Lec₂₇

Sunday, March 26, 2023 2:49 PM

Delayed feedback

Friday, March 20, 2009 3:31 PM

- In the above discussions, we have assumed a
slotted model vakere the fundback is assumed $X_{s}(t) = \frac{argmax}{X_{s}} N_{s}(x_{s}) - X_{s} \cdot \sum_{l} \mathcal{P}_{l}(t) H_{s}^{l}$ $P_{l}(t+1) = (\hat{Y}_{l}(t) + \sum (\frac{1}{s}H_{l}^{l}X_{l}(t) - R_{l}))^{T}$ - In practice, the feedback delay can be larger
than the time it takes for starces/binks to - Also, the feedback delay can van signfiantly. - It then leads to a new set of equations $X_{s}(t) = \frac{a_{1}a_{2} + a_{3}}{x_{s}}$ $M_{s}(x_{s}) - x_{s} \sum_{l} H_{s}^{l} \mathcal{C}_{l}(t-D_{s}^{l}(t))$ $P_{i}(t+1) = [P_{i}(t) + \delta] \leq H_{i}^{1}X_{j}(t-\delta_{i}^{S}(t)) - R_{i}]^{T}$ - In typical control systemy, ench delay
tends to lead to uscillation (instability) 7 Nueds to reduce the "join" to ensure

=> Needs the stopsize to be small Let no try to understand why small stepsize - When I is small, the value of of changes $s[ml]$ =) the estimation of will not be the different 7 the update direction will be closer to the $($ o $)$ S. H. Low and D. E. Lapsley, "Optimization Flow Control-I: Basic Algorithm and Convergence," IEEE/ACM Transactions on Networking, vol. 7, no. 6, pp. 861-874, December 1999.

Stepsize and delay - simplified

Tuesday, November 7, 2023 9:09 AM

- Suppose that we wish to minimize f(x)
using a gradient aljonithm: $x^{(1)} = x(1) - y_0 + (x(1))$ - Due t. delay, however, at time t we
can only access $U_f^+(x(1-0))$, i.e. $x(t+1) = x(t) - y(t) / (x(t-n))$ We can still analysis the change of $||x(t+1)-x^{\star}||^{2}$ = $||x(t)-x^{\star}||^{2} - 2\gamma$ < 0 + (< $6-0$), $x(t)-x^{\star}$) + δ^2 // ∇f (x (+-0))/|² = $||x (+) - x^7||^2$ \rightarrow $28 < 0 + (x (+0)), x (+0) - x^7)$ $(1 + \gamma^2 ||0 + (x (t - 0)))||^2$ $-28(0+|x(1-0)|,x(1-2x(1-0))$ should be regative when J is sufficiently
Small & f is smooth - When I is small, this $shndd$ be $O(g \cdot D \cdot Df)$ \approx 0(8/10/11) - Together, the additional
term should be objet) $||x(t)-x^{*}||$ will still - Overall, we can expect that - Need $\gamma \backsim \frac{1}{\rho}$.

Stepsize and delay - skip

Friday, March 20, 2009 3:45 PM

Why small stepsier improves stability? Consider a delayed version of the dual $\gamma_{1}(t+1) = [\gamma_{1}(t) + \gamma_{2}(\frac{1}{s}H_{s}^{1}x_{1s}^{2}(t) - R^{1})]^{\frac{1}{s}}$ Where $\hat{X}_{1s}(t)$ is a delayed estimate of the survice
 $Y_{1s}(t) = \frac{t}{t^2 + t^2}$ $\hat{X}_{1s}(t^2, t) \times_{s}(t^2)$ $\frac{1}{2}$ $\frac{1}{4(2+1)}$ $\alpha_{1s}(4', 1) = 1$ $\forall t$ For example:

(0 constant delay d : $a_{13}(t',t)=\begin{vmatrix} 1 & t'z+c d \\ 0 & o/w \end{vmatrix}$

(2) me past average : $a_{13}(t',t)=\frac{1}{t_{0}+1}$ Similarly
 $X_s(t) = \frac{2\pi m a x}{\pi m} \frac{V(s)}{V(s)} - X_s \cdot \frac{1}{2}H_s^1 \gamma_s (t)$ where $\hat{\gamma_{N}}(t) = \frac{1}{t^2 + t^2}$ bis $(t', t) \cdot \hat{\gamma_{l}}(t')$ $t^{\frac{t}{2}}$
 $t^{\frac{t}{2}}$ t^{\frac - Let no try to understand why small stepsize

Ueds to convergence (even with delay to). - When I is small, the value of I changes
slowly
= the estimation of will not be the different
= the update direction will be choser to the
gradient Zasier to work with the dual objective Let $Z(t) = \overrightarrow{Y}(t+1) - \overrightarrow{Y}(t)$. By growth lemma $8(\vec{r}(t+1));$ and $(\vec{r}(t)) + \nabla 8(\vec{r}(t)) \cdot \lambda(t) - \frac{1}{2}\beta ||\lambda(t)||^2$ - When there is no delayed foedback, 2(+)
rail be coronnel the direction of \neg (F(1)) Let $z(t) = \int \nabla \xi(\hat{q}(t)),$ then $U \left\{ \left(\sqrt{\gamma}(t) \right) - Z \left(t \right) = \frac{1}{\gamma} ||Z(t)||^2 \right\}$ When y is small $\Rightarrow y$).

- When there is delay, in goneral 26+) is
NOT in the same direction as $\nabla_{\mathcal{S}}(\vec{r}(\tau))$. Let $\lambda(t) = \frac{\sum H_s^1 X_{is}^1(t) - R^1}{S}$. Then $\lambda(t)$ is
colong the direction $\lambda(t)$. Assume $\lambda(t)$ = $f \lambda(t)$, then $\lambda(f) \cdot \lambda(f) = \frac{1}{\delta} ||\lambda(f)||^2$ - Hence $\{(\vec{\zeta}(t+1))\geq \xi(\vec{\zeta}(t))+\lambda(t)\cdot\lambda(t)+[\vec{\zeta}(\vec{\zeta}(t))- \lambda(t)]\cdot\lambda(t)\}$ $- 8$ $112(t)$ $= 8(\vec{q}(t)) + (\frac{1}{r} - \frac{\beta}{l})||z(t)||$ $+ \left[\nabla \vec{\delta}(\vec{\zeta}(t)) - \lambda(t) \right] \cdot \vec{\lambda}(t)$ Note that the last-term represents the "emm" due
to the difference to the update direction & - We now show that the last-term is on the
corder of $\frac{1}{t^{2}+1}$ (Hence, the "emon" is
comparatively small usher 8 k) - The difference between $\nabla \xi(\vec{\zeta}(\theta))$ - $\lambda(\theta)$ is $\frac{1}{\sqrt{2}}\frac{1}{\sqrt{6}}\times_{s}(+)-\frac{1}{\sqrt{6}}\frac{1}{\sqrt{6}}\times_{1s}^{1}(+)$

$$
= \left(\frac{1}{s} H_{s}^{1} + \frac{1}{s+1+s} \frac{1}{s+1} \frac{1}{s+1} \frac{1}{s+1+s} \frac{
$$

The layer the delay, the layer the error term I The smaller the stepsier needs to be See Landont (window.pdf) $Ref:$ S. H. Low and D. E. Lapsley, "Optimization Flow Control-I: Basic Algorithm and Convergence," IEEE/ACM Transactions on Networking, vol. 7, no. 6, pp. 861-874, December 1999. $\left(3\right)$

Global stability - skip

Friday, March 20, 2009 4:26 PM

We can show that $8(8(t+1)) - 8(8(t))$ $2\left(\frac{1}{x}-\frac{\beta}{2}\right)|2(\psi)|^{2}$ $- A_2 \frac{\frac{+}{2}}{1+\frac{+}{2}+\frac{+}{2}+\frac{+}{2}} ||z(t')|| ||z(t)||$ $\geq (\frac{1}{2} - \frac{\beta}{2} - A_2 t_0) - ||A(H)||^2$ $\frac{A_{2}}{2}\frac{1}{t^{2}-t-2t_{0}}||\lambda(t^{\prime})||^{2}}$ Summing over K=1, ..., + $3(\vec{\gamma}(t+1)) > 8(\vec{\gamma}(b))$ $+ \left(\frac{1}{\gamma} - \frac{\beta}{2} - A_{2}t_{0}\right) \stackrel{+}{\sim} ||z(k)||^{2}$ $\frac{4}{2} (270t) \frac{t}{15} (270t)^2$ $\frac{1}{\gamma} - \frac{\beta}{2} - A_2(2\tau_0 + \frac{1}{2})$ so done $\beta = \overline{d} \overline{S}$ $Note:$

 $A_{L}=\sqrt{L}\propto\overline{S}\overline{L}$ $\begin{array}{ccccccccc}\n\overline{\alpha} & \overline{\zeta} & \overline{\zeta} & \overline{\gamma} & \gamma & \gamma \\
\hline\n\gamma & \gamma & \gamma & \gamma & \gamma\n\end{array}$ S. H. Low and D. E. Lapsley, "Optimization Flow Control-I: Basic Algorithm and Convergence," IEEE/ACM Transactions on Networking, vol. 7, no. 6, pp. 861-874, December 1999.

Why MDP (Markov Decision Process)?

Thursday, November 2, 2023 10:21 AM

- Let us consider the fillowing set-up - (not mes arrive to a system at the rate of $\lambda(\rho)$, which depends on the price ρ - For example λ (p)= 1-p \leq 05 p = 1 - The higher the price, the lower the - Suppose that the system controller mishes to
set the price p, so that the maximum - This is a simple unconstrained optimization problem $max p. \lambda(p) = p(1-p)$ - The messimum solution is $\gamma_1^* = \frac{1}{L}$ λ (γ) = $\frac{1}{L}$ - The revenue is $\frac{1}{2} \times \frac{1}{2} = 0.25$ But suppure that the system has capacity constraints - It can serve on average 0.2 constomers per

- We should then model this as a constrained max $\gamma \lambda(p) = \gamma(1-p)$ $s+b$ to $\lambda(p) = (1-p) \leq 0.2$ The solution is $\sqrt{\frac{4}{2}} = 0.8$ λ (p_2^4) = 0.2 The revenue is $0.8 \times 0.2 = 0.16$ - But let us consider suive stringent performance - If the arrivals and services of the
Choromers are random, then typically
you will see some gneue build-up - There is a new arrived in each time
shot vith prob. $\lambda(p)$, there is no
arrived otherwise - The system can serve one customer - Can we constoain our problem, so that
the average prene length is bounded, sag, 9.3 - It turns out that, if we use $\lambda(\frac{\gamma}{2})=0.2$,
the overage grene length will actually be two! - For certain guencing system (e.g. M/M/1

 $\begin{array}{cccccccccccccc} \circ & \cdot & \circ & \circ & \circ & \circ \end{array}$ - For certain gneuing system (e.g. M/M/1) $\mathcal{E}[\mathbb{Q}] = \frac{\lambda / m}{1 - \lambda / m}$ - where λ is the arrival rate & $-$ Indeed, if $\lambda = \mu$, then $t(0) = +\infty$! - Let us use the above expression as an
approximation of the guen length is - We can then still formulate an opt.
Jrothm γ nax $\gamma \lambda(p) = p(1-p)$ $rac{\delta r}{\delta t}$ \to $rac{\lambda(p)}{\frac{\delta \cdot 2}{1-\frac{\lambda(p)}{\delta t}}}\leq 9$ - The constraint is equivalent to $\frac{\lambda(\rho)}{\rho \cdot 2} = \frac{1-\rho}{\rho \cdot 2} \leq 0.9$ - The silstin is then $\gamma_3^* = 0.8z$ $\lambda(\hat{\rho}_{3}^{*}) = 0.18$ The revenu is

lec27-new Page 14

 $0.82801820.148$ - As we have seen, as we impose more &
more stoingent constraints, our rooms far
optionization becomes smaller & smaller - As a result, the solution / decision becomes mon & mon conservative - But so far ne are still able to soe
a connex optimizedion jublen. What if we put ever mon stringent

Even more stringent

Thursday, November 2, 2023 10:49 AM

- Let no say we liven want to limit the gneue - This is actually infeasible for a fixed price - Due to randomness. there is clusys the
positions that there are tack-t-tack 10
customers arriving, and no service at all. - So the gneer length roll have to be
lager than 9! - One possibility, if we still want to stick to ρ $[0 \leq \gamma] \geq 1-\epsilon$, e_{i} , $\Sigma = 0.0$ - Again, assuming M/M/1 greve; a $P[Q=i]=\left(\frac{\lambda}{\mu}\right)^{7}(1-\frac{\lambda}{\mu})$, i=e,... $\Rightarrow p[\&\&S] = 1 - (\frac{\lambda}{\mu})^{10}$ Our opt. problem becomes max $q \cdot \lambda(q) = p(1 - p)$ $5\nu b + 2\left(\frac{\lambda(\rho)}{a}\right)^{3} = \left(\frac{1-\rho}{a\cdot 2}\right)^{3} \le 5 = 0.01$

— The $combinoid$ is equivalent to $\frac{\lambda(p)}{6.2} = \frac{1-p}{6.2} \le 0.91^{1/6} = 0.83$
— The solution is now
$p_+^* = 0.879$
$\lambda(p_+^*) = 0.126$
$\frac{1}{16}$

- If the current guest legat is = 9.
he do not let new crotomers in. - This policy will clearly maintain gnew - We will lose some revenue when the - This happens not prob. $\frac{\lambda}{\lambda}$ ($\frac{\lambda}{\mu}$) $1-\frac{\lambda}{\sqrt{\lambda}}$ ' $^{\circ}$ - At $\frac{\lambda(\rho_2^*)}{\rho \cdot 2} = 1$, this - The testal revenue is $\propto \rho_c^{\star} \lambda (\rho_c^{\star}) \cdot (1 - \frac{1}{\sqrt{6}})$ $36.8788280.9 = 0.144$ which is much better! - How can we find this type of solutions/pilicies? - One crucial difference from the earlier
Connex optimization profilems is that the - We use the price p2 when prene < 9

we the price 1 when guerre = 9 $\begin{picture}(180,10) \put(0,0){\line(1,0){10}} \put(15,0){\line(1,0){10}} \put(15,0){\line($ $\frac{1}{89}$ - Conceivably, our particular chrice
may not even be optimal! - We can use another price function of - Can suc develop a methodology to optimize - MDP or Dynamic programming does exactly - In summany, MAP in useful when - There are stringent performance obj.
& constraints - We mish to use "state" - dependent