Lec₃₁

Saturday, April 18, 2015 10:04 AM

- Deterministic SSP: Principle of Optimality:

 $J_{k}(i)=\lim_{j=l,1,\cdots,N}\left\{ \alpha_{j}+J_{k+1}(j)\right\}$

- Stochastic DP

 $J_{k}\left(x_{k}\right)=\frac{m_{k}}{u_{k}}\frac{T_{w_{k}}}{U_{k}}\left[\sum_{k\in U_{k}}\left(\frac{1}{2k_{k}}\right)u_{k}\left(x_{k}\right)+\sum_{k\in I}\left(\frac{1}{2k_{k}}\right)u_{k}\left(x_{k}\right)\right]$

Infinite Horizon

Friday, March 20, 2015 3:41 PM

- We sure turn in infinite horizon DP problems. - For the most part, similar Bellman equations
arise. However, the mathematical treatment can be - Basier it the state space is finite - Infinite Luisen: the 4 of styles is infinite - The system is wondly stationary: - dynamic equation Xx 3 Xk+) - random disturbance w_k : i.i.d. - CAT function. J (XK, VK, UK) - The grind puty is would stationary as
well $u_{\kappa} = \mu(x_{\kappa})$ - In the following, instead of using we, we we the - Pij (w) = Pr/ the next state is j piven that
the previous state is i & the
control is w] I + replaces $\int (x_k, u_k, \omega_k)$ $-$ f $(x_k, u_k) = E_{k,k}$ (f (x_k, u_k, w_k) (x_k, u_k))

lec31-mdp Page 2

 $- \gamma(x_k, u_k) = E_{\omega_k} (g(x_k, u_k, \omega_k) | x_k, u_k)$ - Need une restictions so that the overall cat is hut infinite $\frac{1}{\sqrt{2}}\left(x_{0}\right)=\lim_{\begin{subarray}{l}N\rightarrow+\infty\\ N\rightarrow+\infty\end{subarray}}\sum_{\begin{subarray}{l}k\neq\\ k\neq0\end{subarray}}\frac{N-1}{\sum_{k\neq0}\alpha_{k}^{k}}\left(x_{k}-\mu_{k}(x_{k})\right)$ - discunted a<0 average. $J_{2}(x_{0})=\lim_{N\to+\infty}\frac{1}{N}\sum_{u_{K}}^{\infty}\frac{\gamma_{L-1}}{\gamma_{L-2}}\frac{\gamma_{L-1}}{\gamma_{L-1}}$ Lulets -

SSP and discounted problems

Monday, March 23, 2015 9:17 AM - let is first study stuchastic shortest park (SJP)
problems and discounted problems. SSP - In SSP, there is no discurring : <= / - To make the bird cat finite, we assume that
there is a special cat free termination state T,
such that once the system reaches T, it remains
there forever and moth zero cost. - $p_{77}(w) = 1$, $\int (7, w) = 0$ fr all w . - denote the other states by 1, "> n expected
- The poal is to minimizes the potal cost to reach the $J_{\chi}(i) = \lim_{\mu \to \infty} E \left\{ \sum_{k=0}^{\mu-1} \frac{\partial(x_k, u_k(x_k))}{\partial x_k(x_k)} \right\}$ $\frac{min\,z}(i)$ Intuitively, it the cost in each step is sounded, and
the time to reach T is upper sounded by a geometre total cost will be finite. Discounted problems

Discounted problems In discounted problems, there is no termination state. - To make the total cost finite, we cossume that de / $J_{\chi}(i) = \lim_{N \to \infty} \mathcal{E} \left[\sum_{k=0}^{N-1} \alpha^{k} \frac{\partial(x_{k}, u_{k}(x_{k}))}{\partial x_{0}^{-i}} \right]$ $\frac{1}{2}$ - Intuitively, if the crot in each stage is lounded,
then the expected total crot will be first Egnivelence - It turns out that these two problems are
equivalent a $\begin{picture}(180,10) \put(10,10){\line(1,0){10}} \put(10,10){\line(1,0){10$ \overline{O} $\begin{array}{c}\n\begin{array}{ccc}\n\downarrow & \downarrow & \downarrow \\
\hline\n\downarrow & \downarrow & \downarrow \\$ To map the discurred problem to SSP:

- Add a termination state 7
- At each stage, not probability 1-0,
- So to state 7 regardless the curred, Then
Sstag there forever with services. - With probability & Pij (w), for it state j. - crot-per-stage for the resulting usp is
taken as $f(i, ln)$. Why is the new SSP equivalent to the original - Assure the same policy M is used in both Conditioned on not reaching T in the
next stage, the probability of reaching state;
in the next stage is $\frac{dP_{ij}(\omega)}{d} = f_{ij}(\omega)$ Hence, we can argue that the
state-transitions of the SSP before
reaching T is the same as the The expected crot of SSP of the k-th style
 $\propto \frac{k}{\epsilon} \Big(\frac{1}{\delta} (x_k, \mu_k(x_k)) \Big)$ probability
that SSP has not

reached T yet. - relich is also the K-th stage cost of the Hence, the crist of any you're M fiven an initial
state is the same for sort the SSP & the

Bellman Equation

Tuesday, November 14, 2023 3:43 PM

- What should the DP agration look like for the - Let us take the SSP version as an example From time - horizon to infinite - horizon - Consider first an N-stage problem - Alternatively, we can revorse time. - The optimal N-styl cost can be computed via OP $J_{k+1}(n) = \frac{m!}{n} \qquad \qquad \frac{1}{2}(n, n) + \frac{1}{2} \rho_{ij}(n) J_{k}(j)$ with $J_{\circ}(i) = 0$ for all i - It seems reasonable to anywe that the infinite-horizon - This means 0 $\int^{\star}(i) = \lim_{N \to \infty} J_{N}/i$

- cost must be finite! (D) $J^*(i) = min$ $\oint (1, \mu) + \frac{\overline{L}}{2} f_{ij}(\mu) \overline{J}^{\star}(j)$ - Not an iteration any more! - A system of equations for the
infinite-horizon cost-to-go (J*(i) - Bellman's equation (3) a that attains the minimum on the RHS of
the Bellman's equation may be the official - Similarly, for discounted problems, we will get - Unig the ssp mapping $J^{\star}(i) = \min_{\mu} \left\{ \left\{ \left(i, \mu \right) + \frac{z}{j} \propto p_{ij}(\mu) J^{\star}(i) \right\} \right\}$ transition \int_{i}^{m} is \int_{i}^{m} $\Leftrightarrow J^{\pi}(i) = \min_{n} \left\{ \left\{ (i, n) + \alpha \sum_{j} P_{ij}(n) J^{\pi}(i) \right\} \right\}$ Tuture cost future cost
future cost future cost
discounted from j

- But, are these really tone? 1 loes IN (1) converge? 2) If I solve the Bellman equation directly, dues
it cuincide with $J^{*}(.)$ - For most infinite-hosizon problems, the above 0-10
are true. - Zasier to show for - Finite -state space - Dunded cost. at each stage - For SSP, an exponential-termination
assumption holds - Antomatic for discounted problems.

Example

Tuesday, March 24, 2015 7:58 AM

- Bertsekas P420 - Asset selling: informite horizon - offers at each state are jurid with distolbution w. - it an offer is accepted, it will be invested at - 2f a sale occurs at stage 0, the value at - It a sale occurs at stage k, the value at - The two are equivalent when $(1+r)^k x_0 = x_k$ - It we "depreciate" all sales to stye-0
values, the reward at stye k can be
written as $\frac{X_{k}}{(1+r)^{k}}$ - This corresponds to a discounted problem
month $\alpha = \frac{1}{1 + r}$ Bellman Zynstin - Let $J^{\star}(x)$ be the optimal cast-t-for it the

initial offer is x' $J^{*}(x) = max \begin{cases} x, & \frac{1}{1+x} \in [J^{*}(w)] \\ \uparrow & \uparrow \end{cases}$
accept future Note that this corresponds to a threshold policy - accept when $x \ge 7$ $ACCep+$ when $X \neq 1$
 $Lx + L$ $P = \frac{1}{1+2}E(J^*(\omega))$ $(x*)$
 $(1+2)E(-\omega)$ $(x*)$ $(x*)$ Huwever, (*) is a system of equations with - The notion of "backward induction"
disappears. - Although Later me mill see that backward
induction can still by a numerical procedurer
for calculaty $J^*(x)$. - Instead, we may simplify (2) ad solve 1 - Bertsekas PI79 - Assure 9 is given $J^*(x) = \max \{x, \eta\}$ $= \begin{cases} x & \text{if } x \geq 1 \end{cases}$

Hence, $\mathcal{E}(\mathcal{I}^{\star}(\omega)) = \mathcal{E}[\omega \mathcal{I}_{\{ \omega \geq \eta \} }] + \eta \mathcal{I} \{ \omega < \eta \}$ $=$ η p \prime ω $\left(\frac{1}{p}\right)$ + \int_{p}^{∞} ω dp (ω) S_{ν} $\eta = \frac{1}{1+\alpha} \left\{ \eta \rho / \omega < \eta \right\} + \int_{\eta}^{\infty} \omega \, d\rho(\omega)$ - A fixed point equation that only

SSP: exponential termination

Tuesday, March 24, 2015 8:15 AM

- We have illustrated the intuitive behind the Bellman
equation, and has to bee it to solve infinite-horizon - Next, we will derive a condition when these - we will focus on ssp since discounted problems can
be mapped to an equivalent SSP. - Recall me start with a finite N-stage problem $J_{k+1}(i) = m! \left\{ \left\{ (i,n) + \frac{\sum_i \gamma_i}{j}(n) \right\} - \left\{ x \right\} \right\}$ - The minimum u at each k pines the optimal - We agree that as ks tro, this equation $J^{\star}(i) = \min \{ \beta(i, \kappa) + \frac{\sum \beta_{ij}(k, \kappa)}{\sum \gamma_{ij}(k, \kappa)} \frac{1}{\gamma^{\star}(i)} \}$ - The corresponding un pires a stationary - Several prostins arise:
O Dues Jk(i) converge as k = +vs?
O Is the limit same as J⁺(i) (defined as
the optimal ant in the infinite problem)?

the optimal cost in the infinite problem)? $\begin{array}{ccc} (3) & 2+2 & 1 & 50lv & J^{\star}(\iota) \text{ direct}^{\prime} & \text{ from } (\star \star) \text{ , } \text{ is it} \ -tl & \text{ soms} & \text{cs }+k & \text{ limit above} \end{array}$ 4 Does the stationary policy derived from 4
five exactly the optimal cost $J^{\pi}/(i)$? Assmittans - The state space is finite - The cot f(i,n) is bounded - Expurential termination" - There exists an integer on such that regardless of the policy used and the probability that the termination state
smill be reached after no more than
In stayes, i.e. for all policies 2 $\left\{ \mathcal{P}_{\lambda} = \frac{m \omega x}{i \omega b \omega n} \right\} \times_{m} \neq \top \left[\mathcal{X}_{o} = i, \mathcal{X} \right]$ L et $\rho = \frac{m\omega x}{\lambda} \rho x$ then plaine the number of distinct
m-stage pulicies for a firit-state system A special version is with $m=1:$ regardless of

lec31-mdp Page 15

- A special version is with $m=1$: regardless of - Note that this cossmition is antomatically
Sctisfied for the mapped SSP of a Discounted
problem since $\rho = 1-\alpha$ for $m = 1$ Note that if the computential termination
assumtion I holds, then for any poligia,
the probability of not reaching the termination of
state T after km stypes diminishes like p $P\{X_{k,m}\neq T | X_{o} = i, z\} \leq \int_{0}^{k}$ for all i. Since the cost per step is sunded, this implies
that the future expected cost in the periods
Icm to (kt) in-1 is sounded in assolute value \overline{C} $\frac{1}{\omega} \int_{0}^{k} \frac{m\omega x}{n\omega}$ $\left(\frac{m\omega}{k}\right)$ Thus , the tail expected cost after kom stages $\frac{100}{2}$ mp^k max $8(ix)$ $=$ $\frac{m\ell^{k_0}}{n}$ max $|\xi(\ell,h)|$

lec31-mdp Page 1

 $=\frac{m\ell^{k_{0}}}{1-\ell^{n-k_{0}}}\max_{i,n}|\xi(i,n)|$ - which diminishes to zero as $k_0 \rightarrow +\infty$ - Intritively, this means that the "tail" of the infinite - Louisen problem mill de less & les
significant. Thus, the JE(i) will de closer &
closed to J*(i) as k ++ms! - Another consequence is that (*) becomes a
contraction mapping, and hence the limit must be
unifie. Proposition 1 (Bertsekco P408) - Under the above assumptions (including (a) Civen any initial values of $J_0(y \cdots J_0(n))$
the sequence $J_{1c}(i)$ generated by the $J_{k+1}(i) = \min_{\mu} \left[\frac{\partial}{\partial t} (i, \mu) + \sum_{j=1}^{n} P_{ij}(\mu) J_k(j) \right]$ $i=1, \cdots, n$
Converges to the systemal cast $J^*(i)$ for each i . (b) The optimal costs $J^*(y - J^*(n))$ satisfy
Bellman's Egnation: $J^*(i) = \min_{u} \left[g(i, u) + \sum_{j=1}^{N} f_{ij}(u) J^*(i) \right]$ $i=1, ..., n$

and in fact they are the unique solution cr) For any stationary gilliag M, the costs
Ju(1) - Ju(n) are the unique solution of the equation $\mathcal{I}_{\mu}(i) = \int_{0}^{i} \left(i \mu(i) \right) + \sum_{j=1}^{n} \eta_{ij}(\mu(i)) \mathcal{I}_{\mu}(j)$ $1 = 1, ..., n$ Further, piven any initial values Joli).Jo(n)
the sequence Jr (i) generated by the DP
iteration $J_{E+1}(i) = \int (i \, \mu(i)) + \frac{Z}{\int -1} \cdot P_{ij}(\mu(i)) \cdot J_{F}(j)$ Converges to the cost Ju (i) for each i. (d) A stationary policy M is optimal if A and if
for every state i, M () obtains the

Proof

Sunday, March 29, 2015 9:32 AM

- The main proof is part (a): $J_{\kappa}(i) \ni J^*(i)$ - Assume for simplicity that J.(i)=0 for all i. - For any KZI, write the cost of any policy x $J_{\mathcal{X}}(x_{0}) = \frac{mK-1}{\sum_{k=0}^{2}} E\left\{\int f(x_{k})\mu_{k}(x_{k})\right\}$ $+\sum_{k=mK}^{+\infty}E\left\{\int (x_{k}^{\prime})dk(x_{k}))\right\}$ $\mid x \mid \leq \frac{\rho^{k}}{1-\rho} m \cdot m^{k} \sqrt{\frac{\rho^{(i,\mu)}}{2}}$ If 2 is the optimal policy minimize LHS $J^*(x_{0}) \geq J_{nk}(x_{0}) - \frac{\int_{0}^{k} m \cdot max(f(y))}{1-\rho}$ If I is the optimal piky mining Jok(20) $J^{*}(x_{0}) \leq J_{x}(x_{0}) \leq J_{mk}(x_{0}) + \frac{\rho k}{1-\rho} m \cdot max(f(i, u))$ $\Rightarrow \qquad \boxed{\mathcal{I}_{mk}(x_0) - \mathcal{I}^*(x)} \leq \frac{\beta^{k}}{1-\beta} m \cdot max|\mathcal{S}(i,y)|$

 \Rightarrow $J_{mk}(x, y) \rightarrow J^{*}(x)$ $\&$ $\mathcal{I}_k(x_*) \rightarrow \mathcal{I}^*(x)$ - Similary, the choice of Jol! doesn't F_{av} part (b) - Jnot take limits on both sides of the - Uniqueness follows from the convergence
results of plant cas, (Just take any solution
to the Bellman's Zynation as the initial For part (1) - Similar to part (a) Tr part (d) - Company the two of iterations

SSP: correctness - handout

Tuesday, March 24, 2015 8:15 AM

Proposition 1 (Bertsekco P408) - Under the above assumptions (including (a) Civen any initial values of $J_0(y \cdots J_0(n))$
the sequence $J_{1c}(i)$ generated by the $J_{k+1}(i) = \min_{\mu} \left[\beta^{(i)} \sum_{r=1}^{n} P_{ij}(i) J_{k}(j) \right]$ $i = 1, ..., n$
Converges to the optimal cost $J^*(i)$ for each i . (b) The optimal costs $J^*(y - J^*(n))$ satisfy
Bellman's Egnation: $J^*(i) = \min_{u} \left[g(i, u) + \sum_{j=1}^{n} f_{ij}(u) J^*(i) \right]$ $i=1, ..., n$ and in fact they are the unique solution cc) For any stationary gilliag us the costs
Ju(1) ... Ju(n) are the unique solution of the equation $\mathcal{I}_{\mu}(i) = \int_{0}^{i} \left(i \mu(i) \right) + \sum_{j=1}^{n} \hat{I}_{ij}(\mu(i)) \mathcal{I}_{\mu}(j)$ $1 = 1, ..., n$

Further, piven any initial values Jo(i) ... Jo(n)
the sequence Jr (i) generated by the DP $J_{\kappa_{t_1}}(\mathfrak{i}) = \gamma(\mathfrak{i}, \mu(\mathfrak{i})) + \sum_{j=1}^{\mathfrak{i}} \eta_{j}(\mu(\mathfrak{i})) J_{\kappa}(j)$ Converges to the cost Ju (i) for each i. (d) A stationary policy M is optimal if A only if
for every state i, M () obtains the O if
forinimum in the Bellman's Equation. - The main proof is part (a): $J_{\kappa}(i) \ni J^*(i)$ - Assume for simplicity that J.(i)=0 for all i. - Fr any KZI, most the cost of any policy a $J_{\mathcal{R}}(x_{0}) = \frac{mK-1}{\sum_{k=0}^{m}E}\left\{\int f(x_{k}, \mu_{k}(x_{k}))\right\}$ $+\frac{1}{2}$
 $\frac{1}{k}$ = mK \in \int $f(x_k)dk(x_k)$ $\begin{array}{|c|c|c|}\n\hline\n\star &\in & \frac{\rho^k}{1-\rho} m \cdot m \approx l \hat{\rho}(i, h)\n\end{array}$ - If 2 is the optimal policy minimize LHS If the optimal piky mining Jak (20)

 $\Rightarrow \qquad \boxed{\mathcal{I}_{mk}(x_0) - \mathcal{I}^{\#}(x)} \leq \frac{\int^{k} m \cdot max|\mathcal{S}(i, v)|}{\sqrt{n} \cdot \sqrt{n}}$ \Rightarrow $J_{mk}(x, y) \rightarrow J^{*}(x)$ $k J_k(x) \rightarrow J^*(x)$ - Similarly, the choice of Joli duesn't $\frac{7m}{10}$ part (b) - Just take limits on both sides of the
DP iteration. - Uniqueness follows from the convergence
result of part (a). (Just take any solution
to the Bellman's Zynation as the initial c m dition) <u>the part (1)</u> - Similar to part (a) $7r$ part (d) - Company the two of iterations