; \; < \; \; \le$

Linear programming

Sunday, March 29, 2015 9:57 AM

- Dentsckas P416 - If we start from any vector $J_{o} = (J_{o}(1), J_{o}(1), \cdots J_{o}(n))$ Sich Her $J_{\circ}(i) \subset \begin{matrix} m\\ n \end{matrix} \quad \begin{matrix} \mathcal{S}(i,n) + \frac{1}{j=1} & P_{ij}(n) & J_{\circ}(j) \end{matrix},$ $(\n\times)$ $\overline{}$ all $\overline{}$ Apply the DP iteration $J_{KH}(i)=\min_{h}\frac{\beta(i,h)+\sum\limits_{j=1}^{h}P_{ij}(h)J_{K}(j)}{i}$ - We have seen that $J_{k}(i) \rightarrow J^{*}(i)$ - Further, we can show that $J_{k}(i) \leq J_{k+1}(i)$
for all k i. $-$ Trivially hold \uparrow κ = 0 - Induction of K. $-$ This implies that $J_{0}(i) \leq J^{*}(i)$
for all $J_{0}(i)$ that scripted $(\frac{1}{2})$ - In other words, $(J^{x}(1), - J^{x}(n))$ is
compunent wise (argem than any other vector)
(Jo(1), ... Jo(n)) thed sadisfies (x)

- We can then conclude that (J*(1). J*(n) must
Le the sulution to the following linear yourgram; max $\sum_{i=1}^{n} \beta_i J(i)$ $\left(\beta_i > 0\right)$ $f\nu b \tarrow J(i) \leq f(i)\nu + \frac{\sum f_{ij}(v)J(j)}{j}$ $f = cMn, i.$ $-$ # of raniables = # of states n - Which is smaller compared to the 4 noms
Is.a. A of constaints: nxA.